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ABSOLUTE FACTORIZATION OF POLYNOMIALS:
A GEOMETRIC APPROACH*

DOMINIQUE DUVALt

Abstract. In this paper a new algorithm is presented for factoring bivariate polynomials over algebraically
closed fields. Or, equivalently, for determining the irreducible components of a plane curve. This algorithm
is based on properties of some geometric invariants of the curve, and is similar to Berlekamp’s algorithm
for factorization of univariate polynomials over finite fields.
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Introduction. In this paper we describe a new algorithm for the determination of
the irreducible components of a plane curve. The algorithm has the property that it
first determines the number of those components. The main ideas of this algorithm
have been presented in [Dul], but here is given a more efficient way to determine the
components, once their number is known.

The notions of curve and of irreducible curve here are the algebraic ones: let K
denote an algebraically closed field of characteristic zero (this assumption may be
weakened as explained at the end of 1), for example the field C of complex numbers.
A (plane algebraic) curve C (over K) is the set of points (x, y) in the affine plane
A2(K) K K which satisfy F(x, y)=0 for a given nonconstant polynomial F(X, Y)
in K[X, Y]. The curve C is irreducible if the polynomial F(X, Y) is irreducible in the
ring K[X, Y], i.e., if F is different from F1 F2 for any nonconstant polynomials F
and F: in K[X, Y].

The ring K(X, Y) is factorial, which means that every polynomial F in K[X, Y]
has a (essentially) unique irreducible decomposition

In this decomposition, each Fi is irreducible in K[X, Y], Fi is not collinear to F if
j, and the ki’s are positive integers.

The irreducible components ofthe curve C are the curves Ci of equation F(x, y) O,
and ki is the multiplicity of Ci in C. We shall see in 1 that, thanks to the classical
methods of "square-free decomposition," it is always possible to assume that every k
is equal to one. It follows that the geometric question of determining the irreducible
components of a curve is equivalent to the algebraic question of factoring a bivariate
polynomial over an algebraically closed field.

Absolute factorization should be distinguished from rationalfactorization, by which
we mean factorization of univariate or multivariate polynomials over a given nonalge-
braically closed field. Rational factorization has been much more intensively studied
and implemented than absolute factorization. One of the conclusions of this paper is
that both kinds of factorization are independent. This can also be deduced from
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Kaltofen’s algorithm (cf. 1). But this fact has not always been clear, partly because
rational factorization used to be considered essential to represent algebraic numbers.

Our algorithm relies on the knowledge of a basis for some vector spaces related
to the curve C. These spaces are used in numerous different applications. We are not
aware of any easy algorithm to compute them, though different methods have been
known since the end of the 19th century. In this paper we give a new algorithm based
on one of those methods.

We also compare our algorithm with other algorithms for absolute factorization,
using a similar frame for their description.

In 1 we begin with some general considerations, especially about computations
in algebraically closed fields (referring to our work with Dicrescenzo). We then describe
within a similar frame three "algebraic" methods for absolute factorization of bivariate
polynomials" the methods by Trager and Traverso, by Kaltofen, and ours. In the
description of our algorithm appear some finite-dimensional K-vector spaces denoted
L(0) and L(-ga). The rest of the paper is devoted to the definition of these vector
spaces, their computation, and the proof of our algorithm.

Section 2 introduces some geometric objects that will be useful, mainly, the notion
of a divisor D on a curve C, and the K-vector space L(D) of functions on C which
is classically associated to D. Nothing is new in this section, since the curve C is
assumed to be irreducible.

In 3, similar objects are defined when the curve C is reducible. The main result
of the paper is proved" The number of irreducible components of C is equal to the
dimension of the K-vector space L(O).

A way of recovering an irreducible component of C from some K-vector space
L(-ga) is then described in 4.

Finally, in 5 a method is described for the computation of bases of the spaces
L(0) and L(-ga). This method dates back to Dedekind and Weber, but here we give
a new "rational" version of it, with emphasis on the treatment of algebraic numbers.

1. Three algorithms. In this section are described without proofs three different
methods for absolute factorization 0f bivariate polynomials. They have in common
their algebraic flavor, and their strategy. They determine a simple point (a,/3) on the
given curve C and then compute the irreducible component of C through this point,
or equivalently the irreducible factor (X, Y) of F(X, Y) in K[X, Y] such that
(ce,/3) 0. Algorithm ! is described by Trager [Trag2] and Traverso [Trav], Algorithm
II is due to Kaltofen [Ka], and Algorithm III is the one detailed in this paper. Let us
also mention the absolute irreducibility test by Heintz and Sieveking [HS] which needs
many simple points on C, and the topological method by Bajaj et al. [BCGW] which
is restricted to K C.

The field K. The field K is algebraically closed and has characteristic zero. Since
we want to perform computations on it, we have to be somewhat more precise. Let us
call the four operations +, -, x, and/the field operations on K.

DEFINITION. Here a field L is a computable field if we can represent its elements
in such a way that equality can be tested, and if we have for each field operation
on L an algorithm with input representatives of two elements a and b of L (with b 0
in the case of division) and with output a representative of the element a b of L.

Example. It is well known that the field Q of rational numbers is a computable
field. It is also well known that if L is a computable field, if P(T) is an irreducible
polynomial with coefficients in L, and if/3 is a root of P(T) in an algebraic closure
L of L, then the field L(/3) generated by/3 and L in L is a computable field. The reason
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is that L(/3) is then isomorphic to the quotient L[ T]/(P(T)). Note that P(T) usually
has several different roots/3 in L, but thanks to the Galois theory we know that they
all behave in the same way. This point may be stated as:

"Let fl be any root of P(T) in L, then L(fl) is a computable field"
which emphasizes the fact that usually in applications P(T) is given and the following
instruction is needed:

"Let/3 be any root of P(T) in L."
But usually in applications this instruction is needed for some nonconstant polynomial
P(T) in L[ T], which may be reducible in L[T]. Of course if we are given a factorization
algorithm on L[T] (which is not a consequence of the fact that L is a computable
field), then L(fl) is a computable field, isomorphic to some quotient L[ T]/(Q(T)) for
an irreducible factor Q(T) of P(T) in L[ T]. More precisely, consider some computation
over L(/3) involving equality tests and field operations. This computation may be
considered as the evaluation of a function o" A- B at some a A. Let Qi(T) (for
1 <_- <-_ I) denote the distinct irreducible factors of P(T) in L[T]. For each i, let bi B
denote the value of q(a) for any root/3 of Q(T). The result of the evaluation of rp(a)
may then be represented as the finite set of pairs {(bl, QI(T)),
b2, Q2( T)),..., bi, Q, (T))).

In this paper we do not use any factorization algorithm in L[T], but rather we
use dynamic evaluation [DD]. Consider some computation as above, considered as
the evaluation of a function p" A- B at some a A. With dynamic evaluation, the
result of the evaluation of p (a) is a finite set { (bl, P1(T)) (b2, P2( T)),. , (b, P(T))}
of pairs with b B and P(T) a factor of P(T) in LIT]. For each j, the value of p(a)
is equal to b for any root fl of P(T), and the P(T)’s form a splitting of P(T).
Generally, a splitting of P(T) is defined as a set {P(T)}j of nonconstant polynomials
in L[ T] such that every root of P(T) in L is a root of one and only one P(T), and
conversely every root of some P(T) in L is a root of P(T). Since here we are interested
in fields of characteristic zero we give a more restrictive definition, which will simplify
the description of the algorithms below. We require that every P(T) be square-free,
so that a splitting of P(T)L[T] can be defined as a set {Pj(T)}I__<j_<_J of nonconstant
polynomials in L[ T] such that /5(T) PI(T)P2(T) Pj(T) where /5(T)
P( T)/gcd (P(T), P’(T)) L[ T] is the square-free polynomial associated to P(T). Of
course the set of distinct irreducible factors of P(T) in L[ T] form a splitting of P(T),
but usually a given computation only leads to a partial factorization of P(T). The cost
(in term of elementary operations in L) of each elementary operation in L(fl) is similar
to the cost if P(T) were irreducible in L[ T], except for equality tests which now have
a cost similar to divisions, since they need agcd computation with P(T) in L[ T]. In
particular, this cost is independent of the number J of branches in the splitting.

Example. In some examples below we consider the polynomial P(T) T2- q over
Q for an arbitrary rational number q 0. Then P(T) may be irreducible in Q[ T] or
not, i.e., the ring Q[T]/(TZ-q) may be a field (then equal to Q(fl)) or not, depending
on the value of q. For example P(T) is reducible in Q[ T] if q 1, and irreducible if
q 2. However, computations in the field Q(fl) will run the same way for every q.

DEFINITION. An algebraically closed field L is a computable algebraically closed
field if it is a computable field and if we are able, given any nonconstant univariate
polynomial P(T) with coefficients in L, to represent any root of P(T) in L. We may
then use instructions like"

"Let/3 be any root of P(T) in L."
Example. It is a consequence of dynamic evaluation that the field Q of algebraic

numbers is a computable algebraically closed field.



4 DOMINIQUE DUVAL

More generally, dynamic evaluation proves that if a field L is a computable field,
then its algebraic closure L is a computable algebraically closed field. It may be proved
recursively on the number of instructions like "let/3 be any root of P(T) in L" which
are used. The main point in this recursion has been considered above: If P(T) is a
nonconstant polynomial with coefficients in L and if/3 L is any root of P(T), then
the field L(fl) generated by/3 and L in L is a computable field.

Our computability assumption is that there is some computable subfield Ko of K
which contains all the coefficients of F(X, Y). Every computation will occur in the
algebraic closure Ko of Ko, which is a computable algebraically closed subfield of K,
so that we may also assume that K Ko to simplify notation. We now freely use the
instruction "... any root of..." over K, and we do not bother any more about
computations in K except for the following"

Some remarks following the description of Algorithms I and II, since the
original descriptions of these algorithms did not use dynamic evaluation (actually, the
idea that dynamic evaluation is a very general tool is quite new; cf. [DDD] as the first
reference).

The description of a method to compare different irreducible factors of F(X, Y)
at the end of 1, as an example of dynamic evaluation "of level 2."

The description of the normalization algorithm in 5 where, at some points in
the algorithm, we have to use explicitly the set of values and polynomials returned by
dynamic evaluation.

The lolynomial F(X, Y). As explained above, the bivariate polynomial F(X, Y)
has its coefficients in some computable subfield Ko of K. Since F(X, Y) will often be
considered as a polynomial in Y with coefficients in K[X], we denote

F(X, Y)= a(x) Y
i=0

where n is the degree of F in Y.
We may assume that F(X, Y) is square-free: Using the Gauss lemma [La, Chap.

5] and some classical algorithm like Yun’s [Yu] for square-free decomposition in the
Euclidean ring Ko(X)[ Y], we easily get the following result.

PROPOSITION. Using only derivations and gcd’s computations in Ko[X] and in
Ko(X)[Y], we may compute square-free polynomials Fi(X, Y) in Ko[X, Y], pairwise
coprime, and positive integers k such that

F(X, Y)= fi Fi(X r)k,.
i=1

Of course the absolute factorization of F immediately follows from the absolute
factorizations of the F’s.

In addition, we may assume that we know some a Ko such that F(a, T) is
square-flee and of degree n. Such an c is called a noncritical value for F(X, Y). It
means that the curve C has no vertical asymptote of equation x a and that for every
/3 K if (,/3) is a point of C it is simple (i.e., the derivatives Fc(X, Y) and F’(X, Y)
of F(X, Y) are not both zero at (c,/3)) and without vertical tangent. In order to
determine a, we may simply test successively c =0, 1, -1, 2, -2,... until one is
noncritical. It must happen: Let D(X) Ko[X] be the discriminant of F(X, Y) (con-
sidered as a polynomial in Y). It is well known that c is noncritical for F(X, Y) if
and only if a(a)D()O. But a(X)D(X) has a finite number of roots (because
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F(X, Y) is square-free), and the image of the integers in Ko is infinite (because Ko has
characteristic zero), whence a noncritical value of a must be found after a finite number
of trials (and usually in practice a very short number ofthem). In addition, in Kaltofen’s
algorithm we assume that ce 0, in order to simplify the description of the algorithm.
For this purpose, if zero is a critical value for F(X, Y) and a Ko a noncritical one,
we replace F(X, Y) by F(X + a, Y).

Now, if P(T) F(a, T) Ko[T], and if/3 K is any root of P(T), the point (c,/3)
is a simple point on the curve C. As a consequence, there is one and only one irreducible
component of C through this point, i.e., one and only one absolutely irreducible factor
(X, Y) of F(X, Y) such that (a,/3) =0. The three algorithms below return this

factor (X, Y). The subfield K1 Ko(/3) ofK generated by Ko and/3 is a finite extension
of Ko of degree at most n.

In order to make the description of the algorithms easier, we may also require
that F(X, Y) be either primitive in Y (i.e., gcd (ai(X))i 1) or even monic in Y (i.e.,
an(X)= 1). In the first case we replace F(X, Y) by F(X, Y)/gcd (ai(X)). In the
second case, using a classical trick, we may replace F(X, Y) by G(X, Y) Y b(X) Y
Ko[X, Y], where bn(X) 1 and hi(X)-- a(X)an(X) n-l- for 1 <_- i<- n- 1. Then
G(X, Y) is monic in Y and is related to F(X, Y) by G(X, an(X)Y)=
an(X)n-IF(X, Y), so that the absolute factorization of F(X, Y) is easily obtained
from that of G(X, Y), and G(0, T) is square-free of degree n if F(0, T) is. Monicity
may also be enforced by making a linear change of coordinates X’--X + aY for a
"random" a K, but the degree in Y of the resulting polynomial is the total degree d
of F(X, Y), which may be much higher than n.
With either ofthese two assumptions we may compute in the Euclidean ring K(X)[ Y]

rather than in K[X, Y], which is not Euclidean, by the Gauss lemma [La, Chap. 5].
Especially, if F(X,j Y) is primitive (respectively, monic) in Y and if (X, Y) is an
irreducible factor of F(X, Y) in K(X)[ Y], then multiplying (X, Y) by the suitable
fraction in K(X) to make it primitive (respectively, monic) in Y gives an irreducible
factor (X, Y)of F(X, Y)in K[X, Y].

We now come to the description of the three algorithms, each one followed by
its application to the factorization (over K C) of

Fq X, Y) y2 q X + 1)2 y .f X ./ Y+/X+ ./-
for any rational number q 0. It is a square-free polynomial with coefficients in the
computable field K0 Q, monic in Y, and Fq(O, T)= T2-q is square-free, so that we
may choose a 0 and P(T) T2- q.

ALGORITHM I (described by Trager [Trag2], and in the last section of [Trav]mbut
independently from the preceding sections).

INITIALIZE. Assume F(X, Y) is square-free in Ko[X, Y] (as above).
SIMPLE POINT. Let a Ko be a noncritical value for F(X, Y) (as above). Let

P(T) F(ce, T), let/3 be any root of P(T) in K, and let K1 be the subfield Ko(/3) of K.
RATIONAL FACTORIZATION. Factorize F(X, Y)in K[X, Y].
RESULT. NOW (X, Y) is the unique factor of F(X, Y) in K[X, Y] such that

(,/3) =0.

This algorithm is very easy to describe. With this point of view, absolute factoriz-
ation is a special case of rational factorization. It means that we do not only need that
Ko be a computable field. In addition, we require an algorithm to factorize bivariate
polynomials over simple algebraic extensions of Ko, like K1. However, when Ko is Q,
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for example, algorithms are known for rational factorization in KI[X, Y]. But they are
quite complicated and slow, especially if the degree of K1 over Ko is high.

In the original description, two more rational factorizations were required. At
initialization, F(X, Y) was assumed irreducible in Ko[X, Y], whence a first factoriz-
ation. However, applying Traverso’s criterion in [Trav] to (X, Y) K1[X, Y] proves
that this assumption is useless. The factorization of P(T) in Ko[ T] was also required,
in order to be able to compute in Ka. Strictly speaking, it should still be required,
since it has not yet been proven that it is possible to factorize polynomials over K1
when the minimal polynomial of/3 over Ko is not known. Indeed, the usual algorithms
for rational factorization over K1 do not only use equality tests and basic field operations
in K, they also use operations on some finite field, including the Frobenius map on
that field. However, we conjecture that it is possible to run the classical rational
factorization algorithms over K without factoring P(T) in Ko[ T]. Note that if we do
not factorize F(X, Y) over Ko we cannot use the following nice result (cf. [CG], for
example)" If F(X, Y) is irreducible over Ko and if by chance P(T) has a linear factor
in Ko[ T] then F(X, Y) is absolutely irreducible.

Example. The factorization of Fq(X, Y) over K is y2_ q(X + 1)2--
(Y-fiX-)( Y+X+), and the result is (X, Y)= Y-/3X-/3. Here the absolute
factorization of Fq (X, Y) is the same as its rational factorization over K1, but in general
it is false (consider, for example, y3-2X3).

ALGORITHM II (Kaltofen [Ka]). This algorithm replaces the rational factorization
in K[X, Y] in Algorithm I by an ad hoc method for the determination of the unique
irreducible factor (X, Y) through (a,/3). It has been developed independently from
Algorithm I, and its presentation used to be fairly different.

INITIALIZE. Assume F(X, Y) is monic in Y and square-free (as above).
SIMPLE POINT. Assume that zero is a noncritical value for F(X, Y) (as above).

Let P(T)= F(0, T), let/3 be any root of P(T) in K, and let K be the subfield Ko(fl)
of K.

A ROOT OF F. By the (formal) implicit function theorem, there exists a unique
y =/3 +Yi=l/3iXi in K[[X]] such that F(X, y)=0 in KI[[X]], i.e., such that y is a
root of F(X, Y), considered as a polynomial in Y, in KI[[X]]. The computation of
the/3’s successively for i= 1, 2,... is easy, it is linear algebra over K. In this step,
compute/3,/32,’’’ ,/3k for k=(2n-1)m (where m =degx (F)).

RESULT. NOW (X, Y) is the minimal polynomial of y over K[X]. It means that
(X,y)=0 and that (X, Y)=qo(X)+qI(X)Y+...+qI_I(X)yI-+ yl with the
qi(X)’s in K[X] of degree at most m and with as small as possible (1 _-< l=< n). If
is given, the determination of the coefficients of the q(X)’s is just linear algebra over

K and only uses /3i for i--1, 2,..., k. Since is not known, try l= 1, 2,..., n-1
until you find a solution. If none is found then (X, Y)= F(X, Y).

Example. The implicit function theorem gives the root y fl + fiX, with minimal
polynomial c(X, Y)= Y-flX-fl of degree 1.

In his paper Kaltofen does not use general results from dynamic evaluation to
prove that we do not need to factorize P(T) in Ko[ T]. However his argumentation is
similar, but is restricted to the linear algebra that he needs. By doing so, he is able to
get polynomial bounds on both the number of rational operations and on the size of
the involved numerators and denominators, which we do not do for Algorithm III. In
addition, Kaltofen remarks that no splitting should occur in the computation of the
root y of F, since this computation does not require any equality test, and only divisions
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by P’(0) which is invertible in the ring Ko[ T]/ P( T) ). This remark will be useful to
us in a fairly different context in 5.

ALGORITHM III. Algorithm III is proved in the rest of this paper. Notation and
terminology will be defined and described in other sections. As usual, C denotes the
curve in A2(K) of equation F(x, y)= 0. Let us just say here that:

Ko(C) is the ring Ko(X)[Y]/(F(X, Y)) and similarly KI(C) is the ring KI(X)-
[Y]/(F(X, Y)) (the images of X and Y in these rings are respectively denoted x
and y),

L(0) is a K-vector space (associated to C) of finite dimension precisely equal
to the number r of absolutely irreducible factors of F(X, Y),

each simple point on C corresponds to a so-called place of K(C), and to each
place go of K(C) is associated a subspace L(-go) of L(0) of dimension r-1.

We need subalgorithms for the computation of a basis of the spaces L(0) and
L(-go). Such algorithms are described in 5.

INITIALIZE. Assume F(X, Y) is primitive in Y and square-free (as above).
SPACE L(0). Compute a basis B in Ko(C) of L(0). Let r denote the cardinal of

B, i.e., the dimension of L(0) over K. It is the number of absolutely irreducible factors
of F(X, Y). If r 1 then F(X, Y) is absolutely irreducible, return (X, Y)= F(X, Y)
and exit.

SIMPLE POINT. Let a Ko be a noncritical value for F(X, Y) (as above). Let
P(T) F(ce, T), let/3 be any root of P(T) in K, and let K1 be the subfield Ko(fl) of K.

SPACE L(-go). Let go be the place which corresponds to the simple point (a,/3).
Compute from B a basis B’ in K(C) of L(-go).

RESULT. If we normalize the gcd of polynomials in K(X)[ Y] so that it is primitive
in Y, then (X, Y) is the gcd in KI(X)[ Y] of F(X, Y) and of representatives of the
elements of B’.

It will be clear from the rest of the paper that most work here is made for the
computation of the basis of L(0). Another difference between this algorithm and the
other two is that the number r of factors is computed before any explicit factor, so
that the computation stops if r 1.

Example. In the example, B {1, y(x + 1)} so that r 2. As usual let a 0; then
B’={-[3+y/(x+l)} and d(X, Y)--gcd(Fq(X, Y), Y-/3(X+I)) Y-X-fl.

Other factors. There is still one point to discuss, which is common to the three
algorithms described here: once one factor (X, Y) is obtained, how do we get the
complete factorization? For simplicity, we assume here that (X, Y) is normalized in
some way, for example, assume that it is monic in Y. These algorithms return a factor
(X, Y) for each root/3 of P(T), and each absolutely irreducible factor of F(X, Y)

is one of the (X, Y)’s. Two values of/3 may correspond to the same factor, precisely
when the two points (a,/3) lie on the same irreducible component of the curve C. It
is possible to get rid of redundant factors by testing whether tl(X, Y) and 2(X, Y)
are equal in Ko(fll, fiE)IX, Y] for/31 #/32. Here we have to test equalities in the field
Ko(/3,/32) where/31 and/32 represent any root of two factors PI(T) and P2(T) of P(T)
in L[ T] which are either coprime or equal. For this purpose, we first use the instruction:

"Let/31 be any root of PI(T) in K[T]"
and then in the "coprime" case the instruction:

"Let fl be any root of P(T) in K[ T]"
and in the "equal" case, to ensure that fl ill, the instruction:

"Let/32 be any root of P:(T)/(T-/31) in K[ T]"
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Example. For Fq(X, Y) we have (X, Y)-Y-flX-fl for every root / of
P(T) T2- q. Let/3’ denote the other root of P(T), i.e., the root of P(T)/(T-fl)=
T+fl. Then ,(X, Y)= Y-fl’X-’= Y+X+fl. Both polynomials have the same
degree and are monic in Y but they are not equal (because if =-fl, then T would
divide P(T)). So they are coprime and the complete absolute factorization of Fq(X, Y)
is (Y-X-fl)(Y+ flX+ fl).

Rational factorization. A related question is whether it is possible to derive the
factorization of F(X, Y) in Ko[X, Y] from its absolute factorization. It does not seem
very interesting in practice, although the answer is yes, but here rational factorization
of P(T) is needed. Let (X, Y)KI[X, Y] be the absolutely irreducible factor of
F(X, Y) such that (a,/)=0 as above, and let Q(T) be the minimal polynomial of
fl over Ko. Define (T, X, Y) Ko[ T, X, Y] (with degree in T less than deg (Q(T)))
such that (X, Y) (, X, Y). Then the resultant R(X, Y) of( T, X, Y) and Q(T)
(considered as polynomials in T) is in Ko[X, Y], and it is a power of an irreducible
factor of F(X, Y) in Ko[X, Y] [Tragl]. This factor can be obtained as the gcd of
FIX, Y] and R(X, Y) in Ko(X)[Y].

About the characteristic. The assumption that K has characteristic zero can easily
be weakened. It is clear that the three algorithms run the same way if Ko is a "large
enough" finite field. It means that it must be possible to find some noncritical value
a for F(X, Y) in Ko. If Ko is too small then a first extension may be used to find some
noncritical a. In addition, for Algorithm III, the characteristic should be larger than
the degree n of F in Y in order to use Puiseux expansions as in this paper. This
remark is important by itself, since, for example, algebraic curves over finite fields are
studied in coding theory [Go], and also in light of the remark in the conclusion about
the use of arithmetic modulo p in order to control the size of the coefficients in the
algorithm when used over the field of rational numbers.

2. Some geometry. In this section, as is often the case in algebraic geometry, but
not as in the other sections of this paper, we assume that the polynomial F(X, Y) is
irreducible in K[X, Y]. Its degree n in Y is assumed positive. Our references are
Fulton’s book [Fu] and Walker’s [Wa].

Functions. The K-algebra K(C)= K(X)[ Y]/(F(X, Y)) is afield because F(X, Y)
is irreducible in K[X, Y]. This field is a finite algebraic extension of K(X) of degree
n. Every elementf ofK(C) is the root of one and only one monic irreducible polynomial
with coefficients in K(X), called its minimal polynomial over K(X). If the coefficients
of this polynomial are in K[X], then f is integral (over K[X]). The set A of integral
elements of K(C) is a free K[X]-algebra of rank n. Its field of fractions is K(C), which
is also equal to the tensor product K(X)@xj A. This means that every element in
K(C) can be written fig for some f in a and some g 0 in K[X].

From a geometric point of view, if C is the affine curve of equation F(x, y) -O,
then K(C) is called the function field of C. It comes from the fact that it is the field
of fractions of the integral domain K[X, Y]/(F(X, Y)), which in turn is made of the
polynomials of K[X, Y] modulo the equivalence relation "have the same value at each
point of C." For example, K(X) is the function field of the curve Co of equation y 0,
i.e., the "x-axis," and its ring of integral elements if K[X]. The curve Co can be
identified with the affine line AI(K).

The projective completion C of C in the projective plane P2(K) is now,, defined as
the set of points (x, y, z) P2(K) such that F(x, y, z) O, where F(X, Y,Z)=
ZdF(X/Z, Y/Z) is homogenous of degree d, and d is the total degree of F(X, Y).



ABSOLUTE FACTORIZATION OF POLYNOMIALS 9

The curve has a finite number of points at infinity, often called the points at infinity
of C, which correspond to the asymptotic directions of C. For example, the projective
completion of Co is identified with the projective line P(K). The point (1, 0, 0) is the
only point at infinity of Co, and will be denoted c.

Places. Following Walker [Wa, Chap. 4], we define the places of the curve (, or
of the field K(C), as the equivalence classes of irreducible parametrizations of C. We
refer to Walker for precise definitions of irreducibility and equivalence. A parametriz-
ation of C is a pair (q(t), (t)) of power series in K((t)) such that the power series
F(q(t), q(t)) is equal to zero in K((t)). To each point P= (x, y, z) of are associated
a finite number of places centered at that point, which correspond bijectively to the
"branches" of through P (a place is made of the irreducible parametrizations of
the corresponding branch). If P (x, y, 1) is a point of C the places centered at P are
represented by a parametrization (q(t), q(t)) with both series in K[[t]] and q(0)= x,
O(0) y.

Since there is exactly one branch of C through every smple point of C, such a
point is the center of exactly one place. The other points of C are called singular, they
are in finite number, and each singular point may be the center of several places. For
example, since every point of the projective line Co is simple, we^ identify each place
of Co, or of K(X), with its center. So that the places of Co are the points of
Co P(K) Kw {}.

Each place ga of is above one place ce of ?o, and we note gala. Precisely, if
the center P (x, y, z) of ga is a point (x, y, 1) of C, then a x. If P is a point (x, y, 0)
(i.e., the corresponding branch is an infinite branch of C), then a c except when
this branch is a vertical asymptote of equation x Xo, in which case ce Xo.

In order to compute with places, we shall choose some precise parametrization
to represent each place, using rational Puiseux expansions of C (cf. 5).

Let ga be a place of K(C), represented by the parametrization (q(t), (t)). To
every polynomial G(X, Y) in K[X, Y] is associated a power series G(q(t), q(t)) in
K((t)). In fact this series only depends on the image of G(X, Y) in K(C), and thus
by extension of scalars to K(X) we get a K-homomorphism f--fo (q, ) from K(C)
in K((t)), which is injective. Now, let f be a nonzero function of K(C), and let

+c kf (q, q)= Yk= ukt with u 0. The integer , does not depend on the choice of the
parametrization for ga. We say that f has order , at the place ga, and we denote
w(f)- ,. Also let w(0)= +.

If , > 0, we say that f has a zero of order , at ga, and if , < 0, that f has a pole of
order -, at ga. It can be proved that the integral elements of K(C) are the functions
on C which have no pole at the places of K(C) that are not above c. It can also be
proved that a function on C has a finite number of zerosand poles on , and that

2 w(f) 0

where the sum is over all the places of K(C).
If C is the x-axis Co, the order off at a is denoted v(f), for every f in K(Co)

and every a in Kw {}. If a K then v(X-a)= 1 and for every place ga of C above
a the positive integer e such that w(X-a)= e is called the ramification index of
the place ga. Similarly, if a = then v(1/X)= 1 and for every place ga of above

the positive integer e such that w(1/X) e is called the ramification index of the
place ga. For every a Kw {o} we have the relation 1 e n.

Divisors. The group @() of the divisors on the curve may now be defined. It
is made of the formal expressions D Y nSa where the sum is over all the places ga
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of C, the n are integers, and all but a finite number of them are equal to zero.
Equivalently, 9(C) is the free Abelian group on the set of places of K(C). To each
function f of K(C), different from zero, is associated the divisor div (f)= divc (f)
y’, w(f)ga. A partial order is defined on @() by

E nga >--E ngaC:>Vga, n__> n.
In addition, let div ,0)= +, and (()= (){+}, with the order obtained by
adding to _>- on 9(C) the rule

+ >_- D for every D.

The elements of () are called here the generalized divisors on .
Notation. For every divisor D on C, the set of functions f in K(C) such that

div (f)>--D is denoted L(D) or sometimes Lc(D).
This set is a K-vector space. For example, L(0) is the set of functions in K(C)

which are integral and which have no pole at the places of K(C) above . Our
factorization method is based on the two following classical results (cf. [Fu, Chap. 8]).

THEOREM 1. For every divisor D on C, L(D) is a finite-dimensional K-vector space.
THEOREM 2. L(0) K.

3. Number of factors. In this section, the polynomial F(X, Y) in K[X, Y] is no
more assumed irreducible, but simply square-free and primitive in Y. Let F(X, Y)--
I-Ii= Fi(X, Y) be the irreducible decomposition of F(X, Y) in K[X, Y]. We now
generalize the definitions and results of 2.

Functions. A first point is that the K(X)-algebra of functions on C

K(C)=K(X)[Y]/(F(X, Y))

still has degree n over K(X), but is no more a field. However, by the Chinese Remainder
Theorem, it is isomorphic to the product of fields I-I= K(C), where K(C)=
K(X)[Y]/(Fi(X, Y)). Precisely, let @ denote the projection of K(C) on K(C) for
each i, and

O: )i’K(C)---> (Ci)
i1 i1

the isomorphism in the Chinese Remainder Theorem. Let A be the ring of integral
elements of K(C) for 1 _-<i <- r, and let us define the ring of integral elements A of
K(C) by

It means that A is made of the functions f of K(C) which are integral on each
component of C. Since A is isomorphic to the product of the A’s, it is a free
K[X]-module of rank n, and K(C)= K(X) (R)x A.

The projective completion C of C is defined as the set of points (x, y, z) in P(K)
such that F(x, y, z) 0 exactly as in 2. It is easy to prove that C is the union of the
projective completions C’s of the C’s.

Plees. It is still possible to define the places of C as its equivalence classes of
irreducible parametrizations, and to represent them by rational Puiseux expansions,
since F(X, Y) is square-free and primitive in Y, i.e., C contains no multiple component
and no vertical line. The set of places of is then equal to the sum of the sets of
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places of the curves Ci’s, which means that each place a of is a place of one and
only one irreducible component i, called the support of

If ga is a place of C represented by some parametrization (q(t), q(t)), the
K-homomorphismf-f (q, q) from K(C) to K((t)) is defined as if C were irreducible.

LEMMA. Letfbe afunction of K(C) and ga aplace of represented by (q(t), d/(t)).
Let Ci be the support of ga. Then

fo (o, q,)= O(f) (0, ).

Proof. If f is the image of a polynomial G(X, Y) of K[X, Y] modulo F(X, Y),
then Oi(f) is the image of G modulo F, and thus both fo (o, ) and O(f) (p, ,)
are equal to G(o(t), ,(t)). The lemma follows by extension of scalars to K(X).

It is thus possible to define the order of a function f of K(C) at any place ga of
as the t-order of the series fo (o, ), and it is equal to the order of the function

O(f) of K(Ci) at ga considered as a place of ti. It follows that a function of K(C) is
integral if and only if its order is nonnegative at each place of C which does not lie
above oo.

Divisors. We define the group of divisors on C as the direct product

i=1

Thus, it is the free Abelian group on the places., of C. Its elements are still denoted
D Y nega. The set of generalized divisors on C is defined as the Cartesian product

i=1

The order _-> is defined on this set from the orders >_- on the sets @(C)’s by

(D,),<=i<__,>(D) l__<i__<r(=Vi, D
Of course, () is a subset of ().

For every function f on K(C), we denote by div (f) or divc (f) the generalized
divisor on C

divc (f) (divci(Oi(f))),<_i<_r.
It is a divisor on C if and only if Oi(f) is a nonzero function in K(Ci) for each i.

The space L(D), or Lc(D), may now be defined for any divisor D of as the
set of functions f in K(C) such that div (f) -> -D.

THEOREM 3. Let D (Di)l<_i<_ be a divisor on . Then 0 defines an isomorphism
between Lc D and the product 1-[= Lc, (Di).

Proof Let f denote a function of K(C), and ga a place of . Let be the support
of ga. Since w(f)= w(O(f)), the function f is in Lc(D) if and only if for each
we have divci (O(f))_->-Di, i.e., if and only if for each the function O(f) is in

Lc,(Di).
Number of factors. Our main result now follows directly from Theorem 2.
RESULT 1. The number of irreducible factors ofF(X, Y) in K[X, Y] is equal to the

dimension of the K-vector space Lc(O).
Remark. For i= 1 to r, let hi denote the function of K(C) such that O(hi)

(tj,i)ljr, where tj, is one if j-i and zero otherwise. Then {h}l_ is a basis of
Lc(O) over K. The functions hi’s are related to the irreducible factors F’s of F in the
classical way. Let F*(X, Y)=l-Ii F(X, Y)-F(X, Y)/F(X, Y), and let G(X, Y)
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denote a polynomial with image modulo Fi(X, Y) equal to the inverse of the image
of F*(X, Y). If Hi(X, Y) denotes the product F*(X, Y)Gi(X, Y), then hi is the image
of Hi(X Y)modulo F(X, Y).

4. Determination of a factor. Once the number of irreducible factors of F(X, Y)
in K[X, Y] is known, how is it possible to compute one of them? A trivial remark is
that there is nothing to do when the number of irreducible factors is one. This remark
is important, since in other factorization methods it may take very long to recognize
irreducible polynomials.

A method for computing the irreducible factors is now described, which uses a
second consequence of Theorem 3.

RESULT 2. Let go be a place of , and i the support of go. Then L(-go) is the
sub-K- vector space of Lc (0) of dimension r 1 and of basis the hi’ s for j i.

Proof Let D---go, so that D (Dj)l_j=r with Di =-go and D 0 for j i. The
space Lc,(-go) is made of the functions which are in Lci(O) and in addition have a
zero at go. Since Lci(O) is made of the constant functions, it follows that Lc,(-go) is
the null space {0}. Whence the result, by Theorem 3.

The following result describes how it is possible to compute an irreducible factor
of F(X, Y) from a basis of Lc(-go).

PROPOSITION. Let go be a place of, and i the support of go. Let {bl, b2," br-1}
be a K-basis of Lc(-go), and let BI(X, Y), B2(X, Y),. ", Br_I(X, Y) be polynomials
in K(X)[ Y] such that Bk(X, Y) mod F(X, Y) is equal to bk for 1 <-- k <- r- 1. Then the
irreduciblefactor Fi(X, Y) ofF(X, Y) in K[X, Y] is the gcd ofthepolynomials BI(X, Y),
B2(X, Y),’’ ", Br_I(X, Y) and F(X, Y) in K(X)[Y].

Proof Here the gcd of polynomials in K(X)[ Y] is chosen primitive in Y. First,
note that the gcd of BI, B2,’’’, Br-1, F in K(X)[ Y] does not depend on the choice
of the Bk’S; it only depends on the Bk’S modulo F, i.e., on the bk’S.

Let us first assume that {bl, b2,..., br-1} is the basis of Lc(-go) made of the h’s
for j i. Then the Bk(X, Y)’s can be chosen as the /-/(X, Y)’s of 3. But FfG
where Ff divides F, FFf F, and Gj is coprime to F. Thus, the gcd of F and
is Ff, and the gcd of F and of all the/-/’s for j is the gcd of all the Ff’s for j i,
i.e., it is Fi, as wanted.

Now, if {hi, b,..., br_} is any basis of Lc(-go), let us denote

bk E mk,jh
ji

with the mk,’S in K. Then we can choose

Bg(X, r) E m//4(X, Y)
ji

for 1 _-< k _-< r- 1. Every common divisor of the /-/(X, Y)’s (for j i) divides every
Bk(X, Y) (for 1 <_--k_-< r-1), and the converse is true since the matrix formed by the

rnk,2’s is invertible. It follows that the gcd of B, B2," ", Br-1 is equal to the gcd of

the/-/’s for j and that the gcd of B, B2," ", Br_, F is still equal to Fi.
At that point, terminology and notation in Algorithm III ( 1) are defined, and it

is proved that the algorithm returns an absolutely irreducible factor of F(X, Y). But
we have not yet described the two subalgorithms: computation of a basis B of L(0)
over K, and then computation of a basis B’ of L(-go) over K, with B in Ko(C)=
Ko(X)[Y]/(F(X, Y)) and B’ in K(C)=K(X)[Y]/(F(X, Y)). This will be done in
the next section.

5. Computation of L(D). The spaces L(D) are basic objects of algebraic geometry
of curves; they are used in the Riemann-Roch theorem [B1] as well as in integration
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[Da], [Trag-2] and in coding theory [Go]. They have been studied for a long time,
but usually for an irreducible curve. At the end of the 19th century at least two
algorithms were known for the computation of a K-basis of any space L(D) over an
irreducible curve C"

The "geometric" method of von Brill and Noether, using the notion of adjoint
curves [BN], [Fu], [LR].

The "arithmetic" method of Dedekind and Weber, which uses Puiseux
expansions [DW], [B1], [Co].

In addition a new method for the computation of L(D) when D 0 is given
by Trager [Trag2], which can be viewed as a "global arithmetic" method (while the
Dedekind-Weber method is "local").

For our factorization method, we need an algorithm that may be adapted to
reducible curves (without multiple components and "vertical lines"), and that can be
run with dynamic evaluation, which means that it should not require operations in
fields other than the four basic operations and equality tests. It seems that this is the
case for each of the three algorithms above, but the proof has only been written for
the Dedekind-Weber algorithm [Du2].

In this section we first define rational Puiseux expansions of C. We then describe
the computation of a basis of L(-fa) from a basis of L(0) (which is very easy), and
finally we describe the Dedekind-Weber algorithm (improved by the use of rational
Puiseux expansions) for the computation of L(0). As in 3 and 4, the polynomial
F(X, Y) is square-free and primitive in Y.

Rational Puiseux expansions. The rational Puiseux expansions of C give a "compu-
table" description of the places of C. Here we give their definition and some of their
properties, referring to [Du3] for an algorithm to compute them. They lead to an

"asymmetric" description of places, where x and y play different roles.
First, let us define a triangular set ofpolynomials over some subfield. L of K as a

set TP={PI(X1), P2(X1,X2),’’" ,PI(X1,X2,’’" ,XI)} for some 1->_0 where each
Pi(X1, X2,’’’, Xi) is a polynomial with coefficients in L, which is monic and of
positive degree when considered as a polynomial in X. Let

TP’)- {PI(X,), P2(X1, X2), , P,(X1, X:,...,

for i= 0, 1,...,/, and let L(TP)) denote the ring defined recursively by L(TP)) L
and L(TPi)) L(TP-I))[X]/(Pi(xl, x2," , x_l, Xi)) if i> 0, where xj is the image
ofxj in L(TPJ’) forj= 1,2,. ., I and 1 <=j<=j’. The degree of TP is d(TP)=I-II==I di
where di is the degree of P as a polynomial in x. It is the dimension of L(TP) as a
vector space over L. A basis B(L(TP)) of L(TP) over L is the set of monomials
Hl<=i<_i X with C {0, 1, di- 1 }.

A solution of TP is a set S={/31,/32,’’’,ill} of elements of K such that
P(/31,/32,’’’,/3)=0 for i=1,2,...,/. The triangular set of polynomials TP is
square-free (respectively, is irreducible) if Pi(,2,"" ,i-l,Xi) is a square-free
(respectively, an irreducible) polynomial in L(/31,/32, ,/3i_1)[X] for every solution
S {/31,/32," ",/3i} of TP. The number of solutions of a square-free triangular set of
polynomials TP is equal to its degree d(TP). We denote by L(S) the subfield of K
generated by S and L for each solution S {ill,/32," ,/3i} of TP, and 7rs the natural
projection of L(TP) onto L(S) defined by 7rs(xi)=i. We also denote by 7rs the
projection of L(TP)((t)) onto L(S)((t)) defined by 7S(Zk uktk)--’k s(Uk)t k.

Now, let us consider a place c c K w{oo} of Co. A system of rational Puiseux

expansions of C above a (cf. [Du3]) is defined as a set

R= {(TP, q2(t), j(t))}__<<__j
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where

TP is a square-flee triangular set of polynomials over Ko(a).
0(t) and (t) are power series in Ko(a)(TP)((t))such that (t)=a+ht if

ac and p(t)=l/(ht) if a=o, for some positive integer e and some hj
Ko(a)(TP) such that 7rs(h)S0 for every solution S of TP.

--The pair O,s=(s(O(t)), zrs((t))) is an irreducible parametrization of the
curve t for every j and every solution S of TP.

Every place of C above a is represented by exactly one of the
parametrizations O,s.

For every S the ramification index of the place represented by Oj,s is the positive
integer ej, and we have YI-<_=<J ed( TP)- n.

From now on we choose one system of Puiseux expansions of C above each
a K c {+} in order to represent the places of C.

Basis of L(-g). Since is a place of C centered at a simple point (a,/3) of C,
the space L(-g) is the set of functions fK(C) such that f L(0) and f(a, fl)=O,
where f(X, Y) K(X)[ Y] is the representative off of degree less than n, so that L(-g)
is the kernel of the K-linear application f--f(a,) from L(0) onto K, and the
determination of a basis of L(-g) from a basis of L(0) is classical linear algebra over
K. We shall see that it is possible to choose for L(0) a basis in Ko(C), i.e., with
representatives in Ko(X)[Y]. Then the basis for L(-) is in KI(C), as required for
Algorithm III in 1.

Basis of L(0). The computation of a basis for L(0) is not so simple. Let A denote,
as above, the ring of integral elements of K(C). It is a free module of rank n over
K[X], and a function f on C is in A if and only if it has positive order at every place
ga of C which is not above c. Let uy= minl (w(f)). Then a function f on C is in
L(0) if and only if it is in A and satisfies ,y->_ 0.

DEFINITION. Here a basis of A above Ko is a basis of A (considered as a free
module over K[X]) which is contained in Ko(C). A free family ofA above Ko is a set
of n elements of A linearly independent over K[X] and contained in Ko(C).

The idea of the algorithm is to build a free family E {fl, fl," , fn} of A above
K0("INITIALIZE" part of the algorithm below), and to modify it progressively until it
becomes a basis of A above Ko ("NORMALIZE"). This basis in turn is progressively
modified until it becomes "normal at infinity" ("NORMALIZE AT INFINITY"). From
such a basis is easily derived a basis of L(0) over K which is contained in Ko(C)
("CONCLUSION"). In addition, there is a "REDUCE" part, where we describe a
subalgorithm used in the "NORMALIZE" part of the algorithm.

INITIALIZE. Let gi(X) an(X) for 1, 2,. , n 1 and

E {1, gl(X)y, g(X)y, gn_l(X)y-l}.
Then E is a free family of A above Ko.

Indeed g(X)y is integral because a(X)y is integral (cf. 1). A better choice
for the g(X)’s is described in the remark at the end of this section. Note that each
root of g(X) is a root of a(X) and consequently of D(X) (as usual, D(X) denotes
the discriminant of F(X, Y) considered as a polynomial in Y).

NORMALIZE. Progressively modify E in Ko(C) to get a basis of A above Ko. This
is the normalization of C, and the most difficult part of the algorithm. We describe
here a "rational" version of the Dedekind-Weber method (cf. [Du2] for details). An
alternative would be the normalization algorithm by Trager [Trag2], which is derived
from an algorithm by Zassenhaus and Ford [Fo] for number fields.
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Let a K be any root of D(X), and compute the rational Puiseux expansions of
the curve C above a. As usual with dynamic evaluation, the result is a set
{Rk, Dk(X)}l<_k<_l where {Dk(X)}k is a splitting of D(X), and for every root a of
Dk(X) the set Rk={(TPk,j,qka(t), qk,j(t))}l_<--j_--<Jk is a system of rational Puiseux
expansions above a. Note that the power series qk,j(t) are finite, and that we only
need the first terms of the series qk,j(t). We certainly need their "singular part" (cf.
[Du3] for a definition), and sometimes a bit more. Here it would be helpful to use
"lazy evaluation" (as offered by streams in the Scheme language) for the implementa-
tion, and to look for a reasonable bound on the number of required terms in order to
get an estimation of the complexity of our method.

From (k,j( t) a -t- lk,jtek, compute the discriminant ofA over K[X] by the formula

K Jk
Disc (A) [I Dk(X) ek Ko[X] where ek (ek,j-- 1).

k-----1 j=l

Also compute the discriminant of E as

Disc (E)= g,(X)2

\i=1

D(X)Ko[X].

It is well known that Disc (E) is a multiple of Disc (A), that they are equal (up to a
multiplicative constant) if and only if E is a basis of A, and that the quotient
Disc (E)/Disc (A) is a square in K0[X]. Compute Q(X) Disc (E)/Disc (A). Note
that every root of Disc(E) or of Q(X) is a root of D(X), because for every i
{1, 2, , n 1} every root of gi(X) is a root of D(X). In practice Disc (A), Disc (E),
and Q(X) need not be explicitly computed; they may be represented by some con-
venient square-free decomposition.

DEFINITION. Let A(X)Ko[X]. The set E is reduced with respect to A(X) if
A(X) and Disc (E)/Disc (A) are coprime. A reduction of E with respect to A(X) is
a free family E’ of A above Ko such that Disc (E’) divides Disc (E) and E’ is reduced
with respect to A(X).

Using the subalgorithm described below for this reduction, the algorithm now
runs as follows:

For every k {1, 2, , K} do
Compute a reduction E’ of E with respect to Dk(X
Replace E by E’.

The result is reduced with respect to D(X), and since every root of Disc (E) is
a root of D(X) the result is a basis of A above Ko, as required.

REDUCE. The reduction is a subalgorithm which is used in the normalization step
described above. Starting with a free family E {fl,f_,""" ,fn} of A above Ko and a
factor A(X) of some Ok(X), it returns a reduction E’ of E with respect to A(X). As
above, Q(X) Disc (E)/Disc (A) Ko[X].

We first assume that A(X) is irreducible in Ko[X]. The reduction is a succession
of reduction steps. A reduction step starts with E and A(X) as above, with the additional
assumption that A(X) divides Q(X). It returns an integer io{1,2,’", n} and a
function g A Ko(C), such that replacing f by g/A(X) in E gives a free family E’
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of A above Ko with Disc (E’) Disc (E)/A(X)2. Before we describe the algorithm for
a reduction step, let us describe the reduction algorithm:

While A(X) divides Q(X) do
Perform a reduction step of E with respect to A(X)
Let io and g be the result of this reduction step
Replace f by g/A(X) in E
Divide Q(X) by A(X)e

The number of reduction steps to perform is equal to one half of the largest integer
/x such that A(X)" divides Q(X). Note that for any root a of A(X), /x is equal to
the multiplicity of c as a root of Q(X). Of course if A(X) and Q(X) are coprime
then/ 0 and there is no reduction step to do.

We now describe a reduction step of E with respect to A(X) when x >0. The
result is made of an integer io{1,2,’.’,n} and a function gAKo(C). More
precisely, g--i=o ri(X)fi where each ri(X) is a polynomial in Ko[X] of degree less
than deg (A(X)) and r(X)--1.

Since A(X) divides precisely one Dk(X), we have yet computed a system of
rational Puiseux expansions

R {(TPj, qgj(t), @j(t))}l<=j<=j

above a for any root a of A(X) in K. Now for each i=1,2,..., n and each
j 1, 2, , J, compute

f/o (qgj, j)= Ui,j,h th Lj((t))
h=O

where Lj is the ring Ko(a)(TP). Note that dj d(TP) and {bj,,, bj,e, , bj,a} the basis
B(Lj) of Lj over Ko(a). Also denote

/=1

Let M be the ordered set of (j, h, 1) for 1 _-<j _-< J, 1 =< h -< ej and 1 =< _-< dj with lexico-
graphic order. The set M has n elements and the line matrix

ri=(%,m)me

has its entries in Ko(a). Because A(X) divides Q(X) it may be proved that the Fi’s
are linearly dependent. Compute some dependence relation i/3iFi between them over
Ko(a), using Gauss elimination in the square matrix with entries the y,m’S. Choose
some io such that fl 0 and let fl fli/fl. Each fl is equal to r(a) for a unique
polynomial ri(X) in Ko[X] of degree less than deg (A(X)), and clearly r(X)= 1.

We now have to prove that the function

g
where g ri(X)f

A(X) i=1

is integral. It is easily seen that we have only to prove that w(g/A(X))>--O for
j 1,. ., J, where gaj is the place represented by the parametrization (Trs(%), 7rs(qj))
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for any solution S of TP. Since wj(A(X))=ej we must prove that wj(g)>= ej. But

g (%, d/j)= ri(ce + Ajte) ui,j,t h,
i=1 h=0

which is congruent modulo te to

and the/3’s have been chosen so that this is equal to zero. It follows that g/A(X) is
integral, as required.

Replacing f with g/A(X) in E gives a set E’ which is still in A and in Ko(C),
and because r(X)= 1 this set E’ is still a free family of A.

But usually A(X) is not irreducible in Ko[X], it is only square-free. The reduction
step algorithm may be run with dynamic evaluation. The result is a set
{gm, Am(X)}l<__m<=M where {Am(X)}l<mM is a splitting of A(X) and for each m we
have gm =i=0 r,,,i(X)f with deg (r,,,i(X))<deg (A,,(X)), rm,i.(X)= 1 for some ira,
and g,,/Am(X) is integral. The reduction algorithm may be adapted to work with one
of the pairs (g,,, A,,(X)) instead of the pair (g, A(X)) used in the irreducible case.

NORMALIZE AT INFINITY. Progressively modify E (which is now a basis of A
above Ko) to get a basis of A above Ko which is "normal at infinity," in a sense to be
defined. This part used to be considered quite difficult too, and indeed here the Trager
method seems to be quite inefficient [Trag2]. But using the Dedekind-Weber method
and a remark in [Ka] it becomes very simple, as described below.

For this method to be simple we need the additional assumption that c is a
noncritical value for F(X, Y), which means by definition that zero is a noncritical
value for the polynomial XdF(1/X, Y/X) where d is the total degree of F(X, Y).
Let a,j Ko be the coefficient of XJY in F(X, Y) for every (i,j). Define (T) Ko[T]
as

d

( T) E ai,d-i Ti.
i=o

It is easy to see that o is noncritical for F(X, Y) if and only if (T) is square-free of
degree n. If the given F(X, Y) does not satisfy this assumption, then perform the
following transformations on F:

If zero is a critical value for F(X, Y), then find some a Ko that is noncritical
(cf. 1) and replace F(X, Y) by F(X + ce, Y).

Replace F(X, Y) by XdF(1/X, Y/X).
The resulting polynomial F(X, Y) is still primitive in Y. Note that in Algorithm

III we could as well assume, with minor modifications, that F(X, Y) is monic in Y
(instead of primitive). It would simplify the initialization step above since we could
take g(X)-1 for every i, but it would make it more difficult to assume that is
noncritical. It would oblige to replace F(X, Y) by some polynomial with the same
total degree d, but with degree in Y also equal to d (instead of n). Since the complexity
of the algorithm seems to depend more on n than on d we prefer to choose the
primitiveness assumption.
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Now each place above oo on C corresponds to a simple point on C, and to a
parametrization of C of the form

1 fl k)qt(t)=, tPt(t)=+ E Yt,g
k>_--0

where/3 runs among the roots of :(T) in K and Yt,g K1 (here K1 I(o(/3)) for every
k_->0. This place is denoted go. In addition, and this is Kaltofen’s remark in [Ka],
the computation of the y,g’s in K1 can be performed without splitting, which means
that the computation returns polynomials Pg(T) for k 0, 1,... in Ko[ T], of degree
less than n, such that y,g Pg(/3) in the expression of y for every/3.

From these parametrizations we may compute, for each f Ko(C), the expression
off at go

fo (qt, )= tv E Uf,k(fl) tg
k_>0

for some /,/f,k(T) Ko[ T] of degree less than n. Here Uy is, as above, the minimum of
the orders of f at ga for every root/3 of (T). It means that the number Uy,o(fl) is
nonzero for at least one value of/3, or equivalently that the polynomial uy,0(T) is not
zero.

By definition, a basis E- {fl,f2,."" ,fn} of A is normal at infinity if the poly-
nomials ufi,o(T (for 1 <-i<_ n) are linearly independent over K. Note that if E is in
Ko(C), then the U,o( T)’s are in the Ko-vector space of polynomials in Ko[ T] of degree
less than n, which has dimension n over Ko. So that they are independent over K (or
equivalently over Ko) if and only if the n n matrix with entries in Ko formed by their
coefficients is nonsingular. We show here how it is possible to get a basis normal at
infinity from any basis of A.

If the given basis is not normal at infinity, then perform a reduction step at infinity:
First permute the f’s in such a way that vf >= vf2 >=... >-vf,. From the failure of the
independence test comes a nontrivial Ko-linear relation among the U,o(T)’s, say

mitI3,o(T) O.
i=1

Let I be the largest such that m # O, let/zi u uy, for every i, and let

g E miX K0(C).
i=O

Replace f/by g in E, it remains a basis of A since the coefficient of f/ in g is just mi.
This is the end of the reduction step at infinity. Note that vg >

If this new basis is normal at infinity then return it, and if not then perform another
reduction step at infinity on it, and so on. If this algorithm does terminate, we clearly
get a basis of A over K[X] which is normal at infinity and contained in Ko(C).

To prove termination, note that since //g > /.tf, the integer v(E) defined as [i=1
increases at each reduction step at infinity. But it is bounded for the following reason:
The monomials xgf for 1 <-i<_-n and 0<_-k<_-v are in L(0), and they are linearly
independent over K, so their number s is at most the dimension r of L(0) over K. But
s is trivially equal to i= max (0, v + 1), which is greater than or equal to v(E)+ n,
whence v(E) _-< r n and termination is proved.
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CONCLUSION. Let E {fl,f2,""" ,fn} be the basis of A we have just obtained
(normal at infinity), and define

B {Xkf for 1 _<-- --< n and 0 <_- k _-< u }.

Then B is a basis (in Ko(C)) of L(0) over K.

This claim needs proof. Since E is a basis of A over K[X], it is clear that B is a
set of K-linearly independent elements of L(0). Now using the property that E is
normal at infinity we prove that B generates L(0). Letf L(0), it means thatf A and
us_->0. Since f A there exist polynomials Mi(X) K[X] such that f=i=l M(X)f.
Let miXdi be the term of higher degree in M(X) (if it is not 0), and/z u- d. Then
at the place g we have

(M,(X)f) (q, )= miu,o(fl)t’, +.

Now assume that f is not in the K-vector space generated by B, i.e., that there is
some such that d > u. Then the integer minl=<<_n/z is negative. Let 5 be the set of
i’s such that/zi minl__<i__<n/z. Since us >- 0 we must have cancellation:

Y miu,o(t) 0

for every/3, i.e., Zi5 miu,o(T)= 0. But this is impossible since E is normal at infinity,
so B is a basis of L(0) over K, as asserted.

Remark. Here is described a better choice for the gi(X)’s in the initialization
above. It is better because the gi’s have the smallest possible degree, resulting in fewer
reduction steps for the normalization. Let a be any root of an(X) in K, and compute
the value s 6 Q of the largest slope in the Newton polygon of F(X + a, Y) (cf., for
example, [Du3] for a definition of the Newton polygon). By dynamic evaluation the
result is a set of pairs {(Sk, an,k(X))}k with Sk Q and {an,k(X)}k a splitting of an(X).
Let ri,k denote the smallest integer such that cri, k>--iSk. Now choose g(X)=
II a,(x) i’.

We have to prove that g(X)y is integer for every between 1 and n- 1. It means
that w(gi(X)y i) =0 for any root c of an(X), and any place go above a. Choose such
an a and such a o, and let ko be the value of k such that an,o(a) O. Now w(gi(X)y i)
Z (’i,Wo(an,(X)))-I- iw(y) with w(an,(X))=0 for every k ko and w(a,o(X))
eo because an,o(X) is square-free. And s (-w(y)/e) by general properties of the
Newton polygon, so that wo(gi(X)y) -0 as required. In addition, note that it remains
true that each root of g(X) is a root of an(X).

6. Conclusion. A feature of the algorithm presented here, compared to other ones,
is to give the number of irreducible components first, so that it does not try to compute
any factor if F(X, Y) is absolutely irreducible.

Another feature is that it makes use of the space L(0), which is easily computed
from the normalization of the curve. Normalization in turn is not easy to compute,
but it is one of the basic objects associated with the curve, so that if the absolute
factorization is needed in some other algorithm (and not only for itself), the normaliz-
ation may have to be computed anyway. It is what happens for example in the package
for integration of algebraic functions in Scratchpad, where the computation of L(0)
is implemented and used to test absolute irreducibility. However, it seems that no
absolute irreducibility algorithm is entirely implemented yet.

The complexity of this algorithm is essentially the complexity of the computation
of the space L(0), which is itself essentially the complexity of the normalization of
the curve. We conjecture that this complexity is polynomial. This point would be
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essentially different from the result of Lenstra, Lenstra, and Lovisz [LLL] concerning
rational factorization, but similar to Kaltofen’s result [Ka]. A proof could run as
follows. Prove that the number of elementary operations on K is polynomially bounded,
then by a general result in dynamic evaluation it is also true for the number ofelementary
operations on Ko. As for the size of the coefficients (when Ko Q) the best solution
is probably to perform all the computations modulo some (large enough) prime number
p. Such a p certainly exists, and Trager proved that "small" values of p are easily
obtained [Trag3].

Actually, the algorithm described in this paper is very similar to Berlekamp
algorithm for the factorization of univariate polynomials over finite fields [Be]. Both
first compute the number of irreducible factors, and both by determining the dimension
of a H-cohomology group: Galois cohomology for Berlekamp, sheaves cohomology
here [Se, Chap. 2]. This comparison could prove useful if some other factorization
algorithm once were derived from it. For the determination of the factors, it can be
noted that the situation of absolute factorization is much better than Berlekamp’s,
since any place go gives a factor of F(X, Y).

Another point is that both Kaltofen’s algorithm and the algorithm described above
prove that the absolute factorization of bivariate polynomials is totally independent
from rational factorization. The first to prove this result appears to have been Noether
[No].

A last point is whether an absolute factorization algorithm can prove useful in
practice. This question probably has no simple answer, however we may outline here
some general remarks.

Absolute factorization should not be viewed as a way to replace a "big" problem
(related to F) by "a lot of" (precisely r) "small" problems (related to the F’s), for
the following reasons. For simplicity, assume that F is irreducible in Ko[X, Y] and
that F’s and the Fi’s are monic in Y. First, since the G’s are conjugated over Ko, only
one of them (instead of r) has to be considered. But this F is not "smaller" than F:
its degree is indeed smaller (its degree in Y is (n/r)), but its coefficients are in a larger
field (of degree r over Ko), so that absolute factorization replaces one problem by
another one of "similar" size. That is one of the reasons why it seems impossible to
give a general conclusion about the usefulness of absolute factorization, even if we
forget about its cost. For example, let F= y2-2(X+ 1)2 over Ko=Q, and Fi--
Y-/J(X + 1) for a root /3 of T2-2. Then F has degree two and coefficients in Q,
while G has degree one and coefficients in Q(/3) which is a field of degree two over Q.

Of course, one point in favour of absolute factorization is that the mathematical
study of algebraic curves is easier when the curves are irreducible. Such a basic invariant
of a plane curve as its genus is only defined for irreducible curves. But in practice, if
we must apply to a reducible curve an algorithm which is only described for absolutely
irreducible ones, we should first look more closely at the algorithm. Many of them are
valid, after straightforward adaptations, with reducible curves (maybe square-free or
subject to some other easy assumptions). An example is given by Newton algorithm
for the computation of Puiseux expansions [Du3], or by Dedekind-Weber normaliz-
ation method (described above). They are usually described for absolutely irreducible
curves, while they are valid for any curve without multiple components nor "vertical"
lines.
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DETERMINISTIC SAMPLING--A NEW TECHNIQUE FOR FAST
PATI’ERN MATCHING*

UZI VISHKIN?

Abstract. Consider the following three-stage strategy for recognizing patterns in larger scenes:
Mimic randomization deterministically. Sample several positions of the pattern.
Search for sample. Find all occurrences of the sample in the scene.

Verify. For each occurrence of the sample, verify occurrence of the full pattern.
This strategy has led to the core of the new idea given in this paper. Consider the string matching

problem. Given the pattern, a sample of its positions is carefully selected whose size is at most logarithmic
(the deterministic sample). Then, the sample is searched for. For nonperiodic patterns, the sample has the
following perhaps surprising property. It is possible to disqualify all occurrences of the sample positions
but one, within each "neighborhood" of locations in the text, without any further comparisons of characters.
This provides sparse verification.

This approach enables the text analysis (stages "search for sample" and "verify") to be performed in
O(log* n) time and optimal speedup on a PRAM. This improves on the previous fastest optimal speedup
result. It also leads to a new serial algorithm for string matching that runs in linear time including
preprocessing.

The approach is expected to be applicable for pragmatic pattern recognition problems.
In some sense the algorithms are based on degenerate forms of computation, such as aND and Ol of

a large number of bits. However, traditional machine designs do not take advantage of such degeneracies,
and usual complexity measures do not even enable them to be reflected. This leads to the conclusion of the
paper with some speculative thoughts on desirable capabilities that would enhance computing machinery
for some pattern recognition applications.

Key words, string matching, serial algorithms, parallel algorithms, deterministic sampling

AMS(MOS) subject classifications. 68P99, 68Q20, 68T10, 68Q10

1. Introduction. Suppose we are given a string of length n, T[1 hi, called the
text, and a shorter string of length m, P[ 1 m ], called the pattern. The string matching
problem is to find all "starting" locations 1 _<-i<= n-m + 1 in the text, such that the
pattern matches character by character the substring ofthe text T[ i, + 1, , + m 1 ].
As stated in [Ga85b], this is one of the most extensively studied problems in theoretical
computer science.

The naive algorithm for the problem is as follows. Test whether each location
1, 2,. , n-m + 1 is a starting location by m character-by-character comparisons.

This totals O(nm) operations, or O(1) time using nm processors on a CRCW PRAM.
Nontrivial algorithms for this problem consist of two stages. In the first stage, the
"pattern analysis," they construct a table based on analysis of the pattern only. In the
second and final stage, the "text analysis," the text is analyzed. The table built in the
first stage helps to minimize repeated reading of the same text characters.

There are several serial algorithms for the string matching problem: by Knuth,
Morris, and Pratt [KMP77] (and the heuristic improvement by Boyer and Moore
IBM77]), the randomized algorithm by Karp and Rabin [KR87], the real-time algorithm
using a constant number of registers by Galil and Seiferas [GS83], and a serial
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simulation ofthe parallel algorithm by Vishkin [Vi85]. The first contribution concerning
efficient parallel string matching was by Galil [Ga85a], where a framework benefiting
from periodicity properties in strings was introduced. Similar properties were used in
later parallel string matching algorithms. The algorithm in Galil’s original paper runs
in logarithmic time and is optimal for an alphabet whose size is fixed. Vishkin [Vi85]
proposed a new idea that has led to an optimal speedup algorithm regardless of the
alphabet size. A recent paper by Breslauer and Galil [BG88] added the following
surprising perspective to our work. They observed that the new idea from [Vi85] implies
that the string matching problem is not more difficult, from the parallel algorithmic
point of view, than the problem of finding the maximum among n elements. This made
possible a doubly logarithmic optimal parallel algorithm for the problem. In [KR87],
Karp and Rabin present an optimal logarithmic parallel implementation of their
randomized algorithm. Kendem, Landau, and Palem [KLP89] recently gave another
parallel algorithm. Finally, we refer the reader to a survey on string problems by Galil
[Ga85b].

Our main results include:
(1) A new linear time serial algorithm for the string matching problem.
(2) A new text analysis parallel algorithm that runs in O(log* n) time using an

optimal number of processors.
(3) The text analysis algorithm is based on a pattern analysis stage that takes

O(log2 m/log log m) time using an optimal number of processors.
(4) A randomized implementation of the pattern analysis needs O(log m) time,

with high probability, using an optimal number of processors. Using the output of the
randomized implementation, all text analysis results carry through (as deterministic
results).

The deterministic sampling idea. All algorithms in the present paper rely on the
following core idea. Given a nonperiodic pattern, our pattern analysis stage constructs
a small "deterministic sample (denoted DS)" of pattern positions. This sample is an
ordered set of size /<_-log m-1. Specifically, DS=[ds(1), ds(2),..., ds(l)], where
each ds(j), 1 <-j <-_ 1, is a different integer between 1 and m. The main step of our basic
text analysis tests whether each location 1, 2, , n m + 1 can be a starting location
by comparisons with the sample pattern positions. Some locations of the text will
pass this test and some will fail, and therefore be disqualified as starting locations. A
perhaps surprising property of DS implies that there is a way for drastically disqualify-
ing at once (i.e., simultaneously, in one parallel round) additional locations in the
text, so that any remaining nondisqualified location is unique in some successive
substring of length m/2.

Theoretically, the deterministic sampling idea can be viewed as getting a "sig-
nature" of the pattern by using a small sample of its locations. Concise signatures are
natural for randomized algorithms as shown in the algorithm of [KR87]. We selected
the name deterministic sampling to convey the possibility of getting signatures using
deterministic means. Interestingly, the Karp-Rabin signature concept does not seem
to be less involved since it blends all entries of the pattern rather than samples a few
positions of the pattern. Our randomized parallel version compares favorably with
theirs: The pattern analysis result is logarithmic time and optimal speedup, with high
probability, in both papers. However, while the Karp-Rabin text analysis result is
randomized and logarithmic time (with high probability), ours is deterministic and
O(log* n) time; both results achieve optimal speedup. Randomized algorithmics, as
advocated in Rabin IRa76], is an appealing concept. Our paper follows [A78], [BR89],
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[CV86], [Lu88], and [MNN89] in demonstrating another angle of this concept. The
deterministic sample idea shows how a randomized way of thinking can enrich the
design of deterministic algorithms.

Pattern recognition based on small samples is apparently an intuitive idea. Our
contribution in this respect can be summarized as presenting the first deterministic
string matching algorithms that are guided by this idea, and whose worst-case perform-
ance is provably efficient. The literature records works in this direction in the 1950s.
We mention one and refer the interested reader to references therein. Suppose we are
given pattern strings and a single target string, each of length rn where << m. The
problem is to find whether one of the pattern strings matches the target string. A simple
observation in [Gi59] is that it is enough to read at most positions of the target string
in order to disqualify all pattern strings, but one, as possible matches for the target
string. Our work relates also to the heuristic of [BM77]. They used a single "most
notable" character for speeding up the algorithm of [KMP77], however, there was no
guarantee that such a character would always be very helpful. Our construction can
be phrased as picking a set of at most log m- 1 notable characters, which is provably
helpful.

Our parallel pattern analysis algorithm is slower than the one in [BG88]. However,
our text analysis algorithm is faster. It is not hard to imagine instances where the
pattern is available in advance and there is no pressure to process it very fast, while
it is important to process the text as fast as possible. Using such justification, [U85]
gave an interesting serial algorithm for an approximate string matching problem whose
text analysis takes linear time, but the pattern analysis might even need exponential
time. Recall that [BG88] showed that the string matching problem is not more difficult
than findingthe maximum among n elements. Since [Va75] showed that n processors
need O(log log n) time to find the maximum among n elements on a parallel comparison
model of computation, it is interesting to phrase our text analysis result as follows:
assuming some preprocessing of the pattern, the text analysis problem is actually easier
than finding the maximum among n elements.

There is a remarkably small number of problems for which there exist optimal
parallel algorithms that run in sub-doubly-logarithmic time (i.e., o (log log n) time).
Constant time optimal parallel algorithms include: (a) oR and AND of n bits; (b)
finding the minimum among n elements where the input consists of integers in the
domain [1,..., n c] (see [FRW88]); (c) log n-coloring of a cycle, [CV86]; (d) some
probabilistic computational geometric problems [St88]. A data-structure that provides
for optimal O(log* n) time and even inverse-Ackermann time parallel algorithms for
some problems on trees and arrays, assuming some preprocessing, is given in [BV89].
Sub-doubly-logarithmic merging algorithms (on a CREW PRAM) were recently given
in [BV90]. In [BV89], Berkman and Vishkin explain why constant-time and optimal
speedup represents an ultimate theoretical goal for designers of parallel algorithms.
Since for almost any interesting problem this goal is (provably) unachievable, any
result that approaches this goal, such as our text analysis algorithm, is somewhat
surprising.

Further applicability. We hope that the deterministic sample idea will find other
applications in the pattern matching area. Our results extend to string matching in
higher dimensions and approximate string matching if some assumptions are made
about the pattern. The main difficulty we had in obtaining more general analytic results
is that the concept of periodicity becomes vague already for two dimensions. The flow
of our algorithms is quite rigid, once the deterministic sample is fixed. This invites
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research for extending our algorithms to more specialized computer architectures. In
the last section several alternative implementations of our ideas are considered. One
of them is serial and is likely to need less than linear time in practice. The second
suggests a reasonable assumption about the pattern that makes possible extension to
higher dimensions. The third suggests an assumption about the pattern that makes
possible extension to approximate matches. It might be relevant for some image
processing applications. The fourth item is more speculative, as it suggests reconsidering
some standard complexity measures under some circumstances.

The model of parallel computation that is needed for this paper is the common
concurrent-read concurrent-write (CRCW) parallel random access machine (PRAM). A
PRAM employs p synchronous processors all having access to a common_ memory.
The common CRCW PRAM allows several processors to write simultaneously into
the same memory location, provided that they try to write the same value. For
convenience, however, we will describe our algorithms for the slightly more powerful
priority CRCW PRAM; in case several processors attempt to write simultaneously into
the same memory location, the one with the smallest index succeeds. Fortunately, all
uses of the priority concurrent-write assumption are in order to solve the same problem.
The next section states the problem and quotes the standard way for solving it on a
common CRCW without asymptotic loss of efficiency. We comment on formulation
of parallel complexity results in the present paper. While a bound of the form T time
using p processors can always be stated as O(T) time and (a total of) O(pT) operations,
the converse will also be true throughout this paper (but not in general). That is, T
time and X operations will mean O(T) time using X T processors.

The paper is organized as follows. Section 3 presents the pattern analysis, and 4
presents two basic text analyses. One runs in constant time and the other uses a linear
number of operations, and thereby provides a linear time serial algorithm. Section 5
combines the two algorithms into an optimal O(log* n) time text analysis, and 6
concludes the paper.

For fast understanding of the main ideas, we suggest figuring out the definition
of WITNESS in 2, and the definition of the auxiliary column sample problem, its
computation, and the deterministic sample in 3. In 4, understand the basic constant-
time text analysis (including the Ricochet property). Then proceed to the basic optimal
speedup algorithm. Understand how the serialization in advancing through the deter-
ministic sample helps to reduce the total number of operations. In 5, the main idea
is in Stage 2. Understanding the input (and thereby the output) for each iteration
should suffice.

2. Preliminaries.
Periodicity in strings. The main insight in Galil’s [Ga85a] parallel string matching

algorithm was to use the notion of periods in strings. We refer the reader to that paper
for proofs of the facts stated below. Let u and w be two strings, u is a period of w if
w is a prefix of u k for some integer /, or equivalently if w is a prefix of uw. (This
equivalence of definitions for period is called the equivalencefact.) The shortest period
of a string w is the period of w. w is periodic if the length of its period is at most half
its length; otherwise, it is nonperiodic.

The conflicting occurrences fact. Consider a pattern w whose period is u. Suppose
w occurs at position of some text string. Then it is impossible to have another
occurrence of w at location j, for i<j

The nonperiodic prefix fact. If the pattern is periodic (let p be the length of the
period), then the prefix of the pattern of length 2p- 1 must be nonperiodic.
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The fundamental observation regarding periodicity of strings, from which the
above facts can be derived, is called the gcd lemma [LS62]: If w has two periods of
length p and q, where wl >_-p / q, then w must have a period of length gcd (p, q).

Array WITNESS. Consider a nonperiodic pattern P[1,. ., m]. For any index i,
1 < <-_ m/2 consider laying two copies of the pattern one above the other where the
first symbol of the upper copy aligns above the ith symbol of the lower copy, as in
the example below, and the prefix P[1,..., m- i+ 1] of the upper copy aligns over
the suffix P[i,..., m] of the lower copy. By the conflicting occurrences fact these
prefix and suffix must be different. This means that for at least one 1 <_-k <_-m- + 1,
P(k) P(i-l+k). WITNESS(i) is one such index k (where 1<i<-_m/2).

Example. Let the pattern be P[1,. , 7]- ababbaa. This is a nonperiodic pattern
and the suffix P[3, 4, 5, 6, 7] abbaa differs from the prefix P[1, 2, 3, 4, 5] ababb in
the last three positions, see as below:

ababbaa

ababbaa

Therefore WITNESS (3) could be either 3 or 4 or 5, representing the "columns" in
which the two copies of the pattern differ.

Comment. For the present paper we need only this definition of WITNESS. We
briefly relate this definition to the discussion of the papers by [Vi85] and [BG88] in
the Introduction. The new idea in [Vi85] was to use the information in array WITNESS
for a very powerful mechanism (called duel): Suppose two candidate locations j and
j+ i-1 (in the text) whose distance is small enough (i.e., 1 <i<-m/2-1) are given.
The duel mechanism enables us to eliminate at least one of these two candidates based
on the contents of WITNESS (i). The reader is referred to [Vi85] for more information.
Breslauer and Galil [BG88] have observed that application of the duel mechanism (as
part of a string matching algorithm) and elimination of the smaller among two elements
(as part of an algorithm for finding the maximum among n elements) lead to similar
outcomes.

Reducing the periodic case to the nonperiodic case.
LEMMA 2.1. Suppose we know that the pattern is periodic and can be presented as

u kv, where the string u is the period, k > 1 is an integer, and u is a proper prefix (possibly
empty) of u. Let lu[=p and suppose that all occurrence of the prefix P[1,... ,2p-l]
in the text have already been found. Then all occurrences of the original pattern can be
found using O(n) additional operations and 0(1) additional time.

Proof The main substance of the computation below is searching for a pattern
that is all ones.

Step 1. For each occurrence of P[1,..., 2p-l], at location in the text, find
whether it extends to an occurrence of u2v. If yes, mark bit bi := 1 and
otherwise mark bi := O.

Step 2. We partition the bits b,. , b,_p_ll+ into p "strips." Strip s, _-< s _-< p,
includes all bits whose index is s(mod p) (for instance, strip 1 includes
b, bp+, bp+,. ).

Consider some location in the text. The full pattern occurs at if and only if
the pattern u v occurs at all locations i, + p, , + (k 2)p. So, to find all occurrences
of the full pattern, we simply must find every location in every strip whose bit is one
and each of its successive k-2 bits is one. Step 3 shows how to do this for each of
the strips in O(n/p) operations and 0(1) time. Consider a strip s of length t= n/p.

Step 3.1. Partition the strip into t/(k-2) successive subvectors of k-2 bits each.
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Step 3.2. For each subvector find its largest and smallest zero bit in O(k)
operations and O(1) time on a priority CRCW PRAM (which, as shown
below, can be simulated on a common CRCWPRAM without asymptotic
loss of efficiency).

Step 3.3. Given any bit b in the strip, the information (computed in Step 3.2
above) regarding the subvector containing the bit, as well as its successive
subvector, suffices to determine in O(1) operations whether all the k- 2
successive bits of b are one.

Complexity. We have shown that any of our text analysis algorithms can be
extended for the periodic case within additional O(n) operations and O(1) time on a
common CRCW PRAM. Lemma 2.1 follows.

Common CRCW PRAM is enough. We describe our algorithms for the priority
CRCW PRAM. In all kinds of instances but one, we can trivially use the common
CRCW PRAM instead. Next, we characterize the one nontrivial kind of instances and
show how to overcome the problem.

Consider the following problem. Input. Vector A of n bits. Question. Find the
leftmost bit in A that is zero. Following [FRW88], we give an algorithm for this problem
that needs O(1) time and n processors on a common CRCW PRAM. (a) Partition A
into x/ subvectors of length (R)(x/) each. Using O(n) operations find whether each
of the subvectors has a zero bit. (b) Using O(n) operations and O(1) time, find the
leftmost subvector containing a zero bit. For this, apply the parallel algorithm of SV81
for finding the maximum among m( x/) elements using m2 processors in O(1) time.
(c) Apply the same algorithm for finding the leftmost zero bit in the leftmost subvector.

DEFINITION OF log* n. We denote the function symbol log by log) and log<i is
defined inductively as log log<i-1. Given a real number r > 1, we define log* r to be
the smallest integer such that logi) r_-< 2. It is well known that the function log* is
extremely slow in increasing and, for instance, log* 264000-- 5.

DEFINITION OF THE PREFIX-SUMS PROBLEM [LF-80]. Input. Array of n numbers
[al, a2, , an]. Problem. Find all prefix-sums al +" + ai, 1 _-< i_-< n. Our parallel
implementation applies parallel prefix-sums routines for the following problem. Input.
Array of n numbers [al, a2,. ., an], where some of the n numbers are "marked" and
the others are "unmarked." The problem is to compact all marked numbers into a
shorter array. A standard technique in parallel computation (that was used in 3 and
4 in [CV86], for instance) reduces this array compaction problem into the prefix-sums
problem. The input for the prefix-sums problem is an array of n bits, where the value
one represents a marked number and the value zero an unmarked number.

3. Pattern analysis. All algorithms in the present paper use the same pattern
analysis stage.

Step 1. Find whether the pattern is periodic, and if yes find the period. Also
compute array WITNESS.

Remark. For convenience, we assume that the pattern is nonperiodic throughout
this presentation of the pattern analysis. However, if the pattern is periodic (let p be
the length of the period), then by the nonperiodic prefix fact of 2, the prefix of the
pattern of length 2p-1 must be nonperiodic. The computation of array WITNESS
above, as well as the rest of the pattern analysis treats this prefix of length 2p-1 as
if it were the whole pattern.

Implementation and complexity. The pattern analysis of [Vi85] can be used for
parallel computation of Step 1 in O(log m) time and O(m) operations. Using the
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pattern analysis from [BG88] the parallel time bound can even be improved to
O(log log m). We note that array WITNESS is needed only for the pattern analysis
itself (Step 2 below) and can be deleted before proceeding to the text analysis.

The primary objective of the pattern analysis is the construction of a "deterministic
sample (denoted DS)" of pattern positions. For presentation purposes we give full
specification of the output of the pattern analysis only after Step 3.

We first define an auxiliary problem called column sample. This auxiliary problem
helps us: (1) to define the deterministic sample; (2) to compute the deterministic
sample. Step 2 finds a column sample. In Step 3 we derived the deterministic sample
from the column sample.

Without loss of generality, suppose that m is even. Consider m/2 copies of the
pattern [Cl, C2, , Cm/2] laid one on top of the other as in Fig. 3.1. The first location
within copy c2 is at the same column as the second location within copy ca and this
correspondence extends to subsequent locations within ca and c2. In general, the first
location within copy ci belongs to the same column as the ith location within ca, and
this correspondence extends to subsequent locations within cl and ci.

Copy c,,/2

Copy Ca
Copy c2
Copy ca

Column # 1 2 3 m/2 m m+ 1 m+2 m+m/2-1

FIG. 3.1

The column sample problem: select at most log m- 1 columns ds(1),..., ds(l),
(l <log m), and associate a character car(ds(i)), with each column ds(i), 1 <-i<= l, so
that the following hold.

(1) There is exactly one copy c for which"
(1.1) c intersects all these columns (formally, j <-ds(i)<j+ m, for every

l<-i<-l).
(1.2) for each column ds(i), the character in c equals the character associated

with the column (formally, P(ds(i)-j+l)--car(ds(i)), for every
l<-i<=l).

(2) For each of the other copies there is at least one column that intersects the
copy and the character in the copy differs from the character associated with
the column. (Formally, for each copy Ck C, there is a column ds(i), 1 <= <= l,
such that k<=ds(i)<k+m and P(ds(i)-k+ 1)car(ds(i))).

Example. See Fig. 3.2. A nonperiodic binary pattern of length m--16 is given.
The suggested column sample consists of column 11 with character 1, column 12 with
character 0 and column 18 with character 1. The only copy that matches these three
characters (at these columns) is the seventh copy marked as Cx.

Comments. (1) Step 2 shows the existence of a solution to the column sample
problem. (2) The notation ds is used for the following reason, ds emphasizes the strong
relation that exists between the column sample and the deterministic sample--our
target problem, ds suggests that the column sample is not quite the deterministic sample.
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ds(1)
=1

ds(Z) ds(3)

=0 =1

0 0 0 0 0 0 0 0

C----) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

FIG. 3.2

The deterministic sample. Denote the copy that satisfies property (1) in the column
sample problem by cx. The deterministic sample is simply the column sample with
respect to cx. Formally, this sample is an ordered (not necessarily sorted) set DS--
[ds(1), ds(2),..., ds(l)], of integers where /=<log m-1, and for each 1 <=j<= l, ds(j)
is ds (j x + 1.

Step 2. Step 2 inductively constructs sets A1, A2,’’ ", At, so that" (1) the base of
the induction is the set Ao {Cl, c2,’’ ", Cm/2}; (2) for each 0=<i< l, the
set ai+l is a nonempty subset of ai and Iai+ll =<lal/2; (3)Ial[ 1.

Inductive step. If A contains exactly one element then we set l, the cardinality of
the column sample, to be and proceed to Step 3. Otherwise, we
build a nonempty subset A+l that contains at most one half of the
elements in A. Let Cleftmost and Crightmost be the leftmost and rightmost
copies in Ai, respectively. Array WITNESS will provide column
ds(i+ 1) that contains two different characters in copies Cleftmost
and Crightmost. (Note that column ds(i + 1) intersects every copy in
Ai.) For each of these two characters find for how many copies in

A the character in column ds(i+l) is equal to the character.
Between these two characters, associate with column ds(i + 1) the
one with which less characters are equal. (Note that at most
of the IAI characters of the column will be equal to this character.)
Set A+l is the subset of Ai containing all copies whose character
at column ds(i+ 1) is equal to the selected character.

Example. Consider the construction of A1. Note that el and c,,/, respectively,
play the role of Cleftmost and Crightmost respectively, ds(1) is selected using
WITNESS m/2).

Implementation and complexity. Suppose inductively that the copies belonging to

A arrive in a compacted array (i.e., they have been renumbered from 1 to IAil). We
use parallel prefix-sums for two purposes: (1) for each of the two characters of copies
Cleftmost and Crightmost in column ds(i+ 1), finding the number of equal characters in the
column (within the set Ai); and (2) to further compact the copies of Ai+l into an array
of size Ia+ll. Round i+1 takes O(log Ial/log log Ial)time and o(Iail) operations
using the prefix-sums algorithm of [CV89]. Since IAI decreases geometrically, Step 2
takes a total of O(log2 m/log log m) parallel time and O(m) operations.

Step 3 (Deriving DS). Let c be the (only) element of At. The cardinality of DS
is and DS=[ds(1),. ds(t)]:=[ds(1)-x+l,. ds(t)-x+l].
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Our text analyses will need the following information that was computed during
the pattern analysis.

Output of the pattern analysis.
(1) The deterministic sample DS=[ds(1),..., ds(l)].
(2) Each set Ai, <=i<= l, in a compacted form. As indicated above, this means

that the copies of Ai need to be renumbered from 1 to IAil.
Remark. Our optimal parallel algorithms use the sets Ai. The fact that the series

[Aol, IA[’’" [AI decreases geometrically is important for the efficiency of these
algorithms.

Complexity of the pattern analysis. Since Step 2 dominates the complexity of the
pattern analysis, we conclude that it needs O(log2 m/log log m) time and O(m)
operations. The pattern analysis is given for the common CRCW PRAM. This model
is used in Step 1 and in the prefix-sums computation of Step 2. A serial implementation
needs O(m) time.

Some practical considerations. The most important step for practical applications
of the text analysis algorithms that follow is the actual set DS that is being constructed
in Step 2. Particularly, we focus on the rate of reduction in the series IAI. In practice,
it is most likely that the series IAi] may decrease much faster than by a factor of two.
We mention in a nutshell a few common sense considerations in bringing this about.
For instance, if the alphabet is of size o-> 2, we can have IAII/[Ao[<= 1/o- by letting a
character, that occurs in the pattern at most m/r times, to guide us in the selection
of a column. In general, it might be reasonable to invest more time in the pattern
analysis and get a DS set that will facilitate a more efficient text analysis. For this, we
may want to check all columns relative to each possible character. In each round of
Step 2, we may even consider doing some backtracking (exhaustive search), where
such investment makes sense. Curiously, in quite a few string matching algorithms
(e.g., [Ga85a] or [W73]) the case where the alphabet is small is considered easier. The
above considerations suggests that for our algorithms the opposite is correct.

Remarks. (1) Alon [A89] has constructed an example where the column sample
problem needs f(log m) columns. It is a nonperiodic binary sequence that is the output
of a maximal linear feedback shift register.

(2) The proof of Theorem 1 in [A78] is remotely related to our deterministic
sample construction. In principle, Adleman deals with a binary matrix. Looking for a
small sample of columns he wants to rule out a match between a row of all zeros and
any row listed in the input matrix. It is important to add that in his setting each row
of the matrix is mostly ones. The crucial difference is that in our setting one of the
input rows plays the role of the all zero row, and the computation needs to find such
a row, since it is not known in advance which row will play this role. This row is
chosen as the last survivor in the elimination process of rows according to residual
minorities in columns. This explains why we feel that the deterministic sampling idea
is new and only remotely related to Adleman construction.

3.1. Randomized pattern analysis. This section is not needed for understanding of
the following sections. We suggest to skip it in a first reading of this manuscript.

We show how to perform the pattern analysis in O(log m) time and O(m)
operations, with high probability, by a randomized algorithm. The result will be a
deterministic sample of size O(log m). A later comment explains why this can be
guaranteed deterministically, and not only with high probability, and why all our text
analysis results carry through. (Since the sample is drawn randomly, it would have
been less confusing in this context to call it a fixed, rather than deterministic, sample.)
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All our modifications refer to Step 2 above. We start Step 2, as before. We proceed,
however, only until the size of the set Ai, of pattern copies, becomes at most m/log2 m.
This requires 3’ O(log log m) rounds of the algorithm for the column sample problem.

Now, we switch to a randomized part. We outline modifications to the inductive
step of Step 2. Our goal is similar. We construct smaller and smaller sets Ai. With high
probability, the size of set Ai+l will be a constant fraction of the size of A. However,
the difference is that we avoid performing prefix-sums, and therefore do not have
compressed arrays or (deterministic) knowledge of their number of elements.

Remark. Avoiding prefix-sums computation is critical since prefix-sums need
l)(log n/log log n) time using a polynomial number of processors. This was shown in
[H86] together with the simulation result of [SV84], or directly in [BH87].

Finding Cleftmost and Crightmost, the leftmost and rightmost copies in A, can be done
in O(1) time using O(m/log2 m) operations on a priority CRCW PRAM. (Recall also
the trick of [FRW88], as sketched in 2, for simulation on a common CRCW PRAM.)
Array WITNESS will provide the column ds(i + 1), as before. The number of operations
so far for each round is O(m/log m) since we assign processors to jobs through the
copies in A.

In each round, the main effort is for selecting between two characters on column
ds(i+ 1)" either the character at copy Cleftmost or the character at copy Crightmost. We
wish to select the character that is guaranteed to eliminate a constant fraction among
the copies belonging to A with high probability. This is done in O(1) time and
O(m/log m) operations. The technique uses an idea from [Se89].

Overview. Let xl (respectively, x) be the number of copies in Ai whose character
at column ds(i+ 1) is the same as at copy Cleftmost (respectively, Crightmost)- Note that
the values of xand x2 are unknown to us and we cannot compute them if we wish to
implement each round in O(1) time. Let B[1,..., (log m)/2], be a vector of length
(log m)/2. For each integer j, =<j =< (log m)/2, we assign the value zero to B(j) with
probability x/(x + x2), and the value one with probability x2/(x + x). This is done
independently for different values ofj, -<j -< (log m)/2. We select for column ds(i + 1)
the character at copy leftmost if the total number of zeros in B is less than the total
number of ones, and otherwise select the character at copy Crightmost. This completes
the overview. However, we still need to clarify several things.

(1) How to determine in O(1) time whether the majority of the values in B are
zero or one? For each of the 2(g m)/2 possible binary vectors of length (log m)/2, we
precompute into a table the majority of zeros or ones using a total of o(m) operations
and O(log log m) time. The size of the table is 2gm/2 (which is o(m)). Using (log m)/2
operations and O(1) time per entry of the table (which is a binary vector of length
(log m)/2) we determine in each round whether the entry is identical with binary vector
B. Determining whether vector B has more ones than zeros is done by table look-up.

(2) How to get the required probability for assignment of zero or one values to
a random variable B(j), 1 <=j <= (log m)/2? Given a random permutation ofthe elements
in A we assign processors to these elements through this permutation. Each processor
standing by a copy of A whose character at column ds(i+ 1) is the same as the
character at copy Cleftmost (respectively, Crightmost) will try to write zero (respectively,
one) at a variable C (j). Since the priority CRCW PRAM is used we achieve the desired
probability. Note that we will need a total of O(log m) random permutations of the
elements in A for all rounds.

Comment. If we do not get the random permutations for free we can do the
following. In [RGG89] it is shown how to generate a random permutation of n numbers
in O(log n) time using O(n log n) operations on a CREW PRAM. So, had we taken
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A to be a set of at most m/log m elements (instead of re2 m), we could have
generated before the algorithm starts O(log2 m) random permutations of m/log m
elements using a total of O(m) operations and O(log m) time and have all other steps
of this randomized pattern analysis carry through within the same efficiency bounds.

(3) Why our selection of the character for column ds(i+ 1) eliminates a constant
fraction among the copies of Ai with high probability? For this we use a variant of
Chernoff’s bounds due to [AV79]. Each of the y--(log m)/2 entries of vector B is an
independent Bernoulli trial with probability of p- xl/(xl + x2) to get zero and 1-p to
get one. We need only analyze cases where either p or 1 -p are smaller than a fraction,
say f= 1/10 (since otherwise each of the two selections of a character for column
ds(i + 1) eliminates a fraction of at least f copies in Ai). Suppose p <f We analyze
the probability for getting a majority of zeros in vector B. Chernoff’s bounds imply
that the probability of getting at least (1 + y)yp zeros in B is at most exp(-y2yp/3)
(exponent of the natural logarithm). We are interested in the case y 4 and let us
replace p by f= 1/10, which is not smaller. The upper bound on the probability for
getting a majority of zeros will be

exp( 161ogm ) (logm) -(logm)/3 1
=<exp -<2 1/3-2 10 4 m

With similar high probability, this process takes O(log m) rounds. Each round
needs O(1) time and O(m/log m) operations, totaling O(log m) time and O(m)
operations.

Observe that we are not yet done, since the text analysis needs to get each set Ai
compressed into an array. This is achieved by means of performing a prefix-sums
computation for each A that was obtained in the randomized part (i.e., i> y). The
main difference with respect to the deterministic Step 2 is that all these prefix-sums
computations are performed in parallel after the entire deterministic sample and the
series of A sets were computed. With high probability, we will have O(log m) parallel
prefix-sums computations, performed in parallel. Each such computation needs
O(m/log m) operations and O(log m/log log m) time (since the assignment of pro-
cessors to jobs is still through copies of A). The total for the prefix-sums is O(m/log m)
operations and O(log m/log log m) time with high probability.

Complexity. O(log m) time and O(m) operations with high probability.
Comments. (1) The above algorithm is randomized. With high probability it runs

in O(log m) time and O(m) operations. But, what if we failed and got a sample in
which [Ai+] > (1 -f)[Ai] for some i? (where f is the constant fraction that is guaranteed
with high probability above.) In case this unlikely event happens, we add the following
step to our randomized algorithm" run the deterministic pattern analysis. The time and
number of operations bounds will remain the same, with high probability (because of
the low probability of needing this additional step). An alternative to this additional
step would be" repeat the randomized part until a "failure free" sample is derived.

So, obtaining a "good" sample is now guaranteed deterministically. Therefore,
all our deterministic text analysis results will carry through.

(2) Yossi Matias suggested an alternative idea. Select to associate with column
ds(i+ 1) between the character at copy leftmost and the character at copy Crightmost by
simple coin tossing. At least one of these choices is guaranteed to eliminate one half
of the copies in A. We can bound the probability of, say log m, failures (a failure is
when less than half are eliminated) in a sequence of 2 log m attempts by Chernoff
bounds. However, what complicates (but does not make infeasible) adapting this simple
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idea to our algorithms is that the cardinality of the sets A cannot be guaranteed to
decrease geometrically at each round separately, with high probability.

4. Basic text analyses. We give two basic algorithms for analyzing the text: a basic
constant-time algorithm and a basic optimal speedup algorithm. As implied by their
names, these algorithms represent two "pure" extremes. The constant-time algorithm
minimizes parallel time. It needs O(1) time and O(n log m) operations. The optimal
speedup algorithm minimizes the total number of operations. It needs O(log m) time
and O(n) operations. The next section shows how to combine ideas from both
algorithms for getting O(log* n) time and O(n) operations. Unless otherwise stated,
we assume that the pattern is nonperiodic. Section 2 explains how to extend any of
our alternative text analyses to the periodic case. For both algorithms below we partition
the first n m + 1 locations ofthe text into successive substrings of exactly m/2 positions
each (and perhaps one substring of fewer positions). Initially, any position in the text
is a candidate for being the start of an occurrence of the pattern. We will assume
throughout that n >-_ 3m/2 (so that there is at least one m/2 block of initial candidates).

Basic constant-time text analysis.
Step 1. For each position 1 -< <_- n m + 1 in the text, check whether the following

I=IDS equalities hold: T(i- 1 + ds(j))= P(ds(j)) for every ds(j)6 DS.
If any of these equalities does not hold, we eliminate location as
candidate.

Step 1 needs at most log m checks per any of the n- (m- 1) candidates, or a total
of O(n log m) checks.

Next, we make a detour and present a key property of the deterministic sample.
Let x be the same as in Step 3 of the pattern analysis (i.e., copy cx is the only shift of
the pattern that matches the column sample).

The Ricochet property. Let be a candidate location in the text following Step 1.
Then, based only on the candidacy of location i, we can eliminate any remaining
candidate in the x- 1 locations preceding i, as well as the m/2-x locations succeeding
(that is, location i-x+ 1 through i-1 and i+ 1 through i+ m/2-x).

The word "ricochet" is meant to convey the following. A candidate location is
determined using matches with the deterministic sample (that consists of at most log m
locations). Still this direct match of at most log m locations allows for indirect "ricochet-
like" hit (or elimination of candidacy) of many (up to m/2 in number) locations.

Step 2. For each successive substring of length m/2, find its leftmost and rightmost
candidates on a priority CRCW PRAM (which, in turn, can be simulated
on a common CRCW PRAM without asymptotic loss of efficiency). Based
on the Ricochet property, disqualify all candidates that are neither leftmost
nor rightmost in their substring.

Step 2 results in having at most two candidates per any successive substring of
size m/2. So finally, we have Step 3.

Step 3. Apply a character-by-character check to each candidate location.
Complexity of the basic constant time text analysis. O(1) time using n log m pro-

cessors on the common CRCW PRAM.

Basic optimal speedup (and linear serial) text analysis.
Outline. Our goal is to reduce the total number of operations from O(n log m)

to O(n). A first attempt at this problem is to perform Step 1 of the basic constant-time
algorithm in ]DS rounds, as follows. The input for round a is all text positions
(candidates) that matched the first a- 1 positions of the deterministic sample (i.e.,
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positions ds(1), , dS(c 1) of the pattern). In round a, check each candidate against
the cth position, ds(), of the deterministic sample. Unfortunately, this attempt does
not lead to a bound smaller than O(n log m) on the number of operations. We overcome
this problem, as follows. Each round will also include "Ricochetlike" diqualification
of candidates, in the spirit of Step 2 above. This will lead to O(n/2) candidates
following round c, hence a total of O(n) operations.

Step 1. For each position 1 _-< _-< n rn + 1, in the text, check whether the following
equality holds" T( 1 + ds( 1 )) P(ds( 1 )).

In Step 2 below, we focus on a single (successive) substring of length m/2. All
such substrings are treated similarly, and simultaneously in parallel.

Step 2.1. Find the leftmost candidate a, and rightmost candidate b in the substring.
(Formally, a is the smallest index in the substring for which T(a- 1 +
ds(1)) P(ds(1)), and b is the largest such index.) Location lg
a + ds(1) in the text is called a left guide and location rg b 1 + ds(1)
is called a right guide.

Consider the set of pattern positions (or shifts) A [c,, c,, , C,IAI that was
obtained in the pattern analysis. We will construct two sets of text positions T/g and
Trg. Guiding location lg induces set Tlg using set A. T/g will simply be the set of
text locations that align under positions of set A, when we align location ds(1) (this
is the first location in the column sample of the pattern analysis) at the same column
as Ig in T. Fig. 4.1 illustrates four things" (1) the diamond-shaped structure at the top
is similar to Fig. 3.1; (2) column ds(1) in the column sample and location lg in T align
at the same column; (3) members of set A in the pattern align at the same columns
as members of the set Tlg; (4) location a in T is a member of Ttg. (Location a in T
and column c, must align at the same column, for some c, that is a member of set

A .)
Similarly, guiding location rg induces set Tg using set A. Trg is the set of text

locations that are aligned with set A when location ds(1) in the diamond shape is
aligned at the same column as location rg in T.

The key correctness observation. Consider a location in the substring of the text.
If it is neither in set Tg nor in set Tg, then it cannot be a start of an occurrence.

Proof The observation follows from the following facts: (1) b-a<m/2. (2)
Occurrence of the pattern can be in one of the x-1 text locations preceding b, only
if the text location is in Trg. (3) Occurrence can be in one of the m/2-x text locations
succeeding a, only if the text location is in T/g. (4) There is no occurrence in locations
of the substring that precede a or succeed b (by the selection of a and b).

Throughout the algorithm we mark as noncandidates locations of the text for
which our computation indicates that occurrence is impossible (e.g., in Step 1 above).
A possibly confusing fact is that sets Ttg and Trg themselves may include locations
that are already noncandidates. To straighten out our terminology we refer to text
locations in the Tlg and Trg lists that are noncandidates as straw candidates.

Step 2.2. Using set A construct the set of text positions T/g (respectively, Trg)
that can co-exist with selecting the first entry of the column sample ds(1)
aligned at the same column as location lg in T (respectively, location
rg in T).

Implementation remark. Assignment of processors to jobs is always a concern in
designing parallel algorithms. This concern is even more acute for algorithms whose
target running time prohibit application of prefix-sums, as here" we implement each
round below in constant time while prefix-sums need O(log n/log log n) time using a
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polynomial number of processors (see references in an earlier remark). A later comment
explains why it led us to include straw candidates in the Tg and Trg lists.

Following the above first round, Steps and 2 are iterated in l-1 more rounds.
In each round below, we focus on a single substring of length m/2. Other substrings
are treated similarly, simultaneously in parallel. Here is an outline of round a, for
2<=a<=l.

Step 1’. Consider every nonstraw candidate in list T or T of round a 1. For
each such candidate, check whether the following equality holds" T(i 1 +
ds(cr))= P(ds(a)).

Step 2’.1. Find the leftmost remaining candidate, a in T, and rightmost remaining
candidate, b in T, in the substring. (Formally, a is the smallest index
in the substring of a candidate for which T(a 1 + ds(a )) P(ds(a )),
and b is the largest such index.) Location lg a- 1 + ds(a) in the text
is called a left guide and location rg b + ds(a is called a right guide.

Step 2’.2. Using set A construct the set of text positions T (respectively, T)
that can co-exist with selecting the ath entry of the column sample,
that is column ds(a), aligned at the same column as location lg in T
(respectively, rg in T).

Complexity ofStep 2. Since m/2+ is a bound on the number of elements in each
Tg or T list, the bound on the total number of operations decreases by a factor of
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at least two in each round. Therefore, the total number of operations is O(n) and the
time is O(log m). The only nontrivial detail in an exact parallel implementation of
this algorithm is the issue of assignment of processors to elements of any Ttg and
list in any round

Assignment ofprocessors. We assign processors to the element of the Ttg and Trg
lists through the indices of the set A,. (That is, we get every index of Tg by means of
adding lg to every index of A,.) The trick is that these indices were computed in the
pattern analysis (using prefix-sums). Observe that a processor will also be assigned to
each straw candidate of each Ttg and Trg list in each round. Such processor simply
remains idle during the round.

The following comments shed some more light on the rounds of Step 2.
Comment 1. The key correctness observation holds also following each Step 2’.1

of each round. Specifically, each candidate at the substring of length m/2 must lie
either in Tg or Trg.

Comment 2. Again, the Tg and Tg lists may include straw candidates. Straw
candidates may come from three sources: (i) They were not in the Tg or Tg list for
any guiding location of round a- 1. (ii) They were already straw candidates in the
T/g or Trg list for some guiding location of round a 1. (iii) They were candidates in
the Tlg or Trg list for some guiding location of round cr- 1 but they failed the check
of Step 1’ in round a.

At this stage, we remain with at most 2[(n-m+ 1)/(m/2)]= O(n/m) candidates.
Step 3. Compare the whole pattern relative to each candidate, in a naive character-

by-character manner.
Complexity of the basic optimal speedup text analysis. O(log m) time using an

optimal number of processors on the common CRCW PRAM.

5. Optimal O(log* n) time text analysis. We show how to perform the text analysis
in O(log* n) time and O(n) operations. The algorithm will have three stages. The
main part (Stages 1 and 2) applies the accelerating cascades design principle, as
discussed in [CV86].

Stage 1. Run Steps 1 and 2 of the optimal speedup basic text analysis for
2 log log* n + 2 rounds. For this, we use the first 6 :-- 2 log log* n + 2
positions of DS, the deterministic sample. The variable 6 will keep track
of the number of positions of DS that have already been "used" in Step
2 as well. The total number of elements (candidates and straw candidates)
in the resulting Tlg and Tg lists will be at most n/(log* n)2.

Complexity. O(n) operations and O(log log* n) (which is o(log* n)) time.
Stage 2 has log* n iterations, each limited to constant time. The input for each

iteration is a set of candidates (in T/g and Trg lists). As iterations proceed, the number
of candidates decreases and we can apply an increasing number of tests, per each
candidate at hand, in order to accelerate the candidate disqualification rate. Interest-
ingly, while the overall serialization of events in Stages 1 and 2 together is motivated
by the basic optimal speedup text analysis, each iteration of Stage 2 resembles
Step 1 of the basic constant..time text analysis, where several positions from DS are
checked at once. Stage 3 is the same as Step 3 in the basic optimal speedup text
analysis.

Stage 2.
for count := log* n downto 1 do

Inputfor present iteration" Total of at most n/(logcunt) n log* n) (straw
and nonstraw) candidates in the Tg and Trg lists.)
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For each (nonstraw) candidate i, check the next log(cunt) n positions
in the sample DS=[ds(1),..., ds(l)].
Specifically, check whether the following min {1- 6, log(CUnt n}
equalities hold:
r(i- + ds(6 + ))= P(ds(6 + )),
r(i- + ds(, + 2)) P(ds(6 + 2)),

r(i- 1 + ds(min {1, 3 + log(Cunt)n))= P(ds(min {l, + log (cunt)

For each substring of length m/2, find its leftmost (nonstraw) candidate
and its rightmost (nonstraw) candidate. Get from them the guiding
locations and the lists Ttg and Trg.

Since this procedure exhausts the sample DS, we end up with just one candidate
in each Tg and Trg list.

Complexity. In iteration count we perform at most O(log(cunt) n) operations per
each of the iteration’s input candidates in O(1) time. Since the number of such input
candidates is bounded by n/(log(Cuntn log* n), we get O(n/log* n) operations and
O(1) time per iteration, or a total of O(n) operations and O(log* n) time.

Stage 3. Compare the whole pattern relative to each candidate, in a naive charac-
ter-by-character manner.

Comment. Actual computation of log* n. All functions used in this paper can be
computed within the complexity bounds claimed here. We refer the reader to [BV89]
that shows how to compute the function log* n, for instance, in constant time using n
processors.

6. Further research and speculation.
(1) A possibly sublinear serial implementation. Rivest [Ri77] showed that, under

some assumptions about the string matching algorithm, sublinear time cannot be
achieved in the worst case, if the pattern is considerably shorter than the text. On the
other hand, there were a few works whose concern was to show that some string
matching algorithms need sublinear time under some assumptions about the source
of the input. The difficulty about these works is that they make assumptions on what
a typical input looks like. We did not find satisfactory ways for making assumptions
of this kind. To demonstrate our difficulty, we show why the common probabilistic
assumption that each character of the test is equally likely and that all positions are
probabilistically independent does not make sense, in general. This assumption implies
that if the length of the pattern is not very small relative to the length of the text, the
probability of having an occurrence of the pattern is extremely small. However, in
many string matching problems we have no doubt that occurrences exist and only
need to find them!

Consider a serial implementation of the basic optimal speedup text analysis
algorithm. We already mentioned that it runs in linear time. Still, we provide some
practical ideas for enhancing its performance. Observe that if we find a match between
a text character and a pattern character in Step 1 (or Step 1’) then we can immediately
use it for reducing the number of candidates near this location of the text. This may
save some additional comparisons between characters of the text and the pattern in
the present round. In addition, recall the remark on practical considerations in 3.
The above discussion explains why, unfortunately, we do not see how to explore these
ideas in a theoretically sound manner.

(2) Extension to two or higher dimensions. Suppose our pattern is a two-
dimensional m-by-m array. We are not familiar with successful attempts to extend the
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concept ofperiodicity in strings to higher dimensions. The following conflicting occurren-
ces assumption resembles the case of nonperiodic patterns in strings. Consider any two
positions in the text (i,j) and (il,jl) that are close enough. Formally, we require that
]i-il] <<- m/2 and [/-jl[ <= m/2. Consider laying one copy of the pattern to start at (i,j)
and another copy to start at (il,jl). The intersection of these two copies contains
(possibly several) arrays of size m/2 by m/2. The assumption about the pattern array
concerns each of these m/2-by-m/2 arrays. The assumption is that the m/2-by-m/2
array must contain a position in which the two copies of the pattern have two different
characters. (This resembles the information in WITNESS.) Such an assumption make
it possible for our algorithmic approach to carry through efficiently.

(3) Extension to approximate matches. Consider again the two-dimensional case,
where the pattern and text consist of arrays of pixels, where each pixel is characterized
by its grayness (or intensity). Suppose that there are several levels of grayness. A
natural concept of approximate, rather than exact, match is where only "very different"
levels of grayness are defined to mismatch. (The problem is that a small difference
between two levels of grayness is insufficient evidence for a mismatch.) A possible
conflicting occurrences assumption will be similar to the above-suggested assumption
for extensions to higher dimensions. Such an assumption would make it possible for
our algorithmic approach to carry through efficiently.

(4) Speculations on complexity measures. Machine vision is one of the most
frustrating application fields for any algorithm designer, for our performance as humans
analyzing scenes is vastly superior to any algorithm presently imaginable for even the
most powerful machines. Our algorithm may shed some light in attempting to explain
this phenomenon. Power of computing machinery is often measured by number of
arithmetic operations per second and other traditional computational intensity
measures. Advances in computer architecture are geared to optimize such measurements
and indeed computers greatly outperform humans for computationally intense tasks.
On the other hand, human vision is supposedly very effective in a few very simple
tasks, such as sampling a point of reference (e.g., "pick a red car in an aerial photo
of a huge parking lot") and large fan-in AND (e.g., "are all cars in the parking lot
red?") or OR.

We review our basic constant time text analysis. We show that it uses very
degenerate computations and barely performs any "real" computation. Rather it can
be implemented using only the simple tasks that humans seem to perform well. Step
1 compares characters and then takes the AND of [DS bits. (An even more "humanlike"
approach would be to "associatively identify" the deterministic sample. By this we
mean that given a small pattern it might be interesting to consider hypothetical
computers that can retrieve, by means of a unit-cost operation, occurrences of the
pattern.) Step 2 selects a leftmost (and rightmost) bit whose value is one out of each
substring of m/2 bits. (Again, such leftmost bit can be associatively identified.) This
already makes possible occurrence of the pattern very sparse. Finally, Step 3 takes the
AND of m bits to verify occurrences.

This may suggest that for pattern recognition tasks, it might be less
appropriate to restrict attention to conservative computational intensity measures
only, but rather articulate new measures as yardsticks for novel and potent computer
architectures.
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AMPLIFICATION OF BOUNDED DEPTH MONOTONE READ-ONCE
BOOLEAN FORMULAE*

QIAN PING GU? AND AKIRA MARUOKA$

Abstract. Let f be a Boolean function from {0, 1}" to {0, 1}. The amplification function Ay of f from
[0, 1] to [0, 1] is defined as Ay(p)=Pr[f(X,... ,Xn)= 1], where X,..-,Xn are independent random
variables with Pr [Xi 1] p for _-< _<- n. f is said to amplify (p, q) to (p’, q’) if and only if As(p) <= p’ and
As (q) >= q’. Let Ed U FId be a family of monotone Boolean formulae with alternating d levels of AND gates
and OR gates each having the same number of fan-ins. A Boolean formula is said to be read once when
each variable in the formula occurs at most once. In this paper it is proven that the size of monotone
read-once formulae in .d[,_JI-Id that amplify (p,p+ 1/m) to (p’,p’+ 1/c) is exp(O((d--1)(m/c)/(d-l))
under certain conditions.

Key words, computational complexity, Boolean function, amplification of Boolean function, monotone
read-once Boolean formula

AMS(MOS) subject classification. 68C25

1. Introduction. Given a Boolean functionf from {0, 1} to {0, 1}, its amplification
function As from [0, 1] to [0, 1] is defined as follows:

Af(p)= Pr [f(X1,’’’ ,X,)= 1],

where X1,"" ", X, are independent random input variables with Pr [Xi 1] =p for
1 -< =< n. A function f is said to amplify (p, q) to (p’, q’), if As(p) <= p’ and As(q) >- q’.
The notion of amplification has been studied in the context of reliability of relay
contact networks [6], [7] or computational complexity of certain Boolean functions
such as majority functions [8]. Moore and Shannon [7] introduced the notion of
amplification to design reliable relay contact networks composed of unreliable com-
ponents. Using the amplification method, Valiant [8] obtained monotone formulae of
size O(n 5.3) for computing the majority functions of n variables, which is the best-known
upper bound of size of monotone formulae for majority. Boppana [2] showed that the
amount of amplification that Valiant obtained is optimal. In particular, he showed that
if monotone read-once formulae f ("read-once" means that each variable occurs at
most once) amplify (p, p+ 1/m) to (p’, p’+ 1/c), then the size off is fl((m/c)), where
a In (2)/ln (x/--1) 3.3. Ajtai and Ben-Or [1] constructed circuits of depth d and
with size exp (O(d(m/e)z/d)) that amplify (p, p+ 1/m) to (p’, p’+ 1/c). All the results
above are obtained from the independence properties of monotone read-once formulae.
Without the restriction of formulae being read-once, the known upper and lower
bounds of size of formulae that amplify (p,p+l/m) to (p’,p’+ 1/c) are O((rn/e)33)
[8] and ((m/c)2) [2], respectively.

In this paper we establish bounds on the size of bounded depth formulae that
realize given amplification. Formulae we deal with are monotone read-once bounded
depth formulae of alternating layers of OR and AND gates, where each gate in a layer
has the same fan-in. Depending on the operation of the top layer (the layer farthest
from the inputs), the sets of formulae with depth d are denoted Ed and Hd, respectively.
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The formulae used in this paper are essentially the same as the circuits used in Ajtai
and Ben-Or’s paper 1 ]. We prove that the size of the formulae in Ea U IIa that amplify
(p,p+ 1/m) to (p’,p’+ 1/c) is exp (O((d-1)(m/c)/(a-1))) under certain conditions.
The bound is obtained from an upper bound and a lower bound. Our upper bound
shows an improvement over the one obtained by Ajtai and Ben-Or [1]. The lower
bound is tight to the upper bound in the sense that they differ from each other only
in a multiplicative constant factor in the exponent. As a consequence of these bounds,
we show that if formulae in Ea U I-Ia whose size is polynomial in m/c amplify
(p,p+l/m) to (p’,p’+l/c), then the depth of the formulae is O(log(m/c)). Using
the amplification method, Ajtai and Ben-Or showed that for any with 1 <_- <_-(log n) a

there exist circuits of depth 2d +2 and with size polynomial in n that compute the
threshold functions T/-/, where TH,(x,. ., xn) 1 if and only if at least of xi’s are
1. Applying the upper bound proved in this paper, we get a better upper bound of the
depth of monotone formulae of size polynomial in n that compute TH,. We prove
that for 1 _-< t<_-(log n) a there exist monotone formulae of depth d + 3 and with size
polynomial in n that compute TH,. For f(log n) a, Boppana proved that if monotone
formulae of size polynomial in n compute THt, then the depth of the formulae is at
least d + 1 [3]. The upper bound of the depth of formulae for THt proved in this paper
is very close to the lower bound given by Boppana.

The remainder of this paper is divided into four sections. Section 2 gives ter-
minology we use in this paper. In 3 and 4, we prove the upper bound and the lower
bound of the size of formulae that amplify (p, p + 1/m) to (p’, p’+ 1/c), respectively.
In 5, we show how to apply our upper bound given in 3 to find the formulae with
the bound for computing Boolean threshold functions.

2. Preliminaries. A read-once formula is a formula in which each variable occurs
at most once. The monotone read-once formulae we deal with in this paper are defined
as follows.

For a positive integer L, let

E(L1) {(xi, v’’’v xi,,)]xi,," ", xi,, are distinct variables},

H(L1) {(xi, A" ^ XiL1)]Xil ," ", XiL are distinct variables}.

For positive integers L1," , La(d ->_2), let

E(L,,..., Ld) {(f v... vf,) If, ,f are in II(L,..., Ld)

and (f v... v fc,) is read once},

II(L,,..., La)={(f ^... ^f,)[fl,’’’,fl areinE(L2,..., La)

For d-> 1, Ea and Ha are defined as

and (f ^’’’ ^ fgl) is read once}.

and

1-Ia U H(L," , La),
L,...,LdI

respectively. A formula in Ed IId can be considered to be one consisting of alternative
d layers of OR and AND gates. Note that fan-ins of the gates in the same layer are the
same. The depth of a formula in Ed (.Jl-Id is defined d. Fan-in of a formula in

Ed U E(L," Ld
L,...,Ld1
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E(L1, , Ld) U H(L1, , Ld) is defined (LI, , Ld) and the size of it is defined

LIL2 Ld. The top operation of a formula in Ed (respectively, lid), i.e., the operation
of the layer farthest from the inputs is defined OR (respectively, AND). The bottom
operation is defined similarly. That is, we call the operation of the gates in the top
(respectively, bottom) layer of a formula the top (respectively, bottom) operation of
the formula. Note that since the formulae in E(L,...,Ld) (respectively,
H(L,. , Ld)) are transformed to each other by renaming variables, the naming of
variables is irrelevant in the argument to follow. So we could consider that
E(L1,’’’, Ld) (respectively, II(L1,..., Ld)) contains essentially one formula. The
formula in E(L1, , Ld) and that in H(L1, , Ld) are denoted s(L1, , Ld) and
t(L,..., Ld), respectively. In particular, when the top operation of it is not specified,
it is denoted u (L1, , Ld).

The formula composed of s(L,...,L) (respectively, t(L,...,L)) and
u(L’,. ., L’) is defined as follows. If the bottom operation of s(L,. ., L’k) (respec-
tively, t(L,..., L)) is different from the top operation of u(L’,..., Lj’), then the
composition of the two formulae is s(L,...,L’k,L’,...,L’) (respectively,
t(L, L’k, L’ L’)); otherwise, the composition is s(L, ..,ka_,lrt lrt’, L)’)
(respectively, t(L,. ., L’kL’," ", L’)). The definition can be easily extended for the
case of a formula composed of more than two formulae. It is easily seen that the effect
of the composition of formulae s and u is just substituting the copies of u for every
variable in s and renaming the variables of u’s appropriately to make the resultant
read once. Therefore, if u and u’ amplify (p’, q’) to (p", q") and (p, q) to (p’, q’),
respectively, then the formula composed of u and u’ amplifies (p, q) to (p", q"). Since
we identify a formula with the function it computes, we use the notation such as

As(L,,...,L)(P) in what follows. Since formulae in Ed tA lid are read once and monotone,
the following properties of amplification function of formulae are easily seen"

Af^g AyAg,

and for 0 _-< p < p’ -< 1,

Afg= 1-(1-Af )(1-Ag),

Af(p) Af(p’),

where f ^ g and f v g, as well as f and g, are assumed to be read once. These facts are
easily extended to the case where fan-in of a gate is more than two.

We often use the following notation for amplification in the sequel. For any p,
m, and c with m > c > 1 and 0 < p, p + 1/m < 1, we say that formulaf satisfies A(p, m, e)
if and only if

Af(p+ 1/m)-Af(p) >- 1/c.

Let P(f, p, m, c) denote the property that f satisfies A(p, m, c). The following easily
verifiable facts are also used later.

PROPOSITION 2.1. For n >- 1, (1-l/n) is a monotone increasing function in n.
PROPOSITION 2.2. For n_--> 1, (1-1/ n)n < l/e, where e is the base of the natural

logarithm.
PROPOSITION 2.3. Forn>=l andk<=l, (1-k/n)>=(1-1/n)k. Forn>-I andk>-_l,

(1-k/n)<-(1-1/n) k.
We shall use log x, In x, and exp (x) to express log2 x, 1Oge X, and 2x, respectively.

3. Upper bound. In this section we prove the upper bound of the size of formulae
that satisfy A(p, m, c).
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THEOREM 3.1. Let 0 < b < be fixed. There exists a constant R such that for any p,
m, c and any integer d with 1/ m < l/ c <-_ l 3 b, b <-_ p, p + l / m <- l b, and d >- 2 there
exists a formula f Zd (respectively, f’ lid such that

(i) f (respectively, if) amplifies (p, p+ l/m) to (p’, p’+ 1/c) forsomep’ with b <-_p’,
p’+ 1/c <- l-b, and

(ii) size (f)_-<exp (R(d- 1)(m/c)1/d-1)) (respectively, size (f’)-< exp (g(d- 1) x
(m/c)/-)).

Proof. We only prove that there exists a formulafe Ee that satisfies the conditions
of the theorem. For the other case, the theorem can be proved dually. The theorem is
proved by induction on d.

We first prove the theorem for d 2. Let f denote s(L, L),

(3.1) L= [m/(bc)]
and

(3.2)

Then

(3.3)

and

El= [log (1- b)/log (1--pL)].

A(p)= l-(1-p)L’

1--(1--pL2)g(-b)/g(a-p%)-- b.

(3.4)
Af(p) <- 1 -(I --pL2)lg(1-b)/’g(1-p%)+l

=l--(1--b)(1--pt).

By L2 -> (1/b)Z, p < 1 b and Proposition 2.2, we have

(3.5) pL2--p(1/b)2--((1--b)l/b)l/b --(1/e) 1/b <b.

By (3.4), (3.5) and 1/c _-< 1 3b, it follows that

(3.6)
Af(p) + l/ c <-_ 1-(1-b)(1-pL2)+ 1/ c

--< -(1- b)(1 b)+ 1-3b_-< 1-b.
Put p’=Af(p). Then, by (3.3) and (3.6), we have b<-p ’, p’+l/c<-_l-b. To complete
the proof of (i), we need to prove

(3.7) Af(p+ 1/m)>=Af(p)+ 1/c.

Since Af(p+l/m) >- 1-b and (3.6) imply (3.7), we can assume that Af(p+ l/m) <-

1-b. By the assumption and Af(p+ l/m)= 1-(1-(p+ 1/m)L)1, we have

(3.8) (1- (p+ 1/m))1-> b.

On the other hand, there exists a w with

(3.9) p< w<p+ l/m

such that

Af(p+ 1/m)-Af(p)=(1/m)A’f(w)

(1/m)L1L2(1 wL2)LI-IwL2-1,
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where the prime denotes the differentiation. By (3.9), (3.8), (3.1), (3.2), and (1--
pL2)(1/P’2>--(1--b)l/b, which is assured by (3.5) and Proposition 2.1, we have

Af(p+ 1/m)-Af(p)>= (1/m)L1L(1 wL2)l,w
>-(1/m)L1L(1-(p+ 1/m))Ip
>-(1/m)LiLzbp t’

(1/m)[log (1 b)/log (1 _pL2)] [m/(b2c)
>- (1/(bc))(log (1 b)/log (1 -p)(/P)),

(1/(bc))(log (1 b)/log (1 b) /b) 1/c,

obtaining (3.7). Thus (i) holds.
Now we estimate the size ofthe formulaf given by LLz. Since (1 -p)(/)< e-2by Proposition 2.2 and g < 1 b < 1 by the condition of the theorem, we have

log (1 b)/log (1 pL2) (1/p)c2

Therefore, by b N p,

log ( b)/log (1 -p) (l/p) log (1 b)/log (1 _p)(l/.
(1/p)(1/b).

Therefore, by (3.1) and (3.2), it is easy to see that there exists a constant R such that

size (f) L1Lz N exp Rm/ c),
obtaining (ii).

Assume that the theorem holds for d 2. We now prove the theorem for d + 1.
Let c’= m1(a-)/a. Then we have

(3.10) mc’= (m/ c)-’/,
(3.11) c’/c=(m/c)/,
(3.12) 1/m < 1/c’ < 1/c N 1 3b.

By (3.12), the inductive hypothesis, and b Np, p+l/mNl-b, there exists a
formula f e Hd such that f2 amplifies (p, p + 1/m) to (p", p"+ 1/c’) for some p" with

b N p", p"+ 1/c’ N 1 b,(3.13)
and by (3.10)

size (f) =< exp (R(d 1)(m/ c’)1/(d-l))
(3.14) =exp (R(d- 1)(m/c)l/a).
Note that the constant R, whose existence is guaranteed by the induction hypothesis,
depends only on b. On the other hand, by (3.12), (3.13), and the induction base, there
exists a formula fl e 2 such that fl amplifies (p", p"+ 1/c’) to (p’, p’+ 1/c) for some
p’ with b<=p ’, p’+l/c<=l-b, and by (3.11)

(3.15) size (fl) <- exp (Rc’/c)=exp (R(m/c)l/cl).
Let f be the formula composed of fl and f2. Then f amplifies (p, p + 1/m) to (p’, p’+
I/c). On the other hand, by (3.14) and (3.15),

size (f)= size (fl) size (f2)
=<exp (R(d 1)(m/c)1 exp (R(m/c) 1/a

=exp (Rd(m/c)l/").
Since the type of bottom gates in fl is the same as that of the top gates in f2, the depth
of f is d + 1. Hence f belongs to d+l" ["]
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COROLLARY 3.2. Let 0 < b <- be fixed. There exists a constant R such that for any
p, m and c with 1/m < 1/c <- 1 3 b and b <-_ p, p + 1/m <-_ 1 b, there exists a formula f
of depth [log (m/c) + 1 and size (m/c)R such that P(f, p, m, c) holds.

Proof. Substituting [log(m/c)]+l for d in Theorem 3.1, we obtain the
corollary.

4. Lower Iountl. In this section we show a lower bound on the size of formulae
that satisfy A(p, m, c). The lower bound proved in this section is tight to the upper
bound obtained in the last section in the sense that they differ only in a multiplicative
constant factor in the exponent.

LEMMA 4.1. For any u and y with u >- 1 and 0 < y < 1,

u(1-y)"-ly<_l.

Proof Since the lemma holds for u 1, we can assume that u > 1. u(1-y)"-y
can be thought of as a function of y. Let the function be denoted by G(y). Then

G’(y) u(1 y)"-x(1 -y(u- 1)/(1 -y)),

where G’(y) denotes the differentiation of G(y). It is easily seen that G(y) takes its
maximum value when y 1/u. Since

u(1 y)U-ly[y=l/u --(1 l/u) u-’ < 1,

the lemma follows.
LEPTA 4.2. Let O< b <1/2. For any u, v, and y with u>=l, v>-l, uv>-2, and

b<-y<=l-b,

uv >= exp (buy(1 yO)"-y-).

Proof The proof is divided into two cases.
Case 1. v_<log (uv)/log (I/y).
By Lemma 4.1 with y substituted for y, we have

uv(1 y),-ly-I v/y)u( 1 y)U-ly
<--_ v/y<--_log (uv)/(y log (l/y)).

Therefore, since it is easy to see that y log (l/y) >_- b for b _-< y _-< 1 b, we have

uv_-> exp (y log (1/y)uv(1-y)U-y-1)
_-> exp (buy( 1 y)"-ayu-l).

Case 2. v > log (uv)/log (l/y).
The condition of the case is written as

uvy < l.

Therefore, since (1-y)"--< 1 holds for u _-> 1, we have

uvy’(1- y’)’-l yuv(1- y’)"-’y’-1<- 1.

Thus, by uv->_ 2 and y >_-b, we have

uv >_- exp (yuv (1 y)’-y-)
_-> exp (buy( 1 yV)U-lyV-1).

LEMMA 4.3. Let 0 < b < 1/2 be fixed. There exists a fixed b’ with 0 < b’<- b such that,
if P(t(LI, L2), p, m, c) (respectively, P(s(L, L2), p, m, c)) holds for p, m, and c with
1/m < 1/c <- 1 3 b and 1 b <= p, p + 1/m < 1 (respectively, 0 < p, p + 1/m <- b ’), then
there exists s(L, L) (respectively, t(L, L)) with LL <- LL2 such that
P(s(L, L), p, m, c) (respectively, P(t(L, L), p, m, c)) hOlds.



AMPLIFICATION OF BOOLEAN FORMULAE 47

Proof. We only prove the case where P(t(L1,L2),p, m, c) is assumed. For the
other case the lemma can be proved dually.

Since P(t(L1, 1), p, m, c) implies P(s(1, L1), p, m, c), the lemma holds trivially for
L2 1.

Assume that L2->_2 and that P(t(LI, L),p, m, c) holds. We first give a lower
bound on L1L. By P(t(L1, L),p, m, c), there exists a w such that

(4.1) p<w<p+l/m

and

A,L,(p + 1/m) A,L,,L(p) (1/m)A’L,(W)
(4.2) (1/m)L1L2(1 -(1 w))-l(1 w)-1

l/c,

where the prime denotes differentiation. By L 1 and (4.2), we have

L1L L1L2(1 -(1 w))-l(1 w)Lz-1/(1 W)L-I
(4.3)

m/(c(1-w)-l).
Case 1. p/b) b.
Let L 1 and L m/ (bc) ]. Then by (p + 1/ m) p(1 + L/m) and p b,

we have

A,(p+ 1/m) A.,(p) (p + 1/m)-p
p(1 +/m)-p=p/m

[(m/(bc))](b/m) 1/c.

Take b’= b/(1 + b). By (4.1) and the condition of the lemma, we have 1-w< 1-p
b’=b/(l+b). Therefore, by (4.3), L22, and m/c> 1,

m/(c(1 w)-)
m/(c(1-w))

> (1 + b)m/(bc)

> m/(bc)+ 1 [m/(bc)]

Case 2. p/b) < b.
Let L= [log b/logpJ. By the condition of Case 2, Lm/(bc). Thus if

P(t(L),p, m, c) holds, then taking b’=b/(l+b), L= 1, and L= L, we can obtain
LLLL as we did in Case 1. So we assume that P(t(L), p, m, c) does not hold, i.e.,

(4.4) (p+ 1/m)-p < 1/c.

Since L [log b/log pJ, 1 b p, and b < ,
bp

(4.5) <_ p(log b/log p)-I b/p

<-_b/(1-b)<2b.

By (4.4), (4.5), and 1/c _-< 1 3b,

(4.6) (p+l/m)L<l--b.
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Let p,=pL and p’+ 1/m’=(p+ 1/m). Then by (4.4)-(4.6), we have b<p’,= p’+ 1/m’<=
l-b, and 1/m’< 1/c. Thus, by Theorem 3.1, there is a formula s(L’, L") such that
P(s(L’, L"), p, m’, c) holds and L’L"=< exp (Rm’/c), where R is a constant depending
only on b. Let s(L, L) be the formula composed of s(L’, L") and t(L). Then
P(s(L, L), p, m, c) holds and

(4.7)
LL.<-(L) exp (Rm’/c)

<=(m/(bc)) exp (gm’/c).

Since (p+ 1/m)t>-p(1 + L/m) and pL_> b,

(4.8) 1/ m’- (p + 1/ m)t-p >- bL/ m.

By (4.1) and (4.6), Llogw<log(1-b), i.e.,

(4.9) L->_log (1- b)/log w.

Since 1 b’ < w and we will fix b’ such that b’ =< b < 1/2,
(4.10) -log w_-<2(1 w).

From (4.7)-(4.10), we obtain

LL<=(m/(bc)) exp (Rm’/c)

<= (m/(bc)) exp (Rm/(bct))

(4.11) <=(m/(bc)) exp (Rm log w/(bc log (1- b)))
<- (m/(bc)) exp (2R(1 w)m/(-bc log (1 b)))

exp (log (m/c) + log (1/b) + R’( 1 w)m/c),

where R’-2R/(-b log(l-b)). By (4.2) and Lemma 4.1 with L1 and (l-w)L sub-
stituted for u and y, respectively, we have

(4.12) (1- w)m/c<- L,t(1-(1- w)),-’(1- w)< L.
Take b’=b/2R’. By (4.3), 1-b’< w, L>-2, (4.12), and (4.11), we have

L,L >- m/(c(1 w)t-’)
=exp (log (m/ c) + (L2-1) log (1/(1 w)))

->exp (log (m/c)+(t- 1)(log (1/b)+2R’))

_>- exp (log (m/c) + log (1/b) + R’Le)

>= exp (log (m/c) + log (1/b) + R’(1 w)m/c)

>- LL.
Thus, taking b’= min {b/(1 + b), b/22R’}, the result follows.

THEOREM 4.4. Let 0< b <3 be fixed. There exists a constant R > 0 such that for
any p, m, c and integer d with 1/ rn < l / c < l, b <- p, p + l/ rn <-_ l b, and 2 <-_ d <-_

max {2,1n (m/c)+ 1}, if P(u(L1, ,Ld),p, m, c) holds, then size (u(L1,... ,Ld)) >-

exp(R(d-1)(m/c)/(d-), where u(L, La) denotes s(L1, Ld) or
t(L1," ", Ld).

Proof We only prove the result for the case that P(t(La,..., Ld), p, m, c) is
assumed. For the other case the theorem can be proved dually. Note that
P(t(L1, , Ld), p, m, c) and 1/m < 1/c imply LI Ld >=2.
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Let d=2. For any p, m, c with 1/m<l/c<l and b_-<p, p+l/m<_-l-b,
P(t(L1, L2), p, m, c) implies that there exists a w with b p < w < p + 1/m _-< 1 b such
that

A’At(L,L)(P+ 1/m)-At(l,l)(p) (1/m) t(L,I)(W)
(4.13) (1/m)LIL2(1 -(1 w)L2)L--I(1 w) L2-1

>=l/c,

where the prime denotes differentiation. Since L1Lz >- 2, substituting L1, L2, and 1-w
for u, v, and y, respectively, in Lemma 4.2 yields

(4.14)
L1L >= exp (bL1Lz( 1 -( 1 w))-l( 1 w)-)

=exp (bA’t(,,)(w)).
By (4.13) and (4.14) we have

size (t(L, Lz)) LL
A’> exp (b t(L1,L2)(W))

>-exp(bm/c).

To get the theorem, we prove the following lemma.
LEMMA 4.5. Let a=min{b’/2,1-3b}. For 1/m<l/c<=a, 2<d<=ln(m/c)+l,

and b<=p, p+l/m<-l-b, P(u(L1," ,Ld),p,m, c) implies

size (u(L,. ., Ld )) >---- exp ((b’/Z)(d 1)(m/C)I/(d-)),
where 0 < b’<= b is as in Lemma 4.3.

Proof The lemma is proved by induction on d. The base of the induction, i.e.,
the case of d 2 is immediate from the argument above.

Inductive hypothesis. For 1 / m < 1 / c -< a, 2 < d -<- In (m/ c), and b <_- p, p + 1/ m <=
1 b, P(u(L1, , Ld), p, m, c) implies

size (u(L1,’’’, Ld), p, m, c)>-exp ((b’/2)(d- 1)(m/C)/(d-)).
Assume for 1/m<l/c<--_a, 2<d<-_ln(m/c), and b<-_p, p+l/m<-l-b, that

P(t(L1," , Ld+l), p, m, c) holds. We now show that

size (t(L1,..., Ld+l))_--> exp ((b’/2)d(m/c)l/d).(4.15)

Let

and

p A(,.. a ) P ),

Pl + l/el A(t.,...,La+)(p + l/m)

P2 At(L3,...,Ld+,)(P),
p2+ 1/c2 At(L3,...,Ld+)(p+ 1/m).

If 1/c >= 1/c, then P(s(L2," , Ld+l), P, m, c) holds. By the inductive hypothesis and
Appendix 1, we have

size (t(L,. ., Ld+)) >= size (s(L2, ", Ld+))

=> exp ((b’/2)(d 1 )(m/c)/-)
->exp ((b’/2)d(m/c)/d),
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obtaining (4.15). So we assume 1/cl < 1/c. By the same reason, we can also assume
that 1/c2<1/c. Note that P(t(L1,’." ,La+),p, m, c) and 1/Cl <l/c imply that LI>= 2.
The proof is now divided into several cases.

Case 1. P2 >= 1 b ’.
In this case, 1 b’ <_- P2, P2 + 1/c2 < 1 and 1/c2 < 1/c _-< a _-< 1 3 b. By Lemma 4.3

and the fact that P(t(L1," ", La+l), p, m, c) implies P(t(L1, L2), P2, c2, c), there is a
formula s(L, L) with LL’2<-_ LIL2 such that P(s(L, L’2), P2, c2, c) holds. By merging
the bottom layer of s(L, L’2) and the top layer of t(L3,’’ ", La+), it is easily seen
that P(s(L, LL3, La+),/9, m, c) holds. By LL<-_ LIL, the inductive hypothesis
and Appendix 1,

size (t(L1, L2, L3, Ld+,))>= LL’L3 La+I
size (s(L, LL3,’’’, Ld+I))

>= exp ((b’/2)(d 1)(m/c) 1/(d-l))
>_-exp ((b’/2)d(rn/c)l/a).

Case 2. Pl + 1/c <-_ 1/2.
Since P(t(LI, ., Ld+), p, m, c) implies P(t(L1), p, Cl, c), there exists a w with

Pl < w < Pl + 1/Cl such that

(4.16)

At(t,(pl + 1/Cl)- AtL,)(p) (1/Cl)APt(L)(W)
=(1/1)L1 WLl-1

>=l/c,

where the prime denotes differentiation. By w <p + 1/c1 --< 1/2 and L >= 2, Lw’-1 < 1.
Therefore, by (4.16), 1/Cl > 1/c, contradicting the assumption of 1/Cl < 1/c.

Case 3. -<pl+l/Cl and p2<l-b’.
Let L be an integer with 1 _-< L =< L2. Put

p’= 1- (1 -p2), p’+ 1/c’= 1 (1 (p2+ 1/c2)).
If 1/c’> 1/c, then (4.15) follows by the same argument as above. So we assume that
1/c’ < 1/c for any integer L with 1 _-< L_-< L2. We now show that there exists an integer
L with 1 -< L <_- L2 such that

(4.17) b’/2<_p ’, p’+l/c’<=l-b’/2.

Assume that b’/2 <= P2. In this case, let L 1. Then b’/2
b’/2 and P’=P2 < 1- b’, we have p’+ 1/c’< 1- b’/2. Thus we obtain (4.17).

Now assume that pz<b’/2. In this case, let L= [log (1-b’/2)/log (l-p2)]. Then
we have

(4.18)

b’/2= 1-(l-p2)lg(1-b’/2)/lg(-p2)

__<p’= 1- (1 -p2)
_--< 1 (1 -p2)lg l-b’/2)/log 1-p9+1

<l-(1-b’/2)2<b ’.

By (4.18), 1/c’<l/c<-b’/2 and b’<=b<-,

(4.19) p’+ 1/c’ <b’+ b’/2 <1/2< 1-b’/2.
Combining (4.18) and (4.19), we obtain (4.17). Moreover, by p’+ 1/c’<-<p+ 1/Cl
and the fact that 1- (1- (P2 + 1/cz))L is a monotone increasing function in L, we have
L<L_.
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Since P(t(L1, , Ld+I), P, m, c) holds, there exists a w with p’ < w < p’+ 1/c’
such that

AtL1,...,L+,(P + 1/m) At(LI,...,La+I)(P)
(1-(1-(p’+ 1/c’))ld)-(1-(1-p’)ldG)G

(4.20)
(1/C’)(nln2/L)(1 -(1 w)L2/L)LI-I(1 w) L2/L-1

>=l/c.

Reasoning as we did for the base of the induction, we have, by L1 _-->2, Le/L >- 1, (4.17),
and (4.20),

(4.21) L1L2/L >- exp ((b’/2)c’/c).

Assume that 1/c’<= 1/m. By (4.21) and Appendix 1, we have

size (t(L1, ., Ld/l), P, m, c) >- L1L2/L

->exp ((b’/2)c’/c)

=>exp ((b’/Z)d(m/c)a/d),
obtaining (4.15). So we can assume that 1/m < 1/c’. By P(s(L, L3, ", Ld+),p, m, c’)
and the inductive hypothesis, we have

(4.22) size(s(L, L3, ,La+))>=exp((b’/Z)(d-1)(m/c’)/d-).

By (4.21), (4.22), and Appendix 2, we have

size (t(L, L2, L3, La+)) (LLz/L)(LL3 La+)
>_-exp ((b’/2)c’/c) exp ((b’/Z)(d- 1)(m/c’) ’/d-))
_-->exp ((b’/2)d(m/c)/d).

To complete the proof of the theorem, we still need to prove the statement for
the case where 1/c <- a does not hold. Assume that P(t(L1,’’’, Ld/I), p, m, c) holds.
If 1/m _-> a we have, by L Lcl+ -> 2, 1 / C 1, and d -< In (m/c),

size (t(L1,""" Ld+I))= L,...

_->exp ((a/a) In (1/a)/ln (I/a))

->_exp ((a/ln (1/a))(m/c) In (re

_->exp ((a/ln (1/a))d(m/c)’/a).
If 1/m <,a < 1/c < 1, then since P(t(L1, , Ld+I) p, m, c) implies
P(t(L1,’’’, Ld+I), p, m, I/a), we have, by Lemma 4.5,

size (t(L, Ld+))--> exp ((b’/2)d(am) /a)
_->exp ((b’/2)da/(m/c)/)
>_-exp ((ab’/2)d(m/c)l/d).

Thus, by taking R min {a/In (1/a), ab’/2}, the result follows.
Remark. Since for rn _>-1

al,,)(1 l/m) (1- l/m)" <- lie
and

Al.,,)(1 1/(2m)) (1 1/(2m)) > 1
2,
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(l-l/m, 1- 1/(2m)) can be amplified to (l/e, 1/2) by formula s(1, m). Thus, we need
the condition of b-< p, p + 1/m-< 1- b to obtain Theorem 4.4.

COROLLARY 4.6. Let 0 < b < - be fixed. If there exists a formula in 2,d Ha of size
polynomial in rn/ c that satisfies A p, m, c) for p, m, and c with b <- p, p + 1/ m <- 1 b and
rn> c> 1, then d=lI(log(m/c)).

Proof By Theorem 4.4, formula f stated in the corollary satisfies

size (f) >_- exp (R(d 1 )(m c)/a-))
for some constant R. On the other hand, by the condition of the corollary,

size(f)<-(m/c) R’

for some constant R’. Thus it is easy to see that d f(log (m/c)).

5. Threshold functions. In this section we show that the upper bound proved in
3 can be applied to show the existence of bounded depth monotone formulae that

compute threshold functions. Threshold function THt is defined as THt (Xl , x,,) 1
if and only if at least of xi’s are one. The approach due to Ajtai and Ben-Or [1] and
Boppana [2] is as follows. Start with small size "probabilistic" formulae to "approxi-
mate" the threshold functions. By composing independent copies of such formulae
with a formula with high amplification properties, we can get much better approxima-
tion so that the resulting formulae compute the threshold functions exactly. Let d > 0
be a fixed integer. For 1 <= <- (log n) d, Ajtai and Ben-Or [1], using the method above,
have shown that there exist circuits of depth 2d +2 and size polynomial in n that
compute THt. Similar results are shown in [4] and [5] independently by different
methods. Applying the method of Ajtai and Bew-Or to our result proved in 3, we
can get better upper bounds on the depth of monotone formulae of size polynomial
in n that compute THt. We will show that for 1-< t< (log n) d, there exist monotone
formulae of polynomial size in n and with depth d + 3 that compute THt. Boppana
[3, Thm. 4.4], proved that for [l(log n) d, if some monotone formula of size poly-
nomial in n computes THt, then the depth of it is at least d + 1. The depth of the
formulae constructed in this section for THt is very tight to the lower bound given by
Boppana.

In this section, the formulae we deal with are Boolean formulae with ordinary
meaning, i.e., not restricted to be in Ed U lid, unless otherwise stated. In order to get
the result, we need some definitions due to Boppana [2]. Let F be a set of formulae.
G is called a probabilistic formula over F if G is a random variable over F with
Pr [G =f] p, f 6 F. If G is a probabilistic formula over F then {f If F and Pr[G
f] > 0} is called the support of G. In this paper we assume that the cardinality of the
support of each probabilistic formula is finite. The size of a probabilistic formula is
the maximum size of any formula in its support and the depth of a probabilistic formula
is the maximum depth of any formula in its support. Let A, B be subsets of {0, 1}"
with A fq B . A probabilistic formula G is a (p, q) probabilistic separator for (A, B)
if for all xA Pr[G(x)=l]<-p and for all xB Pr[G(x)= 1]=>q. A formula f is a
(p, q)distributional separator for (A, B)ifl{x alf(x)= 1}1 <-plal and I{x BIf(x)=

PROPOSn’ON 5.1 (Boppana [2]). Let f be a formula of s variables that amplifies
(p, q) to (p’, q’), and let G, , G, be an independent (p, q) probabilistic separator
for (A, B). Then f(G, , G,) is a (p’, q’) probabilistic separator for (A, B).

PROPOSn’ON 5.2 (Ajtai and Ben-Or [1]). If G is a (p, q) probabilistic separator
for A, B) with p + 1 q < 1/ 2n, then there is a (0, 1) distributional separatorffor A, B)
that is in the support of G.
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To get the result, we also need formulae of bounded depth and polynomial size
with high amplification properties.

LEMMA 5.3. Let d be fixed positive integer. For sufficiently large n and 1 <-_ <-

min {(log r/) d, n-(log n)d}, there is a formula fE,d+3JI-[d+ such that f amplifies
((t-1)In, t/n) to (1/2n+2, 1-1/2n+2) and size (f) is bounded by a polynomial in n.

Proof. We only prove the case of d being odd and (log n)a <= n/2. For other cases,
the lemma can be proved similarly.

Let f3 denote s([n/t 1). By n/t >_-2 and Proposition 2.1, we have

(5.1) (1-t/n)rn/’l>= (1-tin)n

By the fact that for 1 <_- <_- n/2

and (5.1), we have

(1- (t- 1)/n)r"/’]=(1 t/n+ l/n)

=(1-t/n)r"/’(1 + 1/(n- t))

--> (1- t/n)r"/’(l + l/t)

Ay3(t/n)-AA((t- 1)/n)= (1-(t- 1)In)r" t/n) "/’

(5.2) -> (1 t/n) r"/’(1 + 1/t) -(1 t/n)

=(1-t/n)"/tl(1/t)> 1/(8t).

By Proposition 2.2 and (5.1), we have

1-1/e<_l-(1-t/n)"/’

(5.3) <-l-(1-t/n) r/’l

=Af_,(t/n)<-l-.
By (5.2), (5.3), and 1/(8t)_-<-, f3 amplifies ((t-1)/n,t/n)to (p’,p’+l/(8t)), where- <p’, p’+ 1/(8t)<-. Let b=- and 1/c=. Then b<p’, p’+ 1/(St) < 1-b and 1/(8t) <
1/c= 1-3b. By Theorem 3.1, there is a formula f2 E I-Ia+ that amplifies (p’, p’+ 1/(8t))
to (p p"+ 1/c), where b -< p", p"+ 1/c _-< 1 b. Thus, by 1/c and b , f_ amplifies
(p’,p’+ 1/(8t)) to (1/4, ). Let fl denote t(L, Lz, L3) where L=3n, L=4c3 and L3--
[log n/log 3 ]. By Proposition 2.1, we have for sufficiently large n

af,() (1 -(1 -(-)L3)L2) L1

<(1--(1--1/4)4) #,

< (1 __1/4)3n < 1/2,+2.

By L3-log n/log 3 and Propositions 2.3 and 2.2, we have, for sufficiently large n,

Af,(-) (1 -(1 --()L3)L2) L1

>--_ (1 -(1 31g "/’g 3/4L3)L2)/’

(1 (1 n/4/3)2)
_-> (1 (1- (1/4)3)"),

>_- (1 (1/e)")" > 1 1/2"+.
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Therefore, fl amplifies (-14, }) to (1/2"+2, 1-1/2"+2). Let f be composed of f, f2, and
f3. Thenf amplifies ((t-1)/n, t n) to (1/2n+2, 1-1/2n+2) andf Ha+3. By t_<- (log n)d
and Theorem 3.1, we have that

size (f)= size (fl) size (f2) size (f3)

O((n4lgn/lg3 log n) exp (R dtl/d)(n/ t))= O(n R’)
for some constant R’.

THEOREM 5.4. Let d be a fixed positive integer. For sufficiently large n and 1
min {(log n) d, n- (log n)d}, there is a formula of depth d +3 that computes TH, and the
size of the formula is bounded by a polynomial in n.

Proof Let f be the formula as in Lemma 5.3. Let G equal xi, where is chosen
uniformly at random between one and n inclusively. Let A TH-I(O), and let B
THe-l(1). Then G is a ((t- 1)/n, t n) probabilistic separator for (A, B). Let G1," , Gs,
s=size(f), be independent copies of G. By Proposition 5.1, f(G1,’’’,Gs) is a
(1/2n+2, 1 1/2"+2) probabilistic separator for (A, B). By Proposition 5.2, there is a
formula f’ in the support off(G1, ", Gs) that is a (0, 1) distributional separator for
(A, B). That is, f’ computes THt. By Lemma 5.3, we have that the size off’ is bounded
by some polynomial in n.

Appendix 1. For 2 < d _-< In (m/c),
d )( m/ c)/- >- a ml c)/.

Proof Since d<-ln (m/c), i.e., ea <-m/c, and (l+l/(d-1))a-l<-e,
(d- 1)(m/c)/("-/(d(m/c)/) (1-1/d)(m/c)/-’

_--> (1 l/d) e

--> (1-1/d)(l+ 1/(d- 1))= 1.

Thus, (d- 1)(m/)l/(d-1) d(m/c) 1/d. 1-1

Appendix 2. For 1/tn < 1/c’ < 1/c -< 1 and 2 -< d,

(d 1 )(m/ C’)l/(d-l) + (C’/ C) >-- d(m/ c) 1/d.

Proof Since 1 / m < 1/c’ < 1/ c, c’ can be written as (tn/c) hc tn hcl-h for some h
with 0 < h < 1, then

(d 1)(m/’)l/(d-1) + C’/ (d 1)(m/c)(1-h)/(d-1) +(m/c) h.
Let G(h)=(d-1)(m/c)(l-h/(d-l)+(m/c) h. It is easy to see that G(h) takes its
minimum value when G’(h)= O, which implies h 1/d. Thus

(d-1)(m/c’)I/(a-) + c’/c > G(1/d)

(d 1)(m/C)(1-1/d/(a-l)+ (m/c) 1/a

=(d-1)(m/c) 1/d +(m/c) 1/d

d(m/c) 1/d. []
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SIMPLE LOCAL SEARCH PROBLEMS THAT ARE HARD TO SOLVE*

ALEJANDRO A. SCHFFER’ AND MIHALIS YANNAKAKIS

Abstract. Many algorithms for NP-hard optimization problems find solutions that are locally optimal,
in the sense that the solutions cannot be improved by a polynomially computable perturbation. Very little
is known about the complexity of finding locally optimal solutions, either by local search algorithms or

using Other indirect methods. Johnson, Papadimitriou, and Yannakakis [J. Comput. System Sci., 37 (1988),
pp. 79-100] studied this question by defining a complexity class PLS that captures local search problems.
It was proved that finding a partition of a graph that is locally optimal into equal parts with respect to the
acclaimed Kernighan-Lin algorithm is PLS-complete.

It is shown here that several natural, simple local search problems are PLS-complete, and thus just as
hard. Two examples are: finding a partition that cannot be improved by a single swap of two vertices, and
finding a stable configuration for an undirected connectionist network.

When edges or other objects are unweighted, then a local optimum can always be found in polynomial
time. It is shown that the unweighted versions of the local search problems studied in this paper are
P-complete.

Key words, local search, local optima, graph partitioning, connectionist networks, satisfiability, max

cut, complexity theory, algorithms

AMS(MOS) subject classifications. 68Q15, 68Q20, 68Q25, 90C27

1. Introduction. One general approach to solving hard combinatorial optimization
problems is to use a local search algorithm. The basic ingredient of a local search
algorithm is a neighborhood structure that associates with every solution a set of
"neighboring" solutions. Starting from some initial solution, the algorithm keeps
moving to a better neighboring solution, until it arrives at a locally optimal solution,
one that does not have a better neighbor. For example, a simple heuristic for the
TRAVELING SALESMAN problem (TSP) is 2-OPT, a local search algorithm in which
two tours are neighbors if one can be obtained from the other by exchanging one pair
of edges for another pair. In the GRAPH PARTITIONING problem (partition the 2n
vertices of a weighted graph into two equal-size sets to minimize the total weight of
edges going from one set to the other), a simple neighborhood is the SWAP neighbor-
hood, in which two partitions are neighbors if one can be obtained from the other by
swapping two vertices.

In general, neighborhoods can be much more complicated. Two of the most
sophisticated and successful local search algorithms are the Lin-Kernighan algorithm
for TSP and the Kernighan-Lin algorithm for GRAPH PARTITIONING [16], [12].
The Lin-Kernighan heuristic generalizes the 2-OPT heuristic in that one "move" may
consist of a sequence of exchanges of edges. In a similar way, in the Kernighan-Lin
heuristic for GRAPH PARTITIONING, a move consists of a sequence of swaps of
arbitrary length. In both cases, the heuristics use a nontrivial greedy criterion to prune
the exponential-size search space of sequences of swaps or edge-exchanges. Any
solution that is locally optimal with respect to the Kernighan-Lin criterion is certainly
locally optimal with respect to the simpler SWAP criterion; the converse does not
hold, which explains why the Kernighan-Lin heuristic produces better local optima.
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There is empirical evidence that these (and other) local search algorithms converge
quickly (e.g., [2], [8]), but very little has been proved about their running time, or,
more generally, about the complexity of finding locally optimal solutions, possibly by
other direct, noniterative methods. An interesting example in this regard is LINEAR
PROGRAMMING, for which Simplex can be viewed as a local search algorithm,
where local optimality coincides with global optimality. As in any local search problem,
the running time of Simplex starting from a specific solution in a specific instance
depends on the pivoting rule used, i.e., the rule for choosing a better neighboring
(basic feasible) solution, if there is more than one. For many pivoting rules, there are
bad examples that force Simplex to take exponential time; it is still an open problem
whether there is a pivoting rule under which Simplex becomes a polynomial algorithm.
However, in this case optimal solutions can be found in polynomial time by other
direct methods such as the ellipsoid algorithm or Karmarkar’s algorithm. (For a
thorough introduction to LINEAR PROGRAMMING and an extensive list of
references see [20].)

Johnson, Papadimitriou, and Yannakakis [9] raised the question of determining
the complexity of finding locally optimal solutions. They defined a class called PLS
(for Polynomial-time Local Search) that captures local optimization problems. We give
a formal definition of PLS in the next section, but we note here that the most important
condition for a local search problem to be in PLS is that one iteration of the local
search algorithm takes polynomial time; i.e., we must be able to determine in polynomial
time whether a solution is locally optimal and find a better neighbor if it is not. For
example, the following problem is in PLS: "Given a TSP instance, find a solution that
is locally optimal with respect to the 2-OPT heuristic." An algorithm for a PLS problem
need not use the specified update heuristic to reach a locally optimal solution.

It was observed in [9] that the relationship, of PLS to the more traditional classes
P and NP is very unclear and probably difficult to resolve. On one hand, a problem
in PLS cannot be NP-hard unless NP=co-NP, an event which is considered very
unlikely. On the other hand, if all problems in PLS can be solved in polynomial time,
then showing this would presumably require the discovery of a general-purpose
algorithm for finding locally optimal solutions that should be at least as sophisticated
as the ellipsoid algorithm or Karmarkar’s algorithm. For this reason, Johnson,
Papadimitriou, and Yannakakis proceeded by defining a notion of reducibility for PLS,
and then by proving two important results: PLS has a generic complete problem (which
we explain below), and finding a solution to GRAPH PARTITIONING that is locally
optimal with respect to the celebrated Kernighan-Lin heuristic [12] is PLS-complete.

They suggested that local search problems with a simple neighborhood structure,
such as 2-OPT for the TSP or SWAP for GRAPH PARTITIONING are most likely
not PLS-complete, and gave the following reasoning. To decide if the "current solution"
can be improved with a local perturbation, a local search algorithm must solve the
subproblem of verifying local optimality. Johnson, Papadimitriou, and Yannakakis
proved that this verification subproblem for the Kernighan-Lin algorithm is P-complete,
and conjectured that this could in general be a necessary condition for PLS-complete-
ness. Since the vericfiation subproblem for the SWAP heuristic is in LOGSPACE, they
reasoned that GRAPH PARTITIONING with the SWAP criterion might not be
PLS-complete.

Krentel [13] disproved their conjecture by exhibiting a PLS-complete problem
whose verification subproblem is in LOGSPACE, and thereby refuted this line of
reasoning. Specifically, Krentel showed that the problem of finding an assignment to
a weighted SATISFIABILITY instance that cannot be improved by flipping a single
variable is PLS-complete. For any assignment the number of neighboring assignments
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is equal to the number of variables, and testing whether a flip improves the solution
just requires summing the weights of satisfied clauses, so the verification problem for
SATISFIABILITY can be solved in LOGSPACE.

We build on Krentel’s result and prove that several natural, very simple local
search problems are PLS-complete: We show that finding a locally optimal solution
to GRAPH PARTITIONING under the SWAP heuristic is PLS-complete; this settles
an open problem from [9] and [13] and provides an alternate proof for the PLS-
completeness of the Kernighan-Lin heuristic. Another partitioning problem that is
also PLS-complete is MAX CUT: Given a (weighted) graph, find a partition of its
vertices, into two possibly unequal parts, so that the weight of the cut cannot be
increased by moving a vertex from one side to the other. We show also that finding a
locally optimal assignment for SATISFIABILITY with clauses of length at most 2 is
PLS-complete.

A closely related problem is the problem of finding stable configurations in
(discrete, undirected) connectionist networks, which as we show is also PLS-complete;
this result addresses a problem of Haken, Luby, Godbeer, Lipscomb, and Parberry
[5], [4], 17], 19]. A connectionist (or neural) network associates states with the vertices
of a graph. A vertex may have to change its state depending on the value of a threshold
function involving the states of neighboring vertices (we give formal definitions in the
next section). A configuration is stable if no vertex needs to change its state. Such a
model was introduced first by Hopfield in [6], where he showed that, under certain
conditions, if the vertices asynchronously update their states, then they converge to a
stable configuration. To prove convergence, he introduced a cost function and showed
that a configuration is stable if and only if it is a local optimum for this cost function.
In [6], Hopfield proposed the use of the model as a content addressable memory with
error correction, where the stored words correspond to the stable configurations.
Hopfield and Tank [7] proposed using a continuous, analogue version of the model
for combinatorial optimization; Bruck and Goodman [1] suggested using the discrete
version to find locally optimal solutions to problems such as MAX CUT.

Showing that a problem is PLS-complete means that it can simulate in principle
any local search problem of PLS by choosing appropriate weights. It was observed in
[9], and it is also true of the problems that we consider in this paper, that a further
consequence of the completeness proof is that the standard local search algorithm for
such a complete problem takes exponential time in the worst case.

Exponential running times are possible only when weights (of graph edges or
clauses) are encoded in binary because this permits an exponential (in input size)
range of feasible solution values. When weights are polynomially bounded, the range
of solution values is polynomial and any reasonable local search algorithm will
terminate in polynomial time. In this case, it is of interest to find alternative algorithms
that may work fast in parallel. An interesting example is the MAXIMAL INDEPEN-
DENT SET problem, which can be viewed as a local search problem, where we move
from one independent set to another by adding a vertex. The standard local search
algorithm adds one vertex at a time, and thus takes linear time. However, a maximal
independent set can be constructed in NC by more sophisticated parallel methods
[11], [18]. Luby [18] showed that the MAXIMAL INDEPENDENT SET problem is
a special case of the stable configuration problem, if we choose appropriate small
(polynomially bounded) weights in the connectionist network. Another special case,
which generalizes MAXIMAL INDEPENDENT SET, is the DIFFERENT-THAN-
MAJORITY LABELING problem (DTML): given a (unweighted) graph, find a parti-
tion of the vertices so that each vertex is on the opposite side of the majority of the
vertices adjacent to it. The DTML problem is equivalent to the problem of finding a
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locally optimal solution for MAX CUT on unweighted graphs. We prove that this
problem is P-complete resolving a question of [18]. Similarly, we prove that the
unweighted versions of GRAPH PARTITIONING under the SWAP neighborhood,
and 2-SATISFIABILITY under the FLIP neighborhood are P-complete.

The rest of this paper is organized as follows. In 2, we formally define PLS,
describe the problems we consider, and summarize the relevant results from [9] and
[13]. In 3 we show simple reductions among the specific problems that we consider
in this paper. Section 4 contains the P-completeness results for the unweighted prob-
lems, and 5 contains the PLS-completeness proof for the weighted problems.

2. Definitions and previous results. The specification of a local search problem P
includes a set of instances . For each instance x 3 we have a set offeasible solutions
of(X), defined exactly as for NP. Each feasible solution S of(x) has an integer measure
/x (S, x) that is to be maximized or minimized. In addition to its measure, every solution
S of(x) has a set of neighboring solutions (S, x). A solution S is locally optimal if
it does not have a strictly better neighbor, i.e., one with a larger measure in case of a
maximization problem, or smaller measure in case of a minimization problem. The
local search problem is: given an input instance x 5, find a locally optimal solution.

A local search problem P is in the class PLS of polynomial-time local search
problems if the following three polynomial-time algorithms exist.

(1) Algorithm A, on input x 5, computes an initial feasible solution belonging
to of(x).

(2) Algorithm M, on input x and S of(x), computes/x(S, x).
(3) Algorithm C, on input x and S of(x), either determines that S is locally

optimal or finds a better solution in W(S, x).
DEFINITION 2.1 [9]. A problem P PLS is PLS-reducible to another problem

Q PLS if there are polynomial-time computable functions and such that (a)
maps instances x of P to instances (x) of Q, (b) xIt maps (solution of (x), x) pairs
to solutions of x, and (c) for all instances x of P, if S is a locally optimal solution for
the instance (x) of Q, then (S, x) is a locally optimal solution for the instance x
of P.

PLS reductions usually have two desirable properties: first, they can be composed,
and second, if we can find locally optimal solutions to Q in polynomial time, then we
can also find locally optimal solutions for P in polynomial time. In all our PLS
reductions, the functions cb and are not only polynomial-time computable, but also
in LOGSPACE.

We now formally introduce the array of search problems we consider. In all
problems, except the one on connectionist networks, weights and measures are non-
negative. We define each problem by specifying its set of instances, the feasible
solutions, the measure function (as with an optimization problem), and the neighbor-
hood structure. The existence of the polynomial-time algorithms A, M, C required for
membership in PLS is obvious in all the cases.

DzvqTO 2.2. An instance of FLIP is a Boolean circuit with n input bits and
n output bits. A feasible solution is an assignment of {0, 1} to the input bits. Given
such an assignment, the circuit computes values for the output bits. The measure of
a solution is the sequence of output bits treated as a binary number. Two solutions
are neighbors if one can be obtained from the other by flipping the value of a single
input bit. There are two versions of the problem, depending on whether the measure
is to be maximized or minimized; the two versions are equivalent.

DEr:NTON 2.3. An instance of WEIGHTED CNF SATISFIABILITY, or SAT
for short, is a Boolean formula in CNF with a positive integer weight on each clause.
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A feasible solution is an assignment (of 0 or 1) to all the variables. The measure of a
feasible solution is the sum of the weights of the satisfied clauses. The neighborhood
of a feasible solution contains all solutions obtained by flipping the value of one
variable. This is a maximization problem.

DEFINITION 2.4. An instance of WEIGHTED kCNF SATISFIABILITY, or
kSAT for short, is an instance of SAT in which every disjunctive clause contains at
most k literals. Solutions, measures, and neighborhoods are defined as for SAT.

DEFINITION 2.5. An instance of WEIGHTED NOT ALL EQUAL kSATISFI-
ABILITY, or NAE kSAT for short, consists of clauses with at most k literals of the
form NAE (xl,""", xk), where each xi is a literal or a constant (0 or 1). Such a clause
is satisfied if its constituents do not all have the the same value. Each clause is assigned
a positive integer weight. Measures and neighborhoods are defined as for SAT. The
restriction of NAE kSAT to those instances that do not contain any negative literals
is called POS NAE kSAT.

DEFINITION 2.6. An instance of the local search problem for Graph Partitioning
under the SWAP neighborhood consists of a simple undirected graph G V, E), with
an even number 2n of vertices and weights on the edges. A feasible solution is a
partition of V into two sets V1, V2 of equal size. The measure of a solution is the
weight of the cut, i.e., the total weight of the edges having one endpoint in each half
of the partition. It is traditional to define an optimal solution as a solution of minimum
weight; as noted in [9], the minimization and maximization versions of the problem
are equivalent, both with respect to finding global and local optima. In the SWAP
neighborhood, two solutions are neighbors if one can be obtained from the other by
swapping one element of V1 with one element of V2.

We can define a more sophisticated neighborhood for the Graph Partitioning
problem, namely, the neighborhood that is explored by the Kernighan-Lin heuristic
12]. In this heuristic, we move from a partition to a neighboring partition by a sequence
of (at most n) greedy swaps. In each step of the sequence, we examine all pairs of
vertices from opposite sides that have not changed side since the beginning of the
sequence, and choose to swap the best such pair: "best" in the sense that the weight
of the cut decreases the most or increases the least. The neighbors of the original
partition are the partitions obtained after the first, second, ..., nth swap of this
sequence. (This description covers the basic structure of the Kernighan-Lin heuristic;
a fuller specification must include also a rule for breaking possible ties among best
swaps in each step, and also a rule for moving to a better neighboring partition if there
are two or more such neighbors.) If a partition is not locally optimal with respect to
the SWAP neighborhood, that is, if it has an improving swap, then the Kernighan-Lin
heuristic will discover this and perform such a swap in the first step of the sequence.
Thus the Kernighan-Lin algorithm explores a (much) larger neighborhood. Note that,
in general, finding a locally optimal solution with respect to a smaller neighborhood
structure is at least as easy as finding a solution with respect to the larger one (though
the quality of the solution may not be as good). Hence PLS-completeness for the
smaller neighborhood structure implies completeness for the larger one. We let KL-
GRAPH PARTITIONING be the problem of finding a solution that is locally optimal
with respect to the Kernighan-Lin algorithm.

Fiduccia and Mattheyses [3] proposed a variant of the Kernighan-Lin heuristic
for which the running time of one iteration is significantly smaller. Dunlop and
Kernighan [2] implemented both heuristics in a practical setting; they reported that
the Fiduccia-Mattheyses heuristic generally reaches a local optimum faster than the
Kernighan-Lin heuristic, but sometimes finds inferior local optima. The Fiduccia-
Mattheyses heuristic also uses a sequence of steps to move from one partition to a
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neighboring one, but the steps are somewhat different, in that vertices are moved from
one side to the other one at a time. This heuristic motivates the following local search
problems.

DEFINITION 2.7. Instances, feasible solutions, and measures of FM-GRAPH
PARTITIONING are defined as for the Graph Partitioning problem. Note that the
measure (weight of a cut) can be computed even for partitions into unequal size sets
although these are infeasible. The neighborhood of a solution contains all solutions
reachable by a sequence of (at most n) steps, where each step consists of the following
two substeps: in the first substep, we examine all the vertices that have not moved
since the beginning of the sequence, and choose to move the best such vertex from
one side to the other; in the second substep, we move from the opposite side the best
as-yet-unmoved vertex, so that the partition becomes again balanced. In both substeps,
"best" means again that the move decreases the most (or increases the least) the weight
of the cut. We can define also another much simpler local search problem, which we
call FM-SWAP, with a smaller neighborhood: each partition has just one neighbor,
the partition obtained after the first step of the Fiduccia-Mattheyses heuristic. Thus
FM-SWAP bears the same relationship to FM-GRAPH PARTITIONING as SWAP
to KL-GRAPH PARTITIONING.

The idea of considering temporary intermediate moves to infeasible solutions is
also used in the Lin-Kernighan heuristic for TSP [16]. Strictly speaking, the definition
of FM-GRAPH PARTITIONING should include a rule for breaking ties in each step
among intermediate solutions of equal weight, so that we do not consider an exponential
size set of equal-weight intermediate solutions. Also, in reality we may allow the
partition to become more unbalanced temporarily. However, we show that finding a
local optimum for the simpler FM-SWAP neighborhood is PLS-complete, and there-
fore, the same is true of any reasonable variant of FM-GRAPH PARTITIONING
regardless of the tie-breaking rule.

DEFINITION 2.8. An instance of MAX CUT consists of a simple undirected graph
G (V, E) with positive weights on the edges. A feasible solution is a partition of V
into two sets V1, V2 (not necessarily of equal size). Measure is defined as for GRAPH
PARTITIONING, but optimal solutions have maximum measure. Two solutions are
neighbors if one can be obtained from the other by moving a single vertex from one
side of the partition to the other side.

DEFINITION 2.9. An instance of (CONNECTIONIST MODEL) STABLE CON-
FIGURATION is an undirected graph with a weight We on each edge and a threshold
t for each vertex. Weights and thresholds may be negative in this problem. A configur-
ation is an assignment to each vertex v of a state s {-1, 1}. The state of a vertex v
stable in a configuration if s=l and u,E wu.su+t >=0 or s=-I and

,) wu,s + t -< 0. A configuration is stable if the states of all the vertices are stable.
Stable configurations coincide with the locally maximal solutions with respect to the
following measure:

E W,vS.S + E Stv.
(u,v)E vV

Two configurations are neighbors if they differ in the state of exactly one vertex. (Some
authors use 0 and 1 for the states, and/or require the minimization rather than
maximization of the measure; all these versions are equivalent [4], [17].)

In the course of proving their main results, Johnson, Papadimitriou, and
Yannakakis also considered the complexity of three types of problems associated with
PLS problems. The first is the verification problem, mentioned in 1, which is the
decision problem solved by algorithm C: Is a feasible solution locally optimal? The
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second is the running time problem: What is the worst-case time complexity (as a
function of instance size over all instances and starting solutions) of the standard local
search algorithm that finds a locally optimal solution by repeatedly applying algorithm
C. The third problem is the standard algorithm problem: Given an instance and an
initial solution S, find the local optimum that would be produced by the standard
algorithm starting from S. Of course, the answers to the second and third problems
depend on the particular choices made by algorithm C in each iteration, in case more
than one neighbor offer an improvement. However, for the results of [9] as well as
our results, it does not matter how C chooses among better neighbors; i.e., the results
apply regardless of the choices of C.

We now formally summarize the previous results.
THEOREM 2.10 [9]. If a PLS problem is NP-hard, then NP=co-NP.
THEOREM 2.11 [9]. FLIP is PLS-complete. The verification problem for FLIP is

P-complete, and the standard algorithm problem is NP-hard. The standard algorithm for
FLIP takes exponential time in the worst case.

THEOREM 2.12 [9]. KL-GRAPH PARTITIONING is PLS-complete. The

verification problem for KL-GRAPH PARTITIONING is P-complete, and the standard
algorithm problem is NP-hard. The standard algorithm for KL-GRAPH PARTITION-
ING takes exponential time in the worst case.

THEOREM 2.13 [13]. SAT is PLS-complete.
It follows from the proof of Theorem 2.13 that the standard algorithm for SAT

takes also exponential time in some cases, and the standard algorithm problem is
NP-hard. However, the verification problem for SAT is in LOGSPACE 13], and hence
very unlikely to be P-complete.

3. Some simple reductions. In this section, we present some simple reductions
among the problems defined in 2. All the reductions are both PLS and LOGSPACE
reductions. Besides PLS-completeness, we also want to prove that there are instances
where the standard algorithm takes exponential time to reach a local optimum. Johnson,
Papadimitriou, and Yannakakis proved such a result for FLIP and KL-GRAPH
PARTITIONING in an ad hoc fashion. We shall give a sufficient condition for
reductions to preserve the exponential computation time property. We need first some
definitions.

DEFINITION 3.1. Let P be a PLS problem and let I be an instance of P. The
neighborhood graph NG (I) of the instance I is a directed graph with one vertex for
each feasible solution to /, and with an arc s- whenever Af(s, I). The transition

graph TG (I) is the subgraph that includes only those arcs s-> for which/z(t, I) is
strictly better than/x (s, I) (i.e., greater if P is a maximization problem, and smaller if
P is a minimization problem). The height of a vertex v is the length of the shortest
path in TG (I) from v to a sink (a vertex with no outgoing arcs). The height of TG (I)
is the largest height of a vertex.

We will be concerned only with the transition graph. This graph depends only on
the measure and the neighborhood structure; it does not depend on the particular
algorithms A, M, C required in the definition of PLS. First, note that the transition
graph is acyclic; the measure induces a topological ordering of the vertices (the arcs
are directed from worse to better vertices). The local optima are the sinks of the graph.
The transition graph TG (I) represents the possible legal moves for algorithm C on
instance /. Starting from some initial vertex v, the standard local search algorithm
follows some path to a sink. Thus the height of v is a lower bound on the number of
iterations needed by the standard algorithm. If there are instances whose transition
graphs have exponential height, then the standard algorithm takes exponential time
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in the worst case, regardless of how it chooses better neighbors. This is actually the
case for FLIP and KL-GRAPH PARTITIONING [9], and we show a similar result
for our problems. The NP-hardness of the standard algorithm problem follows from
that of the following problem: "Given an instance I and a solution s, compute a locally
optimal solution (i.e., a sink of TG (I)) that is reachable from s." We refer to this
problem as the "standard algorithm problem" from now on.

DEFINITION 3.2. Let P, Q be PLS problems, and let (, ) be a PLS reduction
from P to Q. We say that the reduction is tight if for any instance I of P we can
choose a subset of feasible solutions for the image instance J (I) of Q so that
the following properties are satisfied:

(1) contains all local optima of J.
(2) For every feasible solution p of /, we can construct in polynomial time a

solution q of J such that q(q, I) p.
(3) Suppose that the transition graph of J, TG (J) contains a directed path

q - q’, such that q, q’ , but all internal path vertices are outside , and let
p (q, I) and p’= (q’, I) be the corresponding feasible solutions of L Then, either
p p’ or TG (I) contains an arc from p to p’.

It is easy to see that tight reductions compose. We usually refer to the solutions
in as the reasonable solutions of the instance J.

LEMMA 3.3. Suppose that P and Q are problems in PLS, and that d, define a
tight PLS-reduction from problem P to problem Q:

(1) If I is an instance ofP and J (I) is the image instance of Q, then the height
of TG (J) is at least as large as the height of TG (I). Thus if the standard algorithm of
P takes exponential time in the worst case, then so does the standard algorithm for Q.

(2) If the standard algorithm problem for P is NP-hard, then the same is true for Q.
Proof. (1) Let I be an instance of P, let TG (I) be its transition graph, and let p

be a feasible solution (vertex) whose height is equal to the height of TG (I). Let
J (I), and let q be a feasible solution of J such that (I, q) p. We claim that
the height of q in TG (J) is at least as large as the height of p in TG (I). To see this,
consider a shortest path from q to a sink of TG (J), and let the vertices of that
appear on this path be q, ql," ", qk. Let pl,. ., Pk be the images under of these
solutions, i.e., Pi (qi, I). From the definition of a tight reduction, we know that qk
is a local optimum of J, and thus Pk is a local optimum of I. Also, for each i, either

P-- Pi+I or there is an arc in TG (I) from p to Pi+l. Therefore there is a path of length
at most k from vertex p to a sink of TG (I).

(2) Given an instance I of P and a solution p, we can find a locally optimal
solution (sink) that is reachable from p as follows. First, construct the instance J and
the solution q as above. Then, solve the standard algorithm problem for Q to
obtain a locally optimal solution qk of J that is reachable from q, and finally return
the solution Pk q(qk, I). AS we argued above, Pk is a local optimum of I that is
reachable from p. 12

We proceed now to show some simple reductions.
LEMMA 3.4. The problems MAX CUT and POS NAE 3SAT can be reduced to

each other via tight PLS reductions.

Proof We reduce first MAX CUT to POS NAE 3SAT. Let the (weighted) graph
G be an instance of MAX CUT. We construct an instance I of POS NAE 3SAT that
has one variable for every vertex of G and one clause NAE (u, v) for every edge (u, v)
of G with the same weight. A truth assignment for the variables of I induces in a
natural way a partition of G, namely, the partition that contains on one side the vertices
that correspond to true variables and on the other side the vertices that correspond to
false variables. The weight of the cut of this partition is equal to the weight of the
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clauses of I that are satisfied by the truth assignment. It is straightforward to verify
that this is a tight PLS reduction if we let be the set of all truth assignments.

We reduce now in the opposite direction. Let I be an instance of POS NAE 3SAT.
We construct a graph G having one vertex for each variable of I and in addition two
more vertices labeled with the constants 0 and 1. We have an edge (0, 1) with "huge"
weight 3L, where L is the total weight of all the clauses of the instance L In addition,
for every clause of length two, NAE (x, y) with weight W in /, where x and y are
variables or constants, we include an edge (x, y) in G with the same weight W. For
every length three clause NAE (x, y, z) with weight W, we include three edges (x, y),
(y, z), (x, z), with weight W/2 each. If a pair of vertices appears in more than one
clause, then the weight of the edge joining them is the sum of the weights arising from
all the clauses that contain both of them. Let us call a partition of G reasonable if the
vertices 0 and 1 are on opposite sides, and let be the set of reasonable partitions.
First observe that if a partition is not reasonable, then it can be improved by moving
vertex 0 (or vertex 1) to the other side to gain the very heavy edge (0, 1) that dominates
all other edges. A reasonable partition induces a truth assignment for the variables of
/, where a variable is 1 (true) if its vertex is on the same side as vertex 1, and 0 (false)
if it is on the same side as vertex 0. A clause of length 2 is satisfied if and only if the
corresponding edge is in the cut. Furthermore, if a clause of length 3 is satisfied then
two of the corresponding three edges are in the cut, and if it is not satisfied then it
does not contribute any edges to the cut. Thus the weight of a reasonable partition is
equal to the weight of the corresponding assignment for I plus 3L (the weight of the
edge (0, 1)). Furthermore, moving a variable vertex from one side to the other in a
reasonable partition corresponds to flipping the variable in the truth assignment. It
follows that a locally optimal partition of G induces a locally optimal assignment
for L We can verify that satisfies the conditions of Definition 3.2. [q

LEMMA 3.5. There are tight PLS reductions from MAX CUT to the following
problems: (a) 2SAT, (b) SWAP, (c) FM-SWAP, (d) STABLE CONFIGURATION.

Proof Let the weighted graph G be an instance of MAX CUT.
(a) We construct an instance I of 2SAT that has one variable for every vertex of

G. If G has an edge (x, y) with weight W, then we include in I clauses (x v y) and
(2 v 97), each of weight W. Note that if in a truth assignment we have x y, then only
one of these two clauses is satisfied, whereas if x y then both clauses are satisfied.
A truth assignment of ! induces a partition of G that contains on one side the vertices
corresponding to true variables and on the other side the vertices corresponding to
false variables. The weight of the satisfied clauses is equal to the weight of the cut
plus the total weight of all the edges. Thus when we flip a variable in the 2SAT instance,
I changes the weight of the assignment by the same amount as the weight of the cut
is changed by moving the corresponding vertex to the other size. Therefore a locally
optimal truth assignment induces a locally optimal partition. Choosing to be the
set of all assignments satisfies the tightness conditions.

(b) We reduce first to the maximization version of SWAP, and then reduce the
maximization to the minimization version. Let H be the graph that consists of two
copies G1, G2 of G with the same weights on the edges, and that also includes edges
with "huge" weight L connecting every vertex xl of Ga with its corresponding vertex

x2 of G2. By "huge" we mean that the weight L of these edges exceeds the total weight
of the edges of G. We say that a partition of H into equal parts is reasonable if every
pair x, x2 of corresponding vertices is separated, and we let be the set of reasonable
partitions. If a partition of H into equal parts is not reasonable, then there are vertices
u and v of G such that one side of the partition contains both copies u, u2 of u, and
the other side contains both copies v, v2 of v. In this case, swapping ul and v increases
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the weight of the cut. Thus we may restrict attention to reasonable partitions of H.
Such a partition induces in a natural way a partition of G by restricting it to the
vertices of G1 (equivalently, G2). If G has n vertices, then the weight of the partition
of H is equal to n. L plus twice the weight of the induced partition of G. The only
swaps that can possibly improve a reasonable partition ofH are swaps of corresponding
vertices; swapping such a pair xl, x2 of vertices of H corresponds to moving the vertex
x to the other side in the induced partition of G. It follows that a locally optimal
partition into equal parts of H under the SWAP neighborhood induces a locally optimal
partition of G for MAX CUT. Also, our choice of Yt satisfies the tightness conditions.

We now reduce the maximization version of SWAP to the minimization version.
Regard H as being the complete graph where the missing edges have weight 0, and
let L be the maximum edge weight. Let H’ be the graph on the same vertices where
the weight of every edge is equal to L minus its weight in H; edges with 0 weight in
H’ can be regarded as not being present. Observe that if we partition the complete
graph on 2n vertices into two equal halves, there are always n 2 edges in the cut. Thus
any partition into two equal halves that weighs U in H must weigh n2L U in H’.
A swap that gains weight T for the maximization version loses weight T for the
minimization version. Thus the set of locally optimal partitions and the computation
paths are exactly the same in both versions.

(c) As we will see, the same reduction of SWAP works also for FM-SWAP. First,
we reduce to the maximization version by constructing the same graph H. If a partition
is not reasonable, then the best vertex to move in the first substep is a vertex u that
is on the same side as its corresponding vertex u2, in order to gain the very heavy edge
(u, u2). In the second substep, the best vertex that can be.moved is a vertex v from
the new side of u which is on the same side as the corresponding vertex v2. Thus a
locally optimal partition of H must be reasonable. Suppose now that we have a
reasonable partition of H and consider its neighboring partition. If the first move
involves a copy of vertex x of G, then we lose an edge of weight L, and therefore the
second move involves the other copy of x, i.e., the neighboring partition is obtained
by swapping the two copies of x. If moving vertex x in the induced partition of G
changes the weight of the cut by T, then moving in H a copy of x changes the weight
of the cut by T-L. Since we choose in the first substep of FM-SWAP to move the
best vertex, we conclude that if T> 0 for some vertex x of G, then we will swap in H
two copies of such a vertex for an overall increase of 2 T in the cut of H. Thus a locally
optimal partition of H with respect to the FM-SWAP neighborhood induces a locally
optimal partition of G for MAX CUT. Again, our choice of Yt satisfies the tightness
conditions.

We reduce the maximization to the minimization version of FM-SWAP as above
by constructing the same graph H’. Note that if we have a partition of the complete
graph into two equal halves and we move a vertex from one side to the other then the
number of edges in the cut changes from n 2 to (n + 1)(n 1), regardless of the chosen
vertex. If moving a vertex increases the weight by T in the maximization version, then
moving the same vertex decreases the weight by T+ L in the minimization version.
Thus the best vertex to move first is the same in both versions. The same holds for the
second move and thus locally optimal partitions with respect to the two versions are
identical.

(d) The instance of STABLE CONFIGURATION consists of the same graph G,
where all the vertices have threshold 0, and the weight of every edge is the negative
of its weight in G. Let W be the total weight of the edges of G. A configuration for
the connectionist network induces a partition of G, where the one side contains the
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vertices in state +1 and the other side the vertices in state -1. Flipping the state of a
vertex in a configuration corresponds to moving the vertex to the other side in the
induced partition of G. An easy calculation shows that the weight of a configuration
is equal to 2T- W, where T is the weight of the cut of the induced partition of G. It
follows that a stable configuration induces a locally optimal partition of G. Choosing

to be the set of all configurations satisfies the tightness conditions.
LEMMA 3.6. The unweighted MAX CUT problem can be PLS-reduced to the un-

weighted version of 2SAT, SWAP, FM-SWAP, and to STABLE CONFIGURATION
with all edge weights -1.

Proof In the case of 2SAT and STABLE CONFIGURATION, the reductions of
the previous lemma suffice. For SWAP and FM-SWAP we need different reductions.
We reduce first to the maximization versions. Let the unweighted graph G be an
instance of MAX CUT with n vertices. Construct a graph H that consists of G and
3n more isolated vertices. Consider a partition of H into two equal parts and the
induced partition of G. Note that the partition of H contains isolated vertices on both
sides. If the partition of G is not locally optimal but can be improved by moving a
vertex x to the other side, then we can improve the partition of H by swapping x with
an isolated vertex from the other side; such a swap will be performed both in the case
of the SWAP and the FM-SWAP neighborhood. Thus a locally optimal partition of
H into equal parts under either of the two neighborhoods induces a locally optimal
partition of G for MAX CUT. (Note. This PLS reduction is not tight.)

To reduce the maximization version to the minimization version we just construct
the complement H’ of H. The arguments are similar to those of the previous
lemma.

We note that finding a stable configuration for connectionist networks with edge
weights + 1, or more generally, with positive weights, is an easier problem. The special
case of STABLE CONFIGURATION where all the edge weights are positive is
equivalent to finding a local optimum for a MIN CUT problem [4], [17]. Thus in the
positive weight case, even a global optimum can be constructed in polynomial time,
even in the case of arbitrary weights. Furthermore, in the case of polynomially bounded
weights, the MIN CUT problem can be solved in Random NC [10].

4. P-completeness results. We prove in this section that finding a locally optimal
solution to the unweighted MAX CUT problem is P-complete, and then deduce the
same result for the unweighted versions of the other problems defined in 2.

The reduction is from the generic P-complete problem CIRCUIT VALUE [!5].
An instance of CIRCUIT VALUE consists of a Boolean circuit C and an assignment
of values to the inputs of C; the problem is to compute the output of the circuit on
the given input assignement. We may assume without loss of generality that all the
gates of C are NOR gates with "fanin 2. We number the gates in topological order, but
for technical reasons, we use only even indices. That is, the gates are numbered
g2, g4,"" ", g2n SO that for each gate gi, its two inputs, denoted I(gi) and I2(g) are
either inputs of the circuit or are the outputs of lower-numbered gates. The correct
value of each gate g is g -a(I(g) v I(g)).

We give the reduction in two stages. First we reduce to a restricted case of weighted
POS NAE 3SAT with polynomially bounded integer weights, and then we reduce to
MAX CUT as in Lemma 3.4 and show how to remove the weights altogether. The
restricted case of POS NAE 3SAT is characterized by the following property. There
is a weight associated with every variable of the constructed instance I, so that the
instance of MAX CUT constructed from I as in Lemma 3.4 satisfies the following two
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conditions: (1) the weight of an edge connecting two variable vertices is the product
of the weights of the variables, and (2) the weight of an edge connecting a variable
vertex to the vertex 0 or 1 is a multiple of the weight of the variable.

Our instance I of POS NAE 3SAT includes (among others) variables
g4, g2n corresponding to the gates of the circuit. It has the property that in any
locally optimal truth assignment all gate variables gi have the correct value, consistent
with the circuit C and the given input assignment. If we were allowed to use exponen-
tially large weights, then this property could be achieved rather easily without using
any other variables by including for each gate gi a set of clauses stating that gi has
the correct value, with the weights of the clauses decreasing exponentially with the
index [9]. Johnson, Papadimitriou, and Yannakakis [9] used the fact that the
NOR-gate constraint gi---q(Ii(gi) v I2(gi)) can be expressed by the following three
NAE 3SAT clauses:

NAE (I,(gi), g,, 1) ^ NAE (I2(gi), g,, 1) ^ NAE (I(g), I2(g,), g,).

These clauses are simultaneously satisfied if and only if g has the correct value. The
first two clauses say that if an input is 1 then g must be 0, and the third clause says
that if both inputs are 0 then gi is 1. If a gate variable g is incorrect, then we can gain
at least one of its clauses by correcting it; in doing so, we may lose some clauses from
higher gates that have gi as their input, but because of the exponential weights the
overall effect of the flip is positive.

The exponential weights in the above reduction "mask" the fanout of the gates;
i.e., a gate can be corrected without worrying about higher gates that it feeds. We
cannot use exponential weights in this reduction, but we instead use extra variables
to achieve the same masking effect. The most important variables, which we call the
control variables, are z and yi, for =< =<2n. Typically z =-y, but we need both
variables to make all variable occurrences positive. In a locally optimal assignment,
all z will be 0 and all yi will be 1; we refer to these as the natural values for these
variables. Besides the control variables, we have for every even index (i.e., for each
gate g) a number of local variables. Local variables participate in clauses with some
z and y variables, but they do not participate in clauses with variables for gates other
than g and the inputs to g. Local variables are denoted by Greek letters.

Before describing the clauses in detail, we give a brief overview of the properties
of the instance L If an assignment is not consistent with the circuit, say gate variable
gi is the lowest incorrect gate, then the standard local search algorithm will fix the
assignment as follows. First, it will move to an assignment where for j<_-i-1, the
control variables have their natural value zj =0, y 1 (and the corresponding gates
are correct), and for j>-i+ 1 the control variables have their unnatural value zj 1,
yj =0. Second, the local variables for gates higher than i+ 1 will assume certain
"default" values such that flipping an input to a higher gate gj (such as the incorrect
gate variable g) will have no effect on the clauses for gj. Third, the local variables for
the gate g will assume certain other values that encourage correcting the value of the
variable g. Fourth, the standard algorithm will correct the value of g, reset z and yi

to their natural values, and proceed similarly to fix the variables with higher indices
in order, one index at a time.

We describe now the instance I in detail. We shall denote the weight of a variable
v by Ivl. For each 1,..., 2n, we let Izl 100(2n+ 1- i), lYi[ 100(2n+ 1- i)+50,
and for even i, ]g] 100(2n + 1-i) +60. Furthermore, for every even index i, we have

2 2 2variables a, a, 6, 6 of weight Ig[+10= 100(2n+ 1-i)+70, variables/3i, fl, fl3,
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y, y, y,3. of weight equal to Igl, and a variable to, of weight [6]-[gi[ 10. There are
a few more variables that we define later.

We partition the clauses into five types, A through E, that serve conceptually
different purposes. For every gate gi we have a set of type A clauses involving the
above local variables. The purpose of these clauses is to test if gi has an incorrect
value, and if this is the case, to set zi or Yi to its unnatural value. The type A clauses
are shown graphically in Fig. 4.1. There is one NAE 3SAT clause for every triangle of
the figure. We list the clauses and specify their weights below. The veices are arranged
in each pa of thee figure from top to bottom according to weight. As we shall see,
pas (a) and (b) cause zi to be set to 1 if an input is 1 and gi is also 1, and pa (c)
causes Yi to be 0 if both inputs are 0 but gi is also 0.

First, we have clauses

NAE (I,(gi), a, 1) A NAE (I,(gi), 6, O)
of weight 2]I,(g)l. l,l=2[I,(g,)[. I,l; if I(g) is an input to the circuit, then we
substitute in the clause the corresponding constant of the input assignment, and we
let its weight in the above expression be 100(2n + 1)+60 (i.e., the weight of go if there
were such a gate). The multiplier 2 is needed because when we transform to MAX
CUT, we replace a 3-literal clause by three edges whose weight is the weight of the
clause (see the proof ofLemma 3.4). We have the analogous clauses for the second input:

NAE (Iz(g,), , 1) A NAE (I2(g,), 6, O)
of weight 2JI(g)[. J[ 2]I2(g)" J6. Next, we have clauses

0) A NAE (aNAE (,, ,, 0) A NAE (., z, fl),

I1( 7i ) 12 ( gi )

1 21(X[ (X

0

o

(a) zi (b) zi

I1( 1" ) 12 ( ql" )

FIG. 4.1. The clauses of type A; each triangle represents one clause.
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all of the same weight 2lal" I/3l, and also a clause

NAE (61 2

of weight 211. Ioil. Next, we have clauses

NAE (i gi, T) ^ NAE (/2 2
i, g,, Y,) ^ NAE (/3, gi,

of weight 21gil e. Finally, we have clauses NAE (y, zi, 0), NAE (y, zi, 0) of weight
21g, I" Iz,[, and a clause NAE (y,3., Yi, 1) of weight 21g, I"

The purpose of the type B clauses is to propagate an unnatural value for a control
variable (0 for Yi, 1 for zi) to the control variables with higher index. We depict
graphically the type B clauses in Fig. 4.2; the vertical position of the vertices indicates
their weight, and there is one clause for every triangle. For each 1, , 2n we have
a clause NAE (Yi, Zi, 0) of weight 21yil. ]zi], and for each i= 1,..., 2n- 1 we have a
clause NAE (zi, Y+I, 1) of weight 2lz lY,+[-

0

Ye’
Z2

Z2n

FIG. 4.2. The clauses of type B; each triangle represents one clause.

The type C clauses encourage setting the control variables to their natural values.
For each i= 1,..., 2n we have a clause (y 0) of weight 401yl, and a clause (zi 1)
of weight 40[zl.

The type D clauses encourage appropriate default values for the local variables
corresponding to each gate g. These values depend on the value of z_l and yi-1. We

2 2partition the local variables into two groups. The Y group includes
fl,3., to; in case of ties from the clauses of higher type, we would like these variables

2to be equal to Yi-1. The Z group includes the rest of the local variables: /3i,/3, y,
26i, 6; we would like these variables to be equal to z_l. We can express equality

between two variables in POS NAE 3SAT by saying that they are both different from
a third variable. Specifically, we introduce six variables qi," ", 6 corresponding to
the six variables of the Y group, and another five variables ’I,..., sr corresponding
to the five variables of the Z group; all these variables have weight 3. Every variable
u of the Y or Z group is connected with an inequality clause of weight 31ul to its
corresponding p or sr variable. In addition, for each variable p we have a clause
(Yi-1 lfij) of weight 3]yi_1], and for each variable sr[ we have a clause (zi_ Ji) of
weight 31zi-l.
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Finally, the type E clauses encourage correcting the gate variables. As we shall
and cshow later, if zi-1 and yi_l have their natural values, then the variables a are

equal to the negations of the inputs I(gi) and I.(g), respectively. For each even index
i, we introduce a variable p of weight 1 and clauses (a p,), (a2 p), (p, 0) of
weight lal lal, and a clause (p # g) of weight Igl. The inequality clauses of pi are
depicted in Fig. 4.3. This concludes the specification of the NAE SAT instance I.

FIG. 4.3. The clauses of type C; each dashed line represents one clause.

We now prove four lemmas that characterize the local optima of our POS NAE
3SAT instance. Each lemma has an implicit dependent clause: "In any locally optimal
assignment." Some of the lemma proofs are subdivided into simpler claims. The basic
method of each proof is that a solution not having the claimed properties can be
improved by some flip. In each lemma proof we indicate which clauses are used; that
is, which clauses can be gained by a flip if the properties claimed in the lemma are
not satisfied. In the next section, we will reuse the same construction, except that we
will omit the type C clauses, and we will increase the weight of types A and B clauses
by multiplying the uniformly by a large constant. As we shall see, the first three lemmas
here do not use the type C clauses, although we have to make sure that they do not
get in the way, i.e., that they do not prevent a flip from being profitable. Also, the
lemmas hold if we increase proportionately the weights of types A and B clauses. In
the PLS reduction of the following section we will reuse the first three lemmas verbatim.

LEMMA 4.1. If gate gi is incorrect, then zi 1. If yi O, then z 1. If zi 1, then
for all j> i, y=0, z= 1.

Proof. The proof uses the clauses of type A and B.
2CLAIM 4.1A. If Ii(gi)-- 1, then ai =0 and fli 1. If I2(gi) 1, then ai =0 and

i=1.
Proof The clause NAE (I(gi), a, 1) weights more than all the other clauses of

combined. Thus if Ia(g)- 1 then we can flip, if necessary, ce to 0 to satisfy this
0) weighs more than all the other clauses ofclause. The clause NAE (ai,/3i,

combined. Since c i= 0, we can flip /3 to 1 to satisfy this clause. Similarly, we can
argue that if I2(g)- 1, then a2=0 and/3= 1.

CLAIM 4.lB. Ifll(gi) 1, but g 1, then O. IfI2(gi) 1, but g 1, then /2 O.
Proof The clause NAE ([3i, g, y) weighs more than all the other clauses of

combined. If Ii(g)= 1, then/3= 1 by the previous claim. Thus if gi 1, then we will
flip ’)/i to 0 to gain the clause NAE (fl, g, y]). The proof for y,2. is analogous.

CLAIM 4.1C. If y =0 or y=0, then zi 1.

Proof. We gain one of the clauses

NAE (3’, Zi, 0) A NAE (y,2., Zi 0)

by flipping z to I. In doing so, we may lose the type B clause NAE (zi, y+, I), the
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type C clause (zi 1), and type D clauses; the combined weight of these clauses is
smaller than the weight of the type A clause we gain.

CLAIM 4.1D. If ll(gi)=O, then 6= 1. If I2(gi)=O, then 6= 1.

Proof. The clause NAE (Ii(gi), 6, 0) weighs more than all the other clauses of

6il combined. If Ii(gi) 0, then we gain this clause by flipping 6i to 1. The proof for
62i is analogous.

CLAIM 4.1E. If both inputs to gi are O, then/33=0i and toi =0.
2Proof Suppose Ii(gi) I2(gi) =0. By Claim 4.1D, 6i =6i 1. We can gain the

2 2clauses NAE (6i, 6i fli) and NAE (6i ,6i, toi) by flipping 3i and toi to 0. Any clauses
lost are significantly lighter.

CLAIM 4.1F. If gi 3i O. then Tai 1.

Proof. We can gain the clause NAE (gi,/3 i, Y i) by flipping y,3. to 1. This clause
weighs more than all the other clauses of y,3. combined.

CLAIM 4.1G. If ll(gi) I2(gi)= gi=O, then yi=0.
Proof. By Claim 4.1E, /3 i=0. By Claim 4.1F, y,3. 1. We can gain the clause

NAE (Yi, y,3., 1) by flipping Yi to 0. In doing so, we may lose the clause NAE (Yi, zi, 0)
of type B, the clause (Yi 0) of type C, and clauses of type D. The combined weight
of these clauses is smaller than the weight of the type A clause we gain.

CLAIM 4.1H. If Yi O, then zi 1. If zi 1, then for any j > i, yj 0 and zj 1.

Proof First observe that flipping a variable zi to 1, and a variable y to 0 does
not lose any type A clauses. If Yi 0 and zi 0, then by flipping zi to 1 we gain the
type B clause NAE (Yi, zi, 0) of weight 21yi Izil, possibly lose the next type B clause
NAE (zi, Yi+l, 1) of weight 21zil. lYi+ll, and we lose also the type C clause (zi 1) of
weight 401zi and six type D clauses that weigh collectively less than 201zil. Thus the
total loss is no more than (2ly,+l/6O)lz, I, which is less than the gain of 21yil’ Izil. By
a similar argument, if zi 1 and yi+ 1, then flipping Yi+ to 0 results in a net gain.

CLAIM 4.1I. If gate gi is incorrect, then zi 1.

Proof If the gate has a 1 input and a 1 output, then the claim follows from Claims
4.1B and 4.1C. If the gate has two 0 inputs and a 0 output, then the claim follows
from Claims 4.1G and 4.1H.

The lemma follows from Claims 4.1H, and 4.1I.
LEMMA 4.2. Suppose that Yi- 0 and zi-1 1 for some even index i. Then flipping

either input of the gate gi does not affect the type A clauses corresponding to gi.

Proof. From the previous lemma we know that zi 1 and yi 0. Each of the inputs
Ii(gi), I(gi) of the gate gi occurs in two clauses (both of type A) of

1) ^NAE (Ii(gi) 6 0),NAE (Ii(gi), cei,

NAE (I(gi) a 1) ^ NAE (I(gi) 6 O)i

2 2We prove that t i --0 and 6 6 1, which together imply the lemma. The proof
uses types A and D clauses.

CLAIM 4.2A. The p variables are 1, and the i variables are 0 for all j.

Proof. Every b variable is connected by inequality clauses to Yi- and to a local
variable of gate gi. Since the clause with yi- weighs more because yi- has larger
weight than the local variables of gi, all the variables will have value opposite to
that of Yi-. Similarly, the ’ will have value opposite to that of Zi_

Thus the type D clauses "push" or "bias" towards 0 the local variables of the Y
group ci, Oi,2 yi,1 yi,2 i,3 tOi) and push towards 1 the local variables of the Z group

2 2(6i, 6i, fli, fli, Y i). We show that, in fact, the local variables of gi have the values
towards which they are biased by type D.

2CLAIM 4.2B. a 0, fl 1, and Yi O. Similarly, t O, fl2i 1, and y2i O.
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Proof From the type D clauses, the variables /3 and 7 are biased towards
opposite values: the first towards 1 and the second towards 0. These two variables
belong to a common clause NAE (fli, gi, Y), and in addition each is contained in one
more clause that would not be violated by the preferred value. The additional clause
of fli contains a 0, and that of yl contains zg which has value 1. If gi 1, then we can
set y to its preferred value 0, after which we can set /3i to its preferred value 1.
Similarly, if g- 0, we can first set/3i= 1, and then y 0. Thus regardless of the value

contain a 1 we canof gi, we have/3= 1 and 7, 0. Since both type A clauses of a
set it to its preferred value 0. The argument for the variables with superscript 2 is
analogous.

CLAIM 4.2C. g 62 1, /3 0i 0, and y3i 1.

Proof Suppose first that both 6 and 6,2. are 0. Then we can flip one of them to
its preferred value 1. We do not lose any type A clauses, and we gain a type D clause.
Thus we may assume that at least one of the 6 variables is 1. It follows then that
will be set to its preferred value 0 because flipping wi to 0 does not lose the type A
clause NAE (6, 6/2, w).

Consider now the variables /33 and y.3 They have opposite preferred values (0
for the first, 1 for the second), belong to the common clause NAE (/33, g, y,3.), and in
addition, each belongs to one more type A clause that contains a value opposite to
the preferred value: NAE (61i, 6,/3,3.) contains a 1, and NAE (y,3., y, 1) contains Yi
which is 0. As in the previous claim, we can argue that regardless of gi we must have

2 contain a 0, we can/3, =0 and y,3. 1. Since all the clauses of the variables 6, 6i
conclude now that both these variables take on their preferred value 1.

The next lemma is a counterpart to Lemma 4.2 when Yi-1 1 and zi-1 O.
LEMMA 4.3. Suppose Y-I 1 and z_l 0 for some even index i. If the gate variable

g is correct, then flipping z and y does not affect the type A clauses. If gi is incorrect,
then flipping g does not affect the type A clauses corresponding to the gate gi, and
furthermore, gains a type E clause.

Proof The variable gi occurs as a gate output in three type A clauses
NAE (fl, g, y), j 1, 2, 3, corresponding to the gate gi, and to one type E clause
(g pi). We show that p-- Ii(gi) v I2(g), which implies that flipping gi to the correct
value gains a type E clause. We also show that if g is incorrect, then for each j 1,
2, 3, we have 7, --n/3,J., which makes it possible to flip gi without losing the type A
clauses in which it is an output. The variable zi belongs to two type A clauses
NAE (z, y, 0), NAE (z, y, 0), and y belongs to one type A clause NAE (y, y,3., 1).

2We show that if g is correct, then 7, 7 1 and yi 0, which makes it possible to
flip zi and yi without losing their type A clauses.

The proof uses types A, D, and E clauses. As in the previous lemma, we can argue
that the variables have value 0 (opposite to yi-1), and the sr variables have value 1
(opposite to zi-1). Thus the local variables are now biased by type D in the opposite

2 2 /2 6/2 prefer 0.direction" variables a, a, ,, 7,, /3i, w prefer 1, and/3, ,,
However, the actual values of the local variables may now disagree with their biases
and may instead depend on the inputs of the gate, since the local variables and the
inputs occur together in type A clauses.

CLAIM 4.3A. a 2-II(gi) and 1 Ii(gi). Similarly, a I(g) and I2(gi).
Finally, p Ii(g) v I2(gi).

Proof Suppose first that Ii(g)= 1. Then, as in Lemma 4.1, we will set O to 0 to
satisfy the clause NAE (Ii(gi), cei, 1), and then we will set fll to 1 to satisfy the clause
NAE (ce,l fli,1 0). Suppose now that I(g)= 0. Then both type A clauses of a contain

1anda 0, and thus a will be set to 1, its preferred value. Consider the variables fli
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they have opposite preferred values (0 for the first, 1 for the second), they belong to
the common clause NAE (fli, gi, Y), and in addition, each belongs to one more type
A clause that contains a value opposite to its preferred value. By an argument similar
to one used in the proof of Claim 4.2B, we can conclude that, regardless of g, we

=0and yi=lhave/3i
Thus for any value of Ii(g) we have a =-qll(gi) and/3 Ii(g). By a symmmetric

argument, a 2=-I2(g) and/3 2 I2(g). Consider the variable p now. It occurs in four
inequality clauses of type E:

(a, p,) A (a p,) A (p, O) A (p, g,).

and 2If both inputs to g are 0, then we just proved that both a are 1; as a
consequence, p will be set to 0 regardless of g because the a’s have larger weight
than gi. If at least one input is 1, then the corresponding ai variable is 0, and pi will
be set to 1.

CLAIM 4.3B. /3, I(gi) v I2(gi).
Proof As in Lemma 4.1, if an input is 0, then the corresponding 6 variable will

be set to 1 to satisfy the clause NAE (/(g), 6j, 0). Thus if both inputs are 0, then both
6 variables are I and the variables 3 2, wi are set to 0 to satisfy the clauses NAE (6i, i,

/3,3.) and NAE (6i, , wi).
Suppose now that at least one input, say I(g), is 1. First, we claim that at least

one of the 6i variables is 0, for if both are 1, then we can flip 6 to its preferred value
0 to gain a type D clause without losing any clauses. Consider now the variables f13
and 7, The only clauses heavier than type D containing them are the type A clauses"

2NAE (6, 6i, fl,3.) A NAE (y3 gi, 3) A NAE (y,3., y, 1).

We may set/3 to its preferred value 1 without losing the first clause because one of
the 6 variables is 0. The variable y,3. can be set to 0 (its preferred value) without losing
the thirdclause because that clause has a 1. By an argument similar to the one in the
proof of Claim 4.2B we can set /3i= 1 and y 0 in an order that does not lose the
second clause.

2CLAIM 4.3C. Ifg is correct, then y y 1 and yi O. If gi is incorrect, then for
each j 1, 2, 3 we have y

l= I(g) and thereforeProof Suppose first that g is correct. By Claim 4.3A, /3
and g must be 0. This implies that both type A clausesat least one of the variables

of Yi have a 0, and therefore, we can flip y to its preferred value 1. Similarly, we can
conclude that y2 1. Furthermore, since/3, Ii(g) v I2(g), by Claim 4.3B, and g is
correct, i.e gi 7/3 , we can set y,3. to its preferred value 0 without losing the type A
clause NAE (3 gi, "/ ).

Suppose now that gi is incorrect. If for some j we have/3 T,J., then it must be
the case that gi=-fl, because otherwise we would flip y,J. to gain the clause
NAE (/3)i, g, Y). If j-- 3, this would imply that gi is correct, because f13 is the OR of
the inputs. Suppose that j 1; the argument for j--2 is symmetric. Since fli gi and

prefers the value 1 we conclude that ), fliy 1 and gi--0, that is, gi has the
correct value.

The lemma follows by combining all the claims above with the first paragraph of
the proof.

We will now use the clauses of type C to finish the proof that POS NAE 3SAT
is P-complete.

LEMMA 4.4. Every gate is correct, every z is O, and every y is 1.
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Proof By Lemma 4.1, if the conclusion of the lemma does not hold, then zi--1
for some i. Let be the smallest such index. We shall derive a contradiction by showing
that zi 0.

Suppose first that is even, i.e., there is a gate gi. By Lemma 4.1 and our choice
of the variables z_l and yi_l exist (i>= 2), and have their natural values 0 and 1,
respectively. Suppose that the gate variable g is incorrect. By Lemma 4.3, we can gain
a type E clause by flipping g to its correct value, without losing any clauses correspond-
ing to g. The variable g may occur also in clauses corresponding to higher gates
namely, those gates that have gate g as an input. Since we use only even indices for
the gates, such higher gates gj have j>=i+2, and therefore y_ =0 and zj_ 1. By
Lemma 4.2, flipping the variable gi does not lose any clauses corresponding to higher
gates that may have g as their input. We conclude that the gate variable gi is correct.
By Lemma 4.3, we do not lose any type A clauses by flipping z and y to their natural
value.

Suppose now that is odd or that is even and gi is correct. Assume that yi--0.
By flipping y to 1, we gain a type C clause. We do not lose a type B clause because
z_ =0 We may only lose type D clauses, but these weigh much less. We conclude
therefore that y 1. It follows now that flipping zi to 0 is profitable for a similar
reason: we gain a type C clause, we do not lose a type B clause because yi 1, and
may only lose lighter type D clauses.

Thus we have shown that in a locally optimal truth assignment of the constructed
instance I, all gate variables have the correct value. It remains to reduce the instance
I of POS NAE 3SAT to an instance of unweighted MAX CUT. From I we can construct
a weighted graph H as in the proof of Lemma 3.4. Recall that H has one vertex for
every variable, and two vertices labeled 0 and 1. The weights of the clauses of the
instance I were chosen carefully so that the weighted graph H satisfies the conditions
that we mentioned earlier: (1) an edge connecting two variable vertices u and v has
weight equal to the product lu]" ]v] of the weights of the variables, and (2) the weight
of the edge (if it exists) connecting a variable vertex v to a constant vertex 0 or 1 is a
multiple of the weight Iv[ of v. The graph H has the property that any locally optimal
partition induces a locally optimal truth assignment for L

Let v be a variable vertex of H. From properties (1) and (2), the total weight of
its incident edges is a multiple of Iv[, say d(v). Ivl. We call d(v) the degree of v. We
argue first that we may restrict ourselves to the case where all variable vertices of H
have odd degree. For suppose this is not the case. Form a new instance of MAX CUT
by multiplying all the vertex weights by 2, all the edge weights by 4, and adding an
edge from each variable vertex v to, say, vertex 0 of weight equal to the new weight
of v (i.e., twice the old weight). If the old degree of v was d(v), the new degree is
2d (v)+ 1. Any locally optimal partition in the new graph is also locally optimal in the
old graph: if moving a variable vertex v from one side to the other changes the cut in
the old graph by c[vl (it must be a multiple of Iv[), then it changes the cut in the new
graph by at least (2c-1)21vl. If the change is positive in the old graph (c> 0), then it
is also in the new one.

We assume now that all vertices of H have odd degree, and complete the
transformation to the unweighted MAX CUT problem. Let M be the total weight of
the edges incident to the constant vertices 0 and 1. We construct a graph G as follows.
We have a set V0 and a set V of 4M + 1 vertices each corresponding to the constants
0 and 1, respectively. These vertices induce a complete bipartite graph Vo V1. We
replace every variable vertex v of H by a set Nv of lvl vertices. An edge (u, v) connecting
two variable vertices is replaced by a complete bipartite graph between Nu and Nv.
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If a variable vertex v is connected in H to the constant vertex 0 or 1 by an edge of
weight clvl, then we connect every vertex of Nv to c vertices of Vo or V1.

Consider a locally optimal partition of the graph G. At least 3M vertices from
Vo are connected only to V1; since these vertices of Vo have the same neighbors and
have odd degree, they must be on the same side of the partition, namely, the side
opposite to the majority of V. It follows then that all vertices of V must be on the
opposite side from the 3M vertices of Vo, which implies further that, in fact, all the
vertices of Vo are also together. Consider now the vertex set Nv that replaced a variable
vertex v of H. Except for edges to vertices of Vo and V, all the vertices of N have
the same neighbors; since there is an odd number of neighbors, we conclude that all
vertices of N are on the same side. Thus a locally optimal partition of G induces a
partition of H. We claim that the partition of H is also locally optimal. For, suppose
that moving the variable vertex v of H changes the cut by clvl; then moving in the
partition of G any vertex of N to the other side will change the cut by c. Since the
partition of G is locally optimal, c <-0. Thus we have proved Theorem 4.5.

THEOREM 4.5. Finding a locally optimal partition for unweighted MAX CUT is
P-complete. [2

Combining this result with the reductions in 3 we get Corollary 4.6.
COROLLARY 4.6. Finding a local optimumfor the unweighted versions ofthefollowing

problems is P-complete: 2SAT, SWAP, FM-SWAP, FM-GRAPH PARTITIONING,
NAE 3SAT; also, STABLE CONFIGURATION with edge weights -1 is P-
complete. [3

5. PLS-completeness results. In this section we give a PLS reduction from FLIP
to POS NAE 3SAT, showing the second problem is PLS-complete. Then we use the
reductions of 3 to show the same result for the other problems.

Let the Boolean circuit C be an instance of FLIP. Let the input variables of C
be v,..., Vp, and let the outputs be Co,’’’, c,,; that is, the weight of an input
assignment is Ej 2Jc. We construct an instance I of POS NAE 3SAT that includes
(among others) variables vl, , Vp, such that the values of these variables in a locally
optimal assignment for the instance I form a locally optimal solution to the FLIP
instance C.

As in the previous section, we assume without loss of generality that all gates of
C are NOR gates with fanin 2. We again number the gates with even indices in
topological order as g2, g4,"" ", g2n. We assume also that the circuit computes the
negations of the outputs as well, and we denote them as o,"" ", ,. Both the ci and
the i gates are included among the g’s.

Besides the given circuit C, we use p additional circuits T,..., Tp, called test

circuits, one for each input variable vi. The idea for these test circuits comes from 13].
They are used to precompute the consequences of a variable flip. For each 1, , p,
the circuit T is identical to C, and has the same input variables except for the variable

v in whose place it has a different variable wi. The instance I that we construct includes
clauses that encourage w to be the negation of v. In this case, T computes what the
output of the circuit C would be, were we to flip the variable vi. We use two subscripts
to denote the gates of the test circuits; the copy of gate gj in T is denoted g,. The
copies of the outputs c and their negations in T are denoted by t,j and ’,,
respectively.

The construction of the POS NAE 3SAT instance I is quite complicated. Before
plunging into its details, we describe some of the more important new variables. First,
the reduction includes many copies of the POS NAE 3SAT construction of the previous
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section: for each circuit (the circuit C and the test circuits Ti), we include one variable
corresponding to every gate. In addition, we have control variables z and y as in the
previous section, as well as the local variables denoted by Greek letters. Furthermore,
for each input variable vi, we introduce variables d and e. The variable di is intended
to indicate whether we have decided to flip v to improve the solution of the FLIP
instance. The variable d is set to 1 when we first decide to flip vi, but d gets reset to
0 before all the consequences of the flip are taken care of. The variable ei is intended
to indicate whether v w; i.e., ei 1 if v--w. In a locally optimal solution, all d
and e variables will be 0, and all gate variables will be correct (i.e., consistent with
the circuits and the input assignment).

Suppose that we have an assignment in which all ei di--0, v wi, and all gates
are correct, but the input assignment is not locally optimal for the FLIP instance, say
flipping v is advantageous. Then the variables associated with the flip will change
value in the following order. First di is set to 1. Second, the control variables y and z
for the circuit C and the test circuits Tr with r i (i.e., the circuits that have v as
input) are set to their unnatural values. Third, v is flipped. Fourth, e is set to 1. Fifth,
all the gates in the circuits C and Tr for r are corrected, and the control variables
are reset to their natural values. Sixth, d is reset to 0. Seventh, the control variables
for the circuit T are set to their unnatural value. Eighth, wi is flipped back to being
the opposite of the new v value. Ninth, e is reset to 0. Tenth, all the gates of T are
corrected, and the control variables are reset, finishing the cycle.

Our instance I will have NAE clauses of lengths 2 and 3. For clarity, we write the
clauses of length 2 as inequalities. We have eleven types of clauses, numbered from 1
to 11. The weight of the clauses decreases exponentially with the type. Thus, for
example, one clause of type 1 is worth more than all the clauses of types 2-11 combined.

Our construction involves some more variables besides the ones we mentioned.
Because of the positivity restriction we cannot use negations in the clauses. Therefore
we introduce auxiliary variables to play the role of negations; for example, we have
variables and playing the roles of-d and ei. Furthermore, because the clauses
must be in NAE form and not in the usual SAT form, and because they must have
length at most 3, we have to use some gadgets of extra variables and clauses to achieve
succinctness. Such extra variables are of a local nature, i.e., each occurs in only one
clause type, and are denoted by Greek letters. We now define the instance I of POS
NAE 3SAT. We assume that n is sufficiently large (n > 15 will do), so that a clause
of one type weighs more than all the clauses of strictly lower types combined.

The heaviest clauses are of type 1. They ensure that at most one d variable can
be 1. For each i, such that =< =< p and each j i, there is a clause NAE (d, dr, 1) of
weight 2 37n.

The clauses of type 2 concern the circuit C. They test if the gate variables of C are

correct, and if not they turn some di to 1, and eventually help to fix the incorrect gates
at the appropriate time. The clauses of type 2 include types A, B, D, and E clauses of
the P-completeness reduction from the previous section. The type C clauses, which
are not included here, played a role in setting the control variables to their natural
values. We have other clauses below that, depending on the values of the d and e

variables, flip the control variables at the proper times.
Corresponding to types A, B, D, and E from the last section, we have here identical

clauses of types 2A, 2B, 2D, and 2E. The only d{tterence is that previously, if an input
to a gate g was an input to the circuit, then wesubstituted in the type A clauses the
corresponding constant of the given input assignment for the CIRCUIT VALUE
problem; here, we are not given such an assignment and we instead substitute the
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corresponding input variable vi. The clauses of types 2A and 2B have the same relative
weights as in the last section, but we multiply the weights by the same constant so that
they fall in the range between 236n and 2 33n. The clauses of types 2D and 2E have the
same relative weights as in the last section, but we do not multiply their weights; these
clauses have very small weights, less than 2n, which is smaller than the weight of even
the type 11 clauses.

Besides the clauses from the previous section, type 2 includes some additional
clauses, which we call type 2C. Recall that the last gate of the circuit C has index 2n.
We have one more y variable, Y2,+1, and we have the following clauses of type 2C:
NAE (ZZn Y2,+I, 1) of weight 23", a clause NAE (y2,+, di, 0) of weight 23o" for each

1,. , p, and a clause (y,+ 1) of weight (p- 1)23". The purpose of these clauses
is as follows. Recall from the previous section that, if a gate is incorrect, then all
subsequent control variables are set to their unnatural value; thus z, is set to 1 and
Y2,+ to 0. The fundamental goal of the type 2C clauses is to set some d to 1 in this
case. Because of the type 1 clauses, only one di can be set profitably to 1; therefore if
Yzn+--0, then exactly p-1 of the clauses NAE (Yzn+l, d, 0) will be violated. The
purpose of the last clause (Y2n+l 1) is to compensate for the p- 1 lost clauses.

The clauses of type 3 play a similar role for the test circuits T. That is, for each
1,..., p, we have types 3A, 3B, 3D, and 3E clauses for the circuit Ti. The type 3A

and 3B clauses are the same as in the P-completeness reduction, except that their
weight is multiplied by an appropriate constant so that their weight falls between 229n

and 225n. Again, if an input to a gate is a circuit input, then in the corresponding type
A clauses we use the variable vj or wi as appropriate. The weight of types 3D and 3E
clauses is not multiplied; thus these clauses have small weight, less than 2". We use
two subscripts to denote the variables of the type 3 clauses: the first subscript indicates
the circuit Ti to which the variable refers, and the second subscript is as before. For
example, Z,k denotes the kth control variable z of the circuit T.

In addition to the above clauses, we have for each i= 1,..., p one clause of type
3C: NAE (Zi,Zn ,di, 1) of weight 2z4n, where Zi,zn is the z variable corresponding to the
last gate of T. The fundamental goal of these clauses is to ensure that di 0, if T has
an incorrect gate.

The clauses of type 4 measure the effect of flipping a variable v. When di 1,
then the output is picked from the circuit T, but if all d are 0, then the output is
picked from the circuit C. For each pair i, j with 1, ., p and j 0, 1, ., m, we
have the following type 4 clauses:

NAE (di, Cj, 0), NAE (di, i,, 1)

of weight 22n 2a. When di 1, we may want to flip c to implement the gate corrections
resulting from a variable flip. However, this could affect the p 1 clauses NAE (dr, C_.j, O)
for r # i. To cancel any positive or negative effect of this change we have a clause
(c # 1) that weighs p-1 times as much as the corresponding length 3 clauses; that
is, it weighs (p-1). 22". 2.

The clauses of type 5 force the variable to act as the negation of d. We have
a clause NAE (d, , 1) of weight 219", and a clause ( # 0) of weight 2is".

The clauses of type 6 give credit for performing an anticipated flip. If d 1, we
would like to flip the value of vi. That is, we would like to (momentarily) force vi wi.
If we were reducing to 3SAT, then we could just write the implication di(v w)
as a 3CNF formula. Expressing the implication in POS NAE 3SAT requires a more
complicated gadget, which we depict graphically in Fig. 5.1. Each solid triangle
represents a 3-variable clause, while each dashed edge represents a 2-variable clause.
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di 1 di 0

0 2

rli wi

FIG. 5.1. Gadget for type 6" triangles and dashed edges represent clauses.

We have the following clauses for each i= 1,-.., p. First,
NAE (d,, 0 ,1) ^ NAE (a,, 02,, 0)

of weight 27n each,

of weight 216n each, and

of weight 215n. Finally,

NAE 0, rl,, Wi) A NAE 0, ,, w,)

2

of weight 24" each.
The clauses of type 7 give credit for setting ei to 1, when vi wi and credit for

resetting e to 0 otherwise. In this case also we need a gadget in order to use POS
NAE 3SAT form; see Fig. 5.2 for a graphical depiction of the variables and the clauses.
Again, each solid triangle represents a 3-variable clause, and each dashed edge
represents a 2-variable clause.

The first two clauses are NAE ([’i, Di, Wi) ^ NAE (/2, vi, wi), each of weight 2lan.
Next we have clauses (/22 212,,# 1) ^ (/zi # 0) of weight followed by a clause (/z 2

of weight 2ln. Then we have clauses NAE (ei, txi, tzi) of weight 2n, and ei #0 of
weight 29n. Finally, we have a clause (i ei), of weight 28", that forces the variable i
to be the negation of ei.

V W

FIG. 5.2. Gadget for type 7" triangles and dashed edges represent clauses.
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The next three types of clauses flip control variables y and z of the circuits C and
T at the right moments, depending on the values of the variables d and e. Sometimes
we want to flip the control variables to their unnatural setting (when we want to flip
an input to a circuit), while at other times we want to flip them back to their natural
settings (while correcting the gates of the circuit). These seemingly conflicting goals
can be achieved by carefully synchronizing the changes to the variables di and ei with
the desired changes to the different control variables.

The type 8 clauses encourage setting the control variables of T to their unnatural
value if e= 1: For each i= 1,...,p and for each k= 1,...,2n, we have clauses
NAE (e, Yi,k, 1) and NAE (g,, Zi,k, 0) of weight 2TM each.

The clauses of type 9 encourage setting the control variables of the circuit C and
all test circuits Tr with r i, to their natural value if e 1" For each 1, , p, each
r 1,..., p with r i and each control variable of. C and Tr, we have clauses

NAE (ei, Zk, 1) A NAE (e, Zr,k, 1) A NAE (g,, Yk, O) A NAE (g’,, Yr,k, 0),

each of weight 26n.
The clauses of type 10 encourage setting the control variables of C and of the

circuits Tr with r to their unnatural values, when d 1. For each 1, , p, each
r 1,..., p with r i, and each control variable of C and Tr, we have clauses

NAE (di, Yk, 1) A NAE (d, Yr,k, 1) ^ NAE (di, zi, 0) A NAE (d, Zr,k, O)

of weight 25n each.
The final clauses of type 11 encourage the right default values for the variables,

and give credit for having w be the negation of vi. We have the following clauses, all
of weight 24n:(I)i Wi) (di 1), (Zk 1) and (Zi,k 1), (y 0) and (Yi, k 50).

This concludes the definition of the POS NAE 3SAT instance I. In the following,
we let A be a locally optimal assignment to the variables of I. We prove in a sequence
of lemmas that A induces a locally optimal solution to the instance of FLIP; i.e.,
flipping any input variable vi does not improve the output of the circuit C. Every
lemma includes an implicit dependent clause: "If A is a local optimum of the instance
I." The proofs of some lemmas are subdivided into simpler claims.

LEMMA 5.1. If every d is O, every V ------IWi, every gate is correct, and every zi, k is
O, then the assignment A induces a locally optimal solution to the FLIP instance.

Proof. We claim that, if we could improve the output of the circuit C by flipping
some vi, then in A, we could get an improvement by flipping the corresponding variable
d to 1. Letf be the weight in the FLIP instance of the assignment to the input variables
of C induced by A, and suppose that flipping the variable vi increases the weight to

f’. Suppose that in A we flip the variable d to 1. First note that the clauses of types
1 and 2 are unaffected, because all other d variables are 0. Since all z variables for
the T circuits are 0, no clauses of type 3 are lost. We claim that we gain in type 4
clauses. Since we have vi =-awi in A, and all gates are correct, f is the sum of the
numbers 2 over all j 0, 1, ., rn for which cj 1, and f’ is the sum of the numbers
2 over all j for which ti, 1, or equivalently, ’,j 0. The type 4 clauses that contain
d and are satisfied when di--O are: all clauses NAE (di, t’,, 1) and the clauses
NAE (di, Cj, O) with cj 1, for a total weight of 2" (j 2 +f). When di-- 1, the type
4 clauses that contain di and are satisfied are." all clauses NAE(di, cj, O)
and those clauses NAE(d, t/,, 1) in which ’,j=0; their total weight is 2’.

(Eg 2 +f’). [3

The remaining task is to prove that in A, the long hypothesis of Lemma 5.1 holds.
LZMMa 5.2. There is at most one i, 1 <= <--_ p such that d 1. For every i, the variable

d is the negation of di.
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Proof The proof relies on clauses of types 1 and 5. If di--dj--1 for some pair
C j, then we can gain a clause of type 1 by flipping^di or dj to 0. This establishes the

first claim. Regarding the second claim, note that di occurs for the first time in the
type 5 clauses. If d 1, then we will set to 0 to gain the clause NAE (d, , 1). If
di- 0, this clause is already satisfied, so we will set di to 1 to satisfy the next clause
(didO).

The next lemma characterizes the e variables. These are not mentioned in Lemma
5.1, but they play a central role in flipping the control variables of the circuits.

LEMMA 5.. For every i= 1,..., p, the ariable e is 1 if and only if w. The
variable i is the negation of e.

Proof. The proof relies on the clauses of type 7, the first clauses that contain ei
and 8. We need first a preliminary claim.

2 2CAM 5.3A. If vi wi, then tz txi. If v w, then tx tzi 1.

Proof Suppose first that v wi. We will set the variables z and z^2 to the negation
of v and wi to satisfy the heaviest clauses of type 7. Then, we will set to the
negation of t. 2 and thus ofi, zi, to satisfy the clause (/x 2i #/22).

Suppose now that v # w. Then the heaviest type 7 clauses are already satisfied,
2 2so we will set z= 1 and i 0 to satisfy the next clauses. Then we will set/xi to the

negation of 2 2
LI, i.e., /x 1.

We can now prove the lemma. Suppose first that vi wi. By the claim, both
and /[2,

2 2are 1 We will set e to 0 to satisfy the clause NAE (/x ,/x i, e). If v w, then
2z /x and this clause is already satisfied regardless of the value of ei, so we will set

e 1 to satisfy the next clause of ei. The variable g’ must be set to -e to satisfy the
clause (g, - e).

The next several lemmas summarize the properties of the clauses of types 2
and 3. They are similar to Lemmas 4.1, 4.2, and 4.3 of the previous section.

LEMMA 5.4. If the gate gi of the circuit C is incorrect, then zi 1. If y O, then

z 1. Ifzi 1, thenfor allj > i, yj O, z 1. Furthermore, ify,+ O, then some variable
d is 1.

Proof Except for the last statement about a variable d, the lemma is identical
to Lemma 4.1. The proof is also the same, and is omitted. We prove only the additional
statement. The proof relies on the clauses of type 2C. If z2, 1, then we must have
Yzn+--0 to satisfy the clause NAE (z2,, ya,+, 1). Therefore if all d variables are 0,
then we will flip one of them to 1 to gain a clause NAE (Yen+l, dk, 0). 1-]

We have the analogous lemma for each test circuit Tr. In this case the lemma
does not include a statement about d.

LEMMA 5.5. The following hold for every circuit Tr. If gate gr, is incorrect, then
Zr, 1. Ifyr, O, then Zr, 1. IfZr, 1, thenfor allj > i, we have Yr, 0 and Zr,2 1.

The following two lemmas are the analogues of Lemmas 4.2 and 4.3 for the circuits
C and Tr. Their proofs are identical and are omitted.

LMMA 5.6. (1) If yi_ 0 and z_ 1 for some even index i, then flipping either
input of the gate of the circuit C does not affect the type 2A clauses that correspond to

gate i.

(2) Similarly, iffor some circuit Tr and even index we have y,_ 0 and z,_ 1,
then flipping either input of the gate of T does not affect the type 3A clauses that
correspond to the gate of T ["]

LEMMA 5.7. (1) Suppose that Y-I 1 and zi-1 0 for some even index i. If the gate
variable gi is correct, then flipping zi and Yi does not affect the type 2A clauses. If gi is
not correct, then flipping g would not affect the type 2A clauses corresponding to the gate

of circuit C and would gain a type 2E clause.
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(2) Suppose that in some circuit Tr we have Yr,i-1-- 1 and Zr, i-1 0 for some even
index i. If the gate variable gr, is correct, then flipping zr, and Yr, does not affect the type
3A clauses. If the gate variable gr, is incorrect, then flipping gr, would not affect the type
3A clauses corresponding to gate of the circuit T and would gain a type 3E clause.

We can now show an analogue to Lemma 4.4. This lemma is not quite as immediate
because its proof involves flipping gate variables and control variables that occur in
other clauses besides types 2 and 3.

LEMMA 5.8. (1) If all the d variables are O, or if some e variable is 1, then all gate
variables of C are correct and all control variables of C have their natural value (y 1,
Z -0).

(2) For every test circuit T, if dr er 0, then all gate variables of T are correct

and all control variables have their natural value (yr, 1, z, 0).
Proof We first prove statement (1). If all the d variables are 0, then (1) follows

from Lemma 5.4. Thus we assume that some d variable is 1, which by Lemma 5.2
implies that exactly one d variable is 1. From the hypothesis, we may assume that
some e variable is 1. The control variables of the circuit C occur in clauses of type 9,
10, and 11, besides the clauses of type 2. Since some e variable is 1, that variable
pushes the control variables of C towards their natural values through type 9 clauses.
These clauses play the role of the clauses of type C of the previous section.

As in the proof of Lemma 4.4, suppose that (1) does not hold, and let be the
smallest index such that z or Yi has an unnatural value, i.e., z 1 or yi--O. We shall
show first that if is even, i.e., it corresponds to a gate g of C, then the gate variable
g is correct. This variable occurs in clauses of type 2, and more specifically of types
2A and 2E. In addition, if g is an output gate, i.e., it is actually cj for some j, then it
occurs also in type 4 clauses NAE (dk, cj, 0) of weight 22n. 22 for all k 1, , p, and
in the clause c2 1 with weight (p-1). 22n" 2j. Since exactly one of the d variables
is 1 and the other p- 1 are 0, flipping c2 (i.e., the variable gi) does not affect the total
weight of satisfied type 4 clauses. By the previous two lemmas, if we flip gi to its correct
value, we do not lose any type 2A clauses, and we gain a clause of type 2E. Thus we
conclude that if is even, then g is correct.

If yi is 0, then flipping it to 1 gains a type 9 clause. By Lemma 5.7 we do not lose
any clauses of type 2A. Since z_l 0, we do not lose any type 2B clauses. If Yi belongs
also to type 2C clauses, that is i=2n+l, then note that we gain p-1 clauses
NAE (Y2n+l, dk, 0) of weight 23n each and lose the clause (y2,+l 1) of weight (p-
1). 23"; i.e., the net effect on the type 2C clauses is 0. Variable y belongs also to
clauses of type 2D, but these have much smaller weight than type 9. Therefore, y 1.
Similarly, if z 1, then flipping it to 0 gains a type 9 clause without losing any clauses
of types 2A, 2B, or 2C.

The proof of statement (2) is very similar. Let Tr be a test circuit for which

dr er 0. The control variables of Tr occur in clauses of type 8, 9, 10, and 11, besides
the clauses of type 3. Since dr er 0, the type 8 and 10 clauses are already satisfied
and have no effect on the control variables. The type 11 clauses push the control
variables towards their natural values, while type 9 either are already satisfied (if all
e variables are 0) or push them also in the same direction. These clauses play the role
of the type C clauses of the previous section.

Suppose that (2) does not hold and let be the smallest index for which Zr, 1.
Suppose first that is even and the gate gr, is incorrect. This variable occurs only in
type 3 clauses, except if it is the negation gate ’r,2 of an output, in which case it occurs
also in a type 4 clause NAE (dr, tr,j, 1); in this case, the clause is satisfied since dr 0
and thus has no effect. As above, we can argue then that the gate gr, is correct. By a
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similar argument as for part (1), we can show that if Yr,i--O, then we gain by flipping
it to 1, and if zr, 1, then we gain by flipping Zr, to O. In the case of zr,2n observe that
we do not lose its type 3C clause NAE (Zr,2n dr, 1) because dr--O. [-]

LEMMA 5.9. For every i= 1,. ,p, if di =0, then ei =0 and vi

Proof From Lemma 5.3, ei 1 if and only if vi wi. We assume that ei 1 and
di 0. Suppose that we flip wi (to vi) thereby gaining a clause of type 11. We prove
that no heavier clauses are lost. Variable wi belongs to clauses of type 3 as an input
of the circuit T, and to clauses of types 6 and 7.

CLAIM 5.9A. If ei 1 and di O, then all the control variables of the circuit T have
their unnatural values; i.e., Yi, =0 and zi,j 1.

Proof. Since ei 1, we can gain clauses of type 8 by flipping the control variables
of T to their unnatural value. The only heavier clauses in which the control variables
participate are the clauses of type 3. We flip their value in order of decreasing index.
That is, first we flip zi,2n to 1. We do not lose any clause of type 3A because all clauses
of type A that contain a z variable also contain a 0. Also, we do not lose the only
clause NAE (Yi,2n, Zi.2n, 0) of type 3B that contains Zi.2n and we do not lose the clause
NAE (zi.2., di, 1) of type 3C because di 0. Thus we conclude that if zi.2. 0, then we
can improve the assignment by flipping this variable to 1. Arguing in the same manner
for the rest of the control variables in the order Yi,2., Zi.zn-, Yi,zn-," Zi,, Yi,1, we
can conclude that they all have their unnatural values.

The next claim concerns the type 6 clauses.
CLAIM 5.9B. If di O, then flipping wi does not affect the type 6 clauses.
Proof Suppose that 7Qi-- Wio Then flipping w to be the opposite of ’/i cannot cause

the loss of the type 6 clauses that contain wi. Thus assume that Bi w. Since di--0,
and thus di 1 by Lemma 5.2, the first two clauses of type 6 are satisfied regardless

and 02 The following two clauses are also satisfied becauseof the value of 0i
2 2Thus we may assume that 0i 0i =-rti, so that the clauses (0i r/i) and (0i r/i) are

satisfied. Therefore the type 6 clauses containing wi are satisfied regardless of its
value.

The variable wi occurs in clauses of type 3A as the input of some gates gi, of the
circuit T. Since we gave only even indices to the gates, j->_ 2, and by Claim 5.9A,
zi,_l 1 and y,_ 0. It follows then from Lemma 5.6 that flipping wi does not affect
these clauses. By Claim 5.9B, it does not affect the clauses of type 6 either. The clauses
of type 7 that contain wi also contain vi; if vi--wi, then we cannot lose these clauses
by flipping wi. It follows from Lemma 5.3 that ei O.

The final lemma shows that all the d variables are 0.
LEMMA 5.10. Every di--O.
Proof We prove a sequence of claims that restrict A under the assumption di-- 1,

eventually leading to a contradiction. The sequence of claims follows the sequence of
flips that take place after we flip di to (recall the description that we gave before the
definition of the instance I).

CLAIM 5.10A. If di 1 and v wi, then all the control variables of the circuit C
and the circuits Tr with r : have their unnatural value" Zk Z,k 1 and Yk Yr,k 0 for
all k.

Proof Since di 1 we can gain clauses of type 10 by flipping to their unnatural
values all the control variables except for the ones of the circuit Ti. As in the preceding
lemma, these variables can be flipped in decreasing order of the subscript k, so as not
to lose clauses of types 2B or 3B. The clauses of types 2A and 3A are never lost by
flipping a z to 1 or a y to 0.

When we flip the variable Y2,+1 to 0 we gain one clause of type 2C and lose p- 1
clauses of type 2C, but their weights exactly cancel. Because vi wi, we know that
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ei 0 by Lemma 5.3. Since di 1, we have that all the other d variables are 0 by Lemma
5.2. It follows from Lemma 5.9 that all the variables er, for r are also 0. Thus
flipping the control variables does not lose any clauses of types 8 or 9. Types 1, 4, 5,
6, 7 do not involve the variables that are flipped. The only clauses of type 3 that we
could lose are those involving a d variable that is 1. By Lemma 5.2, only di is 1, and
the type 3 clause involving di is not affected since the claim explicitly excludes the
variables of the circuit Ti.

We shall show that if vi wi, then we can gain a type 6 clause by flipping vi. First,
we need the following claim concerning the local variables of type 6.

CLAIM 5.10B. If di 1, then rid
Proof Since di 1, and thus di--0, we can gain the heaviest clauses of type 6 by

2 Wi),flipping 0i to 0 and 0i to 1. If r/i wi, then one of the clauses NAE (0i,
NAE (02

i, r/i, wi) is not satisfied, but we can satisfy both of them by flipping Ti to be
the negation of Wio [-]

CLAIM 5.10C. If di 1, then vi

Proof Suppose vi =-qwi. If we flip vi to agree with wi, then by Claim 5.10B we
gain the type 6 clause (7i vi). The variable vi also occurs in type 2A clauses as an
input to gates of the circuit C and in type 3A clauses as an input to gates of the circuits
Tr with r i. Recall that in T we use the variable wi as an input in place of vi. If
is an input to a gate gj or gr,j, then j-->_ 2 and by Claim 5.10A the corresponding control
variables with index j- 1 exist and have their unnatural value. By Lemma 5.6, flipping
vi does not affect the type 2 and type 3 clauses in which it occurs. Since vi does not
occur in any other clauses higher than type 6, the claim follows.

CLAIM 5.10D. If di 1, then all the gates of the circuit C are correct, and all the
control variables of C have their natural values.

Proof By Claim 5.10C, vi wi. By Lemma 5.3, ei 1. The claim now follows from
Lemma 5.8.

CLAIM 5.10E. If di 1, then all gates of the circuit T are correct.

Proof Suppose that gate k is incorrect in the circuit Ti. By Lemma 5.5, zi,q 1
for every q > k. Thus we can gain the clause NAE (zi,2n, di, 1) of type 3C by flipping
di to 0. We never lose any type 1 clauses by flipping d to 0 because they all have a 1
in them. Also, since Y2n+l 1 by Claim 5.10D, we do not lose a type 2 clause.

Now we can complete the proof of the lemma. We can gain a clause of type 11
by flipping d to 0. As we mentioned above, we do not lose any clauses of type 1 or
2. Except for the type 4 clauses, all other NAE clauses that contain di (types 3, 5, 6,
10) also contain the constant 1; thus they cannot be lost by setting di =0. Regarding
the type 4 clauses, we know from Claims 5.10D and 5.10E that all the gates of the
circuits C and T are correct. The fact that vi wi implies that c ’i,, for all j. Thus
the weight of the clauses of type 4 that we lose by flipping d to 0 is exactly equal to
the weight of the clauses that we gain.

We can now prove that a locally optimal assignment A to our POS NAE 3SAT
instance I induces a locally optimal solution to the FLIP instance C. By Lemma 5.10,
all d variables are 0. Lemma 5.9 implies that all e variables are 0, which by Lemma
5.3 implies that vi wi for all i. Furthermore, by Lemma 5.8, all the gates in all the
circuits C and Ti are correct, and all the control variables have their natural value.
The result follows from Lemma 5.1. Thus we have shown Theorem 5.11.

THEOREM 5.11. POS NAE 3SAT is PLS-complete.
Combining this with the reductions of 3 we get Corollary 5.12.
COROLLARY 5.12. MAX CUT 2SAT, SWAP, FM-SWAP, FM-GRAPH

PARTITIONING, and STABLE CONFIGURATION are PLS-complete.
The result for SWAP solves one of the main open problems in [9]. As we noted
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above, any locally optimal solution for KL-GRAPH PARTITIONING is locally
optimal for the same instance of SWAP. Thus we have given an alternate proof of the
result of [9] that KL-GRAPH PARTITIONING is PLS-complete. The result for
STABLE CONFIGURATION addresses a problem raised by Haken, Luby, Godbeer,
Lipscomb, and Parberry [5], [4], [17], [19].

Next we prove that the standard local search algorithm has exponential running
time in the worst case, by proving that our reduction to POS NAE 3SAT is actually a
tight reduction. We assume without loss of generality that the circuit C of the FLIP
instance contains gates that compute the negations of the input variables (i.e.,
NOR (vi, vi) for all i). Thus if the gates of C have their correct values and we flip any
input variable vi, then some gate will become incorrect. Of course, if C does not have
such gates, we can add them before applying the reduction.

We define the set Yt of reasonable assignments for our instance I to be the set of
assignments that (1) satisfy a maximum-weight set of clauses from types 1, 2A, 2B,
2C, 3A, 3B, 3C (we refer to these as the heavy clauses), and (2) have di =0 for all i.
Note that we cannot satisfy simultaneously all the heavy clauses; in particular, if we
satisfy the type 1 clauses (at most one di variable is 1), then we cannot satisfy all the
type 2C clauses: NAE (Y2n+l, di, 0) of weight 23n for all 1,. , p and (y2,+1 1)
of weight (p- 1) 23n. However, we can satisfy all the other clauses. That is, condition
(1) above for an assignment to be reasonable can be stated equivalently as: the
assignment satisfies all the heavy clauses except for a weight of (p-1). 2". An
important observation is that if an assignment satisfies a maximum-weight set of heavy
clauses, then it must have the properties stated in Lemmas 5.4 and 5.5, because otherwise
we can gain a heavy clause by some variable flip.

We argue that our choice of Yt satisfies the conditions for the reduction to be
tight (see Definition 3.2). First, as we proved, contains all locally optimal assignments
of L Second, for any solution of the FLIP instance, i.e., assignment V to the input
variables v,..., Vp, we can construct a corresponding reasonable assignment A to
the variables of I that agrees with V as follows. We let all d 0, vi--w, give the
correct value to all the gate variables of the circuit C and the circuits T, and set all
the control variables to their natural values. Since the gate variables have the correct
values, we can satisfy all the clauses of types 2A and 3A by giving appropriate values
to the local variables.

Consider now the transition graph of /, TG(I), and suppose that there is a
(weight-improving) path from one reasonable assignment A to another reasonable
assignment A’ so that all the intermediate vertices of the path (if there are any) are
outside Yr. Let V and V’ be the restrictions of the assignments to the input variables
vi. We have to show that either V V’ or V’ is obtained from V by flipping a single
input variable, and that in the latter case V’ is a better solution to the FLIP instance
than V.

LEMMA 5.13. Suppose that V’ V. Then V’ is obtained from V by flipping a single
input variable v. Furthermore, the path in TG(I) from A to A’ is nontrivial (has more
than one are) and starts by flipping the corresponding variable d.

Proof Assume first that the path consists of a single arc, i.e., A’ is obtained from
A by flipping a single variable. If that variable is not one of the vi’s, then V V’. If
we flip a vg, then some gate of C becomes violated; since all the d variables are 0,
this implies (by Lemma 5.4) that we lose a heavy clause. That is, A’ is not reasonable
and in fact is worse than A, a contradiction.

We conclude that the path from A to A’ is nontrivial. The clause weights are
scaled so that if an assignment satisfies a maximum-weight set of heavy clauses, then
so does any better assignment. Thus all vertices of the path satisfy condition (1) above,
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and therefore, do not satisfy condition (2). Since the type 1 clauses ensure that at most
one d variable is 1 (Lemma 5.2), it follows that we move from A to the next vertex
of the path by flipping some variable di to 1, which stays at this value until we reach
A’, at which point we flip it back to 0. Since di 1 in all the vertices of the path, the
control variable zi,2n corresponding to the last gate of T must be 0, because otherwise
we would lose the type 3C clause NAE (z,2n, di, 1). By Lemma 5.5 this implies that
all gate variables of T are correct during the path. If we flip some variable vr with
r somewhere along the path, we would make some gate of T incorrect. Therefore
either V V’ or V’ is obtained from V by flipping v. [3

LEMMA 5.14. If V’ V, then V’ is a better solution to the FLIP instance than V.
Proof Consider the flip of d to 1 in going from A to the next vertex along the

path. Since A is reasonable, flipping di cannot gain a heavy clause. Variable d occurs
also in clauses of types 4, 5, 6, 10, 11. Observe that, except for the type 4 clauses, all
other NAE clauses containing d contain also a 1; thus flipping d to 1 cannot gain
any clauses except possibly for type 4. Since the assignment A satisfies condition (1)
and has all d variables equal to 0, all gate variables of C must be correct in A; thus
the variables cj reflect correctly the weight of V in the FLIP instance. Since the
assignment obtained from A by flipping d to 1 satisfies also condition (1), all gate
variables of T must be correct. If wi v, then T has the same inputs as C, and thus
t,--c for all j, which implies that flipping d neither gains nor loses weight among
the type 4 clauses. Therefore, we must have w =-qvi, and thus the negations of the
variables ’,j reflect correctly the weight of V’ in the FLIP instance. Since flipping di
improves the assignment A, we conclude that V’ is better than V in the FLIP
instance C. [3

Thus our reduction to POS NAE 3SAT is tight. Consequently, Lemma 3.3 and
the reductions of 3 imply Theorem 5.15.

THORZM 5.15. Thefollowing holdfor the problems POS NAE 3SAT, MAX CUT,
2SAT, SWAP, FM-SWAP, and STABLE CONFIGURATION.

(1) The standard algorithm takes exponential time in the worst case.
(2) The standard algorithm problem is NP-hard. [3

Haken and Luby [5] proved an exponential bound on the running time for the
STABLE CONFIGURATION problem in the case that the standard algorithm uses
the steepest descent rule to choose a better neighbor. Our theorem holds for any rule,
even a nondeterministic rule. The instances that are derived from the reductions have
the property that starting from some initial configurations, all weight-improving paths
to a stable configuration have exponential length. Haken has independently constructed
instances with the same property [5a].

6. Conclusions. We have analyzed the complexity of several natural, simple local
search problems: MAX CUT, 2SAT, GRAPH PARTITIONING under the single
SWAP and FM-SWAP neighborhoods, and finding a STABLE CONFIGURATION
in connectionist networks. We showed that these problems are PLS-complete in the
general weighted case, and are P-complete in the unweighted case. Since these problems
are quite restricted and the neighborhoods are so simple, it appears likely that we
could find reductions to many other problems to show similar results, and thus, that
the class of PLS-complete problems is actually quite extensive.

Consider, for example, the WEIGHTED INDEPENDENT SET problem: Given
a graph with weights on the vertices, find an independent set of maximum weight. It
was noted in [9] that we can find, by a simple greedy (polynomial-time) algorithm, a
local optimum under the following "single swap neighborhood"" the neighbors of an
independent set I are the sets obtained by adding to I a vertex v and removing from
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I the vertices that are adjacent to L Note that in the unweighted case the locally
optimal independent sets under this neighborhood are exactly the maximal independent
sets (and thus, we can obtain one in NC). Consider now the following 2-step neighbor-
hood: if after adding a vertex v to the independent set I and removing its adjacent
vertices the new set I’ is not maximal, then augment it (arbitrarily) to a maximal
independent set. We can show by applying the standard NP-completeness reduction
from 3SAT (or even SAT) that finding a locally optimal independent set under this
2-step neighborhood is PLS-complete in the general case, and P-complete in the
unweighted case, and this holds regardless of how we choose to augment in the second
step if there is more than one choice.

In most cases, the known NP-completeness reductions do not work and we must
use much more delicate and complicated constructions to achieve a PLS-reduction, as
undoubtedly the reader has noticed from the proofs of the last two sections. In the
case of the TRAVELING SALESMAN Problem, Papadimitriou has recently found a
reduction from 2SAT to the TSP under the Lin-Kernighan neighborhood, thereby
showing the latter problem PLS-complete. Krentel recently has shown PLS-complete-
ness for the k-OPT neighborhood (by a reduction from FLIP), if k is a sufficiently
large constant [14]. An interesting open problem is to determine whether the same
result holds for the simple 2-OPT or 3-OPT neighborhoods.

Acknowledgments. The first author thanks Mark Krentel for suggesting this
problem area and for providing lots of encouragement as these results were slowly
discovered. The second author thanks Vijay Vazirani for helpful discussions.

Note added in proof. The standard algorithm problem for all the local search
problems considered in this paper is PSPACE-complete. A proof of this for the FLIP
problem is given in 18a, Lemma 4]; completeness for the other problems follows then
from the tightness of the reductions.
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IMPROVED UPPER AND LOWER TIME BOUNDS FOR PARALLEL
RANDOM ACCESS MACHINES WITHOUT SIMULTANEOUS WRITES*

IAN PARBERRY AND PEI YUAN YAN

Abstract. The time required by a variant of the PRAM (a parallel machine model which consists of
sequential processors which communicate by reading and writing into a common shared memory) to compute
a certain class of functions called critical functions (which include the Boolean OR of n bits) is studied.
Simultaneous reads from individual cells of the shared memory are permitted, but simultaneous writes are
not. It is shown that any PRAM which computes a critical function must take at least 0.5 log n O(1) steps,
and that there exists a critical function which can be computed in 0.57 log n + O(1) steps. These bounds
represent an improvement in the constant factor over those previously known.

Key words. CREW PRAM, critical function, time, lower bound, upper bound
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1. Introduction. A PRAM consists of an infinite collection of sequential processors
connected to a common shared memory. In each time interval, or step, each processor
reads a value from the shared memory, moves into a new state, and writes this new
state back into the shared memory. Simultaneous reads of a single cell in the shared
memory by many processors are permitted, but simultaneous writes are not. Computa-
tion of a function on n inputs proceeds by placing the n input values into the first n
cells of the shared memory, starting the PRAM with all processors in a predefined
initial state, and waiting for all processors to halt. When the computation is over, the
output can be found in the first shared-memory cell. The running time of the PRAM
is defined to be the number of steps taken, expressed as a function of n.

The lower bound techniques discussed in this paper are based on a communication
argument, and thus hold even if the processors have infinite computational power.
Many of the "standard" models which have become popular in the recent literature
(for example, in Fortune and Wyllie [3], Goldschlager [4], [5], and Shiloach and
Vishkin [11]) limit the local computational power of the individual processors. More
details on the effect that this can have on the computational ability of PRAMs can be
found in Parberry [6]-[8]. Our upper bound is intended to illustrate the limits of the
lower bound technique by taking advantage of the unlimited computing power of the
processors, and is not intended as a practical algorithm. We will, however, use a
number of processors which is only a polynomial in the size of the input.

A Boolean function is said to be critical if there exists an input I with the property
that changing any single bit of I changes its output. One example of a critical function
is the Boolean OR of n bits (consider the all-zero input). The obvious parallel algorithm
for computing the Boolean OR of n bits uses "successive doubling" and takes time
[log2 n]. (From this point on, all logarithms will be to base two unless otherwise
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indicated.) This intuitively seems to be a lower bound, based on the number of bits
that a processor can "know about" at each point in time. Independently, Cook and
Dwork [2] and Reischuk [10] noticed that this "obvious" lower bound is incorrect.
These authors combined their results in [1]. From this reference we learn that any
PRAM which computes a critical function on n inputs must take time at least 1Ogb n
where b 0.5(5 +) is slightly greater than 4.79. We will show that it must take time
at least log4 n- O(1). From it we also learn that there is a critical function that can
be computed by a PRAM in time log3 n + 1. We will show that there is a critical function
which can be computed by a PRAM in time logo n + O(1) where c 2 + is slightly
greater than 3.41. The relationship between these results is summarized in Tables 1.1
and 1.2. Other lower bounds for PRAMs without simultaneous writes can be found
in Simon [12] and Snir [13].

The remainder of the paper is divided into four sections. The first describes the
PRAM model in more detail, while the second contains some preliminary results
concerning exclusive-write PRAMs. The lower and upper bounds are contained in the
third and fourth sections, respectively.

2. The PRAM model. A PRAM consists of an infinite number of processors and
an infinite shared memory. The shared memory is divided into cells, each of which is
capable of holding a natural number (for the purposes of this paper, we count zero
as being a natural number). Each processor has a state, which is also a natural number.
The cells and the processors are numbered consecutively from zero. More formally, a
PRAM M consists of a triple (r, s, w), where r, w N N, and s N4 N. An input to
M consists of a finite sequence of natural numbers I (Xo, Xl,"" ", xn-1). Each xi is
called an input symbol At the start of the computation, xi is placed into cell of the
shared memory, 0-<_ < n, while cell for _-> n is set to zero. Each processor is placed
in state zero. The computation on input I proceeds in a sequence of discrete steps.
During the tth step, => 1, each processor p, p _>-0 does the following simultaneously.
Suppose that p was in state q N at the end of the (t-1)th step (where the zeroth
step refers to a point in time immediately before the computation began).

TABLE 1.1
Previous best-known upper and lower bounds on the time

requiredfor a PRAM to compute criticalfunctions. Each entry
in the table shows the constant c where the dominant term in
the bounds is of the form c log n.

Lower bound Upper bound

Previous 0.44 0.64
Current 0.5 0.57

TABLE 1.2
Previous best-known upper and lower bounds on the

number of input symbols of a critical function that a PRAM
can compute in steps. Each entry in the table shows the
constant c where the dominant term in the bounds is a constant
times c

Lower bound Upper bound

Previous 3 4.79
Current 3.41 4
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(1) Read a value v from shared memory cell r(p, t, q).
(2) Compute v’= s(p, t, q, v). The state of p at the end of the tth step is v’.
(3) Write the value v’ into cell w(p, t, v’).

Simultaneous reads of a single shared-memory cell by many processors are permitted,
but simultaneous writes into a single cell are not. The output of M will be found in
shared memory cell zero when the processors have terminated. The time required by
M is the maximum over all inputs of size n of the number of steps needed to process
that input, expressed as a function of n.

For the purposes of our lower bounds, we will be more lenient than is customary
in our definition of what it means from a PRAM to compute a function, in that we
will allow some preprocessing of the inputs before the computation begins, and
postprocessing of the output after the computation ends. We say that a PRAM computes
f: N*- N* if there exist functions a, fl:N- N such that the PRAM on input a(Xo),
a(Xl),’’’, a(xn-1) produces output y N where fl(y)=f(xo,’’’, xn). For our upper
bounds we will insist that no extra pre- or postprocessing can be done, that is, a and
/ are the identity functions.

We will say that two PRAMs are functionally equivalent if they compute the same
function, and that they are equivalent if they are functionally equivalent and have the
same running time.

3. Persistence and predictability in PRAMs.
DEFINITION 3.1. Let I (Xo, , Xn--1) C {0, 1}" be an input string. Define I(u)

(Xo,’’’,Xu_l,ffu, Xu+l,’’’ ,x,_l), where 0= 1 and 1 =0, to be the input which is
identical to I except in the uth bit.

DEFINITION 3.2 (Cook, Dwork, and Reischuk [1]). If 0_-< u < n, index u affects
shared-memory cell c at time on input I if the contents of c at time is different on
inputs I and I(u).

DEFINITION 3.3 (Cook, Dwork, and Reischuk [1]). If0<= u < n, index uaffects pro-
cessor p at time on input I if the state of p at time is different on inputs I and I(u).

DEFINITION 3.4. A PRAM is called persistent if the following two properties hold:
(1) If index u affects processor p at time t-1 on input I, then index u affects

processor p at time on input L
(2) If index u affects cell c at time t-1 on input I and processor p reads cell

c at time on input I(u), then index u affects processor p at time on input L
The following two definitions are mutually recursive.
DEFINITION 3.5. If 0_-< u < n, index u counsels shared-memory cell c at time on

input I if either 0 and c is the ith shared-memory cell, or > 0 and either:
(1) No processor writes into c on input I at time and either:

(i) u counsels c at time t-1 on input/, or
(ii) There exists a processor p which writes into c at time on input I(u), or

(2) Some processor p writes into cell c at time on input/, and either:
(i) No processor writes into cell c at time on input I(u), or
(ii) Some processor p’ writes into cell c at time on input I(u) and either:

(a) p’ p, or
(b) p’=p and u counsels processor p at time on input/.

DEFINITION 3.6. For 0 =< u < n, index u counsels processor p at time on input I
if either:

(1) t> 1 and u counsels p at time t-1 on input/, or
(2) t_-> 1, u counsels some cell c at time t-1 on input I and p reads c at time

on input L
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The definition of counseling is weaker than that of affecting in the sense that the
only way that an index u can affect a cell or a processor at time on input I is to
counsel that cell or processor at time on input I. The converse is not necessarily the
case (that is, not all counseling leads to an affectation) since, for example, in Definition
3.5(1)(ii), processor p may at time (fortuitously) write into cell c the same value that
it contained at time t-1.

DEFINITION 3.7. A PRAM is called predictable if
(i) It is persistent, and
(ii) Every index u which counsels a cell or processor at time on input I also

affects that cell or processor at time on input I, for all inputs I and t_-> 1, and
(iii) If the state of processor Pl at time on input 11 is the same as the state of

processor P2 at time t2 on input 12, then t2 and Pl--P2.
We can conclude from the observation preceding Definition 3.7 that not every

PRAM is predictable. However, the following result will enable us to take advantage
of the extra structure which is present in a predictable PRAM.

LEMMA 3.8. For every PRAM there exists an equivalent predictable PRAM.
Proof. Let M be a T(n) time-bounded PRAM. Define a new PRAM M’ as follows.

M’ simulates M, with processor p of M’ at time simulating processor p of M at time
t, subject to the following modifications. Let po 2 and for i_-> 1, Pi be the smallest
prime number exceeding Pi-1.

(1) Suppose processor p of M’ was in state q at time t- 1. If q 0 then it factors
q into a product of prime powers:

t--1

Q pto-lp 1-I PT-l,
i--1

where qi E N for 1 <_- _-< 1. The state of processor p ofM at time 1 can be computed
from the sequence of values that it read during the first t- 1 steps of the computation.
The sequence ql, qt-1 is used for that purpose. If q 0, then the state of processor
p of M is taken to be zero.

(2) Using the state of processor p of M at time t-1 determined in step (1), it
ascertains which cell in the shared memory that processor p of M will read from at
time t, and reads a value v from that cell. It factors v into a product of prime powers:

v =PoPf’
i=1

where v E N for 1 < < t-1. The value v was written there by processor p’ at time t’.
The value that processor p’ of M would have written into that cell can be obtained
by the sequence of values read by processor p’ of M in the first t’ steps of the
computation. The sequence of values v 1," , vt, is used for that purpose.

(3) Using the state of processor p of M at time t-1 determined in (1), and the
value which processor p of M read from the shared memory at time determined in
(2), it computes the place in the shared memory into which the new state w of processor
p of M at time should be written.

(4) Finally, it computes its own new state 2qp’;+l and writes this into the shared
memory in place of w.
The correctness of the simulation can be verified by induction on t. Some extra
preprocessing of the inputs to M is necessary before they can be presented to M’.
Each input symbol x should be replaced by 5x. Some postprocessing of the output of
M’ is also necessary to obtain the output of M. The output of M’ is to be decomposed
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into a product of prime powers:

T(n)

i=1

where qi N for 1 _<-iN t- 1. The output of M is then qT(n).
We claim that M’ is predictable. Condition (1) of Definition 3.7 requires that M’

be persistent. Suppose index u affects processor p of M’ at time t- 1 on input I. Then
state q is different on inputs I and I(u) in (1) above, which implies that the new state
2qp+l of processor p of M’ computed in (4) above is also different on inputs I and
I(u), that is, u affects processor p of M’ at time on input L Now suppose that index
u affects cell c of M’ at time t-1 on input I and that processor p of M’ reads cell c
at time on input I(u). There are two cases to consider.

Case 1. Processor p does not read cell c at time on input L Since it does
read from there on input I(u), it follows that u must affect processor p at time on
input L

Case 2. Processor p reads cell e at time on input L The value v read in (2)
above must be different on I and I(u). Thus the new state 2qp+ computed in (4)
must differ on I and I(u), that is, index u affects processor p at time on input /.

Thus we conclude that M’ is persistent.
Next we must demonstrate that property (ii) of Definition 3.7 holds, that is, for

all and I, if index u counsels shared-memory cell c or processor p at time on input
I, then u affects shared-memory cell e or processor p, respectively, at time on input
L The proof is by induction on t. The hypothesis is certainly true for 0. Now suppose
that > 0 and that the hypothesis is true at time t-1. Let I be an arbitrary input, and
u an arbitrary index.

Case 1. Let p be a processor, and suppose that index u counsels p at time on
input /. Then by Definition 3.6, either of the following two cases applies.

Case 1.1. u counsels p at time t-1 on input I, which implies by the induction
hypothesis that u affects p at time t-1 on input L Since M’ is persistent, it follows
that u affects p at time on input L

Case 1.2. u counsels some cell c at time t-1 on input I and p reads cell c at
time on input L By the induction hypothesis, u affects cell c at time t-1 on input
L Since M’ is persistent, this implies that u affects p at time on input L

Case 2. Let c be a shared-memory cell, and suppose that index u counsels c at
time on input L Then by Definition 3.5 either of the following two cases applies.

Case 2.1. No processor writes into e at time on input I and either of the following
two cases applies.

Case 2.1(i). u counsels c at time 1 on input I, which by the induction hypothesis
implies that u affects c at time t-1 on input I, and so u must affect e at time on
input L

Case 2.1(ii). There exists a processor p which writes into c at time on input
I(u). On input l(u), cell e contains at time t, a value which is divisible by 2’. This is
not the case on input L Therefore u affects e at time on input L

Case 2.2. Some processor p writes into c at time on input I and either of the
following two cases applies.

Case 2.2(i). No processor writes into c at time on input I(u). The argument in
this case is similar to Case 2.1(ii) above.

Case 2.2(ii). Some processor p’ writes into cell e at time on input I(u) and
either of the following two cases applies.



PARALLEL RANDOM ACCESS MACHINES 93

Case 2.2(ii)(a). p’# p. Without loss of generality, assume that p > p’. Then the
value in cell c at time on input I is divisible by 3 p, whereas the value in cell c at
time on input I(u) is not.

Case 2.2(ii)(b). p’=p and u counsels processor p at time on input L By Case
1 above, u affects processor p at time on input I, and hence the values written into
c at time are different on inputs I and I(u).

In either case, index u affects cell c at time on index L
Finally, property (iii) of Definition 3.7 is easy to verify, since the state of all

processors is uniquely "stamped" with its identity number and the time. This completes
the proof that M’ is predictable. 3

4. The lower bound.
LEMMA 4.1. Let M be a PRAM. Suppose Pu Pv are two processors, c is a shared-

memory cell, and I an input. Ifpu writes into cell c at time on input I( u) and pv writes
into cell c at time on input I(v), then either u affects p at time on input I(v) or v
affects pu at time on input I(u).

Proof For a contradiction, assume the opposite and consider what happens at
time t. On input I(u), pu writes into c. Since by hypothesis v does not affect p, at time
on input I(u), p, must write into c at time on input I(u)(v). A similar argument

shows that p must also write into c at time on input I(u)(v), which contradicts the
fact that our PRAMs are exclusive-write. ]

DEFINIa’ION 4.2. (i) K(p, t, I) is the set of indices which affect processor p at
time on input L

(ii) K (t) maxp,, [K (p, t, I) I.
(iii) L(c, t, I) is the set of indices which affect cell c at time on input L
(iv) L(t) maxp,, IL(p, t, I)[.
LEMMA 4.3. Let M be a predictable PRAM, c a shared-memory cell of M, and I

an input. Suppose u L( c, t, I). For all v L( c, t, I), u v, there exists a processor p such
that one of the following holds. Either:

(i) u L(c, t, I(v)), or

(ii) v L(c, t, I(u)), or
(iii) u, v K (p, t, I).
Proof Suppose that hypotheses (i) and (ii) do not hold. Let t, =< be the last step

before in which some processor p, writes into c on input I(u), let t-< be the last
step before in which some processor p writes into c on input I(v), and let t’=< be
the last step before in which some processor p’ writes into c on input L If any of t,,
tv, t’ are undefined, set them equal to zero. Note that since u v, at least one of t,,
t, t’ is nonzero. There are two cases to consider.

Case 1. t’>= t,, t. Since u and v both affect c at time on input I, they must both
affect p’ at time t’ on input/, that is, u, v K (p’, t’, I), which, since M is persistent,
satisfies hypothesis (iii).

Case 2. t’< max (tu, t). Without loss of generality, assume that t,-> t, t’. Let
S(c, t, I) denote the contents of cell c at time on input L Then

S(c, t,, I(u))= S(c, t, I(u))

=S(c,t,I(u)(v))

since by hypothesis v does not affect c at time on input I(u). Also, by a similar
argument

S(c, tv, I(v)): S(c, t, I(u)(v)).
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Therefore

S(c, tu, I(u))= S(c, tv, I(v)).
Thus since M is predictable, we can conclude that pu =pv and t tv. Thus u,
v K(p, t, I), which satisfies property (iii) since M is persistent.

LEMMA 4.4. Let E
_
K(p, t, I), and u E. Let Y(u) be the set of indices v E such

that either u affects p at time on input I(v), or v affects p at time on input I(u). Then
Ir(u)l>-[E]-K(t-1).

Proof. Let E
_
K (p, t, I) and u, v E. There are two cases to consider.

Case 1. u K(p, t-l, I). It is sufficient to demonstrate that if re: Y(u) then
v K(p, t-l, I). Assume that re: Y(u), and for a contradiction assume that
K(p, t- 1, I). Let S(I) denote the state of processor p at time t- 1 on input I. Then
S(I) S(I(v)) since, by hypothesis, v does not affect p at time t-1 on input I, and
S(I(v))=S(I(u)(v)) since M is persistent and (since v: Y(u)) u does not affect p
at time on input I(v). But S(I(u))-S(I(u)(v)) by a similar argument, while
S(I) S(I(u)) since u K(p, t- 1, I). Thus

S(I) S(I(v))= S(I(u)(v)): S(I(u)) S(I),
which is a contradiction. Therefore it must be the case that v K (p, t- 1, I).

Case 2. u

_
K(p, t- 1, I). If v K(p, t- 1, I) then by an argument similar to Case

1 (interchanging u and v) we see that u Y(v), or equivalently, v Y(u). If
K (p, 1, I), then since u, v K (p, 1, I) and M is predictable, it must be the case
that both u and v affect some cell c at time t- 1 on input I and p reads cell c at time
on input I. Thus u, v L(c, t-1, I), and so by Lemma 4.3, one of the following

holds. Either:
(i) uL(c, t-l, I(v)), which, since M is predictable, implies that u

K(p, t, I(v)); that is, v Y(u).
(ii) v L(c, t- 1, I(u)), which by a similar argument implies that v Y(u).
(iii) There exists processor p’ such that u, v K(p’, t-1, I). Thus, although

may not be a member of Y(u), there are at most K (t-1) choices for such a v.
Thus we have shown that there are at most K(t- 1) members of K (p, t, I) which

are not members of Y(u), which implies that ]Y(u)]>=IEI-K(t-1).
The proof of Lemma 4.4 relies heavily on the fact that the PRAM in question is

predictable. The corresponding result for ordinary PRAMs, which is implicit in Cook,
Dwork, and Reischuk [1], gives Y(u)l => ]El- K(t). This is the crux of our improvement
in the lower bound.

LEMMA 4.5. For a predictable PRAM, when >- 1, L(t) <-_ 3 4t.
Proof. We will prove that for a predictable PRAM, K (0) 0, L(0) 1 and for ->_ 0,

(1) K(t) <- K(t- 1)+L(t- 1),
(2) L(t) =< 3(K(t- 1)+ L(t- 1)).
Once this is established, it can easily be verified by induction that for => 1, K (t) <_- 4t-

and L( t) < 3 4t-.
The proof is by induction on t. The hypothesis is certainly true for O. Now

suppose that the hypothesis is true at time t-1. If u affects processor p at time on
input I, then either u affects p at time t- on input i or u affects some shared-memory
cell c at time t-1 on input I (which p subsequently reads). Therefore

K(p, t, I)<=K(p, t-l, I)+L(c, t-l, I)
<=K(t-1)+L(t-1),

which implies inequality (1) as required.
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Suppose that index u affects a cell c at time on input L Then either of the
following two cases applies.

Case 1. No processor writes into c at time on input L Let Y(c, t, I) be the set
of indices u which cause some processor to write into c at time on input I(u). Then
clearly

which implies that

(3)

IL(c, t, I)1--< IL(c, 1, I)l +[Y(c, t, I)l,

]L(c, t,I)l<=L(t-1)+lY(c, t,I)l.

It remains to show a bound onlY(c, t, I)1. For each u Y(c, t, I), let Pu be the processor
which writes into c at time on input I(u). Let Z(c, t, I) be the set of ordered pairs
(u, v) such that u, v Y(c, t, I) and either u affects Pv at time on input I(v) or v
affects pu at time on input I(u). For each u there are at most K(t) choices of v
which can affect p at time on input I(u). Thus

IX(c, t, I)l <- 2l Y( c, t, I)[K t)

(the factor of two comes from the fact that each (u, v) Z(c, t, I) has also been counted
as (v, u)).

Let E(u) be the set of indices v Y(c, t, I) which cause p, to write into c at time
on input I(v). For every u Y(c, t, I), (u, v) Z(c, t, I) for all v

_
E(u) by Lemma

4.1. In addition, there are at least IE(u)l-K(t-1 choices of vE(u) such that
(u, v)Z(c, t, I) by Lemma 4.4. Therefore

IZ(c, t,I)l>-lY(c, t,I)l((lY(c, t,l)l-lE(u)l)+(Ie(u)l-K(t-1)))

Y(c, t,I)l(lY(c, t,I)l-K(t-1)).

Therefore we have

IY(c, t, l)l(IY(c t, I)l-K(t- 1))=< IZ(c, t, I)l<=2lY(c, t, I)[K(t),

which implies that

]Y(c, t, I)]<=2K(t)+K(t-1),

which when substituted into inequality (3) tells us that

]L(c, t, I)]-< L(t- 1) +2K(t) + K(t- 1),

from which we can easily deduce inequality (2) by application of inequality (1).
Case 2. Some processor p writes into c at time on input I and either of the

following two cases applies.
Case 2(i). No processor writes into cell c at time on input I(u). Then u must

affect processor p at time on input I, that is, u K (p, t, I).
Case 2(ii). Some processor p’ writes into c at time on input I(u) and either of

the following two cases applies.
Case 2(ii)(a). p’ p. Then u must affect processor p at time on input I, and

again u K (p, t, I).
Case 2(ii)(b). p’=p and u affects processor p at time on input I. Then immedi-

ately u K (p, t, I).
In both Cases 2(i) and 2(ii) we see that

[L(c, t, I)l<--]K(p, t, I)]<=K(t)<=K(t- 1)+L(t- 1)
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(making use of inequality (1)), which implies that

L(t) <= K(t- 1)+L(t- 1)-<3(K(t- 1)+ L(t- 1))

as required.
DEFINITION 4.6. Let B {0, 1}. If f: B*- B, I B is called a critical input for f

if for all 0<-_ u < n, f(I) f(I(u)). We call f a critical function if for all n _>- 1 there is
an input in B" which is critical for f

THEOREM 4.7. Any PRAM which computes a criticalfunction on n inputs must take
time at least 0.5 log n- O(1).

Proof Suppose M is a PRAM which computes a critical function f in time T(n).
Without loss of generality we can assume that M is predictable (by Lemma 3.8). Let
I be a critical input for f Then IL(0, T(n), I)l=n. But Lemma 4.5 tells us that
]L(0, T(n), I)l<=34r’). Therefore T(n)>=O.51og n-O(1).

5. The upper bound. In this section we will demonstrate a critical function which
can be computed quickly on a PRAM. For the purposes of exposition we will present
an algorithm which attempts to compute the Boolean OR of its inputs. The algorithm
will fail for two reasons. First, it will get the result wrong for many inputs. Second,
some input symbols will be lost, that is, there will be indices u such that u does not
affect the output cell when the algorithm has terminated on any input. However, we
will demonstrate that the function computed by the algorithm is critical (the all-zero
input will be critical), and that it is a function of sufficiently many input symbols for
the required time bound to hold.

The faulty algorithm for computing the OR of n bits proceeds as follows. Suppose
that n is a power of four. During each step of the algorithm, the PRAM will attempt
to reduce the number of bits to be processed by a factor of four by ORing together
groups of four bits. At time there will be a set of cells C (t) which contain subresults.
C(0)={0, 1,..., n-l). For each cell c at time there will be a set of processors
P(c, t) which write into c at time on some input (although at most one member of
P(c, t) will do so on any particular input). P(c, 0)= for c 0. We will ensure that
P(Cl, t)f3 P(c2, t)= when ca # c2. At time t, each cell c will contain a value v(c, t)
which is either zero or of the form 2" where t’_< is the last time that c was written
into (t’ is zero if c has not yet been written into).

In the first step of the algorithm, processor p reads the contents of cell p and
writes two back there if the value read was one, in parallel for 0<-p< n. Thus
C(1)= C(0) and P(c, 1)={c} for O<=e<n. At time t, for t> 1, the values from cells

Ci-- a4
t-1 + i4t-2

for 0_-< < 4 are examined, and an attempt is made to place a nonzero value into Co if
at least one of their values is nonzero, in parallel for 0 <- a < n/4t-1. Thus by induction
on t, for t_>-1 it can be shown that

C(t) {a4t-l[0-< a <

At time the following algorithm is used. Note that we adopt the convention that
log2 0 0.

ALGORITHM 1.
Processors in P(cl, t-1) each perform the following:

Read a value v from cell c3
t3 :-- log2 v
if I wrote into cell ca at time t-1 then

if t3 # t- 1 then write 2 into cell Co
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Processors in P(c2, t-1) each perform the following:
Read a value v from cell cl
tl := log2 v
if I wrote into cell c2 at time t- 1 then

if tl t-1 then write 2 into cell Co
Processors in P(c3, t-1) each perform the following:

Read a value v from cell c2
t2 := log v
if I wrote into cell c3 at time t- 1 then

if t_ t-1 then write 2 into cell Co

We claim that there are no write conflicts at time t. The proof is by induction on
t. The hypothesis is certainly true for 1. Now suppose that the hypothesis is true
at time t- 1. Thus we know that at most one processor from each of P(ci, t- 1) wrote
into cell ei, respectively, at time t- 1, for 1 <-3. From Algorithm 1 we deduce that
P(co, t) =U3i=l P(c, t-l). Therefore the only possible write-conflicts may occur
between some processors p P(c, 1), P2 P(cz, 1), and P3 P(c3, 1).

Case 1. Pl writes into cell c at time t-1 and p writes into cell c_ at time t-1.
Then only p writes into Co at time t.

Case 2. pl writes into cell Cl at time t-1 and P3 writes into cell c3 at time t-1.
Then only P3 writes into Co at time t.

Case 3. P2 writes into cell c2 at time t-1 and P3 writes into cell c3 at time t-1.
Then only P2 writes into Co at time t.

Case 4. Pl writes into cell cl at time t-1, P2 writes into cell c at time t-1 and

P3 writes into cell c3 at time t-1. Then no processor writes into cell Co at time t.
The aim of Algorithm 1 is to make Co at time contain the Boolean OR of Co, c,

c2, and c3 at time t- 1, in the sense that the former is to be nonzero if any of the latter
are. This does not happen in Case 4, preventing the algorithm from computing the
Boolean OR of n inputs. This is not a major concern, however, since our aim is to
have the algorithm compute some critical function. Unfortunately, it does not compute
a critical function of all n inputs. Let F(t) be the number of indices which affect a
cell c C (t) at time on the all-zero input (due to the symmetry of the algorithm, this
value will be the same for all such c). Then cell Co C(t) contains a nonzero value at
time if it contained a nonzero value at time t- 1 or some processor wrote into cells
C1, C2, or C at time t--1. Cell c is affected by F(t-1) indices at time t-1, and is
affected by Fl(t-2) indices at time t-2. Therefore any processor which writes into
it at time t- 1 is affected by Fl(t- 1)- F2(t-1) indices. This processor also writes
into Co at time t. A similar argument holds for cells c and Ca. Because the first step
of the algorithm is a special case, we are justified in taking FI(0) =0 and F(1)- 1.
For > 1,

Fl(t)-4Fl(t- 1)-3Fl(t-2).

Therefore Fl(t)=(3t-1)/2. Thus we compute a critical function on n inputs in
log3 n + O(1) steps, a bound which appears in Cook, Dwork, and Reischuk [1].

Now suppose that the value in cells c, c2, and c3 at time t-2 is identical for
> 1. This can be achieved by making the input symbols which affect c2 and c3 at time
t-2 copies of the input symbols which affect c at time t-1. We modify Algorithm
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1 as follows:

ALGORITHM 2.
Processors in P(cl, t-1) each perform the following:

Read a value v from cell c3
t3 :- log2 v
if I wrote into cell cl at time t-1 then

if t3 0 then write 2’ into cell Co
else if 0 < t3 --<-- 2 then

if I am the smallest-numbered processor in P(Cl, t- 1)
then write 2 into cell Co

Processors in P(c2, t-1) each perform the following:
Read a value v from cell c
tl :-- log2 v
if I wrote into cell c2 at time t-1 then

if tl =0 then write 2’ into cell Co
Processors in P(c3, t-1) each perform the following:

Read a value v from cell cz
t2 := log2 v
if I wrote into cell c3 at time t-1 then

if t2 0 then write 2 into cell Co

We claim that there are no write conflicts at time t. The proof is by induction on t.

The hypothesis is certainly true for 1. Now suppose that the hypothesis is true at
time t- 1. Let

v= v(ca, t-2)= v(c2, t-2)= v(c3, t-2).

Case 1. v > 0. Since the values in each cell are monotonically nondecreasing with
time, we know that ti > 0 for 1 _-< <_-3. Since t3 > 0, the smallest numbered processor
in P(c, t- 1) may write into Co at time t, and if any other processor from P(c, t- 1)
wrote into cl at time t-1, then it is prevented from writing into Co at time t. Since

tl > 0, no processor in P(c2, 1) writes into Co at time t, and since t > 0, no processor
in P(c3, 1) writes into o at time t.

Case 2. v 0. For 1 -<_ =< 3, either ti 0 or ti 1. Therefore Algorithm 2 behaves
in a manner identical to Algorithm 1, and so the same arguments prevent a write-conflict
from occurring in this case.

Note that Algorithm 2 does not compute the same function as Algorithm 1. Let
F2(t) be the number of indices which affect a cell c C(t) at time on the all-zero
input (due to the symmetry of the algorithm, this value will be the same for all
such c). Then Fz(0)= 0, F2(1)= 1, and for > 1

F2(t) 4F2( 1) 2F2( 2).

Therefore F2(t) a((2 +x/)’ b-’) where a (3x/+ 4)/4(2x/+ 3) and b 1 + (1/v).
THeOReM 5.1. There is a critical function which can be computed on F2(t) inputs

in + O(1) steps by a PRAM using 4’ processors.
Proof Suppose we are given F2(t) input bits for some -> 0. These bits are expanded

to give 4’ bits by making multiple copies of each bit according to the requirements of
Algorithm 2. Each processor p, 0_-< p < 4’, examines the tree structure of the algorithm
and determines which input bit that cell p should be a copy of. It then reads that bit
and writes it into cell p. This takes two PRAM steps. Algorithm 2 is then executed in
parallel times. The total run time is thus + O(1) steps. [3
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COROLLARY 5.2. There is a critical function which can be computed in time logo n /

0(1) on n processors where c 2 + x/ and d 2/log c < 1.13.

6. Conclusion and open problems. We have moved the upper and lower bounds
for the computation of critical functions on PRAMs closer together. The major remain-
ing open problem is to make them meet. Our lower bound holds for PRAMs which
have powerful processors and can read and write large values. Can a better lower
bound be found for PRAMs which write only zeros and ones ? Our upper bound differs
from that of Cook, Dwork, and Reischuk [1] in that it makes use of large values. Is
this necessary? Is it possible to obtain better bounds for the computation of Boolean
OR (which appears to be the most interesting critical function)? The best known upper
bound (which appears in [1]) is approximately 0.73 log n + O(1).
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HIGH-PROBABILITY PARALLEL TRANSITIVE-
CLOSURE ALGORITHMS*

JEFFREY D. ULLMAN AND MIHALIS YANNAKAKIS$

Abstract. There is a straightforward algorithm for computing the transitive-closure of an n-node graph
in O(log: n) time on an EREW-PRAM, using n3/log n processors, or indeed with M(n)/log n processors
if serial matrix multiplication in M(n) time can be done. This algorithm is within a log factor of optimal
in work (processor-time product), for solving the all-pairs transitive-closure problem for dense graphs.
However, this algorithm is far from optimal when either (a) the graph is sparse, or (b) we want to solve
the single-source transitive-closure problem. It would be ideal to have an algorithm for transitive-closure
that took about e processors for the single-source problem on a graph with n nodes and e >- n arcs, or about
en processors for the all-pairs problem on the same graph. While an algorithm that good cannot be offered,
algorithms with the following performance can be offered. (1) For single-source, (3(n) time with ((en-2)
processors, provided e -> n2-3e, and (2) for all-pairs, O(n) time and ((en 1-) processors, provided e >= n2-2.
Each of these claims assumes that 0 < e _-<1/2. Importantly, the algorithms are (only) high-probability algorithms;
that is, if they find a path, then a path exists, but they may fail to find a path that exists with probability
at most 2-"c, where c is some positive constant, and c is a multiplier for the time taken by the algorithm.
However, it is shown that incorrect results can be detected, thus putting the algorithm in the "Las Vegas"
class. Finally, it is shown how to do "breadth-first-search" with the same performance as can be achieved
for single-source transitive closure.

Key words, transitive closure, reachability, breadth-first search, parallel algorithms, probabilistic
algorithms

AMS(MOS) subject classifications. 68Q20, 68Q25, 68R10

1. Introduction. As mentioned in the abstract, we address the apparently difficult
problem of doing parallel transitive-closure when the (directed) graph is sparse and/or,
only single-source information is desired. We want to use less-than-linear time, and
use work, the product of time and number of processors, that approximates the time
of the best serial algorithm. An algorithm whose work is of the same order as the best
known serial time is referred to as optimal.

For the single-source transitive-closure problem, depth-first search (see, e.g., Aho,
Hopcroft, and Ullman [1974]) takes O(e) time on a graph of e arcs.2 Thus, O(e) work
is our target for the single-source problem. When the graph is sparse, then the all-pairs
transitive-closure problem can be solved by performing a depth-first search from each
node, taking O(ne) time; that is our target for the all-pairs problem. As seen from the
abstract, we do not reach either target, except for the all-pairs case when e is fairly
large. However, we make significant progress, in the sense that we have the first
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author was partially supported by Office of Naval Research contract N00014-88-K-0166 and by a Guggenheim
Fellowship.

$ AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974.
is the notation, proposed by Luks and furthered by Blum for "within some number of log factors

of." That is, we say f(n) is 0(g(n)) if for some constants e and k, and all sufficiently large n, we have
f(n) <-_ c(log n)kg(n). Intuitively, just as "big-oh" elides constant factors, elides logarithmic factors.

Throughout, we assume that n is the number of nodes, e the number of arcs, and that n <_-e.

"Sparse" normally means that e << n, although if we believe that one in the sequence of "fast" matrix

multiplication algorithms that have been proposed (see, e.g., Coppersmith and Winograd [1987]), each
taking M(n) time where M(n) is some power of n between two and three, will turn out to be practical,
then "sparse" should be taken to mean e<< (M(n) log n)/n.

100
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algorithms that simultaneously use time much less than linear and use work that is
less than M(n).

High-probability algorithms. Unless otherwise stated, all algorithms described in
this paper are high-probability algorithms, meaning that

(1) If they report a path from one node to another, then there truly is such a path.
(2) If such a path exists, then the probability that the algorithm fails to report its

existence is at most some Po <1. By doubling the time taken by the algorithm, we can
square the probability of an error. Thus, a linear-factor increase in the running time
of the algorithm yields an exponential decrease in the probability of error.

In this paper, we shall describe versions of algorithms in which we only claim
that there is a positive probability of finding a path when one exists. Naturally, if the
algorithm is repeated O(log (I/e)) times, we can reduce the probability of failing to
find a path to whatever e > 0 we desire.

Moreover, we shall show that it is possible to check our result for validity with
little additional work. Thus, the algorithms can be run in a "Las Vegas" mode, where
termination only occurs when the correct answer has been obtained. In that case, the
running times we quote should be interpreted as expected times for termination, and
the probability of the actual time being greater than that by a factor c decreases
exponentially with c.

and 1 notation. The algorithms we discuss introduce factors of log n from
several sources. To avoid cluttering the expressions we use, these factors are elided.
All our claims involve factors of at least n for some e > 0, so logarithmic factors do
not dominate. As mentioned, we use the notation O to subsume factors of log n, just
as the conventional "bi.g-oh" subsumes constant factors. Similarly, when dealing with
lower bounds, we use f as a version of "big-omega" that subsumes factors of log n.

Previous work. Solutions for several related problems are known. Transitive-
closure on an undirected graph is really the "connected components" problem. Shiloach
and Vishkin 1982] gives the basic algorithm, while a series of improvements culminat-
ing in Cole and Vishkin 1986] improved the total work or elapsed time for very sparse
graphs. Gazit [1986] gives an optimal randomized algorithm for the same problem.

Gazit and Miller [1988] offer an A; algorithm for "breadth-first search," which
is really computing the distance, measured in number of arcs, from a given node. That
problem generalizes single-source transitive closure, but they do not get below the
M(n)-work barrier.

Several algorithms for transitive-closure on "random" graphs, that is, on the
population of graphs constructed by picking each arc with a fixed probability, have
been given (see Bloniarz, Fischer, and Meyer [1976], Schnorr [1978], and Simon
[1986]). These offer expected time close to n 2, but their worst-case performance is as
bad as can be--O(n3) or O(ne), as appropriate. It should be emphasized that our
performance measure is independent of the actual graph to which it is applied.

We should also note the paper by Broder et al. 1989], which deals with connectivity
in undirected graphs. They, like us, use a technique of guessing a subset of the nodes
and doing a search from each, hoping to connect all the guessed nodes that are found
along a given path. Their search technique is random walks, while we use exhaustive,
deterministic exploration for a limited distance. It is easy to show that random walks
will not serve when directed graphs are concerned, because it is easy to intuitively
"trap" a random walk on a directed graph.

Organization of the paper. In 2 we introduce our algorithm for solving the
single-source problem in ((v/) time and (}(e) processors. This algorithm contains
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most of the ideas needed for the general case, but their use in the general case is much
more complex. Section 3 provides the analysis of this algorithm. Then, in 4 we
introduce the general problem of solving transitive-closure for a graph of n nodes and
e arcs, with s sources and paths of distance up to d allowed. Four reduction strategies
that work with high probability are proposed.

In 5 we give a general algorithm for the case of sparse graphs. Section 6 shows
that this algorithm is the best that can be achieved using the four reductions of 4.
Section 7 gives some simplifications of the general algorithm of 5 for interesting
special cases: dense graphs, single-source, and all-pairs problems. Finally, in 8, we
show how to extend the ideas to solve the breadth-first-search problem for a single
source in the same time as we can do single-source reachability.

2. A simple algorithm. Exploration of a directed graph from a single source node
appears to be an inherently sequential process, especially in a case where the graph
is something like a single line emanating from the source. If we are to explore a path
of length fl(n) in less than time n, we must explore from many of the nodes along the
path before we even know that they are on the path. However, carried to extremes,
we search from every node in parallel, and we arrive at the standard path-doubling
method of solving the all-pairs problem in Ncg by doing log n Boolean matrix multipli-
cations.

What we would like to do is to search from some of the nodes on the path forward
for a short distance, until the searches link up; that is, we explore from each of the
selected nodes at least as far as the next selected node, as suggested by Fig. 2.1. The
searches can be done in parallel, and if nodes on the path are not too far apart, we
can discover any path from the source to any node without computing the entire
all-pairs transitive-closure. We need to compute the nodes reached from only a subset
of the nodes, and we need to know only about the nodes reached from this subset
along paths of limited length.

FIG. 2.1. Finding a path by short searches.

Unfortunately, it appears that any deterministic selection of a subset of the nodes
is of little help. Given a selection of, say, half the nodes, we can always pick a graph
in which the only path from the source to some node has a gap of length n/2 along
which no selected node occurs. Thus, we would have to search distance n/2 from our
n/2 selected nodes, which is almost the same as computing the full transitive-closure.
However, if we pick s "distinguished" nodes at random, it is well known (see, e.g.,
Greene and Knuth [1982]) that a path is unlikely to have a gap longer than
O((n log n)/s) with no distinguished node. More formally, we have Lemma 2.2.
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LEMMA 2.2. Ifwe choose s "distinguished" nodes at randomfrom an n-node graph,
then the probability that a given (acyclic) path has a sequence of more than (cn log n)/s
nodes, none of which are distinguished, is, for sufficiently large n, bounded above by 2

for some positive a.
The case we shall exploit in this section uses about log n distinguished nodes,

and therefore needs to search forward for about v/-ff distance from each distinguished
node. As we shall see, there is an important "trick" that works best when the number
of distinguished nodes and the distance explored are as close as possible. We begin
by giving the algorithm for bounded-degree graphs, and then show how it extends
naturally to all graphs.

An algorithm for bounded-degree graphs. Let us now assume that all nodes have
in-degree at most two and out-degree at most two. The time we shall take is 0(x/-ff),
and we shall use n processors. The algorithm is outlined below.

ALGORITHM 2.3. Parallel, single-source transitive closure with high probability,
time, and n processors.
INPUT." A directed graph G with n nodes, in- and out-degree two. Also, a source
node Vo.
OtTPtT: For each node of G, a decision whether the node is reached from v0. The
decision is correct with high probability, in the sense defined in 1.
METHOD" Perform each of the following steps.
(1) Select x/-ff log n nodes to be distinguished, at random. In what follows, we shall

include the source Vo among the distinguished nodes, even if it was not picked.
(2) Search from all the distinguished nodes, to find, for each node v, a set of distin-

guished nodes that reach v. The set for node v must include all distinguished nodes
that reach v along a path of length x/-ff or less, and it may include other distinguished
nodes reaching v along longer paths, but may not include a node that does not
reach v.

(3) Construct a new graph H whose nodes are the distinguished nodes of G (including
Vo). There is an arc u- v in H if it was determined in step (2) that u can reach v.

(4) Compute the all-pairs transitive closure of H, and thus determine which of the
distinguished nodes are reachable from the source Vo.

(5) For each node v, determine whether there is a distinguished node w that
(a) Reaches v along a short path, as determined in step (2), and
(b) Is reached by Vo, as determined in step (4).

The algorithm above will detect all reachable nodes with some probability greater than
zero. To reduce the error rate as far as we like (but not to zero), we can repeat steps
(1)-(5) as many times as we like. For each desired error rate, there is some number
of repetitions necessary, but this number does not depend on n. Combine the repetitions
by saying a node v is reached from Vo if any iteration says v is reachable.

Details of step (2). All but step (2) of Algorithm 2.3 can be accomplished in time
0(x/-) with n processors on a PRAM by straightforward means that will be reviewed
in the next section. Step 2 is not hard to accomplish within these limits either. Suppose
we divide the n processors equally among the distinguished nodes. Then each would
get (x/) processors. The processors assigned to w could perform a breadth-first
search from w cooperatively. If at any level, there were at most t(x/-) new nodes,
the construction of the next level could be done in O(1) time, since we assume
out-degree at most two. If there are more than 0(v) nodes at a level, we must treat
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them in groups of v/ft. However, there are only n nodes among all the levels, so the
total delay due to "excess" nodes at a level is no more than O(v/-ff).

The above approach depends on being able to assign processors consistently, even
though a node may be reached from two different predecessors. The coordination can
be done, but appears to require O(log n) time to do so. The method we actually use
saves this logarithmic factor in running time.

To execute step (2), we assign one processor to each node. This processor creates
a table in the shared PRAM memory indexed by the distinguished nodes. The entry
for distinguished node w in the table for node v tells

(a) If it is known that w can reach v.
(b) For successors x and y of v, whether w is known to reach x and whether w

is known to reach y.
We also create two doubly linked lists for v of

(a) Those distinguished nodes known to reach v but not known to reach
successor x.

(b) Those distinguished nodes known to reach v but not known to reach
successor y.

The algorithm proceeds in (() rounds to propagate information about which
nodes are reached by which distinguished nodes. Initially, each distinguished node
knows that it is reached by itself, and nothing else is known. This information is passed
to its predecessors, so they can properly initialize their tables. Note that the predecessors
of distinguished node w know that their successor w is "reached by w," but the
predecessors do not know that they are reached by w themselves; indeed they may
not be. However, it is important that, if they turn out to be reached by w, they do not
waste time telling w this fact. This avoidance of wasted messages is the reason why
nodes need to know what their successors know.

In one round, the following messages are passed between nodes, and tables are
updated accordingly.

(1) If node v knows it is reached- by a distinguished node w, and one of its
successors x does not know that it is reached by w, then v sends x a message telling
it one new distinguished node that reaches x. Note that each successor of v gets to
learn about only one new distinguished node from each predecessor, in one round.

(2) If v has learned from one predecessor z that v is reached by distinguished
node w, then v tells its other predecessor, if it has one, that v now knows it is reached
by w. Of course, z also knows that v now knows about w, so each predecessor of v
can update its table accordingly.

If there are s distinguished nodes, and we want to propagate reachability informa-
tion for distance at least d, then we require only d + s rounds to do so, as we shall
prove in 3. The intuitive reason is that, while a fact can be delayed in its propagation
because a given node v has many other facts to tell one of its successors, no one fact
can be delayed twice by the same fact. However, the true picture is somewhat more
complex than that, since it is often unclear which fact causes the delay of another fact.
In the case at hand, where s and d are both ((x/-ff), we require ((x/-ff) rounds, each
of which can be executed in O(1) time on a PRAM, to accomplish step (2) of
Algorithm 2.3.

The unlimited-degree case. If the graph does not have in- and out-degree two, we
begin with step (1) of Algorithm 2.3, selecting distinguished nodes at random. However,
before proceeding to step (2), we convert the graph G to a graph G’ that does have
in- and out-degree two. For each node v with more than two successors, we create a
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FIG. 2.4. Forcing in- and out-degree two.

balanced binary tree to fanout to those successors, and for each node v with more
than two predecessors, we create a balanced binary tree to fanin, as suggested by Fig.
2.4.

The number of introduced nodes for a node v is no greater than the sum of the
in- and out-degrees of v. Thus, G’ has O(e) nodes, if e is the number of edges of G.
Since G’ clearly has in- and out-degree two, G’ also has O(e) edges.

Moreover, since the trees are balanced, no path through an introduced tree is
longer than log n. As a result, to search for distance d in G, it suffices to search for
distance d log n in G’. In particular, we can now complete steps (2)-(5) of Algorithm
2.3 on the graph G’, but by searching distance log n, instead of distance x/, and
by using e processors instead of n. Since in step (2) we have log n distinguished
nodes, and we search for the same distance, the number of rounds (s + d) that we
need does not even go up by more than a factor of 2.4 Our conclusion is that it is
possible to do single-source transitive-closure for an arbitrary graph in ((/-) time
with e processors.

3. Correctness and efficiency of the simple algorithm. We now need to show that
the algorithm described in 2 is correct with high probability, and we must show that
its running time and processor utilization are as claimed in that section. The key point
is the correctness of step (2) of Algorithm 2.3, which is implied by the first lemma.

LEMMA 3.1. The algorithm for step (2) described in the previous section, when run
with s distinguished nodes, will find all distinguished nodes that reach any given node
along a path of distance d or less, provided we run the algorithm for at least s + d rounds.

Proof. Consider a path Vo->" --> Vk along which propagates the information that
distinguished node Vo reaches node Vk. After r rounds, suppose that the teachability
of Vo has propagated to vi, but not to vi+; that is, vi knows it is reached by Vo, but
Vi+l does not. Let the delay be r-i, that is, the number of rounds on which Vo
failed to make progress along this path. We claim, and shall prove by induction on r,
that there is a "wedge of knowledge," suggested in Fig. 3.2, where Vi+l knows about
at least t different distinguished nodes that reach it, vi+2 knows about at least t- 1,
and so on.

Formally, we shall show by induction on r that if Vo," ", vi know about Vo, and
vi+ does not, then for j 1,..., r-i, vi+ knows about at least t + 1-j distin-
guished nodes that reach it. The basis, r 0, is trivial, since then 0 and t 0, so
the "wedge" has height zero.

But note that had we started with a bounded degree graph, we could choose x/n log n sources and
search for exactly that distance, thus improving the running time of step (2) by a factor of x/g n.

Note that the reachability of v0 may be known further along the path, because that information has
propagated by another route.
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FIG. 3.2. Wedge of knowledge.

Now, suppose we have proceeded for r rounds, and the inductive hypothesis
holds. Consider what happens on round r + 1. First, make the following observation.

If at some time, Vp knows about strictly more distinguished nodes than
Vp+l, then on the next round Vp+ will learn at least one new fact.

Thus, the number of facts known by each of Di+2, Vr+ will, after round r + 1, be
at least one greater than that implied by the solid wedge of Fig. 3.2; this profile is
suggested by the dashed wedge in that figure. That is, by (,), we deduce that for
j 2, , 6 + 1, node vi+j knows about at least 6 + 2-j distinguished nodes that reach
it by round r + 1.

Case 1. vi+ does not learn about Vo at round r + 1. Then vi must tell vi+ something
else, because at each round, a node tells each successor something new if it can. Thus,
after round r+ 1, Vi+l knows about at least 6+1 .distinguished nodes. Thus, for
j- 1,..., r+ 1- i, node v+j knows about at least 6 + 2-j distinguished nodes. The
delay at round r + 1 is 6 + 1, so the inductive hypothesis is proved.

Case 2. v+ learns about Vo at round r+ 1. Suppose that now Vo," ", v,, know
about Vo, but v,,+l does not. If rn_-> r+ 1, the inductive hypothesis holds vacuously.
Otherwise, the new delay is 6’= r+ 1- m. Since

(1) m > i,
(2) 6’=6-m+i+l, and
(3) for j 2, , 6 + 1, node vi+ knows about 6 + 1 distinguished nodes,

we know that for j’= 1,..., 6’, node v,,+j, knows about 6’+ 1-j’ distinguished
nodes (substitute j’+ m-i for j in (3)). Thus, the inductive hypothesis holds for
round r + 1.

Now, we observe that there are only s distinguished nodes that any node can ever
know about. Thus, s is a limit on the height of a "wedge." That is, the delay cannot
exceed s. Suppose that after r rounds, Vk does not know about Vo yet. Then there is
some < k such that Vo,’’’, vi know about that Vo and vi+ does not. The delay is
r-i, which is strictly greater than r- k. Thus, s > r- k.

Finally, consider r d + s. We deduced that s > r- k d + s k, or equivalently,
k > d. That is, after s + d rounds, if Vk does not know about Vo, then k > d. Put another
way, if some node v is ignorant of the fact that Vo reaches v, then there can be no path
of length d or less from Vo to v. Thus, after s+ d rounds, all nodes learn about all
distinguished nodes that reach them along paths of length d or less.
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Correctness of the algorithm. We now need to check that the remaining steps of
Algorithm 2.3 and its extension to the general case are correct. It is easy to check that
whenever a path is discovered, there is truly a path, so we need only to verify that if
a path exists, it is discovered with positive probability. We may then argue that by
increasing the number of distinguished nodes by a constant factor, the probability of
error can be made as small as we wish.

Lemma 2.2 assures us that step (1), the selection of random distinguished nodes,
leaves us a positive probability that for every node v, the shortest path from the source
to v is gapless; that is, it has no gap of more than v consecutive, unselected nodes.
Gaps of length v/-ff cannot grow to more than log n nodes after we convert graph
G to the graph G’ by adding fanin and fanout trees for the general case. Lemma 3.1
just showed that step (2) finds the paths between successive distinguished nodes on
any gapless path. If we run for 2v/-ff log n rounds in step (2), then we are sure to have
the necessary connections between distinguished nodes.

In particular, if our path is gapless, and w is the last distinguished node on the
path (w may be the source, Vo), then steps (3) and (4) (construction of the graph H
and computation of its transitive-closure) determine that there is a path from Vo to w.
Also, as the path is gapless, step (2) established that there is a path from w to v, the
last node on the path. Thus, step (5) deduces that there is a path from v0 to v. We
have thus proved Theorem 3.3.

THEOREM 3.3. The algorithm of 2 determines whether there is a path from Vo to
each node v, with high probability. D

Analysis of the algorithm. Now, we need to verify that each of the steps of
Algorithm 2.3 and its extension to unbounded-degree graphs can be performed in
((x/-) time on a PRAM with n processors. First, let us agree on a representation for
graphs in the shared memory of the PRAM. The nodes will be assumed to be numbered
1, 2, , n. Suppose that there is an array indexed by nodes, giving the number of in-
and out-arcs for each node, a pointer to an array where the successors of the node are
listed, and a pointer to an array where the predecessors of the node are listed.

Step (1), the selection of log n random nodes, can be done by one processor
in the requisite time. However, further on in this paper, we shall need to do somewhat
better: generate 0(n l-e) random nodes in 0(n) time, using n processors. We can do
so by the following steps.

(1) Each of the n processors selects a random node and creates a record (i, j),
where j is the processor number and the number of the node selected.

(2) The records are sorted lexicographically.
(3) Each record r looks at its predecessor to see if it has the same node (first

component). If so, r is eliminated. Thus, for each selected node, only one record
remains, and it is the record with the lowest-numbered processor that selected that node.

(4) Sort the remaining records by processor number, and select as many as desired
from the front of this list, to be the chosen random nodes.

Thus, the entire process takes polylog time.
Step (2) of Algorithm 2.3 was analyzed in Lemma 3.1. There we proved that

rounds sufficed. We have only to observe that each round can be accomplished in
O(1) time. Message passing is done by creating for each node four words in the shared
memory, for receiving messages from its predecessors and successors. Each arc into
or out of the node is associated with a particular word. To send a message, a node
writes into the proper word belonging to the receiving node.
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For step (3), note that the graph H has t(v/-) nodes and ((n) arcs. Its arcs can
be read from the tables created in step (2) for the distinguished nodes. That is, assign
((1) arcs to each processor. To consider whether there is an arc u v in H, the
processor goes to the table for v and the entry for u. To get H into our form for graphs,
we can compact the lists of predecessors and successors in 0(1) time by assigning
processors to each list and performing a parallel prefix operation. Thus, the entire
construction of H is accomplished in O(1) time.

Step (4), taking the transitive closure of H, can be done in ((v) time with n
processors by the ordinary, path-doubling-by-matrix-multiplication method. That is,
for a graph with 0(v) nodes, the method usually is done in log2 n time with ((n3/2)
processors, but we can trade time for processors by "Brent’s theorem" (Brent [1974]),
to achieve the desired bounds. Now, we look at the successors of the source Vo in the
transitive closure of H, and make a table, or vector, indicating for each distinguished
node whether that node is reached in H from Vo. This part requires O(1) time with n
(or even x/-) processors.

In step (5), we assign one processor to each node v, and examine the table of
distinguished nodes that reach v. For each distinguished node, we examine the table
constructed in step (4) to see whether Vo reaches that distinguished node. The
table lookup requires O(1) time, so the time for considering all distinguished nodes
is 6(x/-).

Finally, we must note the difference when the initial graph G does not have
bounded degree. Now we are given e processors to convert G to G’ by introducing
fanin and fanout trees, as described at the end of 2. First, assign to each node a
number of processors equal to the out-degree of that node. The fanout tree can then
be constructed in 0(1) time by obvious means. Similarly, we build the fanin trees in
the same time. From that point, we proceed as in Algorithm 2.3, but with e processors,
at most n + 2e nodes, and at most 5e arcs. In step (2), there are ((x/-) distinguished
nodes that must be explored for distance 6(x/-), so the time bound 6(x/-) still holds,
as long as there are n processors. Steps (3) and (4) do not change, since H still has
O(x/-) nodes, and we have e_> n processors. Step (5) is similar, since we can still
assign one processor to each node and do the work in ((x/-) time. We have thus
proved Theorem 3.4.

THEOREM 3.4. We can compute with high probability the single-source transitive-
closure of an n-node, e-arc graph in (v) time on a PRAM with e processors.

4. High-probability reductions for transitive closure. In this section we shall con-
sider the general "sparse" problem, which we call S(s, d, n, e), of determining, in an
0(n)-node, ((e)-arc .graph, what nodes are reached along paths of distance at most
((d), from each of O(s) source nodes. We may optionally include in our answer
other nodes reached from a source, but only along paths of length greater than C)(d).
Our answer must be correct with high probabili.ty.

We shall assume that there is a time limit O(t) for obtaining the answer, and we
need to compute the necessary work, that is, the product of the time taken and the
number of processors used. For example, the problem studied in the previous two
sections is S(1, n, n, e), with a time limit x/. The other problem of significant
interest is S(n, n, n, e), the all-pairs problem. Note that factors of log n are elided in
all parameters, and, of course, will be elided in the measure of work.

While we are probably not very interested in instances other than the two
mentioned, we need to consider this more general framework because we have devised
a number of "reductions" among instances of the general problem, so a solution to a
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case that interests us can involve the solution to subproblems that appear less interesting.
For example, in 2, we reduced the problem S(1, n, n, e) to the problems S(v, v/-,
n, e) and S(/-, x/if, x/if, n). The former is the problem we solved in step (2) of
Algorithm 2.3, and the latter is the all-pairs transitive-closure of the graph H.

We shall also have need to consider the "dense" problem on occasion. We let
D(s, d, n) stand for S(s, d, n, n2).

We use two "basis" (nonrecursive) rules for solving problems and four recursive
rules. Each of these rules has some role to play, although in certain circumstances we
shall show that one dominates the others as far as reducing the work is concerned.
Incidentally, the reader may legitimately worry if, as we elide constant factors and
factors of log n, whether a recursion that hides, say, a factor of log n at each of n
levels, is not really hiding a dominant factor. However, when we analyze the rules for
optimal strategies, we shall see that in no case do we need to recurse more than twice.
Thus, hidden factors cannot accumulate.

Basis Rule BI. Our first strategy is to solve the all-pairs transitive-closure problem
for the graph. We may use this strategy with any time limit whatsoever, since even

1 really means polylog time. We take work (n3) to solve transitive-closure this
way. This strategy may seem useless, but in fact it is needed for certain subproblems
with a small number of nodes, as we found for graph H in Algorithm 2.3.

Basis Rule B2. This rule generalizes the method for step (2) of Algorithm 2.3.
Divide the s sources into Is d groups. As in step (2) of Algorithm 2.3, use e processors
to search forward from the O(d) sources of each group for distance d. By Lemma 3.1,
this operation requires ((d) time. We therefore put the work for this basis rule at
es+ ed.6 Technically, the work is O(e[s/d]d), but the reader can easily check that
O(es+ ed) is the same. That is, if s<=d, then Is 1, and the term ed predominates.
If s > d, [s/d]d is about s, and es predominates.

Reeursive Rule RI. We can solve S(s, d, n, e) by the following steps.
(1) Select sl distinguished nodes at random, from among all the nodes of the

graph. We may assume with high probability that there are no gaps greater than
(n log n)/sl in path,s, so search forward from each of the distinguished nodes for this
distance, which is O(n/sl).

(2) Add to the given graph all arcs u- v between distinguished nodes that are
discovered in step (1). Note that at most O(s2) arcs are added.

(3) In the resulting graph, search forward from the original s sources for
distance that is sufficient to reach any node from any source. This distance is
O(dsl/n+ n/sl).

The intuitive reason the distance suggested in (3) suffices is suggested in Fig. 4.1.
A path of length d in the original graph is collapsed in the new graph so that we only
have to follow from the source to the first distinguished node (at most n/s, since we
assume no "big" gaps), then along introduced arcs to the last distinguished node, and
finally to the end of the path (again, at most distance n/s). If there are three
distinguished nodes within distance n/s along the path, then we can skip the middle
one. Thus, if there is distance at most d along the path, and we follow more than
2ds/n introduced arcs between distinguished nodes, we can find a shorter path,
assuming there are no gaps longer than n/sl. We conclude that distance O(n/s)
suffices for the prefix and suffix of the path (outside the first and last distinguished

Recall that we are dropping logarithmic factors from our work estimates, as well as from all parameters.

The work is really (3(es + ed).
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Prefix

<-2ds/n
arcs followed

Suffix

-<n/ sl

FIG. 4.1. Shortening paths in rule R1.

nodes), and O(dSl/n) suffices in the middle, jumping among distinguished nodes. In
the special case in which the path has no distinguished nodes, we may assume that it
has length no greater than the maximum gap length, or n/sl.

Note that the subproblem of step (1) is S(sl, n/s, n, e) and the subproblem of
2step (3) is S(s, ds/n+ n/s, n, e/ s). Step (2), the addition of arcs, can be done with

work proportional to the number of those arcs, which could not be greater than the
work of step (2), constructing those arcs in the first place. Furthermore, the addition
of the arcs to the graph can be done in parallel, to the extent allowed by the number
of processors. Thus, we claim that the work of step (2) could not exceed that of step
(1). Consequently, we shall write rule R1 as

(R1) S(s,d,n,e)S sl,--,n,e +S s, +--,n,e+s

The arrow can be interpreted as saying that the work of the problem on the left is no
greater than the sum of the costs of the problems on the right. It can also be interpreted
as saying that if we can solve the problems on the right with high probability, then
we can solve the problem on the left with high probability, using, within some
logarithmic factors, no more time or work than the sum of what is used to solve the
problems on the right.

Recursive Rule R2. A similar strategy begins with step (1) of R1. However, we
next consider the "dense" problem of computing the transitive-closure of the graph
consisting of the distinguished nodes only, and all arcs that were discovered among
them in step (1); this graph is analogous to H in Algorithm 2.3. Referring to Fig. 4.1,
once we take the transitive-closure and then install the resulting arcs in the original
graph, we can leap from the first distinguished node to the last, in one arc. The distance
we need to follow is thus just the length of the prefix and suffix, plus one, which is
t(n/Sl), as suggested by Fig. 4.2. That is also a bound on the length of a path that is
so short it has no distinguished nodes.

We may thus express R2 as

(R2) S(s,d,n,e)S s,--,n,e +D s,,s +S s,--,n,e+s
S H S

Recall that D denotes the dense case, where e is the square of the number of nodes,
2

S here. The middle term represents the transitive-closure, and the last term represents
the final step, where we search for distance O(n/sl) from the original s sources in the
augmented graph.
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<-d

arc
followed

FIG. 4.2. Shortening paths in rule R2.

Recursive Rule R3. In this variation, we do the following.
(1) Select sl distinguished nodes at random and search forward from them for

distance )(n/sl), as in R1 and R2.
(2) Reverse the arcs and search backward in the graph from the same nodes for

the same distance.
(3) Construct a new graph whose nodes are the distinguished nodes and sources

of the original graph, a total of at most s + s nodes. Add to the new graph the arcs
found in step (1) between distinguished nodes. Also add the arcs found in (2) from a
source to a distinguished node. That is, if distinguished node w was found to reach
source v following arcs backward, then add arc v- w. The maximum number of arcs

2in the new graph is Sl from step (1) and ss from step (2).
(4) In the graph constructed in step (3), search forward from the sources for

distance 2dSl/n. As we argued concerning R1, this distance is sufficient to get us from
any source to the last distinguished node on any path from that source.

(5) Add to the original gcaph all the arcs v--> w such that v is a source node and
w a distinguished node found reachable from v in step (4). The number of arcs added
to the original graph is at most ssl.

(6) In the graph constructed by step (5), search forward from the sources for
distance O(n/s). This distance suffices to follow any path of length d in the original
graph, since in the augmented graph we can go in one arc to the last distinguished
node, and then need only to follow the suffix. Similarly, a path with no distinguished
nodes is assumed to be no longer than n/s.

As for R1, we can argue that steps (3) and (5) can be performed with work that
does not exceed the work of constructing the arcs, and that these steps can be performed
with the maximum parallelism allowed by the number of processors. Thus we may
neglect the cost of these steps. The work of constructing a new graph in step (2) with
the arcs reversed is no greater than O(e), and it can be done with the maximum amount
of parallelism allowed by the number of processors, down to O(1) time. The details
require some thought, but are similar to the techniques already mentioned in the
construction leading to Theorem 3.4. Since the initial subproblem surely requires work
(e), or else we cannot even look at all the arcs, we shall neglect the cost of reversing
the arcs. We thus can express R3 as

(R3) S(s,d,n,e)S sl,--,n,e +S s,,s+s,s(s+sl) +S s,--,n,e+ssl

The first term represents the cost of the searches in steps (1) and (2); note that the
multiplier 2 would be appropriate but unnecessary. The second term represents step
(4), and the last term represents step (6).
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Recursive Rule R4. The last rule is rather different from the first three, and also
quite simple. We split the number of sources into some number of groups, say k, and
treat the groups independently. We shall see that in practice, this trick simplifies things
when s > d, but it is never formally necessary; it was, in fact, incorporated into basis
rule B2. The description of R4 is

(R4) S(s, d, n, e)- kS -, d, n, e

We may summarize the arguments given in connection with each of the rules by
Theorem 4.3.

THEOREM 4.3. Each of the rules R1, R2, R3, and R4 is correct, in the sense that
if the subproblems on the right can be solved with high probability in a certain amount

of time and work, then the problem on the left can likewise be solved with high probability,
with the same amount of work, neglecting factors of log n. 0

5. A general strategy. It turns out that we can solve the problem S(s, d, n, e) for
all values of the parameters, and all time limits t, by a fairly simple algorithm that
applies at most two recursive rules and then applies one of the basis rules to each of
the resulting subproblems. The strategy is suggested by the tree of Fig. 5.1. More
formally, the strategy is given by the following algorithm.

ALGORITHM 5.2. Solution to the generalized, sparse transitive-closure problem.
INPUT: A problem S(s, d, n, e) and a time limit t.
ou3:PtJ3:: A strategy that solves the given problem in O(t) time on a PRAM and uses
as few processors as any strategy built from the rules B1, B2, R1, R2, R3, and R4 of
the previous section.
METHOD: The algorithm consists of the following decisions.
(1) If d _-< and d _-< then apply basis rule B2.
(2) Otherwise (i.e., d > and/or d > v/-), if >_-x/ then apply recursive rule R1 with

s v/-, and then apply B2 to the two subproblems that result.
(3) Otherwise (i.e., d > and/or d > x/, and also < x/), if s >- n then apply R2

with s- nit. Apply B2 to the first and last subproblems, and apply B1 to the
middle subproblem S(s, ds/n, s, s).

d _-< and

R1 with s /-, n
then B2, B2 YN

R2 with s=n/t d<-_t
then B2, B1, B2 YN

R3 with s n/t, R3 with s
then B2, B2, B2 then B2, ,, B2

apply R2 with s nit, then apply B2, B1, B2 to the subproblems.

FIG. 5.1. Summary of Algorithm 5.2.
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(4) Otherwise (i.e., d > and/or d > x/if, also < x/if, and also s < n t), apply R3 with

s n t. If d -< 2, apply B2 to each of the three generated subproblems. If d > 2,
there is not enough time to apply B2 to the middle subproblem, so use B2 for the
first and third subproblems, and apply R2 with s n 2 to the middle subproblem.
Apply B2, B1, and B2, respectively, to the three subproblems so generated.

Analysis of Algorithm 5.2. Let us now compute the function that gives the work
required by Algorithm 5.2. That function has five cases, corresponding to the five leaves
of Fig. 5.1. The table of Fig. 5.3 gives the definitions of the cases and the work for
each. Recall that all functions elide factors of log n.

THEOREM 5.4. The work used by the strategy ofAlgorithm 5.2 is as given by Fig. 5.3.
Proof Case 1 corresponds to the leftmost leaf of Fig. 5.1. The basis B2 is used,

and Lemma 3.1 tells us that O(d) rounds suffice. Since each round takes O(1) time,
and the number of processors used is e Is d ], the work is es + ed, as mentioned when
we introduced rule B2. Since d _-< is given, we finish within the time limit.

Case Condition Work

d<=t, d<=x/ es+ed
2 t>=v/, d>v es+ex/
3 d> t, t<x/, s>=n/t es+snZ/t
4 t<d<=t2, t<x/-, s<n/t en/t+sn2/t
5 d > , < x/-, < n/t en/t + sn2/t d- 113/t

FIG. 5.3. Work used by Algorithm 5.2.

Case 2 corresponds to the second node in Fig. 5.1, where we apply R1 with S N//-.
The two subgoals in R1 reduce to S(x/-, x/-, n, e) and S(s, d/x/-+x/-, n, e+ n). Since
d =< n can be assumed, and n_-< e is a global assumption, the second term can be
simplified to S(s, v/d, n, e). B2 applied to the first requires ex/rff work, and B2 applied
to the second requires es + ex/- work. Since >_-x/ is assumed in this case, we finish
within the time limit.

Case 3 is for the third node of Fig. 5.1, where R2 is applied with s nit. The
terms of R2 simplify in this case to S(n/t, t, n, e), D(n/t, d/t, n/t), and S(s, t, n,
e+ n2/t2). B1 applied to the middle term takes work n3/t and can be done within
any time limit, since it requires only polylog time, and even 1 really means O(1)
according to our conventions. The first term, with basis rule B2, requires en/t + et, and
the third term with B2 requires (e+ n2/t2)(s+ t). If we expand all these terms we get

H en sn 2
H
2

--+h-m+t et + es + --.t
Because e--> n, we can eliminate the last term in favor of the second. As s >= n is
assumed in Case 3, we can eliminate the first term in favor of the fifth, and we can
eliminate the second in favor of the fourth. Finally, we claim that s > t, because <
is given. That, with s >_ n t, gives us s > v/-, which in turn exceeds t. Thus, the third
term, et, can be eliminated in favor of the fourth, es.

Cases 4 and 5 correspond to the last two nodes of Fig. 5.1, where d > t, <
and s < n are assumed, and R3 is used. R3, with Sl n simplifies to the subgoals
S(n/t, t, n, e), S(s, d/t, n/t, nZ/t2), and S(s, t, n, e+sn/t). B2 applied to the first
subgoal yields work e(n/t + t), but since <x/if, we know that n/t> t, and we can
write this work as en/t. B2 applied to the last subproblem requires work (e + sn/t)(s + t).
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In Case 4, where d <_-t2, that is, d <-t, there is enough time to apply B2 to the
middle subgoal. Thus, the work for that subgoal is n2(s q- d/t)/t2. These expressions,
expanded out, are

en s2n sn2 dn2

+ es + et + + sn + -(5.5) --Remembering that n <_- e and s < n/t eliminates the second and fifth terms in favor of
the first. Again reasoning that < n whenever < x/ eliminates the third term in
favor of the first. In Case 4, we have d/t <-t, so we can eliminate the seventh term by
noting that dn/t <-_ n2/t. Then we use n _-< e to eliminate the last term in favor of the
first. Finally, we use the fact that s < n to eliminate the fourth term in favor of the
sixth. We are thus left with only the first and sixth terms, en/t + sn2/t.

In Case 5, we have d > 2, so we use R2 with s--n on the middle subgoal.
The first and last subproblems when we initially expanded S(s, d, n, e) by R3 yield
the first five terms of (5.5), which by the reasoning above simplifies to en/t+ sn/t.
The middle term D(s, d t, n t), which stands for S(s, d t, n t, n2/ t2), when expanded
by R2 yields the subproblems S(n/t2, t, n/t, nZ/t2), S(n/t2, d/t2, nit2, nz/t4), and
S(S, t, n/t, n2/t2). Note that we can neglect the "+s" term in the number of edges
of the last subproblem, because the graph is already dense. If we apply B2 to the first,
we get work n3/t4+ n2/t; B1 applied to the second uses work n3/t6; and B2 on the
third uses $n2/t2+ n2/t. Thus, all the terms in the expression for work are

en s2n n n n S?l
2

t4+T - 2"

Evidently, the fifth term can be eliminated in favor of the third, and the fourth
in favor of the first. The second can be eliminated in favor of the sixth, because s < n/t
is assumed in Case 5. Thus, the remaining terms are en/t + sn2/t2 d- n3/t4, as stated in
Fig. 5.3. fq

A Las Vegas algorithm. We can modify Algorithm 5.2 to check the validity of its
answer, using O(es) work and O(1) time. As we shall see in the next section, the work
required by Algorithm 5.2 is f(es) in any of the five cases of Fig. 5.3; thus the additional
work and time used by this modification can be neglected. Suppose we have a set of
nodes X deemed by the algorithm to be reachable from source node v. Examine the
arcs out of each node in X, in parallel, and if any are found to enter a node not in
X, then we conclude that our answer is incorrect. However, if for each source node,
the set of reachable nodes is closed under successor, then we claim the answer is
correct. We cannot say we reach a node not actually reached, because all paths found
are real paths. We cannot say we fail to reach a node that we actually reach, or else
some set X, ostensibly the nodes reachable from some source v, would have an arc to
a node not in X.

We can thus modify Algorithm 5.2 to be a Las Vegas algorithm by adding the
check for validity just described. If the check fails, then we repeat the algorithm, until
eventually the test succeeds. Since there is positive probability that the algorithm
succeeds on any given round, the expected time of the algorithm is still O(t), and the
expected work is as given in Fig. 5.3.

6. Optimality of the general algorithm. We shall now show that Algorithm 5.2 is
the best we can do, given the tools at handmrecursive rules R1 through R4 and basis
rules B1 and B2. First, define an instance of the transitive-closure problem to be a
4-tuple I (s, d, n, e), representing the arguments of the problem S(s, d, n, e). Then,
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define a strategy for solving instance I with time limit to be a tree with the following
properties.

(1) Every node is labeled by an instance.
(2) The root is labeled/.

(3) Each interior node is also labeled by a recursive rule, R1, R2, R3, or R4.
Optionally, we attach the value of the key parameter, sl or k, to help the reader follow
what is going on.

(4) Each leaf is additionally labeled by a basis rule, B1 or B2.
(5) The interior nodes make sense, in that if interior node v is labeled by instance

J and rule Ri, then the children of v are labeled by the instance(s) found on the right
of the arrow in the definition of Ri, as given in 4.

(6) The leaves make sense, in that if a leaf is labeled by instance (s, d, n, e) and
rule B2, then d_<-t. There is no similar constraint for leaves labeled B1, since that
algorithm can be applied in polylog time.

Example 6.1. Suppose I--(1, n, n, e), that is, single-source, sparse transitive-
closure. Let n 1/3. The solution provided by Algorithm 5.2 is the tree of Fig. 6.2,
since Case 5, as enumerated in Fig. 5.3, applies. Note that we have simplified expressions
in some of the instances by dropping terms that are dominated by other terms. For
example, at the rightmost child of the root, the fourth argument, e+ n2/3, has been
simplified to e.

(1, n, n, e)
R3 (s n 2/3)

(n 2/3, n 1/3, n, e) (1, n 2/3, n 2/3, n4/3) (1, n 1/3, n, e)
B2 R2 (s1= 1/3)

(n 1/3, n 1/3, n 2/3, n4/3) (n 1/3, n 1/3, n 1/3, n 2/3) (1, n 1/3, n 2/3, n4/3)
B2 B1 B2

FIG. 6.2. Solution for single-source transiive-closure with rl
1/3

The cost of a solution is defined recursively, UP the tree. As in previous sections,
costs elide factors of log n. For a leaf, we compute the work for the associated basis
rule, as given in 4: n for B1 and es + ed for B2. The cost for an interior node is the
sum of the costs of its children, if R1, R2, or R3 is used, and k times the cost of its
lone child if R4 is used with parameter k.7

The following function f(I, t) summarizes the cost of the strategy generated by
Algorithm 5.2, as we shall prove. Define

f(I,t)=es+emin(d,v/-ff)+al eT+s /a

where a 1 if d > and a 0 otherwise; O2 1 if d > 2, and O2 "-0 otherwise. We
shall show that f(I, t) is a lower bound on the cost of any strategy for I (s, d, n, e)
with time limit t. First, we show that f(I, t) accurately reflects the cost of the strategy
generated by Algorithm 5.2.

We shall see that R4 can never be used to advantage, but since it is a plausible strategy, we need to
consider its use.



116 J. D. ULLMAN AND M. YANNAKAKIS

LEMMA 6.3. The work of Algorithm 5.2’s strategy, as given in Fig. 5.3, is equal to
that of the function f(I, t) above.

Proof We divide the proof according to the relationship between d and t.
Case A. d<=t. Then al=a2=0, and f(I,t) is es+emin(d,v). Also, only

Cases 1 and 2 of Fig. 5.3 can apply. In Case 1, where d-<_x/-, min (d, v/)= d, so
f(I, t)= es + ed; this formula is exactly that given by Fig. 5.3. In Case 2, d > x/, so
f(I, t)- es + ex/, also as in Fig. 5.3.

Case B. < d <-_ 2. Then a 1, but a2 0. Only Cases 2-4 of Fig. 5.3 can apply.
In Case 2, d > x/-, so f(I, t) is

es + ev/-+ en/ + sn 2/t2.

Since t->_ in Case 2, en/t <_-ev/-, so the second term dominates the third. Also,
sn2/tz<-sn, so the first term dominates the fourth. Thus, the above formula for f(I, t)
reduces to es + ex/, as given for Case 2 in Fig. 5.3.

In Cases 3 and 4, we do not know how d and v compare, so we write f(/, t) as

es + e min d, x/-) + en/ + sn2/ .
In Case 3, we have s >-_ n t, so the first term dominates the third. Also, < v/-, so
s >- n > x/. Hence, es > ex/-, and the first term dominates the second. Thus, f(1, t)
simplifies to the formula for Case 3 in Fig. 5.3.

Finally, consider Case 4. There, s < n/t, so the third term dominates the first.
Also, < x/-, so en/t > ex/, and the third term dominates the second. Thus, f(/, t)
reduces to the formula given by Case 4 of Fig. 5.3.

Case C. d > 2. Then c1 a2 1, and f(/, t) is

es+ e min (d, x/)+ en/t+ snZ/t+ n3/t4.

Here, only Cases 3 or 5 of Fig. 5.3 can apply. If Case 3 of Fig. 5.3 applies, we can
argue as in Case B above that the first term dominates the second and third. Also,
since s >= n t, the fourth term is at least n3/t3, and so dominates the fifth term. Thus,
f(I, t) simplifies to the formula of Case 3 in Fig. 5.3, that is, the first and fourth terms,
above.

If Case 5 holds, then s < n/t and < x/ tell us that the third term dominates the
first and second, which reduces the above formula to that of Case 5 in Fig. 5.3.

LEMMA 6.4. Without loss of generality, we may assume that the optimal strategy
does not use R4.

Proof Note that f(I, t) never grows more than linearly with s. Each term is either
independent of s or linear in s. In particular, c and a are independent of s, and so
cannot, by their discontinuity, make Of/Os exceed one. Thus, if a strategy uses R4 with
parameter k at an interior node v, and that node has child with label I (s, d, n, e),
we can eliminate that child and multiply the number of sources by k in each descendant
whose number of sources depends on s. Note that the validity of a strategy can only
depend on the relationship between the distance and the time limit, so the strategy
cannot be rendered invalid by this transformation. We have multiplied the cost of each
descendant of v by at most k, and thus the cost of v itself has not increased, since we
no longer have to multiply the cost of v’s child by k to get the cost of v.

THEOREM 6.5. The cost ofany strategyforsolving I(s, d, n, e) in time is (f(I, t)).
Proof By Lemma 6.4 we may assume that the strategy does not use R4. We

proceed by induction on the height of the tree T for the strategy in question.
Basis. If the tree T is a leaf labeled B1, then the cost of the strategy is n 3, and

we note that no term off(I, t) exceeds n3. If the leaf is labeled B2, then we must have
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d <- t. Thus, O O2 0, and f(/, t)= es+ e min (d, x/). The cost of T is es+ ed, which
cannot be less than f(/, t).

Induction. The root of T is labeled by R1, R2, or R3. We shall consider each of
the five possible terms off(/, t)" es, emin (d, x/), en/t, sn2/t2, and El3/t4, and show
that, when that term is present in the formula for f (i.e., the appropriate a is one, if
necessary), then one of the subproblems for the rule used also has at least that term.

(1) Term es. Each of the rules R1, R2, and R3 contains on the right an instance
with s sources and at least e arcs. By the inductive hypothesis, the cost of
that subproblem is bounded below by f, and so has a term e’s for some e’-> e.

(2) Term e min (d, x/if). On the right-hand side of each recursive rule, the first
subproblem has Sl sources, distance n/Sl, n nodes, and e arcs. By the induction
hypothesis, the cost of this subproblem is at least esl + e min (n/sl, v/if), which
is at least ex/, because either Sl => or n! s >= v/-.

(3) Term en/t. Here, we may assume c 1, that is, d > t. We consider the first
subproblem of each rule, which is (s, n/s, n, e), and branch depending on
whether .n/s <- t.
(a) n/s <= t. Then the cost of the first subproblem includes, by the inductive

hypothesis, a term esl. Since n/s1 <- t, this term is at least en/t.
(b) n/s > t. Since n/s1 is the distance in the first subproblem, the value off

for that subproblem has eel 1, and thus includes term en/t.
(4) Term sn2/t2. We distinguish the same two subcases as in (3). In Case (a),

where n/s <= t, note that each rule has a subproblem with s sources and at
least s2 arcs; this subproblem is the last in R1 and R2, and the second in R3.

2The cost for this subinstance includes a term sls, which is at least sn2/t2, if
Case (a) holds. In Case (b), the last subproblem of each rule has s sources,
n nodes, and distance at least n/s1, which exceeds in Case (b). Thus, c 1
for this subproblem, and its cost includes a term sn2/t2 by the inductive
hypothesis.

(5) Term El3/t4. Here, we may assume a =a2= 1. There are three subcases,
depending on how n/s compares with and
(a) If n/s > , then for the first subproblem of each rule, the value of c is

one. Thus, the cost of this subproblem includes term 1/3/t4 by the inductive
hypothesis.

(b) If < n/s <= , then a for the first subproblem is one, and the cost of
that subproblem includes a term sln2/t. Since n/s <- 2 is assumed, we
have s >- n/t2, and therefore sn2/t2 FI3/t4.

(c) If n/s<=t, then ds/n>=d/t> t’, the latter inequality follows because
a2-1 for the instance at hand, or else we would not have to deal with
the term n3/t4 at all. For each of rules R1, R2, and R3, the second
subproblem, call it S(s’, d’, n’, e’), satisfies n ’>--- S, e’>s2--, and d ’>=
ds/n > t. By the latter, the a bit for this subproblem is one, and its cost
includes the term e’n’/t >- s3/ >-_ El3/t4. [’]

COROLLARY 6.6. The strategy of Algorithm 5.2 is optimal.
Proof The cost of that strategy is exactly that given by f(I, t), as we learned from

Theorem 5.4 and Lemma 6.3.

7. Important special cases. The most important instances of the general transitive
closure are:

(1) S(1, n, n, e), or sparse, single-source.
(2) S(n, El, n, e), or sparse, all-pairs.
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(3) S(1, n, n, n2) D(1, n, n), or dense, single-source.
(4) S(n, n, n, n2) D(n, n, n), or dense, all pairs.

All these have d, the distance, equal to n, the number of nodes, and have s, the number
of sources, equal to one or n.

All-pairs problems. When we let s d n in the formula f(/, t) of the previous
section, we are left with the expression

en + ev/-+ a(en/ + n3/ ) + a2n3/ 4.

Also, we note that since d n, a 1 as long as < n, which is the interesting case,
and a2 1 whenever < q. We may therefore drop the last term, a_n3/t4, since
whenever it is nonzero, it is dominated by the term aln3/t. Moreover, the second and
third terms are clearly dominated by the first, so we can write

(7.1) f(n, n, n, e, t) en + n3/ 2.

Note that we do not need the factor a on the second term, since whenever a 0,
n3/t is no larger than n, and therefore is dominated by the first term anyway. Figure
7.2(a) gives the strategy for the all-pairs case, when => x/if; here, Case 2 of Fig. 5.3
applies, and the cost is en. Figure 7.2(b) shows the strategy when < x/if; here Case 3
of Fig. 5.3 pertains.

(x/-, q, n, e)
B2

(n, n, n, e)
R1 (s q-)

(n, x/, n, e)
B2

(a) --> x/.

(n,n,n,e)
R2 (s n/ t)

(n/t, t, n, e) (n/t, n/t, n/t, n/t) (n, t, n, e+na/t)
B2 B1 B2

(b) < v/.

FIG. 7.2. Strategies for the all-pairs problem.

A useful simplification is to assume that n for some small e, and e n", for
some a between one and two. In (7.1), the en term dominates as long as a-> 2-2e.
We can thus solve the all-pairs problem optimally, as long as the graph is not too
sparse. For time x/if, that is, e , there is no constraint on e, but as the time shrinks,
the number of arcs must increase if the algorithm is to be optimal, until as the time
approaches polylog time, the graph must be dense.

The dense, all-pairs problem. In the dense case, where e n 2, (7.1) reduces to n 3.
That is, our algorithms offer no help for the dense, all-pairs problem. In that case, the
basis rule B1 is as good a strategy as we know.

Single-source problems. Now, let s 1 and d n in the formula f(I, t). The
resulting formula is

e+ ex/+ a(en/ + n/ t) + an/ 4.
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Again, O 1 as long as < n, and 42 1 whenever < x/ft. Now, note that n2/t2 can
never exceed en! t, so we may eliminate the fourth term. The first term is clearly
dominated by the second. We can thus write

(7.3) f(1, n, n, e, t)= ex/-ff + en/t+ n3/t4.

We do not need multipliers 41 or 42 on the last two terms, because when one of the
a’s is zero, its term is always dominated by the first term.

Figure 7.4(a) shows the strategy of Algorithm 5.2 for the single-source problem
when >_- x/. It represents an alternative to Algorithm 2.3, which was defined only for
the case v/, but evidently works for larger t.

(1, n, n, e)

(v, v, n, e) (1, x/if, n, e)
B2 B2

(a) -> x/.

(1, n,n,e)

(n/t, t, n, e) (1, n/t, n/t, n2/t2) (1, t, n, e)
B2 R2 (Sl-- /t2)

(nit2, t, n/t, n2/t2) (nit2, nit2, nit2, n2/t4) (1, t, n/t, n2/t2)
B2 B1 B2

(b) < x/.

FIG. 7.4. Strategies for the single-source problem.

If we assume n for e_<-1/2, then the ex/ term in (7.3) can be dropped. The
term en/t dominates as long as e n, and c _-> 2- 3 e. Put another way, we can solve
the problem with time O(n) and work ((en1-) (i.e., en-2 processors), as long
as e->_ (2-a)/3. For example, even in the sparsest case, a 1, we can use ((r//3)
time and ((n4/3) processors.

The dense, single-source problem. For the dense case, (7.3) reduces to n25+//3/t,
or just n3/t if we assume that only t_-<x/ is of interest. Thus, for the single-source
problem, even in the dense case we offer some improvement over the obvious solution
of applying B 1; the more time we are willing to take, up to v/if, the more improvement
in the total work we achieve. Note, however, that if is polylog in n, then we achieve
nothing, since n3/t stands for )(n3/t), which is 6(//3) in this case. Thus, B1 is still
the best algorithm we know for the dense, single-source problem.

8. Extension to breadth-first search. Ideally, we would like the techniques
described here to work for generalized transitive closure, such as shortest paths, or
even general closed semirings, as in Aho, Hopcroft, and Ullman [1974]. We cannot
do so, principally because the efficiency associated with basis rule B2 depends on each
node being reached with only one fact about any distinguished node. However, we
can push our techniques somewhat further. Recall that the single-source BFS (breadth-
first-search) problem of Gazit and Miller [1988] is to find, for each node v, the least
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number of arcs on the paths from the source node to v. Alternatively, we can view
BFS as the special case of the shortest-path problem when the arcs all have unit length.
We can solve the single-source BFS problem in the time given by (7.3); it is not known
whether the same holds for the all-sources BFS problem and formula (7.1).

We shall discuss only the hard (and interesting) case where <-x/ft. The strategy
we use is similar to that illustrated in Fig. 7.4(b) for single-source transitive closure.
First, we select O(n/t) "distinguished nodes" and explore distance from them. Then,
we select from among the distinguished nodes O(n/t2) "superdistinguished nodes,"
and solve a restricted search problem from these. There are sufficiently few super-
distinguished nodes that we can compute all shortest paths among them with work
(n/t2)3-- n3/t6, by conventional means.

As we remarked in 2, the technique for step (2) of Algorithm 2.3 is not essential,
except to save a factor of log n. We can instead use e/t processors to search forward
from any one distinguished node for distance in time (3(t), as follows. The algorithm
is essentially a breadth-first-search, in which we divide the graph into layers according
to the length of the shortest path from the given source. Suppose we have constructed
the first layers and marked all nodes that have been reached.

(1) The arcs out of the nodes on layer are divided evenly among the e/t
processors.

(2) Each processor finds the unmarked nodes reached by these arcs, and marks
them as belonging to layer + 1. The reached nodes become layer + 1.

(3) A list of the nodes on layer i+ 1 is made, eliminating duplicates, and a count
of the arcs out of this layer is made, to facilitate step (1) for layer + 1.
Starting with only the given distinguished node in layer zero, we can construct layers
upto t.

LEMMA 8.1. The above construction correctly computes the length of the shortest
path from the given source w to each node that is at distance at most from w. It takes
parallel time (t).

Proof The correctness should be evident. Subtlety is in the running time.
Intuitively, each arc is explored only once, so while we may spend a lot of time
processing one layer, the total time spent on all the layers is (3(t). Let ei be the number
of arcs out of the nodes at layer i, and note that 5:i=o e <= e. The time spent processing
layer is easily seen to be O(eit/e); the principal costs are exploring the arcs in step
(2) and sorting in step (3). But

eit/e<=(t/e) ei<=t.
---0 =o

Thus, the total time over all layers is 0(t).
Note that the total work performed by the algorithm outlined above is O(en/t).

That is, there are O(n/t) distinguished nodes, with e/t processors assigned to each.
The total number of processors, en/t, is multiplied by the time, (t), to get the total
work.

Search from superdistinguished nodes. If we pick O(n/t) distinguished nodes at
random, and include the single source among them, we can use the above algorithm
to search from each distinguished node with work O(en/t) and time ((t). The result

Note that we cannot do so for the graph of the distinguished nodes, because that would take (n/t)
work, which is larger than the 113/t term of (7.3). However, one more level, to the superdistinguished nodes,
gets us down to work 113/t6, which can be neglected when compared with the 113/t term.
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will tell us all the paths from one distinguished node to another, provided that path
is of length or less. More formally, if we have discovered that searching from
distinguished node wl, we can reach distinguished node w2, and the layer of we with
respect to wl is i, then i-<_ t, and is truly the length of a shortest path from w to w2.
Conversely, if we have not discovered a path from w to w2, then the length of a
shortest path from w to w2, if it exists, is greater than t.

We could use a conventional path-doubling-by-matrix-multiplication algorithm
to find the lengths of the shortest paths between each pair of distinguished nodes, in
the graph of distinguished nodes whose arcs are weighted by the lengths of the paths
found between nearby distinguished nodes. However, that would take work ((n3/t3),
and we need to do better, specifically )(n3/t4).

Thus, we construct the graph H of distinguished nodes with weighted arcs
representing shortest paths up to length t, but before proceeding, we select at random
O(n/t) superdistinguished nodes for this graph. We also include the original source
node among the superdistinguished nodes. We shall compute the lengths of shortest
paths between every pair of superdistinguished nodes first. Note that arcs in H have
weights up to t. "Shortest" refers to weighted path length, not to the number of arcs.
However, paths in H represent paths in the original graph, and the weighted path
length in H equals the length (number of arcs) on the corresponding paths of the
original graph.

The idea is illustrated in Fig. 8.2. We start from some superdistinguished node x,
and look at a shortest path in H from x to some (distinguished) node y. We divide
the nodes along the path, all of which are distinguished, into layers according to the
length of their shortest path from x; the layers each have width t; that is, the first layer
consists of nodes with shortest paths from x of length up to t, the next of nodes with
shortest paths from + 1 to 2t, and so on. There are n layers, since each path among
the distinguished nodes represents a path in the original graph of n nodes, and therefore
has length at most n. However, we shall only want to consider the first layers, and
thus discover paths of length up to 2 in the original graph; as we shall see, these paths
are represented by paths with at most 2t arcs in the graph H.

Y

FIG. 8.2. Shortest weighted path from x to y.

3t

2t
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When we performed a breadth-first-search in the original graph of n nodes, we
could proceed layer by layer, since the arcs were unweighted, and each layer could
be constructed directly from the one below. We are not so fortunate in the graph of
distinguished nodes, since now arcs have weights up to t, and even if we regard layers
as having width t, as suggested by Fig. 8.2, we cannot compute each layer directly
from the one below. Fortunately, we can do so in two passes, as the next lemma argues.

LEMMA 8.3. In the graph of distinguished nodes, a shortest path from x to y may
be assumed not to have three consecutive nodes in one layer.

Proof Suppose wl, w2, and w3 are three consecutive (distinguished) nodes belong-
ing to the same layer, and lying on a shortest path from x to y. Then the path from
wl to w3 is not longer than t, and by Lemma 8.1, the search for distance from
distinguished node wl in the original graph reached w3. Thus, H has an arc wl w3,

whose weight cannot be greater than the sum of the weights of the arcs w w2 and
w2 w3, since all such arcs are weighted with true shortest path lengths. It follows
that we could have eliminated w from the shortest path from x to y. [3

Thus, we can build the shortest-path information layer by layer, if we use two
passes per layer, one to discover nodes of that layer whose predecessor on the shortest
path from a given superdistinguished node is in the previous layer, and a second to
discover nodes with one previous node on the shortest path that is in the same layer.
Of course, no node can have a shortest path where the previous node is not in the
same or next-lower layer, because arc weights are limited by t.

(1) For each node w in layer i, whose distance from superdistinguished node x
has been calculated to be j (thus, (i-1)t <j_-< it), consider each arc in the graph of
distinguished nodes out of w. If j plus the weight d of that arc exceeds it, the arc
enters node u, and u is not in a layer below + 1, then generate a fact that there is a
path from x to u of length j + d. Note that j + d <- (i + 1) t, so u belongs to layer + 1.

(2) Sort the generated facts by target node, and eliminate distances for each node
other than the minimum. Note that the resulting distance for a node u in layer i+ 1
may not yet be minimum, since there may be another node in layer i+ 1 that the
shortest path from x to u goes through. However, if u is a node of layer i+ 1 such
that the shortest path from x to some other node v in layer + 1 goes through u, then
the shortest path to u is already correct, or else the shortest path from x to v goes
through three nodes in layer + 1, contradicting Lemma 8.3.

(3) Examine each node u already in layer i+ 1; say the current estimate of the
length of the shortest path from x to u is k. For each arc out of u, of weight c and
reaching v, generate the fact that there is a path from x to v of weight k + c, provided
k+c<-(i+l)t.

(4) Again sort all the facts, including those remaining from step (2), according
to their target node, and for each target node select the shortest path for that node.
The result is that all nodes of layer + 1 are found and have the length of their shortest
path from x calculated.
The complete algorithm for searching from each of the t)(n/t2) superdistinguished
nodes for weighted distance is to use n2/t processors for each of the O(n/t)
superdistinguished nodes, and use them to perform the above search for layers. Thus,
all paths between superdistinguished nodes of length at most are found. Note that
the length 2 can be thought of either as weighted path length in H, or as number of
arcs in the original graph.

LEMMA 8.4. The above steps correctly compute all shortest paths among super-
distinguished nodes, provided those paths are of length at most . Furthermore, the time
taken is O(t), and the total work is O(n3/t4).
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Proof Correctness follows from Lemma 8.3. For now, note that there are 0(n/t)
nodes in the graph of distinguished nodes, and therefore at most O(n2/t2) arcs. Each
arc is considered at most twice, in steps (1) and (3). Thus, by an argument similar to
that of Lemma 8.1, we can conclude that the time taken by the n2/t processors assigned
to each superdistinguished node as a source, summed over each of the layers, is at
most O(t). Since there are O(n/t2) superdistinguished nodes, the total number of
processors is n3//5, and when we multiply this figure by the time taken, we get total
work of (n3/t4). []

The complete algorithm. We can now put together the ideas summarized in
Lemmas 8.1 and 8.4 to get an algorithm that uses work en/t + n3/t4. 9

ALGORITHM 8.5. Single-source breadth-first search.
INPUT." A graph G of n nodes and e arcs, and a source node Vo. Also, a time limit _-< v/-.
OUTPUT: For each node v in G, the length of (number of arcs on) a shortest path from
Vo to v.
METHOD" We perform each of the following steps.
(1) Pick ((n/t) distinguished nodes at random, and add Vo to the set of distinguished

nodes, whether or not it was picked.
(2) Perform a breadth-first search from each distinguished node for distance t, by the

technique outlined prior to Lemma 8.1.
(3) Construct graph H whose nodes are the distinguished nodes selected in step (1).

There is an arc u- v in H, weighted d, if in step (2) it was determined that a
shortest path from u to v is of length d <_-t.

(4) Select ((n/t2) superdistinguished nodes in H, and include Vo among them, whether
or not it was picked.

(5) Explore H from each superdistinguished node for layers (weighted distance t2),
using the technique outlined prior to Lemma 8.4.

(6) Construct a graph J of the superdistinguished nodes, with weighted arcs as
discovered in (5). Compute shortest paths in J by path-doubling-by-matrix-multi-
plication, using ((t) time and )(n3/t6) work, since the number of nodes is
O(n/t2). Since Vo is among the nodes of J, we now have the length of the shortest
path from Vo to each superdistinguished node, which we may regard as a vector
of length 0(n/t2).

(7) Treat the information obtained in step (5), giving shortest paths of length up to
2 from the superdistinguished nodes to all distinguished nodes as an O(n/t2)
O(n/t) matrix. Multiply this matrix by the vector from step (6), using + for scalar
multiplication and min for scalar addition, thus obtaining the length of the shortest
path from Vo to every distinguished node. The obvious algorithm can be performed
in time ((t) and work )(n2/t3). Again, regard this information as a vector, this
time of length O(n/t).

(8) Treat the information obtained in step (2), giving.shortest paths of length up to
from the distinguished nodes to all nodes, as an O(n/t) n matrix. Multiply this
matrix by the vector from step (7), again using + for scalar multiplication and
min for scalar addition. The result is the length of a shortest path from Vo to every
node. The obvious algorithm can be performed in O(t) time and 0(/12/t) work.

THEOREM 8.6. Algorithm 8.5 is correct with high probability.
Proof If we pick (cn log n)/t distinguished nodes, for sufficiently high e, we can

make the probability as high as we like that there is a distinguished node within

As mentioned, we assume <=x/. Thus, the term ex/ in (7.3) can be neglected.
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every nodes along a shortest path from v0 to any node. Likewise, by picking
(cn log n)/t2 superdistinguished nodes, we can assume with high probability that there
is a superdistinguished node at least every 2 nodes along every shortest path. Con-
sequently, with high probability, the transitive-closure J computed at step (6) is correct,
and at step (7), we correctly have the length of a shortest path from Vo to every
superdistinguished node. We may regard any shortest path as traveling from Vo to
some superdistinguished node (perhaps v0 itself), then through a distance less than I,
through at most 2t distinguished nodes, and finally through nondistinguished nodes
for a distance of at most t. Step (7) takes us from the last superdistinguished node to
the last distinguished node, and step (8) takes us the rest of the way.

THEOREM 8.7. Algorithm 8.5 takes time t(t) and work O(en/ + n3/ t4).
Proof It is easy to check that each step can be done within O(t) time. Steps (1)

and (4) can be done with ((n) work, as discussed in connection with Theorem 3.4.
The work of step (2) is O(en/t) by Lemma 8.1. Step (3) is easily seen to take O(n2/t2)
work. Step (5) requires O(n3/t4) work by Lemma 8.4. Step (6) takes )(n3/t6) work,
step (7) uses O(n2/t3), and step (8) requires O(nZ/t), as discussed in Algorithm 8.5.
It is easy to check that each of these terms is dominated by either en/t or n3/t4,
assuming _-< v.

9. Open problems. We may have made some progress toward the real goal of
deterministic, optimal parallel algorithms for single-source and sparse cases of transi-
tive-closure and related problems, such as shortest paths. There is a long sequence of
open problems suggested by these results. We enumerate some of them here.

(1) Can the algorithms be made not to depend on probabilistic choice: that is,
are there deterministic algorithms with the same performance?

(2) Can we reduce the work still further, using a one-sided-error, high-probability
algorithm, like the ones presented here?

(3) Can we generalize the algorithm for sparse, all-pairs transitive-closure to the
breadth-first-search problem? Note that work en + n3/t is achievable, which is better
than the obvious algorithm, but does not match the bound of (7.1).

(4) Does any of this material generalize to the general shortest-path problem,
where arcsinitially have arbitrary weights?
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COMPLEXITY OF SENTENCES OVER NUMBER RINGS*

SHIH PING TUNG?

Abstract. Let I be an algebraic integer ring. The decision problem of the solvability of diophantine
equations with parameters in I is proved to be co-NP-complete. However, the decision problem of the
solvability of diophantine equations with parameters in all algebraic integer rings is in P. Let (x, y) be a
quantifier-free arithmetical formula in conjunctive normal form or disjunctive normal form. The decision
problem of the sentences of the form :lxly (x, y), true in I, is NP-complete. Then the decision problem
of the sentences of the form /x::iy (x, y), true in I, is co-NP-complete, whereas the decision problem of
the sentences of the form fx::ly q(x, y), true in all algebraic integer rings, is in P. Some other related decision
problems are also proven to be in P.

Key words, arithmetical sentences, diophantine equations with parameters, factorization of polynomials,
algebraic integer rings, P, NP-completeness
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Introduction. In this paper, we will study the computational complexity of some
decision problems on arithmetical sentences over algebraic integer rings. These prob-
lems arise quite naturally, but previously we did not even know that these problems
were decidable.

The language L, used in this paper, contains all the usual logical symbols: ^ (and),
v (or), --n (negation), (implies), :> (if and only if), El (there exists), ’ (for every),

(equals), with constants over Z, variables, and arithmetical symbols + (addition)
and (multiplication). An arithmetical sentence is a sentence constructed from the
language L. The arithmetical theory of a ring R is the set of all arithmetical sentences
true in the ring R. The arithmetical theory of a class of rings is the set of all arithmetical
sentences that are true in every ring of the class. An arithmetical theory is decidable
if there is an algorithm to determine whether a given arithmetical sentence is in this
set or not. If there is no such algorithm, then the theory is undecidable.

By Godel’s incompleteness theorem, the arithmetical theories of the set of non-
negative integers N and the ring of rational integers Z are undecidable. Robinson [21]
proved that the arithmetical theory of the rational number field Q is undecidable. Later
she proved that the arithmetical theories of an algebraic number field and an algebraic
integer ring are undecidable [22]. Robinson [23] also proved that the arithmetical
theories of some other rings of algebraic integers are undecidable.

Hilbert’s tenth problem asks if there is a decision procedure so that given a
diophantine equation, we can tell whether this equation is solvable in Z or not. This
is equivalent to asking the decidability of the true sentences in Z with the form

ElXl’’" Elx,,f(xl,’", x,,)=0 for the arbitrary polynomial f(xl,’’’, x,,) over Z. From
the work of Davis, Putnam, Robinson, and Matijasevic, this problem was shown to
be undecidable (cf. [3]). Denef and Lipshitz [4], [5], [6] extended this undecidable
result to some rings of algebraic integers. Having all these undecidable results, we can
then ask what subsets of these theories are decidable. And we can further ask what
the computational complexities of these decidable cases are.
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It was shown 18] that for binary quadratics of the form ax2 q- by , a, b, c N,
the problem of deciding whether it is solvable in N is NP-complete. Manders and
Adleman also showed that the problem of deciding whether, for a, b, c of N, x2= a
(mod b), 0 -< x =< c, has a solution in N is NP-complete. Those decision problems can
be easily shown in NP, because there is a bound on the size of possible solutions to
either problem given by a polynomial in the coefficients a, b, and c. Baker has shown
that various diophantine equations in two unknowns are decidable 1 ]. But the decision
problem of diophantine equations in two unknowns, in general, is still open.

Given a polynomialf(Xl, , x,, y), we may ask whether or not for any n numbers
x, , x’ the equation f(x, , x’, y) 0 is solvable, or equivalently, the sentence
VXl Vxn:iyf(xl, , xn, y) 0 is true. This problem is called diophantine equations
with parameters in number theory [24]. The decision problem of the solvability of
diophantine equations with parameters over N is undecidable [27]. This follows quite
easily from the negative answer to Hilbert’s tenth problem over N. We do not know
the answer to this decision problem over Q, but a positive answer to this decision
problem implies a positive answer to Hilbert’s tenth problem over Q. This is still an
outstanding open problem. However, in [27] we proved that the solvability of diophan-
tine equations with parameters over an algebraic integer ring is decidable. In this
paper, we will prove that this decision problem is co-NP-complete if the number of
parameters is bounded by a number greater than 0.

We call p an V:I or =iV sentence if and only if p is an arithmetical sentence
logically equivalent to a sentence of the form Vx:y d/(x, y) or :lxVy @(x, y), respec-
tively, where 0(x, y) is a formula containing no quantifiers and no other free variables
except x and y. A formula p is in conjunctive normal form (CNF) if it has the form
q ql ^ q ^ ^ 0,, where q (oi, v (9i,2 v V (Oi, mi and each q, is an equation
f=0 or inequation g0. A disjunctive normal form (DNF) formula is defined
analogously except that the symbols v and ^ are interchanged. Every formula can be
transformed to one in CNF or DNF. In general, this transformation will take exponen-
tial time. Let K be an algebraic number field. We showed that there is a polynomial
time algorithm to decide whether or not a given EIV sentence in CNF or DNF is true
in K [32]. In this paper, we will show that for every algebraic integer ring I, the
decision problem of :iV sentences in CNF or DNF true in I is NP-complete. It follows
that the similar problem for V:I sentences is co-NP-complete. We also will prove that
there is a polynomial time algorithm to decide whether or not a given V:I sentence in
CNF or DNF is true in every algebraic number ring. We then will prove that some
related decision problems are in P.

Now we introduce our decision problems in the format used by Garey and Johnson
[7]. We would like to emphasize the fact that if the decision problem is asked over a
specific algebraic integer ring (AIR) I, then we have to include a monic, irreducible
polynomial g(t) Z[ t] in the instance. The ring I is the ring of integers of the algebraic
number field Q[t]/g(t). Also in this case we extend the language L to include all the
constants of I. This means that the formula may contain the elements of I, not just
the elements of Z.

Instance:
Question:

Instance:
Question:

V:l EQUATION OVER AIR
Polynomial f(x, , x, y) over I and polynomial g( t).
Is Vx Vx=lyf(xl, , xn, y) =0 true in I?

:::I"V INEQUATION OVER AIR
Polynomial f(xl, Xn, y) over I and polynomial g( t).
Is :lX =lxVyf(xl, Xn, y) 0 true in I?
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Instance:

Question:

V=! (=IV) SENTENCE OVER AIR
CNF or DNFformula q(x, y) containing no otherfree variables except
x, y, and polynomial g(t).
Is Vx::ly q(x, y) (::IxVy q(x, y)) true in I ?

Instance:
Question:

V"=I EQUATION OVER ALL AIR
Polynomial f(xl, ", x,,, y) over Z.
Is Vxl... Vx,:lyf(x,...,x,,y)=O true in every algebraic integer
ring ?

Instance:

Question:

V=I SENTENCE OVER ALL AIR (CIR, RIR, BIR)
CNF or DNFformula q(x, y) containing no otherfree variables except
x and y.
Is Vx:ly q(x, y) true in every algebraic (cyclic, radical, abelian) integer
ring ?

Notice that V"=i EQUATION OVER AIR is the complement of
INEQUATION OVER AIR. Also, because the negation of a CNF formula is a DNF
formula and vice versa, V=! SENTENCE OVER AIR is the complement of =IV
SENTENCE OVER AIR. With the exception of V"=I EQUATION OVER AIR and
thus =I"V INEQUATION OVER AIR, all other problems have not been previously
shown to be decidable. The decidability of V=l sentences true in Z or Q is proved in [28].

The main results of this paper are as follows:
THEOREM 3.2. =lnV INEQUATION OVER AIR is NP-complete.
COROLLARY 3.3. Vn=i EQUATION OVER AIR is co-NP-complete.
THEOREM 3.6. =IV SENTENCE OVER AIR is NP-complete.
COROLLARY 3.7. Vzi SENTENCE OVER AIR is co-NP-complete.
THEOREM 4.3. ’"=i EQUATION OVER ALL AIR is in P.
THEOREM 4.5. ::1 SENTENCE OVER ALL AIR is in P.
COROLLARY 4.6-4.8. V::! SENTENCE OVER ALL RIR (CIR, BIR) is in P.
This paper is a continuation of our study on arithmetical sentences [27]-[32].

1. Preliminaries. An element a is algebraic if and only if a satisfies an equation
with coefficients in fhe rational number field Q. An extension field F is algebraic over
Q if and only if every element is algebraic. It is well known that every finite extension
field is algebraic; the finite extensions of Q are called algebraic number fields. An
extension field F of Q is a cyclic (abelian) extension field if and only if F is algebraic
and Galois over Q and the Galois group of F over Q is a cyclic (abelian) group. An
extension field F of Q is a radical extension field if and only if F Q(u,. ., u),
some power of u lies in Q and for each _-> 2, some power of u lines in Q(u, , u_l).

An algebraic number a is an algebraic integer if and only if it is a root of a monic
polynomial over Z. The set of algebraic integers of an algebraic number field forms a
ring; it is called an algebraic integer ring. For the remainder of this paper we shall
write K to denote an algebraic number field and I to denote the ring of integers of
K. If K is a cyclic, abelian, or radical extension field, then we call ! a cyclic, abelian,
or radical integer ring, respectively.

Every algebraic number field K can be given as the field of rational number Q
extended by a root a of a prescribed minimal polynomial g(t) Z[ t] with the leading
coefficient equal to 1; i.e., K -Q(c)-Q[t]/g(t). In our algorithms, we will work with
the number field in its formulation as Q[t]/g(t), although certain of our proofs will
be in terms of K or Q(a).
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This is the traditional representation of algebraic numbers. We can also represent
algebraic numbers by suitable rational approximations. By the work of Kannan, Lenstra,
and Lovfisz 10], the computations in either representation can be changed to computa-
tions in the other without the loss of efficiency. All the problems discussed in this
paper, however, are still in the same computational complexity class no matter which
representation is used.

Let/3 be an algebraic integer of K, then Z[/3] is a subring of L In general, these
two rings are not equal. However, every algebraic integer ring I has an integral basis
[19]. That is, there exist elements w, w2,’’ ", w,, of I such that every element a of
I is of the form a awl+’’ "+a,,w,,, where al,..., am are elements of Z. Notice
that by the construction of an integral basis Wl, , OOm of I in 19], we may take Wl 1.

The notations about the computational complexity in this paper are taken from
Garey and Johnson [7]. P is the class of sets S of strings such that there exists a
deterministic Turing machine M and a polynomial f such that M accepts S and for
all inputs x to M, M halts within f(Ixl) steps (where Ixl is the length of the input
of x). NP is the class of sets S of strings such that there exists a nondeterministic
Turing machine M and a polynomial f such that M accepts S and for all inputs x to
M, one computation path of M halts within f([xl) steps. Also, co-NP is the class of
sets S such that the complement of S is in NP. Let A and B be sets of strings. A is
polynomial time reducible to B if there is a function F computable in polynomial time
such that for all x, x belongs to A if and only if F(x) belongs to B. A set B is
NP-complete if it is in NP and for all A in NP, A is polynomial time reducible to B.
A set B is co-NP-complete if the complement of B is NP-complete. In measuring
computational complexity of arithmetical sentences, the polynomials are input in
nonsparse form, i.e., if polynomial f contains the monomial axl x# with a 0 and
the monomial bx,.., x. with j <-i,..., j, <= i,, then b must be input even if b 0.

The main tool we will use in this paper is Theorem A [27, Prop. 1.1 below. Before
we state the theorem, we define a term used in the theorem: An arithmetic progression
P in I is a set {a+ bili Z}, where a, b are elements of I and b 0.

THEOREM A. Let g K[Xl,..’,Xn, y]. Iffor every finite sequence of arithmetic
progressions P, , Pn in I there exists integers x ofPi (1 <- <- n) and an integer y’ of
I, such that g(x’ ’)1, , x y O, then

(a) g(x,. .,x,,y)=go(xl,. .,x,y)i]=l (y-f(xl,. .,xn)), sO, where
f(x,. .,xn) K[Xl," ",x,], go(x," ",x,,y) K[Xl," ",xn, y] and go(xl,’" ",x,,y)
has no factor of the form y-f(xl ," ", x,),

(b) for any integers x,...,x’ of I there exists a j(l<-j<-s) such that
f(x," ,x’)I.

Theorem A is deduced from Schinzel’s theorem [25, Thm. 36] on diophantine
equations with parameters. See [24], [25] for further discussion of the origins of
Theorem A.

2. Basic algorithms. In this section we demonstrate that some basic operations
and decision problems over an algebraic integer ring can be done in polynomial time.
All of these results will be needed in later sections. We assign each algorithm a name,
and hereafter will call the algorithms by their names.

LEMMA 2.1 (INTEGER). Let K be an algebraic number field and fl be a number
of K, there is a polynomial time algorithm to decide whether fl is an algebraic integer or
not.

Proof Let f(x) be the field equation of/3 over Q and h(x) be the monic minimal
polynomial of fl over Q. There exists a positive integer k such that f(x)= h(x) k
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19, p. 11]. Hence the polynomial f(x) must be a monic polynomial over Q. For every
algebraic number/3 there is a polynomial time algorithm to get the field equation of
/3 over Q [19, p. 16-17]. According to the Gauss lemma, f(x) is a polynomial over Z
if and only if h(x) is a polynomial over Z. Hence, iff(x) is a polynomial over Z then
/3 is an algebraic integer; otherwise fl is not an algebraic integer.

Remark. If we know the degree, height, and sufficient rational approximation of
an algebraic number, then we can find its minimal polynomial in polynomial time
[10]. Therefore we can decide whether or not it is an algebraic integer in polynomial
time. Let fl K Q(a), then the degree of/3 is less than or equal to the degree of
Also we can find an upper bound of the height of/3 if f(/3)=0 for an f(x) in Z[x]
[20]. The algebraic numbers appearing in the algorithms of this paper are the roots of
polynomial equations with known height. Thus all the analyses of the complexity of
algorithms are still valid if we represent the algebraic numbers by suitable rational
approximations.

Let a, b be two elements of I; a is divisible by b if and only if there exists an
element c of I such that a b. c. From Lemma 2.1, we obtain the following corollary.

COROLLARY 2.2 (DIVISIBILITY). Let a, b be two elements of algebraic integer
ring L There is a polynomial time algorithm to decide whether or not a is divisible by b.

Proof Let K =Q[a]=Q[t]/g(t) and b= bo+ ba +...+ b,,a =f(a) K. Apply
the Euclidean algorithm to find the polynomials u(x) and v(x) of Q[x] such that
u(x)g(x) + v(x)f(x) 1. Then apply the algorithm INTEGER to check whether or not
the element a. v(a) is an integer. If a. v(a) is an integer, then a is divisible by b;
otherwise a is not divisible by b.

LEMMA 2.3 (EQUATION). There is a polynomial time algorithm for solving
equations over L

Proof Let f(x) 0 be an equation over/. It is well known [9, 11, or 15] that there
is a polynomial time algorithm to factor f(x) over the quotient field K of L If f(x)
does not have a linear factor (x-a) then f(x)= 0 is not solvable in K. And thus,
equation f(x)--O is not solvable in /. Suppose that f(x)=0 is solvable in K. Let
a, , as be the roots off(x) 0 in K. We apply the algorithm INTEGER to decide
whether or not a is an integer for every =< s. If none of these ai’s is an integer, then
f(x) 0 is not solvable in L If there exists an c such that a, is an integer, then f(x) 0
is solvable in L We also obtain all the roots of f(x)=0 in L I-]

We call :Ix q(x) (or ’x q(x)) an :1 sentence (or ’q’ sentence) if and only if q(x)
is a formula containing no quantifiers and no other free variables except x.

LEMMA 2.4 (::1 SENTENCE). There is a polynomial time algorithm to decide
whether or not a CNF or DNF ::1 sentence is true in L

Proof Let :lx q(x) be an :! sentence in CNF i.e., (x)Ce/ s

0v V,,_- gi,k(X)#0], where f,j(x) and gi,k(X) are polynomials over I. If for every
there is a k such that gi,k(X) O, then EIxq(x) is true. Now suppose that there is an
such that gi,k(X) =- 0 for every k hi. Without loss of generality, we may write that

q(x) :> ,A, f.j(x) 0 v V g,.k(X) 0 ^ f/(x) 0
j=l k=l 1=1

We apply the algorithm EQUATION to solve the equation f/(x)= 0 for every l-< in
L Let A be the set of all these solutions. Ifthere is an a ofA such that/p.,= [/jm_’_lfi,j(a)--
0v /7,’-- gi,k(a) 0] is true, then :lxq(x) is true in L Otherwise, ::lxq(x) is false in L

Now let q(x) be a formula in DNF, i.e., o(x)C:/s_[]jf,(x)
0 ^/7,’=a gi,k(X)0], where f,(x) and gi,k(X) are polynomials over L We apply the
algorithm EQUATION to solve the equations f,j(x) 0, gi,k(X) 0 in 1 for every i,
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and k. (If mi > 1 for some i, it will be more efficient to find the greatest common divisor,
GCD, of polynomials f,j for j <= mi, and then find the roots of GCD.) If there exist
an andan a such that/j’--’ f,(a) =0 ^/k ,’=1 gi,k(a) 0, then :Ix q(x) is true. Otherwise
:Ix q (x) is false. [3

We also obtain the following corollary.
COROtLARY 2.5 (/ SENTENCE). There is a polynomial time algorithm to decide

whether or not a CNF or DNF ’q’ sentence is true in L
Proof The negation of an sentence is an :I sentence. Also the negation of a

CNF formula is a DNF formula and vice versa. The decision problem /SENTENCE
is the complement of :I SENTENCE. The class P is closed under complement [7].
This proves our corollary. U

3. Sentences over an algebraic integer ring. In this section we prove the results
about sentences over an algebraic integer ring. We first introduce a decision problem
called SIMULTANEOUS INCONGRUENCES, which is needed to prove our NP-
completeness results. This problem is a generalization of the problem under the same
title in [7] to algebraic integer rings. Now we give a necessary definition. Let a, b, and
c be elements of an algebraic integer ring I. We say that a is congruent to b modulo
c if there is an integer d of ! such that a b c. d, and we write a b (modc).

SIMULTANEOUS INCONGRUENCES
Instance: Collection {(al, hi), (an, bn)} of ordered pairs of integers in I.
Question: Is there an integer x of I such that, for 1 <-_ <- n, x ai (mod b) in I ?

With the algorithm DIVISIBILITY, it is easy to see that SIMULTANEOUS
INCONGRUENCES is in NP. We will prove this problem is NP-complete. In the
proof of completeness we use the fact that every algebraic integer ring has an integral
basis over Z. There are algorithms to obtain an integral basis 19], but we do not know
whether there is a polynomial time algorithm for doing this or not. This problem is
deterministic polynomial time equivalent to the problem of computing the greatest
square divisor of a rational integer 17]. Thus this problem is in NP and might not be
easy. Fortunately, we need to obtain only one such basis. Our transformation does not
depend on how we obtain such an integral basis.

LEMMA 3.1. SIMULTANEOUS INCONGRUENCES is NP-complete.
Proof We prove the completeness by following the original proof in [26]. The

only difference is "encoding."
Let A be a Boolean formula in CNF with three literals per conjunct. Let Ck be

the set of literals in the kth conjunct, 1 -< k-<_ p. Say that A has n distinct variables, so
that an assignment to the variables can be represented as a binary vector of length n.
Let p, P2,’’’, Pn be the first n primes in N. We say z of I encodes an assignment if
z is congruent to 0 or 1 modulo Pi for 1 <_- <_- n. We say z satisfies A if the assignment
[z mod pl, z mod P2," ", z mod pn satisfies A.

Let {w 1, o2, , Wm} be an integral basis of L The number z of I encodes an
assignment if and only if for every i, 1 -<_ =< n,

z rl + r2oo +" + rmOO,, (mod p) for all

2-<r-<pi and 0=<r_-<p for 2-<j=<m.

For each conjunct Ck, we construct a system of three congruence equations such that
zk does not assign the value 1 to any literal in Cg. For example, if C {Xr,--Xs, Xt}
for 1 _--< r, s, --<_ n and r, s, distinct, then let z 0 (mod Pr), z -= 1 (mod Ps), zk 0
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(mod Pt). Now we can see that A is satisfiable if and only if there exists a z of I; z
encodes an assignment and z zk (mod Prpspt) for every 1 =< k-<p. We can see that
our transformation is in polynomial time. Our conclusion follows from the well-known
fact that SAT is NP-complete [2] or [7].

Now we prove our first main result. The decidability of this problem was shown
in [27]. The main difference between these two algorithms is that this time we apply
Lenstra’s polynomial time algorithm 15] instead of the classical Kronecker’s algorithm
to factor the polynomials. Then we can give the upper and lower bound of its
computational complexity.

THEOREM 3.2. =i"V INEQUATION OVER AIR for every n >-1 is NP-complete.
Proof We first prove that this problem is in NP. Let f(xl,’’’,x,,y) be a

polynomial over I.
($1) We factor f(x,..., x,, y) over the algebraic number field K. This can be

done in polynomial time [15]. If there is no F(x,...,x,) over K such that y-
F(x, , x,) is a factor off(x, , x,, y), then by Theorem A, there exist x, , x’
of I such that for every y’ of I,f(x, , x’, y’) O. Now suppose thatf(xl, , x,, y)
has factors of the form y-F(xl,..., x,) and let S be the set of these polynomials
F(xl, ,Xn).

($2) Let discr(g) denote the discriminate of g(t) where K Q[ t]/ g( t) Q[a
and let d be an element of Z such that d.f is a polynomial with coefficients in Z[a].
It is well known [33] that if we take D= d.[discr(g)], then all monic (with respect.
to y) factors of f(xl,’’’,x,,y) are in (1/D)Z[a][xl,’’’,Xn, y]. (In [33] only a
univariate lemma is proved. The multivariate version can be deduced by a Kronecker’s
substitution.) Let m be the degree of g(t) and {wl," ", o,,} be an integral basis of I
over Z. The representatives of the residue classes of the ideal (D) over I are in the
form roo +... + r,,OOm, where r are elements of Z and 0_< r < D [19, p. 49]. Notice
that the input length of every representative is polynomially bounded by the input
length of f(xl,’’’, x,, y) and I. Let bi, ci be elements of I and ci=-bi (mod D) for
every <_- n. We obtain that for every F(xl, , x,) of S, if F(b, , b,) is an element
of I, then F(Cl,’’" Cn) is an element of I. Hence to see whether or not there exist
integers xl "’’xn of I such that F(x’1, ", Xn) is not an integer, we need only to
apply the algorithm INTEGER to check the number F(al,’’’, a,) for all the rep-
resentatives aa,..., a, of the residue classes of I modulo (D). If for all the representa-
tives al,"" ", a, of the residue classes, there exists an F(xl,’’’, Xn) of S, such that
F(al,’’’, a,) is an element of I, then it is easy to see that
Vxl VXn=ly f(xl, ", x,, y) =0is true in L If there exist representatives x, , x’,,
such that F(x,’’’,X’n) is not an integer for every F(x,...,x,) of S, then
=lx... :Ix, Vyf(x,..., xn, y)0 is true in I by Theorem A. This can be done in
"nondeterministic" polynomial time. Therefore I"V INEQUATION OVER AIR is in
NP for n _-> 1.

Nowwe need to prove the completeness. Let {(al, b), , (a,, b,)} be the instance
of SIMULTANEOUS INCONGRUENCES. Let f(x, y) be the polynomial I-[--1 (x-
by-a). It is easy to see that :IxVyf(x, y) 0 is true in I if and only if the answer
to SIMULTANEOUS INCONGRUENCES is positive. Therefore =IV INEQUATION
OVER AIR is NP-complete. Hence :I"V INEQUATION OVER AIR for every n _>-1

is NP-complete.
By the definition of co-NP-completeness we obtain the following corollary.
Co.oAaY 3.3. V:I EQUATION OVER AIR is co-NP-complete for n >- 1.
It is well known that if a decision problem X is co-NP-complete, then it is not in

NP unless NP co-NP [7]. Therefore, V":I EQUATION OVER AIR, for n _-> 1, is not
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likely to be in NP. Also if n 0, then this is simply the decision problem of solvability
of equations in L By the algorithm EQUATION this problem is in P.

Remark. The parameters, i.e., universal quantifiers, of /nEI EQUATION OVER
AIR can be restricted to N or Z and we will still obtain the same results. This means
that the following decision problems are co-NP-complete. Given an arbitrary poly-
nomial f(Xl,""" Xn, y) over/, whether or not for any integers x,..., x’, of N (or
Z), the equation f(x,..., x’,, y)=0 is solvable in L Notice that if we also ask the
solvability in N or Z instead of/, we then have ’":! EQUATION OVER N or
EQUATION OVER Z respectively. The decision problem of’q"E! EQUATION OVER
N is undecidable [27], whereas the decision problem of "EI EQUATION OVER Z
is co-NP-complete [29], a special case of Corollary 3.3.

To prove the above new NP-complete results we need to modify our Theorem A.
In the following theorem we both assume less and assert less than in Theorem A. The
proofs of these two theorems are the same, hence we will not repeat ourselves.

THEOREM B. Let g K[x1,’’’,Xn, y]. Iffor every finite sequence of arithmetic
progressions P1,"" ", P in Z there exist integers x’i of Pi (1 <=iN n) and an integer y’
of I, such that g(x,..., x, y’)=0, then

(a) g(xl, xn, y) go(xl, x, y) I-i=l (y-f(xl, x)), s O, where
f(xl, x) K[Xl, xn], go(x, x, y) K[Xl, xn, y] and go(xl,’",
x, y) has no factor of the form y -f(xl ," ", x),

(b) for any integers x,...,x; of Z there exists a j (l_-<j-<_s) such that
(x," ,x’,)I.

Then with the same arguments as Theorem 3.2 we can prove the remark above.
Now we apply Theorem A to obtain a technical result.
PROPOSITION 3.4. Let K be an algebraic number field, I be the ring of integers of

K, and q(x, y) be a formula of the form VS_ [A’-’ f,(x, y)=0], where f,(x, y) are
polynomials over K. Iffor every arithmetic progression P in I there exist an x’ of P and
an integer y’ of I such that q(x’, y’) is true, then

(a) there exist an (1 <= <- s) and a polynomial F(x) over K such that y F(x) is
a common factor of the polynomials f, (x, y) (1 <=j <- mi).

(b) for every element x’ of I, there exists an F(x) satisfying the conditions of (a)
such that F(x’) is an element of L

Proof For every x’ and y’ of/, if p(x’, y’) is true, then V/S_ f,(x’, y’)=0, or

I-I s= f,l(X’, y’)= 0 is true. Hence for every arithmetic progression P in I there exist
an x’ of P and an integer y’ of I such that I-I=f,(x’, y’)=0. From Theorem A there
exists a polynomial F(x) over K such that y-Fl(X) is a factor of the polynomial
1-I F,(x, y). Then y- F(x) must be an irreducible factor of the polynomial f,(x, y)
for a t<= s. Now suppose that y-F(x) is not a factor of one of the polynomials
f,(x, y) for 1 <j_-< m,. Let B be the set of x’s of the common roots of the equations
y-F(x) 0 and f,(x, y)= 0; B is a finite set. If a set T intersects every arithmetic
progression in I, then T intersects every arithmetic progression with infinitely many
terms. Let R be the set of x’ of I such that there exists an integer y’ of I, and q(x’, y’)
is true. By our assumptions, R intersects every arithmetic progression in I, in fact,
with infinitely many terms. Therefore R- B intersects every arithmetic progression in
L For every x’ of R- B there exists an integer y’ of I such that g(x’, y’)-0, where
g(x, y)=l-If,l(X, y)/(y-F(x)). By Theorem A again, the polynomial g(x, y) must
have a factor y- Fz(x), where Fz(X) is a polynomial over K. The polynomial y- Fz(x)
might not satisfy the conditions of (a). Then with the same arguments, the polynomial
I-lg f,(x, y)/(y-F(x)). (y-F(x)) must have a factor y-F3(x), where F3(x) is a
polynomial over K. Since the degree of y in the polynomial I-I f,(x, y) is finite, there
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must exist a polynomial y-F(x) satisfying the conditions of (a). Now we need to
prove part (b). Let S be the set of all the polynomials F(x) over K such that y- F(x)
is a common factor of the polynomials f,j(x, y) for a fixed (1-<iN s) and for all j
(1 -<j-< mi). For every F(x) there exists a rational integer b, b 0, such that b. F(x)
is a polynomial over L Such a number b exists because for every .algebraic number
of K, there is a rational integer r, r 0, such that r./3 is an algebraic integer. Thus
there is a rational integer a, a 0, such that a. F(x) is a polynomial over I for every
F(x) of S. Suppose that there exists an integer of I such that for every F(x) of S,
F(t) is not an integer of/. This is equivalent to a. F(t)O (mod a) for every F(x)
of S. If we let s--t (mod a), it follows that a. F(s)=-a. F(t)O (mod a), hence
F(ac+t) is not an integer of I for every F(x) of S and every c of I. Now let
Fi,j(x, y)=f,(x, Y)/1-Ik (Y- Fk(X)), where polynomials y-Fk(X) are common factors
off,(x, y) for all j (1 -<j -< mi). Hence F,(x, y) are polynomials over K and for every
the polynomials Fi,(x, y) (1 -<j-< m) have no common factors of the form y- F(x).

It follows that for every the polynomials F,j(ax+ t, y) (1 -<j<-_ mi) have no common
factors of the form y-F(x). By part (a) there exist integers d and e of I such that if
x’ is in the arithmetic progression {x=di/eliZ}, then for every y’ of I,
k/S=l [/k" F,j(ax’ + t, y’) 0] is not true. The arithmetic progression P
{a(di+ e)+ li Z}, where a, d, e, and are integers as above, has the property that
for any x’ of P and any y’ of I the sentence k/si=l [/k f,(x,’ y’) 0] is not true. This
contradicts our assumptions. Therefore for every x’ of I there exists an F(x) such that
F(x’) is an element of I.

Before we prove another main theorem of this paper, ZlV SENTENCE OVER
AIR is NP-complete, we prove that for a special form of zl,q, sentences the decision
problem is in P. We need this result in the proof of V::I SENTENCE OVER AIR is
NP-complete. Since these two cases are in two different computational complexity
classes if P NP, this special case may have independent interest.

PROPOSITION 3.5. Let I be an algebraic integer ring and ZlxVy q(x, y) be a sentence

oftheform ::lxVy /s_ [/, f,(x, y) 0v /k"’-, g,j(X, y) =0], wheref,(x, y), g,k(X, y)
are polynomials over I and there is a (1 <-t -< s) such that ft,(x, y) =- 0 for every j
(1 -<j -< mr) and gt,k(X, y) 0 for every k (1 <-k -< nt). Then there is a polynomial time
algorithm to decide whether or not ZlxVy q(x, y) is true in L

Proof We assume that f,(x, y) =- 0 for every 1 -<j -< mt and gt,k(X, Y) 0 for every
k, 1 -< k-< nt. In order to simplify the notations, we omit the index for the remainder
of this proof. Let gk(X, y)= Yp hk,p(X)" yP, where hk, p(X) are polynomials over I and
for every k there is a p such that hk, p(X O. We apply the algorithm EQUATION to
solve all the equations hk,p(X)=0 in I simultaneously. Let A be the subset of I such
that if a is an element of A, then there is a k such that hk, p(a)= 0 for every p, i.e.,
gk(a, y)=O. For every k, gk(X, y)O, A is a finite set. If x’ is an element of/, such
that Vy/k s

=1 [/=1 f,j(x’, y) 0v Vk= g,k(X’, y)=0] is true in I, then x’ must be an
element of A. If none of the polynomials gk(X’, y) is identically equal to zero, then
this sentence cannot be true in I. Now suppose that the set A is nonempty. The number
of elements in A must be less than the sum of the degrees of x in gk(X, y) for 1 _<-- k -< n.
Also the input length of elements of A are polynomially bounded by the input length
of the formula p(x, y). We apply the algorithm V SENTENCE to check the sentence
’qy p(x’, y) for each x’ of A to see whether or not it is true in I. If there is an x’ of A
such that Vy p(x’, y) is true in I, then ::lxVy q(x, y) is true in I. Otherwise, it is false
in I.

Now we prove our second main result.
THEOREM 3.6. zlV SENTENCE OVER AIR is NP-complete.
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Proof We first show that this problem is in NP. Let o(x, y) be a formula in CNF
containing no other free variables.

(S1) We may write that o(x, y)=/s=l oi(x, y), where oi(x, y)= /jl f,j(x, y)
0v /,’=1 gg,k(X,y)=O, f,j(x,y) and g,k(X,y) are polynomials over L If there is a t,
1 <= <_- s, such that gt,k(X, Y) 0 for a k (1 <- k <= nt), then we may omit the term q,(x, y)
from the formula q(x, y) to obtain the formula q’(x, y), and ElxVy o(x, y) is true if
and only if EIxVy o’(x, y) is true. Therefore, without loss of generality, we may assume
that g,k(X, y) 0 for every and k. Now suppose that there is a (1 <- <- s) such that
ft,j(y) =0 for every j, 1-<_j_-< mr, then by Proposition 3.5 there is a polynomial time
algorithm to decide whether or not ::lxV q(x, y) is true in L Now we may assume that
f,j(x, y) 0 for every and j.

($2) We factor all the polynomials f,(x, y) and gg,k(X, y) over the quotient field
K of L Factorization of polynomials over an algebraic number field is in polynomial
time [15]. For every i, we may omit fromf,j(x, y) (1 <=j -< mi) any factors also occurring
in one of the polynomials g,k(X, y) (1--< k =< ni). This will not affect the truth of the
sentence ElxVy (x, y). Therefore we assume that for every i, j, and k the polynomials
f,(x, y) and g,,(x, y) are relatively prime. If there is no F(x) over K such that y F(x)
is a common factor of the polynomials f,j(x, y) (1-<j-< m), then by Proposition 3.4
the sentence Vxly /i[/jf,(x,y)=O] is false in L It follows that the sentence
::lxVy o(x, y) is true in L Now we suppose that there exist an and a polynomial F(x)
such that y- F(x) is a common factor of the polynomials f,(x, y) (1 <=j <-_ mi). Notice
that y- F(x) is not a factor of any one of the polynomials g,k(X, y) (1 <= k <- ni), since
for every i, j and k, f,(x, y) and g,k(X, y) are relatively prime. Let S be the set of these
polynomials F(x).

(S3) Let dZ be such that f,l(x,y)(1/di)Z[a][x,y], and let discr(g) denote
the discriminant of g(t) where K Q[ t]/ g( t). It is well known [cf. 33] that if we take
Di=di Idiscr(g)[, then all monic (with respect to y) factors of f,l(x,y) are in
(1/Di)Z[a][x, y]. Let D be the least common multiple of Di, 1 <-i <- s. It follows that
D. F(x) is a polynomial over I for every F(x) of S. Let {tOl,..’, tom} be an integral
basis of I over Z. The representatives of the residue classes of the ideal (D) over I
are in the form rlto -k-"""-I-rmtOm, where r are elements of Z and 0_-< r < D. For every
F(x) of S if F(b) is an integer of ! and c= b (mod D), then F(c) is an integer of L
Hence to see whether or not there exists an integer x’ of I such that F(x’) is not an
integer, we only need to apply the algorithm INTEGER to check F(a) for every F(x)
of S and every representative a of the residue classes of I modulo (D). If there is a
representative a such that F(a) is not an element of ! for every F(x) of S, then
3xVy q(x, y) is true in I by part (b) of Proposition 3.4. This step can be done in
"nondeterminstic" polynomial time. Now suppose that for every integer x’ there is a
polynomial F(x) of S such that F(x’) is an element of L In this case, if for every
the equation g,k(X, F(x))=0, where y-F(x) is the common factor off,j(x, y) (1 =<j _-<

m), has no root in I for every 1 -< k _-< n, then Vx::ly /i=1 [Aj fi,j( x, Y) 0 ^
/kk g,(x, y) : 0] is true in I. Hence EIxVy q(x, y) is false in I. In order for ’qy o(x’, y)
to be true in I, x’ must be a root of one of the equations g.k(X, F(x))=0.

($4) We apply the algorithm EQUATION to solve the equations gi,k(X, F(x)) 0
in I for every and k, where F(x) is the polynomial that f,(x, F(x))=-0 for every j.
Let T be the set of all the roots of these equations. We then apply the algorithm V
SENTENCE to check the sentence Vy o(x’, y) for every x’ of T. If there is an x’ of T
such that ’q’y q(x’, y) is true in I then, of course, ElxVy q(x, y) is true in I. If for every
x’ of T, the sentence Vyq(x’,y) is false, then Vx::ly--n o(x,y) is true in I, i.e.,
51xVy p (x, y) is false in I.
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The steps ($1), (82), and (54) can be done in polynomial time. The step ($3) can
be done in nondeterministic polynomial time. Hence :IV SENTENCE OVER AIR is
in NP if the formula (x, y) is in CNF.

Now let (x, y) be a formula in DNF, i.e.,

q(x, y)=[ fi,j(X, y) O ^ g.k(X, y)=0]
i=1 j=l k--1

where fi,(x, y), gi,k(X, y) are polynomials over L
(T) We apply the Euclidean algorithm to find the greatest common divisor (GCD)

of f,(x, y) and g,(x, y) for every i, j, and k. We then omit the GCD from g,k(X, y).
Thus without loss of generality, we may assume that for every the polynomials f/,(x, y)
and g,k(X, y), for 1 _--<j _--< m and 1 _-< k_-< n, are relatively prime.

(T2) Suppose that for each there is a k such that g,k(X, y) O. Then for every
we need to find the number x’ of ! such that gi,k(X’, y) 0 for all k_-< n. This means
that for a polynomial g(x, y)= h,(x)y +...+ ho(x) we need to find the common
solutions of {h,(x)=0,..., ho(X)=0}. Therefore we apply the Euclidean algorithm
to find the GCD, h(x), of the polynomials h,(x), , ho(X), then apply the algorithm
EQUATION to find the roots of h(x)- 0 in/. Let A,k be the set of x’ of I such that
g,k(X’, y)--= 0 ifx’ A,k and A 1 fq ,’=1A,k. We apply the algorithm V SENTENCE
to check the truth of the sentence Vy q(x’, y) for every x’ of A. Since the number of
elements of A is polynomially bounded, this can be done in polynomial time. If there
is an x’ of A such that Vy q(x’, y) is true, then :IxVy q(x, y) is true. Otherwise,
:IxVy q(x, y) is false. Now we may assume that for some i, g,,(x, y)=-O for every
k =< n. Since a # 0 ^ b # 0<=> a. b # 0, we can combine several inequations into one and
obtain that

q(x, y)O f,(x, y) # 0 ^ A gi,k( x, Y)=0 V FI(X, y) O,
i=1 j=l k=l l=

where f,, gi, k, F are polynomials over I and gi,k(x, y) O. (In most cases combining
inequations will increase the computation time in the following steps. However, by
doing so our formulas and proofs are simpler.)

(T3) We apply the Euclidean algorithm to find the GCD, G(x, y), of polynomials
F(x,y) for l<=l<-p, then factorize G(x,y) over K by Lenstra’s algorithm [15]. We
may write that

q

G(x, y)= Go(x, y) II (y-G(x)),
/3=1

where Go(x, y) has no factor of the form y- G(x). If q 0, i.e., G(x, y) has no factor
of the form y-G(x), then :IxVy /-1 F(x, y) # 0 is true in I by Proposition 3.4. Hence
:IxVy (x, y) is true in L Now we assume that q # 0.

(T4) Let Hi,,/3(x)= gg,(x, G/3(x)), T be the set of polynomials G/3(x) such that
H../3 (x) 0 for every k =< n, and T= U= T. Let G’(x, y) Go(x, y) l-lr= (y Ga(x)),
where G’(x, y) is the polynomial omitting from G(x, y) any factor y-G(x) if G(x)
is in T. We claim that if there is an x’ of I such that G,(x’) is not an element of I for
every 6, 1-< 6-< r, then :IxVy (x, y) is true in L Suppose, on the contrary, that

Vx:Iy f,(x, y)= 0 v gi,k(X, y) 0 ^ Ft(x, y) 0
i=1 j=l k=l /=1

is true in L Let A be the set of elements of I such that if a is in A, then G/3 (a) ! for
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some/3-< q, where gi,k(X, G(X))-=O for a fixed and all k <- hi, and

i=1 j=l k=l

This implies that there is an such that Vm ,(a, G(a)) =0. Since for each i,,(x, y)
and g,(x, y) are relatively prime, ,(x, G(x)) O. Hence A is finite. For every x of
I-A

y f,j(x,y)=Ov gi,k(x,y)O A F}(x,y)=O
i=1 j=l k=l l=

is true in I, where F(x, y) is the polynomial omitting from F,(x, y) any factor y- G(x)
if G(x) is in Z Then for every x of I-A, By F(x, y)=0 is true By Proposition/=1

3.4, for every x’ of I there exists a Ga(x), 1 6 r, such that G(x’) is an element of
L This proves our claim. Now we check whether there is an a of I such that for every
8, 1 6 r, Ga(a) is not an element of I. This can be done in "nondeterministic"
polynomial time as we have shown in the step ($3). If there is such an a of I, then
BxVy (x, y) is true in I by our claim. Now we assume that for every x of I there is
a 6, 1 N 6 N r, such that Ga(x) is in I.

(Ts) We solve Hi,,a(x)= g,(x, Ga(x)) =0 for every i, k and 6. Let A,,a be the
set of solutions for each equation. Let A U s=’ ’= U a= Ai,,a, A is still polynomially
bounded by our original input. We check the sentence

i:1 :1 : l=

for every a of A by the algorithm SENTENCE. If there is an a of A that this
sentence is true, then xy (x, y) is true. Otherwise,

A (x, 0 e 0 0
= =1 = =1

is true in I. This means that xVy (x, y) is false. Except step (T4), which can be done
in nondeterministic’’ polynomial time, all other steps can be done in polynomial time.
This completes our proof that V SENTENCE OVER AIR is in NP.

Now we prove the completeness. Notice that V INEQUATION OVER AIR is
only a special case of V SENTENCE OVER AIR. Also V INEQUATION OVER
AIR is NP-complete by Theorem 3.2. We obtain that V SENTENCE OVER AIR is
NP-complete.

We also have the following corollary.
CooA 3.7. V SENTENCE OVER AIR is co-NP-complete.
Proo This decision problem is the complement of V SENTENCE OVER

AIR.
4. Seeees er class f figs. In this section we study the sentences true in

some classes of rings of algebraic integers. We first give a necessary and sucient
condition for a diophantine equation with parameters to be solvable in a class of
algebraic integer rings. With this condition we can prove that many decision problems
are in

Let be the primitive ruth root of unity. The field Q(m) is called the cyclotomic
field of order m. Let (m) be Euler’s -function and r= (m)-1. It is well known
19] that 1, , , form an integral basis of Q(m)- Let [m] be the ring generated
by over . Then [m] is the ring of integers of the field Q(). We call [m] the
cyclotomic integer ring of order m. Now we give a necessary and sucient condition
for a diophantine equation with parameters to be solvable in every cyclotomic integer
ring.
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PROPOSITION 4.1. Letf(x, y) be a polynomial over Z. The sentence Vx:lyf(x, y) 0
is true in Z[sr,,] for every odd prime m if and only ill(x, y) has a linear factor of the
form y g(x), where g(x) is a polynomial over Z.

Proof Clearly, if g(x) is a polynomial over Z, then for every element a of Z[’,,],
g(a) is an element of Z[sr,]. Hence ill(x, y) has a linear factor of the form y-g(x),
where g(x) is a polynomial over Z, then for every x’ of Z[srr,] there is a y’= g(x’)
such that f x’, y’) O.

Conversely, we assume that f(x, y) does not have factors of the form y-g(x),
where g(x) is a polynomial over Z. Let f(x,y)=fo(x,y)[Ii__l(y-g,(x))x
Hj=l (y-hj(x)), where gi(x)6Q[x]-Z[x], h(x)C[x]-Q[x] and fo(x,y) has no
linear factors in C[x]. We want to show that there is an m such that Vx::iyf(x, y)= 0
is not true in Z[sr,]. Every polynomial h(x) has a coefficient which is not a rational
number. First, we require that the number m satisfy the condition that hj(x) does not
belong to Q(sr,,)[x] for every j. Now let ai be the least positive integer such that
ai gi(x) belongs to Z[x] for every 1 k= P,’/, where P,k are different
prime numbers in N and t,k are the power of Pi,k in ai. For every integer n of Z[’,,],
let N(n) be the number of solutions of the congruence equation a. g(x)=-0 (mod n)
in Z[srm]. It is well known [19, Corollary to Thm. 7.2] that P,k (1_--< k<_-s) are also
relatively prime in Z[sr,,] for every i. The Chinese Remainder Theorem is valid in every
algebraic integer ring. With the same arguments as the case over Z [cf. 8], we obtain
that Ni(ai)=Hk Ni(PII) for every i. Let R(n) be the number of the elements of the
residue class Z[srm]/(n) for every n of Z. We claim that for any e > 0, we can find a
suitable m such that N(a)/R(a)< e for every in Z[sr,]. In order to simplify the
notations, for the remainder of this proof we fix an and drop the from the index.
Thus we want to show that for a suitable m, N(a)/R(a)< e in Z[srm]. We first assume
that a is a prime number in Z. Let m be a large prime number in Z such that the order
h ofa in the residue system modulo m, i.e., h is the least positive integer such that a h =-- 1
(mod m), is sufficiently large. It is well known [19, Thm. 8.7] that the ideal (a)
decomposes in Z[’,,] into g q(m)/h different prime ideals of degree h and multi-
plicity e= 1, where (m) is the Euler’s q-function. Let AI, l<-l<--g, be the different
prime factors of the ideal (a) in Z[srm]. By the Chinese Remainder Theorem again,
N(a) =l-I= N(At) and R(a)=l-[ g1=1 R(AI) =ahg. Since a. g(x) is a primitive poly-
nomial over Z, a. g(x) is also a primitive polynomial over Z[’,]. For every l, the
polynomial a. g(x) modulo the ideal A is not identically equal to zero. The number
of the solutions of the congruence equation a. g(x) 0 (mod AI) is less than or equal
to d, the degree of g(x), because Z[m]/AI is a field for every l. Then N(a) is at most
d g. Therefore N(a)/R(a)<--dg/ahg=(d/ah)g <e if h is sufficiently large. Now let
a 1-i sk= k" Then

N(a)/R(a)=Hk N(P)) R(Pk

p tk-[I (N( k )/g(Pk ))
k

<-- H (N(Pk)/R(Pk)) < e k.
k

Let e <l/r. Then "i=1 N(ai)/R(ai)= D<I; D is the density of elements of Z[’m]
such that there exists an i(l <- <-_ r); and gi(t) is an element of Z[sr,,]. This implies
that there is an a of Z[sr,] such that g(a) is not an element of Z[r,,] for every i,
1 <_-iN r. By Theorem A it follows that Vx::lyf(x, y)=0 is not true in Z[ffm]. This
completes our proof. [3
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Now we extend this result to equations with parameters of more than 1.
COROLLARY 4.2. Let f(xl,’’" ,xn, y) be a polynomial over Z. The sentence

ktxl, fxn Elyf(xl, ",x,, y) 0 is true in Z[,, for every odd prime m if and
only if f(xl,"’,x,,y) has a linear factor of the form y-g(xl,’",xn), where
g(xl, x,) is a polynomial over Z.

Proof Clearly, iff(xl, , x,, y) has a factor of the form y g(xl, , xn), then
Ixl... lxnElyf(xl,..., x,, y)=0 is true in Z[sr,,] for every m.

Conversely, we assume that f(x,..., x,, y) does not have factors of the form
y g(xl, , x,), where g(xl, , x,) is a polynomial over Z. Let f(xl, , x,, y)
fo(xl, ", x,, y) I-Ii=l (y g(xi, ", xn)) l-Ij=l (y hj(x ,..., x,)), where gi(xl, ",

x,)Q[xl,...,x,]-Z[xl,...,x,], hj(xl, x,) C[x, x,] -Q[x, x,],
and fo(xl,’", x,, y) has no linear factors in C[xl,’’ ", x,]. First, let m be a prime
number such that hj(xl,’’’, x,) does not belong to Q(’m)[Xl,’’’, x,] for every j-< t.

Let d be a positive number such that d is greater than the degree of g(xl,’", x,)
with respect to x for every k =< n and =< r. Let G(x) be gi(x, xa, xa, , xa"-). (This
is called Kronecker’s substitution.) We can see that the coefficients of G(x) are the
same as the coefficients of g(xl,’", x,). Therefore, G(x)e Q[x]-Z[x]. With the
same arguments as in the proof of Proposition 4.1, we can choose a number m so that
there exists an element b of Z[sr,]; G(b) is not an element of Z[m] for every 1 <_-- =< r.
This implies that there exist integers bl=b, bz=ba, ,b,=ba"-’ such that
g(b, b,..., b,) is not an element of Z[m] for every i, 1 <_--iN r. By Theorem A,
VXI VX,Elyf(x1, x,, y) O is not true in Z[m]. This completes our proof.

TUEOREM 4.3. "El EQUATION OVER ALL AIR is in P.
Proof Let f(xl, , x,, y) be a polynomial over Z. All we need to do is to factor

f(xl,’’’, x,, y) over Z. It is well known [14] that this can be done in polynomial
time. Then by Proposition 4.2, Ixl’’’ fx, Elyf(xl,...,x,, y)=0 is true in every
algebraic integer ring if and only if f(xl,’", x,, y) has a factor of the form y-
g(xl,’",x,), where g(xl,’",x,) is a polynomial over Z. This completes our
proof.

Now with Proposition 4.1 we prove a result which is similar to Proposition 3.4.
Notice that we do not need to prove the corresponding part (b); it is automatically true.

PROPOSITION 4.4. Let q(x, y) be a formula in the form /s,=1 JAzz1 f,(x, y)=0 ^
/’=1 g,(x, y) # 0], where f,(x, y) and g,(x, y) are polynomials over Z. If the sentence
VxEly (x, y) is true in every algebraic integer ring (or Z[’m for every odd prime m)
then there exist an (1 <= <- s) and a polynomial F(x) over Z such that y F(x) is a
common factor of each f,j(x, y) (1 <-j <= m), but not a factor ofany g,(x, y) (1 =<k_< n)
over the ring Z[x, y].

Proof First, if for some i, j, and k the polynomials f,(x, y) and g,(x, y) have
common factors over Z[x, y], then we can omit the common factors from the polynomial
f,j(x, y). Hence we may assume that for every i, j, and k the polynomials f,j(x, y) and
g,(x, y) are relatively prime in Z[x, y]. For every x and y of an algebraic integer ring
I, if (x, y) is true, then VS=, f,l(X, y)=0 or equivalently, [I-IS= f,(x, y)]=0 is true
in I. The sentence VxEly (x, y) is true in Z[’m] for every odd prime m, therefore
VxEly [1-IS=l f,(x, y)]=0 is true in Z[’m] for every odd prime m. By Proposition 4.1,
there exists a polynomial F(x) over Z such that y F(x) is a factor of the polynomial
1-I f,(x, y). Since y- F(x) is an irreducible polynomial in Z[x, y], y- F(x) must be
a factor of the polynomial f,l(x, y) for some (1-< =< s) in Z[x, y]. Because the poly-
nomials f,;(x, y) and g,(x, y) are relatively prime, y- F(x) is not a factor of any one
of the polynomials g,(x, y) for 1 =< k -< n. Now suppose that y-Fl(x) is not a factor
of one of the polynomials f,j(x, y) (1 _-<j =< mr). Let A be the set of x’s of the common
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roots of the equations y-F(x)=0 and f,;(x, y)= 0 in the complex number field C.
A is a finite set. In order to make Vx::ly q(x, y) true in every algebraic integer ring/,
for every x of I-A there exists a y of I such that [1-Iif,(x,y)/(y-F(x))]=O. Since
A is finite, the density of I-A in I equals 1, and I-A intersects every arithmetic
progression in L From the proof of Proposition 4.1, we obtain that there exists a factor
y-F2(x) of the polynomial 1-Iif,(x, y)/(y-F(x)). The polynomial F2(x) might not
satisfy the conditions of the conclusion. Then with the same arguments there must
exist another factor y-F3(x) of the polynomial 1-Iif,(x, y)/(y-F(x)). (y-F2(x)).
Since the degree ofy in the polynomial 1-Iif,(x, y) is finite, there must exist a polynomial
F(x) satisfying the conditions of the conclusion.

Now we prove another main theorem.
THEOREM 4.5. /::1 SENTENCE OVER ALL AIR is in P.
Proof Let q(x, y) be a DNF formula containing no other free variables. We write

that q(x, y)= k/s= [/k’= f,(x, y) =0 ^/k k’= gi,k(x, y) 0] wheref,(x, y) and g,(x, y)
are polynomials over Z.

(S) We factor every f,(x,y) and g,(x, y) in Z[x, y]. This can be done in
polynomial time [14]. By Proposition 4.4, if x::ly q(x, y) is true in every algebraic
integer ring, then there exist an (1-<i=< s) and a polynomial F(x) over Z such that
y-F(x) is a common factor of each f,(x, y) (1-<j-< mi) but not a factor of any
gi,(x, y) (1 <= k <= ni) over the ring Z[x, y]. Let S be the set of these polynomials F(x).
The number of the elements of S is less than di, where d min di,j, di, is the degree
of y in the polynomial f,(x, y). Assume that S is nonempty; otherwise /x::ly q(x, y)
is false in some algebraic integer rings. Notice that for every element a of an algebraic
integer ring I, F(a) is an element of I for every F(x) of S. Since F(x) is a common
factor of the polynomials f,(x, y) (1 <=j <= rni), lxZly/k=f,(x, y) 0 is true in every
algebraic integer ring. The only possible case that lx::ly q(x, y) might be false in
some algebraic integer ring I is that there exist a k (1-< k =< n) and an a of I such
that g, (a, F(a)) 0.

($2) We factor all the polynomials g,k(x, F(x)), where F(x) is the common factor
off,(x,y) (1-<j-< m), over Z for l<=i<=s, l<=k<=n. This can be done in polynomial
time [16]. Let T be the set of all monic irreducible factors of the polynomials
gi,k(x, F(x)). Let x- at, 1 -< l-< r, be the polynomial in T with degree 1. We apply the
algorithm ::! SENTENCE to check the sentence :ly q(at, y) in Z for every at (1 =< l=< r).
If there is an at such that ::ly q(al, y) is false in Z, then lx::lyq(x, y) is false in Z.
Then sentence tx::ly q(x, y) does not hold in every algebraic integer ring. If for every
at the sentence :ly q(at, y) is true in Z, then x::ly q(x, y) is true in Z. Now we assume
that this is the case.

($3) We apply the algorithm ::1 SENTENCE to check the sentence :ly q(t, y) in
the ring of integers of the field Q[ t]/g(t) for every polynomial g(t) with degree greater
than 1 of T. Here we change the variable x of g(x) in T to variable and take to
be an element of Q[t]/g(t). If :ly q(t, y) is false in some rings of integers then, of
course, lxZly q(x, y) is false in some algebraic integer rings. We claim that if ::ly q(t, y)
is true in the ring of integers of Q[t]/g(t) for every g(t), then /x::ly q(x, y) is true in
every algebraic integer ring. Suppose that this is not the case. Let I be an algebraic
integer ring and lx::ly q(x, y) is false in L Then there exists a b of I such that 3y q(b, y)
is false in L This implies that gi,k(b, F(b)) =0 for certain i, k and F(x) of S. Then b
must be a root of the equation g(x)--0 for a g(x) of T. Clearly, Q(b)-Q[t]/g(t).
Let A be the ring of integers of the field Q(b). Every element of A is an algebraic
integer and can be represented by the form abi; a are elements of Q. The
algebraic integer ring I contains b; A is a subring of/. The sentence ::ly q(b, y) is true
in A, since :iy q(t, y) is true in the ring of integers of Q[t]/g(t) and Q(b)- Q[t]/g(t).
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The sentence Zly q(b, y) is true in/, since A is a subring of L This is a contradiction
and proves our claim. All the steps ($1), ($2), and ($3) can be done in polynomial
time. Therefore ’q:l SENTENCE OVERALL AIR is in P if the given formula is in DNF.

Now we prove the case q(x, y) in CNF, i.e. q(x,y)=/si=1 {Vjg, f,j(x, y)=
Ov Vk=l gi,k(x, y) 0], where f,j(x, y) and gi,(x, y) are polynomials over Z.

(T1) Just as we did in the step (T1) of Theorem 3.6, we omit from g,,(x, y) the
GCD of f,j(x, y) and gi,(x, y) for every i, j, and k. Hence we may assume that for
every i, f,(x, y) and gi,(x, y) are relatively prime for 1 =<j =< m and 1-< k=< n in the
above formula.

(T2) First, we assume that for every there is a k such that g,k(x, y) O. Given
a polynomial g,(x, y) hm(x)y" +" + ho(x), let G,(x) be the GCD of polynomials
{hm(x), ", ho(x)} and G(x) be the GCD of Gi,(x) for k =< F/i, Now we factor G(x)
over Z by the algorithm of [16] and let S be the set of all monic irreducible factors
of the polynomials G(x) for 1-<_iN s. Let x-as, 1 <= a =< r, be the polynomials in S
with degree 1. We apply the algorithm :1 SENTENCE to check ::ly q(a,, y) over Z
for every a =< r and :ly q(t, y) over the ring of integers of the field Q[ t]/g(t) for every
polynomial g(x) of S with degree greater than L If =ly q(a,, y) is false in Z for an
or ::lyq(t, y) is false in the algebraic integer ring of Q[t]/g(t) for a g(x) then, of
course, VxZly q(x, y) cannot be true in every algebraic integer ring. Otherwise, we
claim that Vx::ly q(x, y) is true in every algebraic integer ring. Suppose that this is not
the case. Let I be an algebraic integer ring and Vx::ly q(x, y) is false in L Let b be an

element of I such that VyVsi= [/.= f,(b,y)O^/’=g,k(b,y)=O] is true. We
obtain that there is an i, Gi(b) =0. Since b is an algebraic integer, there is a g(x) in
S such that g(b)=0. Let A be the algebraic integer ring of Q(b). Since Q(b)=
Q[x]/g(x) and A is a subring of/, ::lyq(b, y) is true in /. But this contradicts our
assumption. Therefore, Vx:ly q(x, y) is true in every algebraic integer ring. Now we
assume that for some i, gi,k(X, y) 0 for every k <= ni. Since a 0 v b 0:> a. b 0 is
true in every algebraic integer ring, we may combine several equations into one and
write that

p(x, y)= f,(x, y)= 0 v gi,g(x, y) 0 ^ Ft(x, y)= O.
i=1 j=l k=l 1=1

(T3) We apply the Euclidean algorithm to find the GCD, G(x, y), of polynomials
Fl(X, y) for 1--< l<=p, then factor G(x, y) over Z by Lenstra’s algorithm [14]. We may

q
write G(x, y) Go(x, y) I-I= (Y- G(x)), where Go(x, y) has no factor of the form
y-G(x). If q=0, i.e., G(x,y) has no factor of the form y-G(x), then Vx:ly
/P_IF(x, y)=0 is false in some algebraic integer ring by Proposition 4.4. Therefore,
VxZly q(x, y) is false in some algebraic integer ring. Now we assume that q 0.

(T4) Let Hi,k,c(x)=gi,k(X, Gt3(x)) and T/ be the set of polynomials G(x)
such that H,k,(x) 0 for every k -< n and T U ri. Let G’(x, y)
Go(x, y) 1-I= (Y G(x)), where G’(x, y) is the polynomial omitting from G(x, y) any
factor y-G(x) if G(x) T. With similar arguments as we made in the step (T4) of
Theorem 3.6 we obtain that r 0, i.e., G’(x, y) has a factor of the form y G(x), where
G(x) is a polynomial with coefficients in Z. Notice that for any algebraic integer ring
I, G(a) is in I if a is in I. This time we do not need the nondeterministic algorithm
in the step (T4) of Theorem 3.6.

(Ts) Let G(x) Z[x] and y-G(x) be a factor of G’(x, y). We factor the poly-
nomial g,k(X, G(x)) over Z for every iN s and k<_-ni. Let T be the set of all monic
irreducible factors of the polynomials g,k(X, G(x)). As in step (T2), we check the
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sentence =ly q(a, y) over Z if x- a is in T and =ly q(x, y) over the algebraic integer
ring of Q[x]/g(x) if g(x) is in T and the degree of g(x) is greater than 1. If there is
a sentence =ly q(a, y) or :ly q(x, y) that is false, then Vx::ly q(x, y) cannot be true in
every algebraic integer ring. Otherwise, by the same arguments, Vx::ly q(x, y) is true
in every algebraic integer ring. This completes our proof for the case q(x, y) in CNF.
Therefore V=I SENTENCE OVER ALL AIR is in P. El

With similar arguments as those used to prove Theorem 4.5, we can prove that
the decision problems of ’qEI sentences true in some other classes of rings of algebraic
integers are also in P. We demonstrate the case of radical integer rings (RIR).

COROLLARY 4.6. V=I SENTENCE OVER ALL RIR is in P.
Proof Every cyclotomic extension is a radical extension, therefore we can apply

Proposition 4.4. Our algorithms are similar to the algorithms that decide
SENTENCE OVER ALL AIR. We sketch the proof for the formula in DNF only. The
only difference is in ($2). Here let T’ be the subset of T such that all the polynomials
of T’ are also solvable by radicals. It is well known [12] that solvability by radicals is
in polynomial time. We can obtain this set T’ in polynomial time. Notice that the field
Q[t]/g(t) (not the splitting field of g(x)) is a radical extension field. If ::ly q(t, y) is
false in the ring of integers of Q[t]/g(t), then Vx::ly q(x, y) is false in some radical
integer rings. Now we need to prove that if ::ly q(t, y) is true in the ring of integers of
Q[ t]/g(t) for every g(x) of T’, then Vx:iy q(x, y) is true in every radical integer ring.
Suppose that this is not the case. Let R be a radical integer ring and Vx::ly q(x, y) is
false in R. Then there exists a b of R such that =iy q(b, y) is false in R. This implies
that there exist i, k and F(x) of S such that gi.k(b, F(b)) =0. Then b must be a root
of the equation g(x)= 0 for a g(x) of T. Since R is a radical integer ring and b is an
element of R, b can be expressed in terms of radicals. The irreducible polynomial g(x)
has a root expressed in terms of radicals, so g(x) is solvable by radicals [13]. Hence
g(x) must be an element of T’. Clearly, Q(b)-Q[t]/g(t), let A be the ring of integers
of Q(b). Then A is a subring of R. The sentence =ly q(b, y) is true in A. It is also then
true in R. This contradicts that :ly q(b, y) is false in R, and completes our proof. El

Let f(x) be a polynomial over Z. Then f(x) can be checked for normality in
polynomial time. Furthermore, iff(x) is normal, then computing its Galois group can
be done in polynomial time [11]. Therefore given a polynomial f(x), we can check in
polynomial time whether the splitting field of f(x) over Q is a cyclic (or abelian)
extension field or not. Because the splitting field off(x) is an abelian extension only
if f(x) is normal. With similar arguments as those used to prove Corollary 4.6, we
obtain the following corollaries.

COROLLARY 4.7. V::! SENTENCE OVER ALL CIR is in P.
COROLLARY 4.8. :::] SENTENCE OVER ALL BIR is in P.
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AN OPTIMAL ON-LINE ALGORITHM FOR
K-SERVERS ON TREES*
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Abstract. The k-server problem is investigated when the metric space is a tree. For this case
an on-line k-competitive algorithm for k-servers is presented. The competitiveness ratio k is optimal.
The algorithm is memoryless, in the sense that it does not use any information from the past.
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1. Introduction. Let M be a metric space. That is, for any two points x, y E M
we are given their distance IIx, Y]I >- 0 such that ]Ix, Yll > 0 for x y, and the triangle
inequality is also satisfied: IIx, Yll / IlY, zll-> x, zll for all x, y, z e M.

We are also given k-servers that can move among points of M. At each time slot,
a request x M appears, and we have to "serve" this request, that is, choose one of
our servers and move it to x. Other servers are also allowed to move. Our measure of
cost is the distance by which we move our servers. The problem is to design a strategy
that minimizes the cost of servicing a sequence of requests given on-line. The server
problem is an abstraction of several practical problems, including heuristics for linear
search, paging, and motion planning for 2-headed disks. For example, in the paging
(or, equivalently, caching) problem we have a two-level memory system with a total
of n pages, k of which can reside in fast memory. Given a reference to a memory
page x which is not currently in the fast memory, we remove some page y from the
fast memory and replace it with x. Our objective is to minimize the number of page
replacements. This can be modeled by a server problem on an n-point space where
all distances are equal to 1. See [2], [7], and [9] for more references.

Suppose that we are given a sequence R of requests. A schedule is a specification
of which server serves which request of R. Any schedule that achieves a minimum cost
is called an optimal schedule. It is known (see [2]) how to compute an optimal schedule
for R in polynomial time, assuming that the whole sequence R is given off-line, in
advance.

However, no on-line algorithm can achieve the optimal cost on each sequence of
requests. The current research on this problem concentrates on finding c-competitive
on-line algorithms, that is, algorithms which compute a schedule of cost at most
c. opt + b, where opt is the cost of the optimal schedule and b is a constant that is
allowed to depend only on the initial configuration. Manasse, McGeoch, and Sleator
[7] proved that there is no on-line c-competitive algorithm for c < k, for any metric
space with at least k / 1 points. The problem of whether there is a general on-line
algorithm with competitiveness ratio k remains open.

For k 2, the problem was solved by Manasse, McGeoch, and Sleator [7], who
gave a 2-competitive algorithm for 2 servers. Irani and Rubinfeld [5] proved that a
version of a balancing algorithm (dividing the work more or less equally among the
servers) is 10-competitive for 2 servers. Raghavan and Snir [9] presented a randomized
2-competitive algorithm whose competitiveness ratio is between 3 and 6.
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Some research has been done for some specific metric spaces. Chrobak et al. [2]
presented k-competitive algorithms for the line and the weighted cache problem, where
the distance to x from any other point is w(x), the weight of x. The weighted cache
problem was also considered in [9], where a randomized k-competitive algorithm for
this problem was given. Using randomization for the paging problem, it is possible
to beat the lower bound k for deterministic algorithms. Fiat et al. [4] presented
a randomized algorithm for this problem with ratio 2Hk, improved later to Hk by
McGeoch and Sleator in [8] (where Hk is the kth harmonic number). Very recently,
Coppersmith et al. [3] have discovered a randomized algorithm with competitiveness
constant k that works for a class of metric spaces called resistive. This class includes
many known metric spaces, for example, trees.

Raghavan and Snir [9] introduced a notion of a memoryless algorithm, an algo-
rithm whose behaviour does not depend on the past. A memoryless algorithm makes
the decision based only on the current configuration of the servers and the position
of the request.

In this paper, we present a k-competitive algorithm for k-servers on trees. By a
tree we mean a metric space that is topologically equivalent to a free tree (in the graph-
theoretic sense), and the distance is measured along the branches of the tree. The
lower bound of k for k-servers presented in [7] also applies to the special case of a tree,
and therefore this result is best possible for deterministic algorithms. The algorithm
is also memoryless. This generalizes a similar result for the line in [2]. It should be
pointed out here that, in the case of trees, some server algorithms with memory can be
transformed into memoryless algorithms with the same asymptotic competitiveness
ratio, by a careful encoding of the memory state in the binary expansion of the
distances between the servers. This requires, however, complicated and expensive
bit operations, unlike our algorithm, that is realized by a simple, piecewise linear
function.

An interesting feature of this algorithm is that it can be applied to other problems,
even though they may not have a tree structure at first glance. For example, consider
the paging problem, where our metric space consists of n points where all distances
are equal to 1. We "embed" this into a tree as follows: our tree is a star with n
arms of length 0.5, and we place n points at the ends of those arms. By applying our
algorithm to this star, we obtain a k-competitive algorithm for the paging problem.
Quite surprisingly, this algorithm turns out to be equivalent to the Flush-When-Full
cache strategy from [6]. In the same way, it also gives a k-competitive algorithm for
a much more difficult problem: the symmetric weighted cache, where each point x is
given some weight w(x) >_ 0, and the distance between x and y is w(x)+ w(y). It
is easy to see that the symmetric and nonsymmetric version of weighted cache are
almost equivalent: on any sequence of requests their optimal costs differ by at most
half of the difference of weights of the initial and final configuration.

We also show that our result gives an algorithm for an arbitrary n-point metric
space with competitiveness ratio k(n-1). This improves the previously known bound
of 2() 1 that can be derived from the work of Borodin, Linial, and Saks [1]. For
some specific metric spaces this ratio can be made yet smaller.

2. The adversary and potential methods. The adversary method is used
very often for proving lower bounds on the complexity of various computational prob-
lems. We employ some of the ideas of this method for establishing the upper bound
on the competitiveness ratio. In the proofs, we view the computation as a game be-
tween our servers sl,..., sk and adversary’s servers al,..., ak, and measure the ratio
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between S, the work done by our servers, and A, the work of the adversary’s servers.
The goal is to show that independently of the way the adversary moves, we have
S <_ cA + b. This implies immediately that the algorithm is c-competitive, since one
of the adversary’s computations will correspond to the optimal schedule. The same
approach has been used in other proofs of competitiveness.

The potential method has been used before in the analysis of the amortized com-
plexity of various data structures. The technique can be viewed as follows. Given
an on-line server algorithm, we define a potential "function (I) that maps any possible
configuration of the servers (ours and the adversary’s) to a nonnegative real number.
Let (I) denote the value of the potential function after t steps of the algorithm.

The adversary starts from the same initial configuration as our servers. We assume
that (I), the initial value of the potential, depends only on this initial configuration.
Additionally, we assume that at each step of the game, the adversary first moves
a single server to the request point, and then we apply our algorithm to serve the
request. It is not hard to prove that those restrictions do not lead to loss of generality
(see [7]). Let (I) denote the value of the potential function after t- 1 steps and one
additional adversary’s move. A and S denote, respectively, the adversary’s and our
costs at step t. Our technique relies on the following lemma, whose simple proof is
left to the reader.

LEMMA 2.1. Suppose that for each step t >_ 1 we have the following:
(i) (I)t- (I)t-1

_
aAt, and

(ii) (V (I) >_/S
Then S

_
(a/)A + (o, that is, our algorithm is c-competitive for c

3. The competitive algorithm for trees. In this paper, by a tree we under-
stand a planar embedding of a free tree (in the graph-theoretic sense). If T is a tree,
then the distance ]Ix, Y]I is the arc-length of the unique simple path through T from
x to y. This path, with x excluded, is denoted by (x, y], and called an interval.

For simplicity, Sp and ai will also denote the current positions of the servers Sp,
ai. If the request is on point x, then we call our server Sp active, if there are no more
of our servers in the interval (Sp, x]. If several servers occupy the same position as Sp,
and all satisfy the condition above, then only one of them is chosen arbitrarily as the
active one; the others are not. Our algorithm works as follows.

ALGORITHM 1. Move all of our active servers continuously with the same speed
towards x until one of them (obviously the closest one) reaches the request. Note that
during this motion some active servers may become nonactive, and then they halt.

More precisely, the algorithm can be formulated as follows.

while none of our servers is on x do begin
let d minp [18p, yp[[, where yp e (Sp, X] is either a vertex or x;
move each active server Sp by d towards x

end.

Our potential function is defined now by

p(q

where Mmin is, a minimum weight matching in a bipartite graph with components
{s,"’,sk} and {a,"’,ak}, where the weight of edge (Sp, ai)is

LEMMA 3.1. (t_ (t--1 < kAt.
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Proof. Since the adversary moves only one server, only one edge in Mmin can
change. If this server moves by d, then the potential increases by at most kd. This
implies the lemma.

LEMMA 3.2. (I)t- (I) > St.
Proof. Without loss of generality we assume that the request is on al. Assume

that the servers El,..., Sq are active. It is easy to see that there is a minimum matching
Mmin in which a is matched to one of s,..., Ha. Suppose that all our servers moved
by d. Then the weight of a minimum matching cannot increase by more than (q- 2)d.
For p 1,..., q, let p be the number of our servers sr such that Sp is between sr and
a. When Sp moves by d, its distance to lp 1 of our servers increases by d, but the
distances to k p of our servers decreases by d. Therefore, during this movement
the change of the potential is at most

q

k(q 2)d + Z(ip 1 k / ip)d
p--1

k(q- 2)/ 2ip -q- kq
p--1

[k(q-2)+2k-q-kq]d
-qd,

and our cost is qd. This proves the lemma. D
From Lemmas 3.1 and 3.2, using Lemma 2.1 we immediately obtain the following

result.
THEOREM 3.3. Algorithm 1 is k-competitive.

4. Applications. As was shown in the Introduction, our algorithm can be ap-
plied directly to other metric spaces that can be "embedded" in a tree. Another
example of such spaces are so-called ultrametric spaces. A metric space M is called
ultrametric if for any x, y,z E i we have Ilxyll <_ max{llxzll Ilyzll}. It is easy to
show that each ultrametric space can be isometrically embedded into a tree, so our
algorithm can be applied to ultrametric spaces as well.

In this section we show that this algorithm can also be used to obtain an algorithm
that is k(n- 1)-competitive on every n-point metric space.

Let M be a metric space with n points.

ALGORITHM 2. Fix a minimum spanning tree T of M, and apply Algorithm 1
pretending that T is the underlining metric space.

By using the subscript T we will distinguish the distances and costs in T from
those in M.

LEMMA 4.1. (i) S <_ ST, and
(ii) AT <_ (n- 1)A.
Proof. Inequality (i) follows directly from the triangle inequality. To prove (ii)

consider a single move of the adversary when he moves a server from x to y. Consider
the path P from x to y in T. If (u,v) is any edge on P, then
because otherwise T would not be minimum. Since P has at most n- 1 edges,
x, YlIT

_
(n- 1)llx, YlI, and (ii) follows.

Since by Theorem 3.3 ST <_ kAT, we obtain the following.
THEOREM 4.2. Algorithm 2 is k(n-1)-competitive in any n-point metric space.
For some specific metric spaces this bound can yet be essentially improved. De-

note by 5 the diameter of T, that is, the maximum number of edges in a simple path
of T. Then, by the same argument as above, we have that Algorithm 2 is in fact
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kS-competitive. For example, if M is an x/ x/ grid (with all weights equal to one)
then it has a spanning tree of diameter 2v/-, so the competitiveness ratio is 2kv/’.
If M is a hypercube (with all weights equal to one), then it has a spanning tree of
diameter log n, and then the competitiveness ratio is only k log n.

5. Final remarks. Note that our algorithm works even when we relax our defi-
nition of a tree, allowing infinite trees. In fact, the tree may be dynamic, in the sense
that we start with a single point, and each request consists of a request point and a
path leading to this point from some already existing branch of the tree.

Example. A robot is confined to the space in a room above a certain track on
the floor. The robot is always free to move vertically, but can only move horizontally
along its track when it is resting on the floor. Let T be the set of positions of the
robot, and IIx, Yll is defined to be the total movement needed for the robot to get from
position x to position y. Then T is a tree in this more general sense if the track is
one-dimensional, in fact, if the track is any tree.

There is another property of our algorithm we would like to emphasize. In our
approach we can view the servers as identical robots that move along the tree. By
"identical" we rnean that they have the same speed and execute the same program.
Their program is simple: given the request site x move towards x unless you see
another robot on your path to x (in which case, obviously, the other robot will reach x
earlier so following it would be rather silly). We find it interesting that this somewhat
chaotic behaviour, when robots actually compete between themselves to serve the
request, leads to an effective algorithm.

Acknowledgments. Allan Borodin pointed out to us that our potential function
can be expressed by the formula we currently use in the paper. The same formula
was used in [3].
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THE COMPLEXITY OF THE RESIDUAL NODE CONNECTEDNESS
RELIABILITY PROBLEM *

K. SUTNERt, A. SATYANARAYANAt, AND C. SUFFEL

Abstract. This paper considers a probabilistic network in which the edges are perfectly reliable
but the nodes fail with some known probabilities. The network is in an operational state if the
surviving nodes induce a connected graph. The residual node connectedness reliability R(G) of a
network G is the probability that the graph induced by the surviving nodes is connected. This
reliability measure is very different from the widely studied K-terminal network reliability measure.
It is proven that the problem of computing the residual connectedness reliability is NP-hard by
showing that the problem of counting the number of node induced connected subgraphs of a given
graph is #P-complete. The problem remains #P-complete for split graphs as well as planar and
bipartite graphs.

Key words, network reliability, planar graphs, bipartite graphs, #P-completeness

AMS(MOS) subject classifications. 68R10, 68Q15, 68R05

1. Introduction. A major issue in reliability theory is the determination of the
reliability of a given system from the reliabilities of its components. System reliabil-
ity includes a variety of network reliability problems that occur when the system is
modelled as a graph or a digraph whose points or edges or both have an associated
probability of being operational. Historically, network reliability has been concerned
with the problem of determining the probability that there is a path of operational
elements from a specified point to another point in the network. Recent developments
in computer communication networks have led to an interest in more global measures
and associated computational techniques. Consequently, various reliability measures
have been defined in the literature. For example, one of the most commonly used
performance measures is the K-terminal reliability of a graph. Suppose G (V, E is
a graph and K C V is a specified subset of V. Given that the elements (points and
edges) of G may fail with known probabilities, the K-terminal reliability RK(G) of G
is the probability that there is some subgraph H in G such that all elements of H are
operational and all points of K lie in a single component of H.

If we restrict our attention to graphs G in which points do not fail but the edges fail
independently of each other with equal probabilities p, then the K-terminal reliability
of G can be expressed as a polynomial

El
RE(G) Z S,(G,K)p El-’(1 p)i,

i=1

where Si(G,K) is the number of subgraphs H of G such that H contains edges
and all points of K lie in a single component of H. Computing RK(G) in general is
NP-hard, even for IKI 2. This result was first proved by Valiant [7] by showing that
the problem of computing the general term of the above polynomial is #P-complete.
Subsequently, Provan [5] showed that even for planar graphs the computation of
RE(G) is NP-hard. These results motivated the search for the classes of graphs G
which admit polynomial-time algorithms for the computation of RK(G), for example,
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2

5 4 3

2

FIG. 1. An example graph and its two 3-node failure states.

A special case of the K-terminal problem is the following K-terminal node con-
nectedness problem: In this model, edges do not fail, but the nodes that are not in
a specified subset K do fail with known probabilities. The K-terminal node connect-
edness reliability of a graph G is then the probability that the surviving nodes of G
induce a subgraph in which all nodes of K lie in a single component. This problem
also was shown to be NP-hard for general graphs and it remains so even for chordal
graphs and comparability graphs [1].

In this paper, we are concerned with the following reliability problem: The edges
of the graph are perfectly reliable but the nodes fail independently of each other. The
network is considered to be in an operational state if the surviving nodes induce a
connected subgraph of G. The residual node connectedness reliability of a graph G,
denoted R(G), is the probability that the graph induced by the surviving nodes is
nonempty and connected.

We first note that this problem is not a special case of the previous one; indeed
it is very different from the K-terminal reliability problem. The K-terminal problem
constitutes a hierarchical system while the residual connectedness problem does not.
Specifically, let E be a finite set and :P(E) be the power set of E.

A system (E, ) consists of E and a collection of operating states C P(E).
A hierarchical system (E,) is one where is closed upward with respect to set
inclusion, i.e., a superset of an operating state is again an operating state. We say
that the system is operational if the collection of operating components is an operating
state of the system. Assuming a probability distribution Pr on :P(E), the reliability
of the system is just Pr(2). It is easily seen that the K-terminal model and its
special case described above are hierarchical. The residual node connectedness model
is not hierarchical since a supergraph of a connected graph may be disconnected, as
illustrated in Fig. 1. Moreover, it seems that the computational aspects of the two
problems are also very different.

For example, computing RK(Kn) for a complete graph on n nodes, in which



RESIDUAL NODE CONNECTEDNESS RELIABILITY 151

the edge failure probabilities are not necessarily equal,, is clearly NP-hard. On the
contrary, computing R(Kn) is trivial because R(K,) 1- [I p(i), where p(i) is the
failure, probability of node i. Yet another example is the case where the given graph
G is a tree. While RK(G) rI(1 p(i)), where p(i) is the failure probability of edge
i, computation of R(G) requires a nontrivial, though linear time, algorithm; see [3]
for details.

In this paper we show that computing the residual connectedness reliability is
NP-hard. Indeed, we show that the problem remains hard even for split graphs and
planar and bipartite graphs.

2. Complexity of the residual node connectedness problem. Let G be an
undirected graph with e perfectly reliable edges and n nodes which fail independently
and with equal probabilities p. Let Sk(G) be the number of connected node induced
subgraphs of G with k nodes. Then the residual node connectedness reliability R(G)
may be written as

n

R(C,
k=O

We first show that the problem of computing S(G) ’]=o Sk(G) is #P-complete
for split graphs G.

Since R(G, 1/2) S(G)/2n for p 1/2, it follows that computing R(G) for split
graphs is NP-hard. An undirected graph G IV, E is a split graph if there is a
partition V I U C such that the nodes of I form an independent set of G while the
nodes of C induce a clique in G.

THEOREM 2.1. It is #P-complete to compute S(G) for split graphs G.
Proof. It is clear that computing S(G) is in #P. For hardness we show that

the problem of counting the number of satisfying truth assignments of a monotone
boolean formula in 2-conjunctive normal form is polynomial-time Turing reducible to
computing S(G) for a suitably defined graph G. For the hardness of monotone 2-SAT,
see [7].

Consider a boolean formula in 2-CNF with variables xl,...,x and clauses
cl,..., c,. We may safely assume that every variable occurs in at least one clause.
For any t >_ 1 we now define a graph G associated with formula as follows: G
has vertices x, 1,...,r, and c, j 1,...,s, - 1,...,t corresponding to the
variables and clauses of O, respectively. Each clause is represented t times. There is
an edge from x to c (for all T <_ t) if and only if variable x occurs in clause cj.
Furthermore, there are edges that make X {x,... ,xr} into a clique. Thus G is a
split graph, see Fig. 2.

Let us define the weight of a truth assignment a" X {0, 1} to be

w(a) := number of clauses of satisfied by a.

Also let T be the number of satisfying truth assignments of weight k, k 0,..., s.
Note that there is a natural class Ca of connected subgraphs associated with every
truth assignment a of weight at least 1. A connected subgraph C in Ca has the
form C Xa U S, where Xa "= {x E X la(x 1 } and S is an arbitrary subset
of { c a satisfies clause j, 7 1,..., t}. For the sake of completeness define CO "=

{ {c}lj 1,...,s,-= 1,...,t}, where denotes the trivial truth assignment of
weight 0. Observe that all these classes are disjoint. Furthermore, Ca has cardinality
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(2t)() for all a : O. It is easy to verify that every connected subgraph, of G belongs
to one of these classes.

0 0

t
o o

o
o

gr
FIG. 2. The split graph G constructed in the proof of Theorem 2.1..

Consequently, we have

s(a’) +
l<k<s

Plainly, the right-hand side is essentially a polynomial of degree s with coefficients Tk.
By choosing s + 1 values of t we can thus compute the coefficients in polynomial-time,
see [7]. But T8 is the number of satisfying truth assignments of and we are done.

In the following hardness argument for planar graphs we will use the fact that it
is possible to protect certain vertices against deletion provided the total number of
deleted vertices is small. More precisely, let G (V, E be an arbitra,ry graph on n
points and P C V a collection of nodes to be protected. Define a new graph G(P)
as follows: for every vertex v of G add n + 1 new vertices vl,’",vn+l and edges
{v, v}, 1,..., n + 1. Thus the new vertices v are endpoints in G(P). Letting
p := ]Pl(n + 1) the cardinality of G(P) is n’= n + p.

Now define

Sk(G; P) :- number of connected induced subgraphs of G on k points containing P.

We claim that for all k < n

(1) S,_(G(P))
k-i

To see this, first note that since k _< n it is impossible to delete all the endpoints
attached to any vertex in P. Hence the deletion of a vertex in P prc,duces isolated
vertices. But then any connected subset C of G(P) of cardinality n/- k contains
all protected vertices and our claim follows. Note that G(P) is planar and bipartite
whenever G is.

Substituting k 0,..., n in (1) we obtain a system of n / 1 linear equations.
Note that the system is in triangular form and each equation has leading coefficient
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1. Hence we can compute the values Sn-(G; P), for k 0,..., n from Sn,-k(G(P))
in polynomial time.

As in Lichtenstein [4], define a graph gr(O) associated with formula in 3-CNF
as follows. For each boolean variable x of there is a vertex v(x) in gr(O). As we will
see below, v(x) represents the variable x as well as the negated variable 2. Similarly,
each clause c of is represented by a vertex v(c). There is an edge from v(x) to v(c)
in gr(O) if and only if one of the literals x or 2 occurs in clause c. Furthermore, gr(O)
contains an additional cycle through the vertices corresponding to variables.

The formula is planar if and only if gr(O) is planar. It is shown in [4] that
for every boolean formula there exists a planar boolean formula which can be
constructed from in polynomial time that is satisfiable if and only if is satisfiable.
It is easy to verify that Lichtenstein’s transformation is parsimonious, i.e., it preserves
the number of satisfying truth assignments. For the hardness of 3-SAT, see [7]. Thus
we have the following lemma.

LEMMA 2.2. Counting the number of satisfying truth assignments of planar
boolean formulae in 3-conjunctive normal form is #P-complete.

We will refer to this problem as P-3-SAT.
Let us define

n

(() Sk(G) 2kn.
k=0

S(G) will be used in the next theorem as a technical device to show that it is #P-
complete to compute the sequence So (G),’", Sn (G).

THEOREM 2.3. It is #P-complete to compute S(G) even if G is required to be
planar and bipartite.

Proof. It is clear that computing (G) is in #P. By Lemma 2.2 it suffices to
show that P-3-SAT is polynomial-time Turing reducible to computing (G) where G
is required to be planar and bipartite.

So assume is a planar boolean formula in 3-conjunctive normal form with,
say, r variables and s clauses. Denote by X the set of variables of and by C the set
of clauses. For any variable x, let #(x) be the number of occurrences of the literals x
and in (I) and set m := xex #(x).

Now consider the planar graph H gr(O). It is safe to assume that we have a
planar embedding of H. In particular, we assume an appropriate cyclic ordering of
the edges in H incident upon v(x) for all the vertices v(z) corresponding to boolean
variables z in H.

We will modify H in a number of steps that preserve planarity and produce a
new graph G. First we replace all the vertices v(x), x E X, by crossover boxes. We
give a detailed description of one such box B, see also Fig. 3. Pick vertex v(x) X
and let # #(x).

The crossover box B is a "broken" wheel of size 4#; more precisely, B has vertices

and edges

{v(xj), u}, {v(xj), uj} and {uj,v(xy+l)}

for all j < 2# (here, as in the following, indices are supposed to be computed modulo
some appropriate number). Thus u is the hub of the wheel, the vertices of the form
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FIG. 3. A crossover box in the graph representing formula . The corresponding variable
has multiplicity 3. The full nodes are protected.

v(xj) and uj alternate on the perimeter, and the hub is connected to the v(xj) vertices
only.

Next we replace the edges {v(x),v(c)}, x e X, c e C, in H by new edges
{v(xj), v(c)} as prescribed by the planar embedding. We adopt the convention that j
is chosen even whenever the occurrence of x in clause c is positive and odd otherwise.
Furthermore, every vertex v(x) is used at most once.

The last step is to connect the crossover boxes according to the cycle on X in
H. To this end the old edges of the form {v(x), v(y)}, x, y e X, are replaced by
{v(xj), uxy}, {v(xj+l), Uxy}, {Uy, v(yj,)}, and {uy, v(yj,+)}, where the Uxy are new
vertices and j and j are chosen according to the planar embedding.

A moment’s thought shows that the resulting graph G on n s / 2r /4m vertices
is still planar. Furthermore, all cycles in G are necessarily of even length; hence G is
in addition bipartite.

We now show how to interpret the changes in the graph in terms of the boolean
formula. For each x E X, introduce new boolean variables xo,’",x2,(x)-. Then
replace each occurrence of x in clause c by x2j whenever {v(x2j), v(c)} is an edge in
G. Similarly, each occurrence of 2 is replaced by some x2j+, 0 _< j < #(x). Call the
resulting boolean formula O. Note that O will in general fail to be planar.

Also define a formula

A xj / xj+.

0<j<2t,()

Lastly, let A ". Thus all occurrences of boolean variables in are positive.
As usual, we identify a truth assignment a of with the set of the variables satisfied
by c, i.e., we identify c and { xj a(xj) 1 }. Now set

T := I{ a a a satisfying truth assignment of

Note that T, is the number of satisfying truth assignments of the original formula
Lastly, let P be the set of all vertices of G other than those of the form v(x). We
have the following claim.
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Claim. The satisfying truth assignments of @ of cardinality 2m correspond
bijectively to connected subgraphs S of G such that P C S and S has cardinality
n-i.

To see this, suppose S is a connected subset of G containing the protected vertices
in P. S gives rise to a truth assignment as of :

1 if xj E S,as(xj) := 0 otherwise.

It is easy to check that as indeed satisfies . Conversely, every satisfying truth
assignment c of can be translated into a corresponding connected subset Sa of G.

Computing the number of satisfying truth assignments of (I) thus amounts to
computing Tin. By the claim, it suffices to determine Sn-i(G; P), O,...,m, in
order to compute the numbers To,..., Tin. Lastly, by the remark following equation
(1, the last problem in turn can be reduced to computing S(G(P)). Here G and
therefore G(P) are both planar and bipartite and we are done.

The last result also shows that it is NP-hard to compute R(G, p). To see this, note
that R(G, p) =0 Sk(G)pn-k( 1 p)k pn =0 sk(e)((1 p)/p)k. Substituting- (1 p)/p in the last equation yields R(G, p)/pn ’=o Sk(G)T. Since T

becomes arbitrarily large for p close to 0 one can use the techniques in Valiant [7]
to retrieve the coefficients So(G),...,Sn(G) and therefore S(G), given the values
R(G,p)/pn for suitable choices of p. As we have just shown, the latter problem is
#P-complete.
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MORE NEARLY OPTIMAL ALGORITHMS FOR UNBOUNDED
SEARCHING PART I: THE FINITE CASE*

EDWARD M. REINGOLDt AND XIAOJUN SHEN$

Abstract. Given a function F N+ {X, Y} with the property that if F(no) Y then
F(n) Y for all n > no, the unbounded search problem is to use tests of the form "is F(i) X?"
to determine the smallest n such that F(n) Y; the "cost" of a search algorithm is a function
c(n), the number of such tests used when the location of the first Y is n. A solution to this search
problem specifies a prefix-free, binary encoding of the positive integers in which the cost c(n) is
the number of bits used to encode n. It is shown that the "ultimate algorithm," of Bentley and
Yao [Inform. Process. Left., 5 (1976), pp. 82-87], which is within an additive O(lg* n) factor
of a lower bound on the cost of this problem, is "far" from optimal in the sense that it is just
the second in an infinite sequence of search algorithms, each of which is much closer to optimality
than its predecessor. A corresponding sequence of lower bounds is also given, based on Kraft’s
inequality, each of which is much stronger than its predecessor. Diagonalizing over this sequence
of search algorithms yields an algorithm, which is given explicitly in a Pascal-like notation, that is
within an additive factor of c(n) + 2 of the corresponding lower bound, where c(n) is a functional
inverse of Ackermann’s function--an extremely slowly growing function. For each search algorithm,
the corresponding prefix-free, binary encoding of the integers is given, together with the decoding
algorithm. Finally, algorithms/encodings are constructed that differ from the lower bounds by only
negligible amounts even for the asymmetric case in which the cost of a Y answer and the cost of an X
answer are not the same. In Part II it is shown how to continue the construction to get a transfinite
sequence of dramatically better algorithms/encodings and lower bounds.

Key words, unbounded search, prefix-free codes, optimal algorithms, Ackermann’s function,
inverse Ackermann’s function, Kraft’s inequality

AMS(MOS) subject classifications. 68Q25, 68Q20, 94B45, 26A12

1. Introduction. The unbounded search problem, introduced by Bentley and
Yao [6], is to determine the location of the first Y value of a function F from the
positive integers to the set {X, Y}, when F has. the property that if F(n0) Y, then
F(n) Y for all n > no. The "cost" of the search algorithm is a function c(n) that
specifies the number of tests "is F(i) X?" used when the location of the first Y
is n. Bentley and Yao point out the equivalence of this problem and table lookup
in an infinite ordered table, and they also show its connection to the construction of
prefix-free, binary encodings of the integers in which the codeword for n has c(n) bits.
Knuth [14] contains an exposition of the problem of encodings and nomenclature for
extremely large numbers.

Bentley and Yao describe an infinite sequence of increasingly better unbounded
searching algorithms. They begin with a linear search that tests F(1), F(2), F(3),

until F(n) Y. Second is a form of binary search in which the interval between
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tents of this paper!
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successive locations tested doubles until a Y is found; then bisection is used to find the
first Y. Third is an algorithm in which successive tests occur at double powers of 2:
F(22), F(221 ), F(222), are tested until a Y is found; their second algorithm is then
used to find the first Y. The sequence of algorithms continues, each algorithm using
a higher number of exponentiated twos. Finally, they diagonalize over this sequence
of algorithms to obtain what they call the "ultimate algorithm" which tests F(1),
F(21), F(221), until a Y is found; the height of the tower of twos at which the first
Y is encountered determines how the search will continue. We will not give a further
description here of their ultimate algorithm because it will be described, in passing,
in the next section.

The cost of Bentley and Yao’s ultimate algorithm is

L*(n)-I

c(n) 4 + L*(n) + Li(n),

where Li(n) is similar to [lg(i) nJ and L*(n) is similar to lg* n. Specifically, they
define

and, for >_ 0,

then

l (n) n

+ 1;

while

Li(n) (n) 1,

L*(n) smallest/such that L(n) 1.

Bentley and Yao prove that their ultimate algorithm is within an additive factor of
O(lg* n) of being optimal.

Approaching the problem from the point of view of constructing prefix-free, binary
encodings of the positive integers, Elias [7] and Lebenshtein [16] give constructions
that are reminiscent of the encoding that corresponds to Bentley and Yao’s ultimate
algorithm: the encoding of n is blb2""bc(n), where b 1 if and only if the ith
evaluation of F is X. Elias comments that this scheme is "not quite ultimate," but
that improvements require that n be "much larger than Eddington’s estimate of the
number of protons and electrons in the universe!"

In spite of the closeness to optimality of the ultimate algorithm or encoding,
some attention has been paid to improvements. Stout [24] offers some very slight
improvement; Knuth [14] outlines some significant (relatively!) improvements in the
encodings and the lower bounds, and suggests still further possibilities. We outline
Knuth’s improvements in the next section, so we will not delve into them here. Beigel
[3] gives a nonconstructive improvement on the algorithm and the lower bound, and
remarks that an algorithm exists that is "within" g(n) of being optimal, for any g(n)

Such encodings, incidentally, are useful for assigning priorities to subtasks in a parallel problem-
solving system; see [12] or [23].
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that is unbounded and computable; we discuss this notion and its relation to our
results later in this paper. Bentley and Yao [6] mention possible improvements in the
lower bounds that deserve some comment here.

Lower bounds for the problem derive from graft’s inequality [15] (see [6] or [14]):
if c(n) is the cost of an algorithm/encoding, then ,=1 2-c(n) -< 1. If one can show,
therefore, that n--0 2-f(n) diverges, then c(n) > f(n) for infinitely many n, so that

limn__,osup f (n) -> 1.

Bentley and Yao use this argument to obtain their lower bound. They go on to cite
an unpublished result of Chung and Graham that

Z n(lg n)(lg lg n)(lg lg lg n)... (lg(lg* n) n)(lg* n)

diverges. If true, this would indeed yield a lower bound better than Bentley and Yao’s;
however, the sum converges, as can be seen by the comparison test and the fact that

Z n(lg n)(lg lg n)(lg lg lg n)... (lg(lg* n) n)n’-I

converges to approximately 2.865064. See inequality (B26) of [17] and [21, Appendix
A]; [3, Lem. 21] also shows convergence, as does the integral test with an argument
parallel to [2].

Both Knuth [14] and Beigel [3] present partial converses to Kraft’s inequality.
Knuth shows that if c(1), c(2), c(3), is a nondecreasing sequence of positive integers
such that n= 2-c(n) 1, then an irredundant, prefix-free, binary encoding of the
integers can be constructed in which c(n) is the number of bits in the representation
of n. The existence of such an encoding implies the existence of a corresponding
unbounded search algorithm of cost c(n): the encoding corresponds to an infinite
binary search tree on the positive integers formed by interpreting 0 as a left edge
and 1 as a right edge [14]. This tree is an infinite description of an unbounded
search algorithm. Beigel [3] shows that for a computable, positive-integer-valued,
nondecreasing function c(n), there exists an unbounded search algorithm of cost c(n)
if and only if n__l 2-c(n) _< 1; his proof is nonconstructive, however.

aaoult and Vuillemin [19] and Goldstein and aeingold [9] have extended some
of the results outlined above to unimodal search, in Which we seek the location of
the change in sign of the first derivative of a real-valued function. (We can think
of the unbounded search problem as seeking the location of the change in sign of a
real-valued function.) Raoult and Vuillemin also give independent derivations of some
of the results in [14].

In the present paper we elucidate the nature of "near-optimal" algorithms/en-
codings by giving stupendous (relatively!) improvements in both the algorithms/en-
codings and the lower bounds. We use Ackermann’s function to construct an infinite
sequence of algorithms/encodings, and a corresponding sequence of lower bounds, in
which the zeroth algorithm is a form of linear search, the first algorithm is a form of
binary search, the second algorithm is almost identical to Bentley and Yao’s ultimate
algorithm, and the improvement from the ith algorithm to the (i / 1)st algorithm
is equally dramatic for any i. Diagonalizing over the zeroth, first, second, and so
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on gives us an algorithm that is within an additive factor of a(n) + 2 of the cor-
responding lower bound; a(n) is the functional inverse of Ackermann’s function, an
extremely slowly growing function! that was first used in the analysis of algorithms by
Tarjan [25]. This diagonal algorithm has a relatively simple Pascal-like implementa-
tion in terms of Ackermann’s function. In a subsequent paper [20], we show how to
continue the construction to get a transfinite sequence of dramatically better algo-
rithms/encodings and lower bounds. This closes the gap between the cost of the best
algorithm and the best lower bound to a razor-sharp edge. Furthermore, we construct
algorithms/encodings that differ from the lower bounds by only negligible amounts
even for the asymmetric case in which the cost of a Y answer and the cost of an X
answer are not the same.

For notational simplicity, it is convenient to insist that F(0) X and to state
the unbounded search problem as that of finding the greatest integer n >_ 0 such that
F(n) X; in other words, instead of looking for the first Y, we look for the last
X. If the last X occurs at position n >_ 0, the search for the last X corresponds to
the encoding of the integer n. Thus we will consider encodings of the nonnegative
integers, following [14] instead of [6], who consider the positive integers only. These
two views of unbounded searching are clearly equivalent: our cost function c(n) is
defined for n >_ 0 as the number of tests used to determine the location of the last X,
when that location is at n; that is, c(n) is the cost of determining that the first Y is
at n + 1. Correspondingly, Kraft’s inequality becomes

n=O

2. The level-by-level construction.
DEFINITION. Ackermann’s function [1] is defined as follows for n >_ 1 (using the

form given in [10], but with the subscripts shifted by 1)"
2n i=0, nkl,

Ai(n) A}n__)(1) k 1,

where A}J)l(n Ai_l(A}_)(n)), A)(n) n. For convenience, we define Ai(0) 1
for > 0.

Thus for n k 1, A(n) 2n and A2(n) tower(n), an n-high tower of exponen-
tiated twos. Some values of Ai(n) are shown in Table 1.

DEFINITION. For n _> 0, the inverse Ackermann’s function is defined by

[n/2J i--0,
hi(n) least j such that a}J) (n) < 1 _> 1,

where i_
’(j)

ai_l (a}j__- 1)(n)), a}_) (n) n.
Thus, for example, a(n) [lg nJ, for n >_ 1, and a2(n) lg* n. Some values

of hi(n) are shown in Table 2. For _> 0, hi(n) is the functional inverse of Ai(n),
because

hi(n) A{(n) greatest x >_ 1 such that Ai(x) <_ n,

and hence ai(Ai(n)) n. Since hi(n) is many-to-one, it has no such inverse; however

Ai(ai(n)) least x >_ 1 such that hi(x) hi(n).
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TABLE
Ackermann’s ]unction; tower(n) is an n-high tower of exponentiated twos. Omitted values are far
too large to be expressed conveniently in the table. The functions Ai(n) are defined in 2 and A(n)
is defined in 3.

n 012 3 4 5 6 7 8

Ao(n) 2n, n >_ 1
Al(n) 2

A2(n) tower(n)
A3(n)
A4(n)
A(n)

1 2 4 6 8 10 12 14 16
1 2 4 8 16 32 64 128 256

1 2 4 16 216 2216 2:16 tower(7) tower(8)
2 4 2 to(2) to(to(2))

1 2 4 tower(216) A3(tower(216))
1 2 4 21

TABLE 2
Inverse Ackerman’s function. The functions hi(n) are defined in 2 and a(n) is defined in 3.

n 0 1 2 3 4 5 6 7 8... 15 16... 31 32... 63 64... 216-1 216 221
a0(n)- Ln/2J
al(n) Llg nJ
a2(n) lg* n

3()
g4(n)
(n)

0 0 1 1 2 2 3 3 4... 7
0 0 1 1 2 2 2 2 3... 3
0 0 1 1 2 2 2 2 2... 2
0 0 1 1 2 2 2 2 2... 2
0 0 1 1 2 2 2 2 2... 2
0 0 1 1 2 2 2 2 2... 2

8... 15 16... 31 32... 215- 1 215 221-1
4 4 5 5 6 15 16-.- 216
3... 3 3... 3 3... 3 4... 5
2... 2 2... 2 2... 2 3... 3
2... 2 2... 2 2... 2 2... 2
2... 2 2... 2 2... 2 3... 3

As Table 1 indicates, the values of A(n) grow rapidly. Specifically, A+l(n) grows
much faster than Ai(n) as n oc, for any i. Consequently, the inverse functions hi(n)
grow slowly, with ai+l(n) growing much slower than a(n) as n oc, for any i.

DEFINITION. The length function Li(n) is defined by

L0(n)= 0 n_<l,
1 n>l,

and by

0 n_<l,ni(n) L-I(n) + Li(ai-l(n)) n > 1,

for > 1.
Thus, for example, L1 (n) =[lg n] and 9L2(n) [lg n] +[lg lg n] + [lg lg lg n] +
+ [lg(lg* n)hi, interpreting [lg 0] as 0. In general, we have

Li()- E Li- (/}J-)l(n))
j--O

and

L(n) E
jt>_O,l<_t<i

L1g Y)(J)(... k_; (n))...))J.

Some values of L(n) are shown in Table 3. In the notation of Knuth [14], his An is
our al(n), his A*n is our a2(n)+ 1, and his An is our L2(n).
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TABLE 3
The length functions Li(n) and L(n). The Li(n) are defined in 2 and L(n) is defined in 3.

n 10 1 2 3 4 5 6 7 8 15 16 31 32 63 64 216- 1 216 221
Lo(n)
Ll(n)
L2(n)
L3(n)
L4(n)
L(n)

0 0 1 1 1 1 1 1 1... 1
0 0 1 1 2 2 2 2 3... 3
001 133334...4
0 0 1 1 4 4 4 4 5... 5
0 0 1 1 5 5 5 5 6... 6

1... 1 1... 1 1... 1
4...4 5...5 6... 15
7... 7 8... 8 9... 19
8... 8 9... 9 10... 20
9... 9 10... 10 11... 21

001144445...5 8...8 9...910... 20

16 216
23 216 + 23
27 216 27
28 216 + 28
28... 21/28

LEMMA. For all >_ O, m >_ O,

2-L(n) 1.
n>_l,a(n)--m

Proof. The proof is by double induction on and m. For the basis of the induction,
we have, for all _> 0,

E
n>l,(,)=0

2-Li(n) 2-Li(1) 2-0 1

since a(n) 0 only for n < 1. We also have, for all m _> 1,

E
n_l,ao(n)=m

2_L0(n 1 1
--+----1,

by the definition of Lo(n).
Now, suppose the result is true for all m for 0 <_ < i’ and for i’ when 0 _< m < m’.

Observe that for i’ > 0, by the definition of c, (n), we have a,(a,_(n)) a,(n)- 1,
so that by the definition of L(n),

E
nk 1,ci, (n)--re’

2-L’ (n) E 2-L’-l(n)-L’(a’-l(n))
n>,, (,_ (n))=m’-

E 2-L’ (k) E 2-L’-(n)
k>_ 1,, (k)’-m’- n_ 1,c,_ (n)--k

by substituting k for ai,-i (n) and rewriting. But by induction the inner summation
is 1, giving

E
k_l,a,(k)=m’-I

2-L, (k)

again by induction. []

Remark. The lemma can be rephrased as: for all _> 0, m _> 0,

A(m+l)-I

2-Li(n) 1.
n--As(m)
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Knuth [14] proved the lemma for the special case 2 and noted that the proof
technique works as well for the function An + AA*n + A,*,*n +... + A(,*)mn +
A(A*)’+ln, a truncated version of our L3(n). Raoult and Vuillemin [19] also allude
to a truncated version of the lemma for 3.

COPOLLARY 2.1. For all >_ O, m >_ 1,

< 2-L(n) < i(m)q- 1.

COROLLARY 2.2. For all >_ O, n= 2-L(n) diverges.
The functions L also provide, unexpectedly, a solution to a problem in [18]. We

have the following corollary.
COROLLARY 2.3. Ill(x)- x2-L(lgx) and

M(n) max (M(k) + M(n-
l<k<n

then M(n) O(nai(lgn)).
COROLLARY 2.4. For all >_ O, Li(n) is a lower bound on the unbounded searching

problem of Bentley and Yao [6] and on prefix-free, binary encodings of the nonnegative
integers [7] (see [14]), in the sense that if an unbounded search algorithm uses c(n)
probes to locate n (or, equivalently, a prefix-free code uses c(n) bits to encode n) then
c(n) > Li(n) for infinitely many n.

Proof. This follows from Corollary 2. by Kraft’s inequality (1).
THEOREM 2.5. For all >_ O, there is an unbounded search algorithm in which

the cost of finding n is

2Li(n) + a(n) + 1

Proof. We proceed recursively, constructing the level search algorithm by ap-
plying the algorithm at lower levels. To make the recursion work, we introduce the
notion of the location of the last X, relative to a function f: we say that u is the
location of the last X relative to f if u satisfies

f(u) <_ location of the last X < f(u + 1).

The critical observation to make is that if we are given a search algorithm that
finds n, the location of the last X, in c(n) tests, then for any monotone, computable,
increasing function f we can use $ to find the location of the last X relative to f in
only c(f-(n)) tests, where f-(n) is the functional inverse of f(n) defined by

f-(n) greatest x _> 1 such that f(x) <_ n.

All we need do is replace each test "F(i) X?" in $ with the test "F(f(i)) X?".
Suppose we are given u, the location of the last X relative to the function f(Al(n)).

The search can find the location of the last X relative to f by proceeding as follows.
If u 0, _> 1, we know that

f(1) f(Al(O)) <_ location of the last X < f(At(1)) f(2),
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since A(0) 1 and A(1) 2 for all l; thus the location of the last X relative to f
must be 1. (The case u 0 will never occur, as will be apparent.) On the other
hand, if u > 0 and 0, we know that

f(2u) f(Ao(u)) <_ location of the last X < f(Ao(u + 1)) f(2u + 2),

so the single test "F(f(2u + 1)) X?" resolves whether the location of the last X
relative to f is 2u or 2u + 1.

The most difficult case is u > 0 and > 0. Here we know that u is the location
of the last X relative to f(A(n)), so that

(2) f(A(u)) <_ location of the last X < f(A(u + 1)).

We can proceed recursively because

f(A(n)) f(A_l(A(n- 1))).

Letting ](n)= f(A_(n)), inequality (2) becomes

](A(u- 1)) _< location of the last X < ](A(u));
that is, we know that the location of the last X relative to ](A(n)) is u- 1. This
allows us to find the location of the last X: we recursively find the location of the last
X relative to ](n) f(A_(n)) and then we use that value to find (recursively) the
location of the last X relative to f.

The structure of the recursion is as follows. Given a level l, a function f, and
the location of the last X relative to f(A(n)), we can find the location of the last X
relative to f. If such a search is called LevelSearch, an abuse of Pascal-like notation
allows us to write

if u 0 then {f(1) _< location of the last X < f(2)}
return(l)

else if 0 then {f(2u) <_ location of the last X < f(2u + 2)}
if F(f(2u + 1)) X then return(2u + 1) else return(2u)

else {go down a level}
return(nevelSearch(1- 1, nevelSearch(1, u- 1, f(A_)),

to specify the recursion. Getting the process started means only determining k, the
location of the last X relative to Aeve(n) for the desired level, and then applying the
above outlined LeveISearch to find the location of the last X relative to the identity
function. Finding the location of the last X relative to Aev(n) is easily done by a
while loop that successively tests F(Aev(1)), F(Aew(2)), F(Aew(3)),....

The complete procedure is shown in Algorithm 1. The correctness of this pro-
cedure follows by mathematical induction, as outlined in the preceding paragraphs.
Notice the intense similarity between the function LevelSearch and a recursively
written function that computes A(n) (see, for example, [22, Fig. 5.6, p. 107]).

It remains to analyze the number of tests made in a search. When n, the location
of the last X, is 0 or 1, one test is made in the while loop and one is made afterward,
since k 0; thus two tests are made. For n > 1, the while loop at the beginning of
search uses aeve(n) + 1 tests, because Aev(ave(n) + 1) is the first value encoun-
tered that is larger than n. All the remaining tests are done in LevelSearch. Let
Seve(n) be the number of tests done in LevelSearch. We see that
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ALGORITHM 1
Level-by-level searching, in pseudo-Pascal.

function search(
level" integer; ( level of the search }
F: function(integer)" IX. Y] ( if F(no) Y then F(n) Y for all n >_ no }
)" integer; ( the location of the last X of F }

var
k" integer; ( location of the last X relative to Alfred;

that is. Alev(k) <_ location

function LevelSearch(
l: integer; { level of the search }
u: integer; { location of the last X. relative to f(At) }
f: function(integer): integer
): integer; { location of the last X. relative to f; that is. such that

f(i) <_ location < f(i + 1) }

begin {LevelSearch}

{ find the location of the last X relative to f. given that its location relative
to f(A) is u; that is, u satisfies f(A(u)) <_ location < f(Al(u + 1)) }

if u 0 then { f(1) _< location of the last X < f(2) }
return(l)

else if/= 0 then { f(2u)

_
location of the last X < f(2u + 2) }

if F(f(2u + 1)) X then return(2u + 1)else return(2u)
else { go down a level }

return(LevelSearch(1- 1. LevelSearch(1. u- 1. f(At-1)).

end; ( LevelSearch }

begin { search }

k := 0;
while F(At.t(k + 1)) X do

k "= k+l;

k > 0 is the location of the last X. relative to Av;
that is. Al(k) _< location < A(k + 1) }

if k 0 then { the location of the last X is either 0 or 1 }
if F(1) X then return(i) else return(0)

else
return(LeveISearch(level, k. f (x) x))

end; ( search }
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since no tests are made when u 0, which is the case when n 1. When u > 0,
level -O, exactly one test is made, so that

so(n) 1.

-1When u > 0, level > 0, exactly Stevel(Alevel_ (n)) Slevel(atevet- (n)) tests are made
in the inner recursive call, while stevet- (n) tests are made in the outer recursive call;
thus

and we see that stevet(n) is, therefore, identical to Ltevel(n). The total number of
tests made when n > 1 is the location of the last X is thus Ltevel(n)+

Several comments are in order. First, search(O, F) is a form of linear search in
which alternate values are probed until a Y is found. Similarly, search(l, F) is a
form of binary search in which the interval between successive probes doubles until a
Y is found. Finally, search(2, F) is essentially Bentley and Yao’s ultimate search [6].
Each of these search strategies is better than the previous one, once the location of
the last X becomes sufficiently large. Specifically, for all there exists an ni such that
search(i + 1, F) is faster than search(i,F) for all n > n; this is much stronger than
saying that search(i + 1, F) "dominates" search(i, F) in the sense of Knuth [14].

Corollary 2.4 tells us that the search procedure in Algorithm 1 is within an addi-
tive factor atevet(n) + 2 of being optimal. For level 2, this is equivalent to Bentley
and Yao’s result [6]. For each level > 2, this is an enormous improvement because
a+l(n) is much more slowly growing than hi(n) as n .

Each of these search procedures corresponds to a prefix-free, binary encoding
of the nonnegative integers: the corresponding encoding for n is the sequence of
bits obtained by taking the sequence F(xo), F(x),... used in determining that the
location of the last X is at n, and replacing each X by a 1 and each Y by a 0 (see [14],
for example).

To construct these encodings explicitly, let

empty string n- 1,Bo(n) n mod 2 n > 1,

and for >_ 1, let

empty stringB(n) B(a_(n))B_(n) n>l.

B(n) is the binary representation of n with the leading 1-bit deleted.
version of an encoding given in [8]. The length of B(n) is L(n).

For > 0 define

B2(n) is a

00

la(n)OB(n)
n=l,
n>2.

The length of C(n) is thus

2length(C (n)) L(n) + oz,(n) + 1
n_<l,
n>l.
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The encoding C(n) precisely reflects the sequence of tests made in search(i, F) when
F(n) is the last X.

Knuth [14] gives the encoding C1 and a variation of C2 that he calls R; specifically,
he defines R to be

R(n)
0
la.(n)+10B2 (n)

and he gives an algorithm to decode R(n) into n. Knuth goes on to give a sequence
of encodings Rm+, m >_ 1, such that Rm+ is better than Rm; each of the encodings
in this sequence is inferior to C3, however. Raoult and Vuillemin [19] give similar,
though less explicit, constructions like Rm+l.

THEOREM 2.6. For all >_ O, C is a uniquely decipherable, irredundant, lexico-
graphic, prefix-free code for the nonnegative integers in which the number of bits used
to represent n is

( 2Li(n) + a(n) + 1

Proof. The lengths of the codewords are obvious by construction.
Unique decipherability follows by giving a decoding procedure and proving it

correct. Such a procedure, given in Algorithm 2, is strikingly similar in form to
the search procedure in Algorithm 1. The proof of its correctness is an inductive
argument that mirrors the recursive nature of the procedure DecodeB. Specifically,
the correctness of the procedure DecodeC follows from verifying that ifprefix al(n)
and the bit sequence bk+, bk+2, begins with the bits of Bl(n), then DecodeB
returns n as its value. If 0, the value of prefix is ao(n) [n/2J and bk+

n mod 2, so the correct value 1 is returned if prefix 0 and the correct value
n 2 prefix + bk+ is returned if prefix > 0. If > 0 and prefix O, then

1 At(0) <_ n < At(l) 2,

so the correct value 1 is returned. Continuing inductively, suppose DecodeB is correct
for all n when 0 _< < l’ and is correct for all n satisfying at,(n) < prefix for level l’.
Then the inner recursive call correctly returns a,_(n) and the outer recursive call
correctly returns n. A similar induction shows that Ci is lexicographic.

The structure of the decoding algorithm implies that Ci is prefix-free: the algo-
rithm scans the bits from left to right without ever having to back up or look ahead.

To show that the codes Ci are irredundant, it suffices to verify that

-length(C(n)) 1
n----O

(see, for example, [14]). We have

n--0

2- length(Ci(n)) 1 1

1 1

r--2
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ALGORITHM 2
Decoding the codes in the level-by-level construction, in pseudo-Pascal.

function DecodeC(
level: integer; ( level of the code
b: BitString ( the codeword to be decoded
): integer; ( the decoded value }

var
k: integer;( index of last bit of b processed
p: integer; ( value of prefix part of b }

function DecodeS(
l: integer; ( level of the code
prefix: integer ( prefix value
): integer; ( decoded value }

begin ( DecodeS }

if prefix 0 then ( the empty string encodes 1 }
return(l)

else if 0 then begin ( value encoded is twice the prefix plus the last bit }
k := k + 1;
return(2 prefix + bk)
end

else ( decode the next prefix and use it to decode the remaining bits }
return(DecodeS(1- 1, DecodeS(l, prefix- 1)))

end; ( Decodes }

begin ( DecodeC }

k := 0;
while bk+l 1 do

k := k+l;

{ bl=...=bk=landbk+=O}

p := k;
k:=k+l; {skipthe0}
if p 0 then

if b2 1 then return(l) else return(0)
else

return(DecodeS(level, p))

end; ( DecodeC }
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by the lemma, and hence

m=l n_l,o(n)=m

2-L,(n)-a,(n)

m=l n_l,a(n)=m

2-Li(n)

3. Diagonalization.
DEFINITION. The diagonal Ackermann’s function is A(n) An(n).
DEFINITION. The inverse diagonal Ackermann’s function is

greatest j such that j(n)

_
j

greatest j such that Aj(j) <_ n.

a(n) A-l(n), the functional inverse of A, in the sense that a(A(n)) n. Since
is many-to-one, it has no inverse, however,

A(a(n)) least x >_ 1 such that a(x)= a(n).

As n c, A(n) grows enormously fast, faster than any Ai(n). In fact, A(n)
grows faster than any primitive recursive function of n. Conversely, as n , the
inverse function a(n) grows enormously slower than any ai(n).

DEFINITION. The diagonal length function is defined by

0
L(n) La(n) (n) + aa(n) (n)

La(n) (n) + oa(n) (n) a(n) + 1

if n<_ 1,
if aa(n)(n) aa(n)(A(a(n) + 1)- 1),
otherwise.

THEOREM 3.1. For all m >_ O,

E
n_l,o(n)--m

2-L(n) 1.

Proof. For m 0,

Form>_ 1,

2_L(n)
n>_l,a(n)--m

E
,>l,(n)=0

2-L(n) 2-L(1) 1.

am(A(m+l)-l)

E E
nkl,cm(n)--i

2-L(n)
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1 ) 1
2a,(A(m+l)_l)_m + 2a,(A(m+l)_l)_m

by the lemma, and hence

1.

2-Lm(n)

Remark. The theorem can be rephrased as" for all m >_ 1,

A(m+l)-i

2-L(n) 1.
n=A(m)

COROLLARY 3.2. For all m >_ 1,

m--1

a(m) _< E 2-L(n) < a(m)+ 1.
n=l

COROLLARY 3.3. -n=1 2-L(n) diverges.
Again, we have the solution to a problem in [18] in the following corollary.
COROLLARY 3.4. Ill(x)= x2-L(lgx) and

M(n) max (M(k) + M(n- k)+ min(f(k), f(n- k))),
l<_k<n

then M(n) O(na(lg n)).
COROLLARY 3.5. L(n) is a lower bound on the unbounded searching problem of

Bentley and Yao [6] and on prefix-free, binary encodings of the nonnegative integers [7]
(see [14]), in the sense that if an unbounded search algorithm uses c(n) probes to locate
n (or, equivalently, a prefix-free code uses c(n) bits to encode n) then c(n) > L(n) for
infinitely many n.
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Proof. This follows from Corollary 3.3 by Kraft’s inequality (1). []

THEOREM 3.6. There is an unbounded search algorithm in which the cost of
finding n is

L(n) + a(n) + 2 n <_ l,
1 n>l.

Proof. The algorithm, given in pseudo-Pascal in Algorithm 3, works in three
stages. First, it tests F(A(1)), F(A(2)), F(A(3)), until it finds a Y, say at
F(A(level + 1)). Thus we know that

(3) A(level) <_ location of the last X < A(level + 1).

If level 0, we know that

0 _< location of the last X < A(1) 2,

and testing F(1) tells us whether the answer is 0 or 1, in total of two tests.
If level > 0, suppose F(n) is the last X; the first stage has then used a(n)+ 1 tests

and level a(n). The second stage determines the location of the last X relative to
the function Aevl A(n). We have

A(level) Alfred(level),

so applying the monotone, nondecreasing function atevet to the three parts of inequal-
ity (3) yields

(4) level <_ a(location of the last X) _< att(A(level + 1) 1).

(Notice that we have changed the rightmost inequality to "_<" by taking A(level+l)-i
in place of A(level + 1) in (3).) The second stage then tests F(Atevel(level + 1)),
F(Ave(level + 2)), until a Y is found; this determines the location of the last X
relative to Alevel, at a cost of

tests. However, we know from inequality (4) that we need not test any value beyond

aev(A(level + 1)- 1);

thus if tests up to and including this value fail to yield a Y, we need not make the
next test--we already know that the answer will be Y. The number of tests in the
second stage is thus

0
c(n) (n) c(n)
c(n)(n) c(n) -F 1

ifn_ 1,
if a,(n)(n) a,(n)(A(a(n) + 1) 1),
otherwise.

The third stage consists of applying the function LevelSearch from Algorithm 1,
since we know level and we know the location of the last X relative to Ateve. The
number of tests used in this third stage is thus

0 n_l,
L(,,) (n) n > 1.
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ALGORITHM 3
Unbounded searching using the diagonal construction, in pseudo-Pascal. This method of searching
is within a(n) + 2 of the lower bound.

function DiagonalSearch(
F" function(integer): IX, Y] { if F(no) Y then F(n) Y for all n _> no }
)" integer; { the location of the last X of F }

var
level: integer; { level of the search }
k: integer; { location of the last X relative to Atevet;

that is, Aeve(k)

_
location < Aeve(k

found: boolean; { flag to terminate the while loop

function LevelSearch

{ as in Algorithm 1 }
end; { LevelSearch }

begin { DiagonalSearch }

level := 0;
while F(A(level + 1)) X do

level "= level + 1;

{ level a(n); if level > 0 then
Aeve(level) A(level) <_ location of the last X < A(level + 1);

that is,
level

_
aeve(location of the last X)

_
aeve(A(level + 1) 1) }

if level 0 then { the location of the last X is either 0 or 1 }
if F(1) X then return(i) else return(0)

else begin { find the location of the last X relative to level level }
found := false;
k := level;
while (k < aeve(A(level + 1)- 1)) and (not found) do

if F(A(k + 1)) X then
k:=k+l

else ( terminate the loop }
found := true;

return(nevelSearch(level, k, f(x) x))
end

end; { DiagonalSearch }
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TABLE 4
Some of the integer representations in the encoding C.

n C(n) n C(n) n C(n)
0 O0
1 01
2 100
3 101
4 1100000
5 1100001
6 1100010
7 1100011

8 11001000
9 11001001

10 11001010
15 11001111
16 11010000000
31 11010001111
32 110100100000
63 110100111111

64 1101010000000
127 1101010111111
128 11010110000000
255 11010111111111
256 1101100000000000
511 1101100011111111
512 11011001000000000
1000 11011001111101000

The total number of tests used is thus as stated in the theorem.
Corollary 3.5 tells us that the diagonal search procedure in Algorithm 3 is within

an additive factor a(n) / 2 of being optimal. This is a great improvement over the
level search for all >_ 1 because a(n) is much more slowly growing than ai(n) as

THEOREM 3.7. There is a uniquely decipherable, irredundant, lexicographic,
prefix-free code for the integers in which the number of bits used to represent n is

+a(n)+ 2 n<_l,L(n) 1 n>l.

Proof. Here is the code C corresponding to the diagonal search strategy:

O0
01

C(n) l(Ol((-/((n)
l(n)01(n()-(n)0B(n)(n)

if n 0,
if n= 1,
if aa(n)(n) aa(n)(A(a(n)+ 1) 1),
otherwise.

Some examples of the encoding C are shown in Table 4.
The unique decipherability of C follows from the correctness of the decoding
algorithm, given in Algorithm 4, which decodes the prefix value and then applies

the function DecodeB from Algorithm 2. The correctness of Algorithm 4 follows from
the correctness of DecodeB, together with the evident correctness of the decoding of
the prefix value. The lexicographic and prefix-free properties of C are also clear.

The code C is irredundant because n=o 2- length(C(n)) 1:

E 2-1ength(C(n)) ++11 E 2-L(n)-(’)-
n=0 n=2

m=l n_> 1,a(n)--m

2-L(n)-m

E
m=l n>_l,a(n)=m

2-L(n)
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ALGORITHM 4
Decoding the codes in the diagonal construction, in pseudo-Pascal.

function DecodeDiagonal(
b: BitString { the codeword to be decoded }
): integer; { the decoded value }

var
level: integer; ( level of the code }
k: integer;{ index of last bit of b processed }
p: integer; { value of prefix part of b }
found: boolean; { flag to terminate the while loop }

function DecodeB

( as in Algorithm 2 }
end; { DecodeB }

begin ( DecodeDiagonal }

k := 0;
while bk+l 1 do

k := k+l;

(k o(n); bl bk 1 and b+1 -0}

if k 0 then
if b2 1 then return(l) else return(0)

else begin ( compute the prefix for level level }
found := false;
level := k;
p := k;
k:=k+l; (skipthe0}
while (p < level(A(level / 1)- 1)) and (not found) do

if bk+l 1 then begin
k := k + 1;
p := p-+- 1
end

else ( terminate the loop }
found := true;

if found then
k := k + 1; ( skip the second 0 }

return(DecodeB(level, p)
end

end; ( DecodeDiagonal }
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by Theorem 3.1, and hence

1 1

4. Extension to asymmetric costs. We have thus far assumed that the cost
of a Y answer (or a zero-bit) is the same as the cost of an X answer (respectively,
a one-bit). Suppose, however, that the cost of an X answer is a constant x and the
cost of a Y answer is a constant y. This asymmetric form of unbounded searching is
mentioned in [6] and investigated in [11].

If x 0, the X answers are free and the optimal search strategy is to test F(1),
F(2), F(3), and so on, until we find the first Y; this costs exactly y, no matter where
the first Y occurs. The optimal prefix-free, binary code, in this case, is to represent
n by ln-10.

If y 0, the Y answers are free and we can describe the level search as testing
F(Ai(1)), F(Ai(2)), F(A(3)), and so on, until we find a Y, say at F(A(k + 1)).
Then, we scan backwards linearly from F(A(k + 1)) until we find the last X. This
costs xa(n) + 1, if the last X is at n, a cost that is clearly no further than xai(n)
from optimal.

The only interesting case is when x and y are both nonzero. Kapoor and Reingold
[11] developed an algorithm that is within ((lg* n) of a lower bound that they obtain in
a manner parallel to that given for the symmetric case by Bentley and Yao [6]. We shall
do much better here, proving the surprising result that our procedure LevelSearch is
close to optimal in the asymmetric case, as well as the symmetric case. The analysis
uses a generalization [11], [13] of Kraft’s inequality (1): if c(n) is the cost of an
algorithm (encoding) when an X answer (respectively, one-bit) costs x > 0 and a Y
answer (respectively, zero-bit) costs y > 0, then

<_
--0

where r is the unique real number in the range 1 ( r

_
2 satisfying r-x + r-u 1.

We note, in passing, that unlike the symmetric case, there is no known partial
converse to Kraft’s inequality for the asymmetric case. As described in the introduc-
tion, the partial converse to Kraft’s inequality for the symmetric case guarantees that
when c(1), c(2), c(3), is a nondecreasing sequence of positive integers such that

n= 2-c(n) 1 there is a corresponding unbounded search algorithm of cost c(n)
In the asymmetric case the same conditions are insucient to guarantee an algorithm:
consider x 1, y 2; then r (1 + vf)/2. The sequence 2, 4, 4, 5, 5, 6, 7, 8, 9,
10, 11, is nondecreasing and

-2 + -4 + -4 + -5 + -5 + -6 + -7 +... 1

(since --4
_

--5 --3 and -2 + -3
__
-4 ._ -5 .. -6 _. -7

__
1), but

inspection of the possible roots of a search tree shows that there can be no asymmetric,
lexicographic search tree in which c(1) 2, c(2) 4, c(3) 4, c(4) 5, c(5) 5,
c(5) 6, and so on. Thus there can be no unbounded, asymmetric search algorithm
with this cost function.

Let x > 0 and y > 0; define the weighted length of Bi(n) to be

W(n) x x [number of one-bits in B/(n)] + y x [number of zero-bits in B(n)].
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We thus have the following corollary to Theorem 2.6.
COROLLARY 4.1. For all integers >_ 1, there is a uniquely decipherable, irredun-

dant, lexicographic, prefix-free, binary code for the nonnegative integers in which the
weighted cost of the representation of n is

2y n=O,
+ + x + n

y n>l.

Proof. The expression given is precisely the weighted cost of Ci.
Similarly, we thus have the following corollary to Theorem 2.5.

COROLLARY 4.2. For all integers >_ 1, there is an unbounded search algorithm
in which the weighted cost of finding n is

2y n=O,
+ + x + n 1,

y n>l.

Proof. This is the weighted cost of search (Algorithm 1) because, for n > 1,
finding the location of the last X relative to Ai has weighted cost xa(n) + y, after
which the call to LevelSearch costs exactly the weighted cost of B(n). For n <_ 1,
tests are made at 2 and 1; for n 0 these are both Y while for n 1, the first is a Y
and the second is an X.

THEOREM 4.3. For all integers >_ 1 and all integers m >_ O,

r-W(n) 1.
n>_ 1,c (n)--m

Proof. The proof is by induction on i. For the basis we need to consider the case
m-- 0 and the casei- 0, m > 0. Whenm- 0, c(n)- 0onlyforn_< 1; B(1)
is empty so Wi(1) 0 and the sum is correct. When 0, we have s0(n) m for
n- 2morn= 2m-+-l; B0(2m) =0 andB0(2m/l) 1 giving W0(2m) y and
W0(2m / 1) x, so the sum is simply r-x -t-r-y 1 by the definition of r.

Suppose the theorem holds for i- 1 and m > 0. In this case n > 1, so

B(n) B(_l(n))B_l(n)

making

Following the proof of the lemma, observe that by the definition of ci(n) we have
ci(ci-1 (n)) i(n) 1, so that by the definition of Wi(n)

n>_ 1,oi (n)’-m n>_ 1,oi (oi- (n))--m--

r-wi(k) r-wi-l(n),
k>_l,ai(k)=m-1 n>_l,ai_ (n)=k

by substituting k for ai-(n) and rewriting. But, by induction, the inner sum is 1,
giving

r-W(k)

k>_l,ci(k)=m-1
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again by induction. [3

Thus -]n__l r-W*(n) diverges and we have the following corollary.
COROLLARY 4.4. For all integers > 1, Wi(n) is a lower bound on the asymmet-

ric-cost version of the unbounded searching problem of Bentley and Yao [6] and on the
asymmetric-cost version of prefix-free, binary encodings of the nonnegative integers [7]
(see [14]), in the sense that if an unbounded search algorithm uses cost c(n) to locate
n (or, equivalently, a prefix-free code uses cost c(n) to encode n), then c(n) > Wi(n)
for infinitely many n.

Hence for any level > 1, the search of Algorithm 1 is within an additive factor
xalevl(n) + max{2y, x + y} of being optimal for the asymmetric case. A similar
statement holds for the diagonal search of Algorithm 3 because Corollaries 4.1 and
4.2, Theorem 4.3, and Corollary 4.4 all hold for the diagonal case as well. We do not
dwell on this here as these results are subsumed by those of [20].

5. What is an optimal algorithm for unbounded searching? Our intu-
ition tells us that it ought to be possible to capitalize on the asymmetry, yet the same
search algorithm/encoding appears to be equally close to optimal for both the sym-
metric case and any asymmetric case. The difficulty is in the meaning of the phrase
"close to optimal." Bentley and Brown [5] call it "very delicate," but "peculiar" might
be a better description.

To understand why it is peculiar, we return to the symmetric case and observe
that it is really quite simple to construct a naive algorithm/encoding that is within
a(n) + 1 of a lower bound:2 Test F(A(1)), F(A(2)), F(A(3)), until we get a
Y answer at Ai(a(n) + 1), where the location of the last X is n. Then, do a binary
search on the range Ai(ai(n)) + 1,..., Ai(ai(n) + 1) 1. Let the cost of this binary
search be Si(n), Si(n) [lg(Ai(a(n)+ 1)- Ai(ai(n)))], so the entire algorithm thus
described requires S(n) + a(n) + 1 tests for n > 1. By the nature of binary trees,

so that

and hence

2-distance to the leaf

all leaves

2-S(k) 1,
A (c (n))<k<A (c (n)+ 1)

2-s (n)

n--0

making S(n) a lower bound. This algorithm is thus "within ai(n) + 1 of optimal,"
but the algorithm is absurd! S(n) is ridiculously large for values of n just above
A(a(n)). It is so large that for > 2, the cost of the search when the location of the
last X is at n A(ai(n)) + 1 cannot be bounded by any polynomial function of n;
for the diagonal version, it cannot be bounded by any primitive recursive function of

3

This construction, which is found in [19], works for any unbounded, computable function g(n)
and its "inverse" (in the same sense that ci and Ai are inverses) G(n) g-l(n); also, see [3,
Thm. 34].

3 The difficulty here is the use of binary search. Even though binary search is the optimal search
strategy on a known interval, the unbounded search problem requires measuring the cost of the search
as a function of the location in which the answer is found. In this case, binary search is decidedly
suboptimal over a wide range of answers.
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Comparing the cost of our level algorithm with the lower bound Si(n), we
discover that

Li(n) + ai(n) + 1
lim sup 1,

S (n)

while comparing the cost of the naive search to the lower bound Li(n) gives

lim sup
n---,cx Li(n)

That is, our algorithms are near-optimal vis-&vis the absurd algorithm’s lower bound,
but the naive search is not near-optimal vis-&vis our lower bounds. We will see that
our algorithms are near-optimal compared to any nontrivial lower bound, for > 2.

Since

-lgn

any search algorithm must use at least lg n tests, in the sense that if c(n) is the cost
of a search algorithm/encoding, we must have

limsupl’l’n--, > 1,

for otherwise we could not have c(n) > lg n infinitely often. Lower bounds "below" lg n
are thus of no interest; for example, b(n) 1 is a lower bound because 1/2 +
but it is a trivial lower bound. This situation suggests the following ad hoc definition.

DEFINITION. Given that n__0 2-b(n) diverges, call b(n) a nontrivial lower bound
if, in addition,

lg n
limn__,sup b- < 1.

Notice that S(n) and L(n) are nontrivial lower bounds according to this defi-
nition, but b(n) 1 is not. This definition of near-optimality is ad hoc in that we
could use, say, lg n + O(log log n) instead of lg n. Because our definition is intended
to forbid absurd behavior, we chose the simplest function that would have that effect;
more complex choices could be made, but lg n is the cleanest.

DEFINITION. If an algorithm/encoding has cost c(n), we say that the algo-
rithm/encoding is within f(n) of being optimal if c(n) f (n) is a lower bound and
limsuPn__, c(n)/b(n) 1 for any nontrivial lower bound b(n).

It is easy to show by induction that Li(n) lg n + O(lg lg n) for all _> 1, so

lim
Li(n) + ai(n) + 1

1
n--, lg n

for > 2. (This fails for 1 because Ll(n) a(n) [lg nJ, making the limit 2,
not 1.) If b(n) is a nontrivial lower bound,

lgn
limsup _< 1;
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multiplying this inequality by the previous equation gives

Li(n) + ai(n) + 1
lim sup < 1.

However, Li(n) + ai(n) + 1 is the cost of an algorithm/encoding, and b(n) is a lower
bound; thus

Li(n) + ai(n) + 1
lim sup > 1.

Hence,

Li(n) + ai(n)+ 1
lim sup 1
n- b(n)

for any nontrivial lower bound. We are thus justified in claiming that our level
algorithm is within ai(n)+ i of being optimal, for >_ 2; similarly, our diagonal
algorithm is optimal to within a(n) + 2 (this is a special case of [20, Cor. 3 and Thm.
4]). We are using the term "optimal to within f(n)" in a much stronger sense than
in [3] or [6], although their algorithms (except the algorithms implicit in [3, Thm.
34]) are near-optimal in this strong sense. In fact, any search algorithm that is near-
optimal in the sense of [6] and for which c(n) lg n + o(lg n) is optimal in the strong

4sense.
Finally, suppose we are given two unbounded search algorithms, each of which is

known to be within f(n) of being optimal in the strong sense defined above. How
can we determine which algorithm, if either, is superior? For example, Bentley and
Yao’s ultimate algorithm (or, equivalently, Knuth’s encoding R or our level 2
algorithm/encoding) and Beigel’s nonconstructive algorithm (see [3, Thms. 23 and
32]) are each within O(lg* n) of being optimal in the strong sense, but which is bet-
ter? They are difficult to compare directly because of the different forms of the cost
functions--especially the presence/absence of floor and ceiling functions.

In the same way we look to the slowness of divergence to provide better lower
bounds, so we may look to the slowness of convergence to indicate the better al-
gorithm. Specifically, if n__0 2-b(n) diverges, the more slowly it diverges the larger
(and hence better) the lower bound b(n). Similarly, if ’,c=0 2-c(n) converges to 1, the
more slowly it converges, the smaller (and hence better) the cost function c(n). We
therefore propose to compare various algorithms based on the speed of convergence of

4 Beigel [4] has pointed out that the construction of "absurd" algorithms [3], [19] that are near-
optimal in the sense of [6] can be applied, with modification, to our stronger notion of near-optimality.
The idea is this: let b/be an unbounded search algorithm that makes at most lg n + 2 lg lg n tests; for
example, Bentley and Yao’s ultimate search or our level 2 algorithm could be chosen as/. Now, let
g(n) be any nondecreasing, computable function, g(n) o(loglogn), and let G(n) g-l(n) be the
inverse of g(n) in the same sense that Ai(n) a (n). Consider the algorithm ) constructed from
/ as follows. ) tests F(G(1)), F(G(2)), until it gets a Y answer at F(G(g(n)+ 1)). Then, ) uses
algorithm L/ to search the interval [G(g(n)), G(g(n) + 1)), but avoiding any redundant tests. The
algorithm )2 is within g(n) of being optimal by the same argument that proves the absurd algorithm is
near-optimal in the Bentley-Yao sense; however, because V uses no more than lg n+ 2 lg lg n+g(n) + 1
tests it is also optimal in our strong sense as well. This construction has the twin disadvantages of
requiring the application of an unbounded search algorithm to a finite search problem and needing
to avoid redundant tests. Since the construction leaves no way to determine the number of tests
used as a function of n, it does not render our stroiger notion of near-optimality peculiar because
the algorithm ; cannot be regarded as absurd.
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En=0 2-c(n). Given two algorithms with cost functions cl (n) and c2(n), respectively,
we compute the tail of the series ’,=0 2-cl

nx

and compare it to the tail of the series n__0 2-c-(n)

>

to see which goes to zero more slowly as x . This method of comparison does not
yield a total ordering on unbounded search algorithms. Rather, it magnifies differences
between algorithms of nearly identical behavior, elucidating subtle differences.

First, we compute the tail of the series for our level algorithm; when 2
this is essentially the same as Knuth’s encoding R and Bentley and Yao’s ultimate
algorithm.

by Theorem 4.3, and so

TA(Ai(no))
n>A(no)

i=no (j)=i

E 2-i-1
--0

2_L(n)_c(n)_i

2-L,(j)-i-1

2_L, (j)

(j)=i

Hence,

TA (Z) , 2-a(x).

Recall that a2(x) lg*x so that our level 2 search algorithm, Knuth’s encoding R,
and Bentley and Yao’s ultimate algorithm all have a tail

TA (x) ,, 2-iS* z.
Now, we compute the tail for Beigel’s algorithm [3, Thrn. 23] which has cost

CB(n) [(llg()n)--\= (lglg(e--5))lg*n1
for any 5, 0 < 5 < e, where e is the base of the natural logarithms. For convenience,
let

1
q=

ln(e-5)
>1"
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We have

giving

q-1

T (x)

Comparing TA2 (x) with Ts(x), we find that, as x --, oc, TB(X) 0 more slowly
than TA2 (x) ---, 0 when q < 2, that is, when < e- . 1.06956. Of course, for
> 2, TA (x) 0 much more slowly than TB(x) 0, as x oc, for any choice of .

6. The asymmetric case revisited. Since -log n=1 r diverges, logr n is a
lower bound for the asymmetric case by the generalized Kraft’s inequality (5). Thus
we are not interested in lower bounds below logr n, just as in the symmetric case we
are not interested in lower bounds below lg n.

Our level algorithm/encoding, as presented so far, is within about xai(n) of
being optimal in the original sense of [6], but it is not that close to being optimal in
the stronger sense defined in the previous section. Specifically,

Wi(n) max{x, y} lg rlim sup
-o log n

by the following argument. Clearly,

Wi(n) <_ max{x,y}Li(n)
max{x, y} lg n + O(lg lg n)
(max{x, y} lg r) logr n + O(lg lg n),

so max{x,y}lgr is an upper bound on the limsup. However, considering the two
subsequences n 2k- 1 and n 2k, for which the component B(n) of C(n)
contains about lg n ones or lg n zeros, respectively, we find that

lim sup Wi (n) > max{x, y} lg r.
n-c logrn

Thus limsuPn__, Wi(n)/logrn is finite for any choice of x and y, but it can be
arbitrarily large. In other words, our level algorithm/encoding is within a constant
multiplicative factor of being optimal in the asymmetric case, not within a slowly
growing additive factor.

To obtain such a near-optimal algorithm/encoding for the asymmetric case, we
must redefine A0 (n) and a0 (n) as

Ao(n) [rYn,

ao(n) Ln/rJ

the recursive definitions of A(n) and hi(n) for > 0 are unchanged. The algorithms
remain identical to those in the symmetric case, except at the two boundaries where
the recursion bottoms out. (Since the functions Ai(n) have changed, the probes
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are at entirely different places and the behavior of the algorithms is correspondingly
different; only the form of the algorithms is identical because the ideas are similar.)
One of these boundaries is at level 0, when

Ao(u) <_ location of the last X < Ao(u + 1),

and we use the optimal bounded lopsided search algorithm of [11, 2.2] to determine
the exact location of the last X in the range [Ao(u),Ao(u + 1) 1]. The cost of this
algorithm is approximately

logr (Ao (u + 1) Ao (u)) logr [ry (u + 1) [ryu y.

The other boundary is at u 0, when

A(0) <_ location of the last X < A(1).

We have Ai(O) 1 and Ai(1) [ry] for all >_ O, so again we use the optimal
bounded search algorithm of [11] to determine the exact location of the last X; the
cost is approximately

logr [rY] , y.

We define

Lo(0) 0,

and for n _> 1,

the exact cost to search for n in the interval
[Ao(ao(n)), Ao(ao(n)+ 1)- 1] using the op-Lo(n)- timum bounded lopsided search algorithm

By the nature of asymmetrically weighted binary trees,

r-L(n) 1,
Ao(m)<_n<Ao(m+l)

or, equivalently,

r-L(n) 1.
c0 (n)--m

We also define

0
Li(n) Lo(n)

Li-l(n) + Li(ai-l(n))

n--0
1 < n <
n >_ r,,,"l,

and

n--O
< n <

n >_ rY and a(nl(n
aa,(n)(Ai(ai(n) + 1)- 1),

otherwise.
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An induction shows that for >_ 0,

r-Li(n) 1,

making the Li(n) lower bounds on the asymmetric unbounded search problem; sim-
ilarly, L(n) is a lower bound. As before, we have Li(n) logr n + O(loglogn) and
L(n) logr n+O(log log n) so that these lower bounds are nontrivial. The correspond-
ing algorithms/encodings are thus within an additive factor xai(n) + max{2y, x + y}
of being optimal in the strong sense of the previous section. When 2, this al-
gorithm/encoding and the corresponding lower bound are almost identical to the
asymmetric unbounded search algorithm and lower bound of [11].

Note that we could define

A0 (n) [r*n],

ao(n)- Lnlr*UJ,

for any number t >_ 1, and a similar optimality result holds. Thus, for example, if
x > y we could take t x/y. The larger the value of t, the closer the leading terms
in Li(n) and L(n) are to logr n, for _> 1.
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MORE NEARLY OPTIMAL ALGORITHMS FOR UNBOUNDED
SEARCHING PART II: THE TRANSFINITE CASE*

EDWARD M. REINGOLD? AND XIAOJUN SHEN:

Abstract. Given a function F N+ {X, Y} with the property that if F(no) Y then
F(n) Y for all n > no, the unbounded search problem is to use tests of the form "is F(i) X?" to
determine the smallest n such that F(n) Y; the "cost" of a search algorithm is a function c(n), the
number of such tests used when the location of the first Y is n. In Part of this paper it is shown
how to construct an infinite sequence of algorithms, each of which is much closer to optimality than
its predecessor. Diagonalizing over this sequence yields a new algorithm that is far better than any
of the algorithms in the sequence: this "omega-th" algorithm is within an additive factor of (n) + 2
of the corresponding lower bound, where c(n) is a functional inverse of Ackermann’s function--an
extremely slowly growing function. In this paper the construction techniques are generalized to get
dramatically better algorithms and lower bounds ad infinitum. Specifically, for each ordinal _< e0,
an algorithm is given that is dramatically closer to optimality than the algorithm corresponding to
a smaller ordinal. All algorithms constructed for < e0 are proved to be optimal in a strong sense.
Parallel results for the asymmetric case are also given.

Key words, unbounded search, prefix-free codes, optimal algorithms, Ackermann’s function,
inverse Ackermann’s function, Kraft’s inequality, ordinal numbers, Grzegorczyk hierarchy
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1. Introduction. The unbounded search problem, introduced by Bentley and
Yao [2], is to determine the location of the first Y value of a function F from the
positive integers to the set {X, Y}, when F has the property that if F(no) Y, then
F(n) Y for all n > n0. The "cost" of the search algorithm is a function c(n), which
specifies the number of tests "is F(i) X?" used when the location of the first Y
is n. Bentley and Yao point out the equivalence of this problem and table lookup
in an infinite ordered table, and they also show its connection to the construction of
prefix-free, binary encodings of the integers in which the codeword for n has c(n) bits.

In Part I of this paper [15], we use Ackermann’s functions to construct an infinite
sequence of algorithms/encodings, and a corresponding sequence of lower bounds, in
which the zeroth algorithm is a form of linear search, the first algorithm is a form
of binary search, the second algorithm is (essentially) Bentley and Yao’s ultimate
algorithm, and the improvement from the ith algorithm to the (i / 1)st algorithm is
equally dramatic for any i. Diagonalizing over the zeroth, first, second, and so on
gives us the omega-th algorithm, which is within an additive factor of a(n) / 2 of the
corresponding lower bound; a(n) is the functional inverse of Ackermann’s function,
an extremely slowly growing function. In this paper we show how to continue the
construction to get dramatically better algorithms/encodings and lower bounds ad
infinitum beyond the omega-th. Specifically, for each ordinal number <_ e0, we give
an algorithm and corresponding lower bound that are much closer together than any
algorithm/lower bound pair corresponding to a smaller ordinal. When is a successor
ordinal, the corresponding algorithm is based on the predecessor algorithm; when
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is a limit ordinal, the corresponding algorithm is based on a diagonalization over the
fundamental sequence for . In 4 we show that for < e0 these algorithms are optimal
in the strong sense of [15] by proving that the number of diagonalizations used for
the th algorithm is bounded by a simple function obtained from the Cantor normal
form of ; this result and the techniques used to obtain it are of independent interest.

We also show how to obtain parallel results for the asymmetric case in which the
cost of a Y answer and the cost of an X answer are not the same. This closes the
gap between the cost of the best algorithm and the best lower bound to a razor-sharp
edge for both the symmetric and asymmetric cases.

As in Part I, it is convenient for notational simplicity to insist that F(0) X and
to state the unbounded search problem as that of finding the greatest integer n >_ 0
such that F(n) X; in other words, instead of looking for the first Y, we look for the
last X. If the last X occurs at position n _> 0, the search for the last X corresponds to
the encoding of the integer n.

2. Construction ad infinitum. Following our construction in Part I, we might
use Ackermann’s function A(n) ([1], but see [15]) to define, say,

A(n) 0,.(n) _)(1)i>_1,

and the corresponding inverse functions. This would lead, with the level-by-level
construction, to a better algorithm and a better lower bound for each i. Of course,
we could then diagonalize over the (n) to obtain (n) -n(n), the corresponding
inverse function, the corresponding diagonal algorithm, and the corresponding lower
bound. We can do this again and again, ultimately diagonalizing over the functions
A(n), (n),.... Then we could start over and continue ad nauseum!

To make this infinite sequence of level-by-level and diagonal constructions precise,
we use the language of ordinal numbers (see, for example, [8]). For convenience of
notation, we will write pred(/) to represent the predecessor ordinal of a successor
ordinal ; that is,/ pred() / 1. Similarly, if is the limit ordinal for the sequence
{k}, we will write pred(,k) for /k. It is important that we be consistent when
choosing limit sequences for limit ordinals; we do not, for instance, want to use one
limit sequence when defining the algorithm and a different sequence when constructing
the corresponding lower bound. We will use the fixed fundamental sequences defined
by Whiner [19] (see also [16]).

DEFINITION (Whiner [19]). A fixed fundamental sequence is defined for every limit
ordinal a _< 0 as pred(a, 0), pred(a, 1), pred(a, 2),... where

(i) If a w. , and/ are both successor ordinals, then pred(a, n) w.
pred() / wpred(v) n.

(ii) If a w. , < cr is a limit ordinal, and is a successor ordinal, then
pred(a, n) w. pred() + wpred(,n).

(iii) If a e0, then pred(a, 0)= 1 and pred(a, n)= wpred(,n-1).
It-is convenient to extend this definition slightly to include successor ordinals by
defining pred(a + 1, n) a and pred(0, n) 0, for all n _> 0. Although fundamental
sequences for much larger initial segments of the ordinals are also available (see [5] or
[17]), in this paper we will not concern ourselves with ordinals beyond 0.

As a final comment about ordinal numbers, we note that there is an elegant, easy-
to-implement tree representation of the ordinals that goes well beyond e0 [3]. Thus
the use of ordinals as a data type in our algorithms does not unduly complicate their
implementation.
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DEFINITION. The generalized Ackermann’s function A(n) is defined for every
ordinal <_ eo and nonnegative integer n by

2n

A(n) A(n) (1
pred() 1

Apred(,n) rt

if O,n _> 1,
if is a successor ordinal,
if is a limit ordinal.

For convenience, we define A(0) 1 for all ordinals >_ 0. Similar functions arise in
various other contexts; see [6], [10], [13], [16], [18], or [19].

For < w, these functions are exactly the ordinary Ackermann’s functions defined
in 2 of Part I [15]; also A(n) A(n), the diagonal Ackermann’s function defined
in 3 of Part I. Notice that A(1) 2 and A(2) 4 for all . It is easy to show, by
transfinite induction on e, that A is a strictly increasing function, and that A(n) is
majorized by A(n) whenever < ; see [10], [16], or [19], for instance.

DEFINITION. The inverse generalized Ackermann’s function is defined for every
ordinal _< e0 and nonnegative integer n by

L/2J
a(n) least j such that pred() (n)

_
1

greatest j such that apred(,j)(n)

_
j

if 0,
if is a successor ordinal,
if is a limit ordinal.

Equivalently, for a limit ordinal , a(n) could be defined as the greatest j such
that Apred(,j)(j) <_ n. As expected,

a(n) A-l(n) greatest x _> 1 such that A(x) <_ n,

a(A(n)) =n,

and

A(a(n)) least x >_ i such that a(x)= a(n).

Of course, for < w, these functions are exactly the inverse Ackermann’s functions
defined in 2 of Part I and a(n) a(n), the diagonal inverse ickermann’s function
defined in 3 of Part I.

DEFINITION. For any ordinal _< e0, we define the generalized length function
L(n) for nonnegative integers n by

Lo(n) 0 n <_ l,
1 n>l,

L(n) { 0
Lpred() (n)

n_<l,
/ L(apred()(n)) n > 1,

for successor ordinals , and

if n<_ 1,
if apred(,(,))(n)

apred(,a(n))(A(a(n) / 1)- 1),

otherwise,
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for limit ordinals .
Again, for < w, these are exactly the functions defined in 2 of Part I, and L(n)

is exactly L(n) as defined in 3 of Part I.
THEOREM 2.1. For any ordinal <_ o and all integers m >_ O,

2-L’(n) 1.
n>_i,a(n)=m

Proof (by transfinite induction on ). We have already proved, in the lemma in

1 of Part I, that this holds for < w and, in Theorem 3.1 of Part I, that it holds
for w, so the base cases are done. When is a successor ordinal, the proof
identically parallels that of the lemma in 1 of Part I; when is a limit ordinal, the
proof identically parallels that of Theorem 3.1 of Part I. Since we will prove a more
general form of this theorem in the next section (Theorem 3.1), we leave the details
here to the reader. []

Remark. Theorem 2.1 can be rephrased as" for all ordinals <_ e0 and integers

A(m+i)-i
2-L,(n) 1.

n-A(m)

COROLLARY 2.2. For any ordinal <_ o and integers m >_ 1,

m-1

n=i

2-L’(n) < a(m)+ 1.

2-L(n) diverges.COROLLARY 2 3 For any ordinal
COROLLARY 2.4. For any ordinal <_ o, L(n) is a lower bound on the unbounded

searching problem of Bentley and Yao [2] and on prefix-free, binary eucodiugs of the
nonnegative integers [4] (see [111) in the sense that if an unbounded search algorithm
uses c(n) probes to locate n (or, equivalently, a prefix-free code uses c(n) bits to encode
n) then c(n) > i(n) for infinitely many n.

Proof. This follows from Corollary 2.3 by Kraft’s inequality (Part I, ineq. (1)).
THEOREM 2.5. For any ordinal <_ o, there is an unbounded search algorithm

in which the cost of finding n is

L(n) + a(n) + 2
1

Proof. The search algorithm is a unification of the level-by-level unbounded search
in Algorithm 1 of Part I and the diagonal unbounded search in Algorithm 3 of Part
I. We begin by finding the location of the last X relative to A; that is, we find k such
that

A(k) <_ location of the last X < A(k / i).

For n > 1, this costs a(n) + 1 tests Having found k, we apply either the level-
by-level search or the diagonal search, depending whether is successor ordinal or a
limit ordinal, respectively. Both these cases can be combined into a single function:
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ALGOIITHM 1
Ordinal searching, in pseudo-Pascal. For a successor ordinal , pred(t) is the predecessor of so
that pred(t) + 1. For a limit ordinal of the sequence {tu}, pred(t, u) tu.

function OrdinaISearch(
A: ordinal; { level of the search }
F: function(integer): IX, Y] { if F(no) Y then F(n) Y for all n _> n0 }
)" integer; { the location of the last X of F }

var
k: integer; { location of the last X relative to A; that is, A(k) <_ location < A(k + 1) }

function OrdinaILevelSearch(
: ordinal; { level of the search }
u: integer { location of last X, relative to f(A) }
f: function(integer): integer
): integer; { location of the last X, relative to f; that is, such that f(i) <_ location < f(i + 1) }

var
j" integer; { when is a limit ordinal, j is computed to be the location of the last X relative

to f(Apred(,u)); that is, f(Apred(,u)(j)

_
location < f(Apred(,u)(j + 1)) }

found: boolean; { flag to terminate the while loop }
begin { OrdinaILeveISearch }

{ find the location of the last X relative to f, given that its location relative to f(A) is u;
that is, it satisfies f(A(u)) <_ location of the last X < f(A(u + 1)) }

if u 0 then { f(1) _< location of the last X < f(2) }
return(l)

else if 0 then { f(2u) _< location < f(2u + 2) }
if F(f(2u + 1)) X then return(2u + 1) else return(2u)

else if ( is a successor ordinal) then { go down a level }
return(OrdinalLeveISearch(pred(), OrdinalLevelSearch(e, u- 1, f(Apred())),

else begin { is a limit ordinal; compute the location of the last X relative to f(Apred(,u)) }
found := false;
j := u;
while (j < apred(,u)(A(u + 1)- 1)) and (not found) do

if F(f(Apred(,u)(j + 1))) X then
j:=j+l

else { terminate the loop }
found := true;

return(OrdinalLevelSearch(pred(e, u), j,
end

end; { OrdinalLeveISearch }

begin { OrdinaISearch }
k :=0;
while F(A),(k + 1)) X do

k := k+l;
{ k > 0 is the location of the last X, relative to A; that is, A (k) _< location < A(k + 1) }
if k 0 then { the location of the last X is either 0 or 1 }

if F(1) X then return(l) else return(0)
else

return(OrdinalLeveISearch(A, k, f(x) x))
end; { OrdinaISearch }
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OrdinalLevelSearch, given in Algorithm 1. Transfinite induction verifies the correct-
ness of OrdinalLeveISearch and that it requires L(n) tests for n > 1. Thus the
function OrdinalSearch in Algorithm 1 uses the stated number of tests, cl

Corollary 2.4 tells us that the search procedure in Algorithm 1 is within an ad-
ditive factor a(n) + 2 of being optimal. For 2, this is equivalent to Bentley and
Yao’s result [2]; for w, this is the result of 3 of Part I on the diagonal algorithm.
For each > w, this is an enormous improvement because if T > a then a(n) is much
more slowly growing than a(n) as n - oc.

THEOREM 2.6. For any ordinal <_ o, there is a uniquely decipherable, irredun-
dant, lexicographic, prefix-free, binary code for the nonnegative integers in which the
number of bits used to represent n is

L(n)+a(n)+ 2 n <_ l,
1 n>l.

Proof. We define

Bo( ) {
and for successor ordinals , let

empty stringB(n) B(opred()(n))Bpred()(n

and for limit ordinals,

empty string

B(n)
lapred( .... (n))(n)-a(n)Bpred(e’a(n))(n)
lavred( .... (n)) (n)-a (n)0Bpred(e,a (n))(n)

Now we can define the code

{ooC(n) O1

empty string n 1,
n mod 2 n > 1;

n=l,
n>l;

if n= 1,
if apred(, (,)) (n)
Opred(,a(n))(A(o(n + 1)- 1),

otherwise:

if n=0,
if n= 1,
if n> 1,

whose length is as stated. Clearly, our definition of B is consistent with that given
for Bi in 2 of Part I; C is precisely C, as defined in 3 of Part I.

The decoding algorithm for C is given in Algorithm 2, which is little more than
a combination of Algorithms 2 and 4 of Part I. The correctness of Algorithm 2 fol-
lows by transfinite induction, along with the observation that whenever the function
DecodeOrdinalB is called to decode B(n), the parameter prefix has the value a(n).
The nature of the decoding procedure guarantees that C is prefix-free as well as
uniquely decipherable.

As in the case of C and C, the irredundancy is a consequence of the appropriate
sum being equal to one; for C this breaks into two cases--when is a successor ordinal,
and when it is a limit ordinal. The lexicographic property is similarly apparent. 1

3. Extension to asymmetric costs. Let x > 0 and y > 0; define the weighted
length of B(n) to be

W(n) x x [number of one-bits in B (n)] + y x [number of zero-bits in B (n)].



190 EDWARD M. REINGOLD AND XIAOJUN SHEN

ALGORITHM 2
Decoding the codes in the ordinal construction, in pseudo-Pascal. For a successor ordinal , pred() is
the predecessor of so that pred(e)+ 1. For a limit ordinal of the sequence (eu}, pred(e, u) eu.

function DecodeOrdinal(
A: ordinal; { level of the code }
b: BitString { the codeword to be decoded
): integer; { the decoded value }

var
k: integer; { index of last bit of b processed
p: integer; { value of prefix part of b }

function DecodeOrdinalB(
: ordinal; ( level of the code }
prefix: integer ( prefix value }
): integer; ( decoded value }

vat

j: integer; ( diagonal index value, when is a limit ordinal }
found: boolean; flag to terminate the while loop }

begin ( DecodeOrdinalB }
if prefix 0 then ( the empty string encodes 1 }

return(l)
else if 0 then begin ( value encoded is twice the prefix with last bit added

k :-- k + 1;
return(2 prefix + bk
end

else if ( is a successor ordinal) then
( decode the next prefix and use it to decode the remaining bits
return(DecodeOrdinalB(pred(e), DecodeOrdiualB(e, prefix- 1)))

else begin ( is a limit ordinal
found := false;
j :- prefix;
while (j < apred(,preyix)(A(prefix / 1) 1)) and (not found) do

if bk+l 1 then begin
k := k + 1;
j:=j+l
end

else { terminate the loop }
found := true;

if found then
k := k + 1; ( skip the following 0 }

return(DecodeOrdinaIB(pred(e, prefix), j))
end

end; ( DecodeOrdinalB }

begin { DecodeOrdinal }
k :- 0;
while bk+l 1 do

k :- k/l;
{ k c),(n); bl bk 1 and bk+ 0 }
p := k;
k:= k/l; (skipthe0}
if p 0 then

if b2 1 then return(l) else return(0)
else

return(DecodeOrdinalB(A, p)
end; ( DecodeOrdinal }
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Then, obviously, for any ordinal <_ eo, there is a uniquely decipherable, irredun-
dant, lexicographic, prefix-free, binary code for the nonnegative integers in which the
weighted cost of the representation of n is

2y
+ + +

Y

rt 0
n=l,
n>l.

Therefore, for any ordinal _< e0, there is an unbounded search algorithm in which
the weighted cost of finding n is

2y
+ + +

Y n>l.

THEOREM 3.1. For any ordinal

_
eo and all integers m >_ O,

r-We(n) 1.
n_l,a(n)--m

Proof (by transfinite induction on ). For the basis we need to consider the case
m 0 and the case 0, m > 0. When m 0, a(n) 0 only for n _< 1; B(1) is
empty so W(1) 0 and the sum is correct. When O, ao(n) m for n 2m or
n 2m+ 1; B0(2m) 0 and B0(2m+ 1) 1 giving W0(2m) y and Wo(2m+ 1) x,
so the sum is simply r-x + r-y 1 by the definition of r.

Suppose is a successor ordinal and m > 0. In this case n > 1 so B(n)
B(apred()(n))Bpred()(n) making W(n) W(apred()(n)) + Wpred()(n). Following
the proof of the lemma in 1 of Part I [15], observe that by the definition of a(n)
a(apred()(n)) a(n) 1, so that by the definition of W(n)

r-We(n) E
,>l,,(n)=m n_1,a (Cpred()(n))=m--

r_We(k
k>l,()=m-

r-W,() (,)-w(()(,))

r-W()(’)

n1,Cpred(e)

by substituting k for apred()(n) and rewriting. But by induction the inner sum is 1,
giving

k>_l,a(k)-m-1

r-W()

again by induction.
Finally, when > 0 is a limit ordinal and m > 0, let us simplify the notation by

writing for pred(e, m) and letting a(A(a(n)+ 1)- 1) m + h. Then from the
definition of B(n),

W(n)- { xx [a(n)-mini+ We(n)
x + +

if a(n) m + h,
otherwise.

Then, as in the proof of Theorem 3.1 in Part I, the sum becomes
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h-1

COROLLARY 3.2. For any ordinal <_ co, W(n) is a lower bound on the asymmet-
ric-cost version of the unbounded searching problem of Bentley and Yao [2] and on the
asymmetric-cost version o.f prefix-free, binary encodings of the nonnegative integers [4]
(see [11]), in the sense that if an unbounded search algorithm uses cost c(n) to locate
n (or, equivalently, a prefix-free code uses cost c(n) to encode n) then c(n) > W(n)
.for infinitely many n.

Since n__l r-log n diverges, logr n is a lower bound for the asymmetric case by
the generalized Kraft’s inequality (Part I, ineq. (5)). Thus we are not interested in
lower bounds below logr n, just as in the symmetric case we are not interested in lower
bounds below lg n.

Our level algorithm/encoding, as presented so far, is within about xa(n) of
being optimal in the original sense of [2], but it is not that close to being optimal in
the stronger sense defined in 5 of Part I. Specifically,

W(n) max{x, y} lg rlim sup
n- logr n

by an argument identical to that in the case < w given in Part I. Thus

lim sup
n--,oo logr n

is finite for any choice of x and y, but it can be arbitrarily large. In other words, our
level algorithm/encoding is within a constant multiplicative factor of being optimal
in the asymmetric case, not within a slowly growing additive factor.

As discussed in 6 of Part I, to obtain such a near-optimal algorithm/encoding
for the asymmetric case, we must redefine Ao(n) and ao(n) as

Ao(n) FrYnl,

Ln/ruJ;

the recursive definitions of A(n) and c(n) for > 0 are unchanged. The algorithm
is essentially identical to Algorithm 1, but with modifications similar to those needed
in the finite case (6 of Part I). As there, we define

L0(0) 0,
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and for n > 1,

the exact cost to search for n in the interval
[Ao(ao(n)), Ao(ao(n) + 1) 1] using the op-Lo(n) timum bounded lopsided search algorithm
of [9, 2.2].

Generalizing Part I, we define

0
L(n) Lo(n)

Lpred(e () -[- L (O/pred() ())

? O,
< n < [r,

n > r],

for successor ordinals, and

0
Lo(n)
Lpred(,a(n))(n)L(n) +X(Olpred(e,a(n))(n a(n))
Lpred(,a(n))(n)

+x(,e(.(.))() ()) + V

n--0,
1 < n < [r.
n >_ ry] and apred(,a(n))(n)=
Opred(,a(n))(A(o(n) + 1)- 1),

otherwise,

for limit ordinals. Then a transfinite induction similar to the proof of Theorem 3.1
shows that for _> 0,

r-L(n) 1,

making the L (n) lower bounds on the asymmetric unbounded search problem. Tech-
niques parallel to those in the next section prove that, for 1 < < e0,

L(n) logr n + O(lg lg n),

so that these lower bounds are nontrivial. The corresponding algorithms/eneodings
have cost

2y n=0,
L(n) + xa(n) + x + y 1 < n < [rY],

n >_ [rl.

and are thus within an additive factor xa(n) + max{2y, x + y} of being optimal in
the strong sense of 5 of Part I.

4. The asymptotic behavior of L(n). We show in this section that L(n)
lg n + O(lg lg n) for 1 < < co; this implies that

n(n)
1limn__.sup b(n)

for any nontrivial lower bound b(n) and thus all the algorithms in 2 are optimal
in a strong sense. Verifying this seemingly simple statement about L(n) requires a
surprising effort! The difficulty is the diagonalization, together with the addition of 1,
under certain conditions, in the recurrence relation for L(n) when is a limit ordinal.
The functions L(n) cannot be written in closed form, and they are not monotonic in
any simple way. Since more direct techniques fail to work, we approach the problem
by computing a separate bound on the number of diagonalizations that occur in the
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evaluation of L(n), and then using that bound in studying the growth of L(n). The
number of diagonalizations is given by the function d(n), defined by the following
definition.

DEFINITION. For ordinals <_ e0 the depth function d(n) is defined for positive
integers n by

0 if= O,
d (n) dpred()(n) if is a successor ordinal,

dpred(,a,(n))(n) q- 1 if is a limit ordinal.

For example, di(n) 0 for nonnegative integers i; d(n) 1 for all n; dw.2(n) 2
for all n; d.i+k(n) for all nonnegative integers i, k, and n; do2(n) a.(n) + 1.
Our goal is to prove that d(n) is extremely small, compared to n. We will prove that
for all ordinals < e0, d(n) is majorized by a(n) for all integers >_ 0.

To facilitate the study of d(n) and L(n), we need to know when an ordinal a
occurs as one of the predecessors in the sequence of diagonalizations leading to L (n).
We use a generalization of a concept and notation from [10], who needed similar
machinery in their study of A(n).

DEFINITION. Let g" {5[ _< e0} ---, N+ be a positive-integer-valued function of
the ordinals up to co. We say an ordinal a traces to an ordinal T under g, written
a g T, if there is a finite sequence of ordinals "Y0, /1,’" ", 7r such that "Y0 a, r T,
and

pred(q,i)
"i+ pred(’yi, g(/i))

if q,i is a successor ordinal,
if ’i is a limit ordinal.

For example, if g() n for a fixed positive integer n, 2 w. n g-L w 0.
This particular form of tracing was used in [10] in their analysis of the generalized
Ackermann’s function. As another example, note that traces to pred(, a(n)), under
g() a(n) for a fixed positive integer n; this form of tracing will be of importance
to us in our analysis of L(n).

DEFINITION. If for all functions g { <_ e0} ---, N+ we have a g-L T, then we
v

say that a traces to T absolutely, written a --, T.

It is not difficult to verify, for example, that T + 1 T for any " < e0, or that
w.2wl0.

LEMMA 4.1. For all limit ordinals <_ eo and all nonnegative integers j and k,
j < k, pred(t, k) pred(e,j).

The proof of Lemma 4.1, given below, relies on a number of propositions. Our
presentation of these propositions closely parallels the proof of Theorem 2.4 in [10],
but our Lemma 4.1 is a much stronger result, from which Theorem 2.4 in [10] follows
as a corollary. The following four propositions are evident from the above definitions.

PROPOSITION 4.2. If T1 g-L T2, T1 g’ T3, and T2 > T3, then T2
g--+ T3.

PROPOSITION 4.3. If TI g-g* T2 and ’2 T3, then T T3.
v v and T2 > T3, then T2 T3PROPOSITION 4.4. If T ---* T2, TI T3,

PROPOSITION 4.5. If T1 -’* T2 and T2 --, T3, then ’DEFINITION (see, for example, [10], [12], or [16]). Any limit ordinal e < e0 can be
written in Cantor normal form as
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where > 1 > 2 > > r > 0 are ordinals and the a are natural numbers,
at>0.

DEFINITION (from [10]). Let a < eo and T < e0 be ordinals. We say that a
meshes with T if for some ordinals > 0 and > 0 a w’ and - < w+l.

This definition means that two ordinals "mesh" if their Cantor normal forms
concatenate to form the Cantor normal form of their sum. Specifically, if a meshes
with T,

(7 W1 nl W + w nk

then 0k >_ ?1. The notion of meshing is helpful because the pred function concentrates
its action on the rightmost (smallest) term in the Cantor normal form of an ordinal
less than 0. As a consequence, for instance, the following proposition.

PROPOSITION 4.6. Given ordinals a < eo and T < 0 such that a meshes with
-, then for any nonnegative integer n, pred(a + T, n) a + pred(T, n), and hence if
T --, for some ordinal then (a + T) (a + ).

Proof. Because a + T < 0, the meshing of a and T, taken with the way pred(a +
-, n) differs from c + - only in the smallest term of the Cantor normal form of a + T,
guarantees that

pred(a + -, n) a + pred(T, n)

for any nonnegative integer n, as stated in the proposition. Then, given any positive-
integer-valued function g on the ordinals, we define () g(a / ). We have

pred(a + T, g(a + T)) a + pred(T, g(a / T))
a + pred(T,(T)).

Therefore, if T , then (a / ) (a / ). But by hypothesis T --. and hence

3 for any choice of ; that is, for any choice of g, (a / T) (a / ), which means

+ + 0

PROPOSITION 4.7. For all ordinals

_
o, O.

Proof. A trivial transfinite induction on 6. 0
PROPOSITION 4.8. For all ordinals < eo and all integers k > j > O,

Proof. By Proposition 4.7, w. (k- j) 0. Also, w. j meshes with w. (k- j), so

Proposition 4.6 applies to yield w. j / w. (k j) w. j / 0; that is, w. k v_. w "j,
as desired. [:]

PROPOSITION 4.9. For all ordinals < o, w+1 w.
Proof. For any integer n,

pred(w+1, n) w.n,
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so that for any positive-integer-valued function of the ordinals g,

pred(w+1, g(03+l)) 02

If g(w+1) 1, we are done; if not, from Proposition 4.8,

so in particular,

Hence, by Proposition 4.3,

w+l w g(w+) w.

But g was arbitrary, so w+ v w" [3

PROPOSITION 4.10. Let rll < eo and 2; then w1 wTM.
Proof. The proof is by induction on . If r < w, the desired result holds

by Proposition 4.9. For r/1 >_ w, a successor ordinal, the proposition follows from
Proposition 4.9 and induction. For 71 >_ w, r/ a limit ordinal, for any positive-integer-
valued function g on the ordinals,

pred(w1 g(wnl 03pred(rl,g(wv )).

If pred(r/1, g(w )) r/2, we are done; if not,

pred(h, g(w))

since /1 r/2, so by induction,

pred(w1 g(w’)) dpred(r/x,g(w)) .
Specifically, then w wTM, and the desired result follows because g was
arbitrary. D

Proof of Lemma 4.1 (by transfinite induction on ). If w,

pred(, k) k j pred(,j),

establishing the basis. For the induction itself, there are four cases, depending on the
form of .

Casel. =w.(+1),>0. We have

pred(, k) wn. fl + pred(wn, k),

so by induction,

pred(wn, k) v_ pred(wn, j),

and hence, by Proposition 4.6, pred(, k) pred(,j).
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Case 2. wv+l. Here,

pred(, k) w. k w. j pred(, j)

by Proposition 4.8.
Case 3. wv,r/a limit ordinal. In this case we have

pred(t, k) o3
pred(rt’k)

and

pred(, j) o)pred(r’j)

By induction pred(r/, k) v_, pred(?, j) and by Proposition 4.10 pred(, k) v_, pred(, j).
Case 4. co. Here, pred(,k) is a k-high tower of omegas and pred(,j)

is a j-high tower of omegas. Since w 1, by Proposition 4.10 w w. Applying
this k 1 times yields pred(,k) pred( k 1), which implies pred(,k)
pred(, j).

Theorem 2.4 and its corollary from [101 follow as corollaries to Lemma 4.1. There
are several other useful and interesting corollaries, too.

COPOLLAPY 4.11. For any fixed nonnegative integer n, let g() a(n); then for
all limit ordinals < eo and all integers k > 0, pred(, k / 1) pred(, k).

COROLLARY 4.12. L and d are "monotonic" in the sense that for all limit
ordinals < co, and for all nonnegative integers k and n,

Lpred(,k+l)(n)

_
LpredO.,k)(n),

dpred(,k+l)(n)

_
dpred(,k)(n).

Proof. These inequalities follow from Lemma 4.1 and the formulas for L(n) and

COROLLARY 4.13. For any ordinal < o, d(n) >_ d(m) if n > m.

Proof. The proof is by transfinite induction. For _< w, the result is obvious.
Suppose it is true for all ordinals less than . If is a successor ordinal, d(n)
dpred() (n) and d(m) dpred()(m), so the result holds by induction.

If is a limit ordinal then

and

d(n) dpred(,((n))(n) / 1

d(m) dpred(,a,(m))(m) - 1.

If a (n) a(m), then by induction

dpred(, (n)) (n)

_
dpred(,,o(m))(m)

and the result holds. On the other hand, if a(n) > a(m) then by Lemma 4.1

pred(,a(n)) v_, pred(,a(m)) and hence by inequality (2)

dpred(,a(n))(m)

_
dpred(,((m))(m),
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and the result follows. E]

COROLLARY 4.14. For all ordinals < o, if a(n / 1) a(n) / 1, then

for a successor ordinal, while

pred(,a(n))( H- 1) apred6,a (n)) (n) + 1

for a limit ordinal.
Proof. For convenience, let a(n) m and a(n + 1) m + 1. If is a successor

ordinal, say =/ + 1, then

since a(n) m, while

Am+l(m <_ n < Am+l(m + 1),

Am+(m / 1) <_ n / 1 < Am+(m + 2),

since a(n / 1) m + 1. These two inequalities imply that

Am+(m + 1) n + 1,

however,

(.+i)Am+(m + 1) m (1) Am(A(m)(1)) Am(Am+(m)),

SO

Am(Am+(m)) n + 1.

Applying am to both sides of this equation yields

Am+(m am(n + 1).

The penultimate equation means that n + 1 is the least number x such that

Am+ (m); therefore

am(n) < Am+(m).

That is,

am(n < Am+l(m am(n + 1),

or,

But clearly,

Opred( (t H- 1) > Opred( (n).

Opred()(n + 1) <_ Opred6)(n)q- 1

and the result follows.
If is a limit ordinal, we have, in a manner parallel to the successor ordinal case,

A(m) < n < A(m + 1) < n + 1 < A(m + 2).
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Or equivalently,

Thus

ApredO,,m)(m)

_
n < ApredO,,m+)(m + 1)

_
n + 1 < Apred(,m+2)(m + 2).

Apred(,m+ t) (m + 1) n + 1,

meaning

apred(,m+l)(n + 1) m + 1,

and

apred(e,m+l)(n) m;

that is, the corollary holds for pred(, m + 1). In other words, the desired property
holds for the ordinal pred(e, a(n) + 1), a single tracing step down from under the
function g(a) aa(n) / 1; that is, a tracing step under g preserves the property.

However, we know from Lemma 4.1 that pred(, a(n)+ 1) v pred(, a(n)), so that
in particular pred(r,a(n)+ 1) pred(,a(n)), and we have just seen that each
individual tracing step under g preserves the needed property.

Remark. This last corollary means that whenever there is a "jump" in the value
of a(n), all of its predecessors have a "jump" in value also.

LEMMA 4.15. If r < eO meshes with T < eO then

da+r(n) <_ da(n) + dr(n).

Proof. The proof is by transfinite induction on T. If T < W, then T k for some
integer k >_ 0. In this case

da+r(n) da+k(n) da+k-t(n) d(n),

so

da+r(n) da(n) + dr(n),

because dr(n) 0 by definition.
If " is a successor ordinal, then

da+r(n) dpred(a+r)(n)
da+pred(r) (n)

by Proposition 4.6 because a meshes with T;

by induction; and

_
da(n) + dpred(r)(n)

da(n) +dr(n)
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by the definition of dr(n).
If T is a limit ordinal, then

d+r(n) da+pred(r,a+r(n))(n) + 1

by definition and Proposition 4.6;

<_ da(n) + dpred(r,o,+.(n))(n) + 1

by induction; _
da(n) -t- dpred(r,a.(n))(n) + 1

by inequality (2) since a+r(n) <_ at(n), as is easily verified; and

<_ d(n) -t- dr(n)

by definition.
Cantor normal form allows us to view any ordinal as a function f(w), formed by

additions, multiplications, and exponentiations of ordinals and nonnegative integers.
If we consider the integer function f (n) in which each instance of w in f(w) is replaced
by n, then it is easily shown by transfinite induction that for successor ordinals

f(n) fpred(e)(r) q- 1,

while for limit ordinals , when n _> 1, k _< n, then

(4) re(n)

_
fpred(e,k)(n).

LEMMA 4.16. For any integer n >_ 1, and for any ordinal 7, 1 <_ < o,

o,(n) <_ ov(n).

Proof. It suffices to show that for n >_ 1,

A,,(n) >_ Av(n),

because otherwise, let

for some n*, and suppose that A,,,,(n) >_ A,(n) for any n _> 1. Then u _> v + 1, so by
the definition of the generalized inverse Ackermann’s functions,

A,(u) <_ n* < A,(u + 1)
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and

A,(v) < n* < Av(v + 1),

giving

n* < Av(v + 1) <_ A,(u) <_ A,(u) <_ n*,

a contradiction.
We will prove A,(n) >_ An(n by transfinite induction on r. For r]- 1, wn -w

and

A,,,(n) A(n) A,(n) >_ Al(n),

so the lemma is true.
Suppose the lemma holds for ordinals less than ?. If is a successor ordinal,

A, (n) Apred(,,n)(n)
>__ nwpred(v)+l(n)

because wn g-L O)pred(v$) + 1 under g() n and A(n) >_ A-(n) if g-L T (see [10]),

which, by induction,

a(’)
tpred(/) (1)

> A()pred() (1)
Av(n).

If r/is a limit ordinal,

A,(n) Awpred(r,n)(n_
Apred(,,n) (n)

by induction, and

Av(n). D

LEMMA 4.17. For all ordinals , 1 <_ < o, and for all integers n >_ 4, d(n) <_

Proof. For < w, d(n) O, so the result is trivial. Similarly, for w, f(n) n
and hence

f.(a(n))- 1 a(n)- 1 >_ 1 d(n)

for n _> 4. Thus the lemma is true for _< w; we continue by transfinite induction.
Suppose it is true for all ordinals less than , > w. If is a successor ordinal then
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d(n) dpred()(n)
<- fpred(e)(Cg(T)) 1

by induction;

< L(()) .
by equation (3).

If < e0 is a limit ordinal, its fundamental sequence is one of two types. For
w’./, r/and successor ordinals, we have pred(, k) w’. pred(fl) / wpred(’) k.

Thus,

d(n) dpred(,a(n))(n) q- 1

d’.pred(#)+pred(’).(n)(n) -b 1_
dw,.pred()(n) q- dpred(,).(n)(n) / 1

by Lemma 4.15;__
(fwu.pred(f)(O())- 1) + (f,,d(,).o,()(a(n))- 1) + 1

by induction;

fw,.pred(f)(O(?’t))-[- fwpred(,).o(n)(Ol,(n))- 1

fu,.pred(f)(a(n)) q- a(n)fo.,,,:,,(,)(o(n)) 1

by the definition of. f._
fo.,,.pred(Z)(a(n)) / a(n)f,d(,)(a(n)) 1

because, w, so that a,(n) < a(n); and

f(a(n))- I.

On the other hand, if is a limit ordinal of the form w./ where is a limit
ordinal and is a successor ordinal, then

d(n) dpred(,a (n)) (n) -b 1

dw,.pred(f)+wped(,,(n)) (n) + 1_
dw,.pred(B)(n) -[-do.,,r,(,,,(,))(n + 1

by Lemma 4.15,
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< d,.pred(#)(n) + dpred(,,,(,))(n) + 1;

by inequality (2) and Lemma 4.16.

<__ (fwn.pred(/)(a(f))- 1)+ (a(n)Jprd(’, ("))(a(n)) 1) + 1

by induction and the definition of f. However, by inequality (4), and since

< + c (n) 1

COROLLARY 4.18. For all ordinals < eo and .for all integers > O, d(n) is
majorized by ai (n).

Proof. For < e0, f (n) is clearly elementary, that is, in the Grzegorczyk class $3
([7]; see [14] or [16], for example). Thus f(n) is majorized by Ai(n) for all integers

_> 2, since these A(n) are outside of $3. This means that f(a(n)) is majorized by
A(a(n)) for all integers _> 2. However, a2) (n) majorizes a(n); applying A to each
of these functions, we conclude that a(n) >_ Ai(a2)(n)) which majorizes A(a(n))
and hence also majorizes f(a(n)) and therefore d(n). D

We are now ready to attack L(n).
LEMMA 4.19. For all ordinals < eo and.for all integers n > O,

(5) L(n + i) _> L(n)
and, if a(n + 1) a(n) + 1 and > 2 then we have

(6) L(n + 1) > L(n) + a(n) + 1.

Proof. For <_ 2, (5)is obvious. For = 2, a(n) lg* n; iflg*(n+l) (lg* n)+l,
then Llg(n + 1)J > LlgnJ + 1, LlgLlg(n + 1)JJ > LlgLlgnJJ + 1, and so on--otherwise
lg*(n + 1) lg* n, a contradiction. Each term in L2(n + 1) is thus larger by 1 than
the corresponding term in L2(n). Therefore,

L2(n+l)-L2(n) k l+l+...+l+Ll(aa2(n+l)-l)(n+l))
c2(n)+ 1,

giving (6) for 2.
Continuing by transfinite induction, suppose (5) and (6) are true for all ordinals

less than . There are two cases. First, if is a successor ordinal then by definition

L(n+ 1)
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by induction, and

L(n),

verifying (5). Furthermore, if a(n + 1) a(n) + 1, then, as in the case 2,
a (i) (n + 1)pred() pred() (n) + 1 for 1 < < a(n) + 1 so by induction

L(n + 1)

verifying (6).
Second, if is a limit ordinal, L(0) L(1) 0, L(2) L(3) 1, and

L(4) >_ 1, as is easily seen. Suppose n >_ 4. If a,(n + 1) a(n), then

and

L(n -+- 1) Lpred6,a,(n))(n + 1) + apred(,o, (n)) (n + 1) a(n + 1) -+- (0 or 1)

L(n) Lpred(e,a(n))(n -" Opred(,c,(n))(rt) Oe(n) -- (0 or 1).

By induction,

Lpred6,a(n))(n + 1) >_ Lpred(,a(n))(n),

so (5) is proven if we can show

Opred(,c (n)) (n -- 1) >

However, if these last two values are equal, by definition the "(0 or 1)" terms must
be the same in both L(n + 1) and L(n); this proves (5).

If a(n + 1) a(n) + 1, for n >_ 4, we must prove that (6) holds. In this case,

L(n + 1) Lpred(,,a(n)+i)(n + 1) + Opred(,a(n)+l) (t -- 1) (a(n) + 1) + (0 or 1)

and

L(n) Lpred6,a(n))(n) + Opred(e,c(n))(n)

(Examination of the definition of L (n) shows that the "(0 or 1)" term must be zero
in this last equation because apred(,a (n)) (n) ap,:ed(,a(n))(A(a(n)+ 1)- 1) and
A,(a(n) + 1) n + 1.) From inequality (1) we have

Lpred(,a(n)+i)(n + i) >_ LpredO.,a(n))(n + 1),
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and from Corollary 4.14 we have

pred(,a(n))( -b 1) Opred(,a(n))(? -b 1.

Thus

L(n+ 1) k Lpred(,a(n)+l)(n + 1)_
Lpred(,a(n))(n + 1)

>_ Lpred(,a(n))(n) + apred(,a(n))(n) + 1

by induction;

_> L(n)+a(n)+l,

proving (6).
LEMMA 4.20. Let a < eo and let k > 0 be an integer. Then for all integers n >_ 1,

La+k(n) <_ La(n) + (2k 1)aa+l(n)kLa(aa(n)).

Proof. The proof is by induction on k. The lemma is trivial for k 0. If k >_ 1,

La+k(n)

by Lemma 4.19,

by induction. Taking k 1 in much of the latter part of this last formula, the
monotonicity of the various functions yields

<_ La(n) + (2k-1 1)oza+l(rt)k-lna(oa(rt))
+aa+i(n) (La(a(n)) + (2k-1 1)Oa+l(?z)k-lna(ota(r)))

<_ n(n) + (2k 1)a+(n)kL(aa(n)).

COROLLARY 4.21. Let a < eo and let k > 0 be an integer. Then for all integers
n>l

La+k(n) <_ La(n) + ((2aa+(n))k 1) La(aa(n)).

LEMMA 4.22. For any limit ordinal < eo, and for all n >_ 1,

+ ((2a3(n))d’(n)a(n) 1 (n2(a2(n)) + a2(n)).L(n) < L2(n)
\ /
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Proof. The proof is by transfinite induction. When n _< 3 the result is trivial for
all , so assume n _> 4. For the basis of the transfinite induction, let w; we have

L(n) La(n)(n) + a(n)(n) a(n) + (0 or 1)
<_ La(n)(n)+a2(n).

Applying Corollary 4.21 with a 2, k a(n),

+ ((2a3(n))a(n) 1) (L2(a2(n)) +L2(n)

so it is true for w.
Suppose the result holds for all limit ordinals less than > w. By the definition

of n(n),

L(n) Lpred(e,a(n))(n -]" Opred(,a(n))(n --a(n)+ (0 or 1)
<_ npred(,a (n)) (n) 4- o2(n).

Let pred(,a(n)) a + k, where a is a limit ordinal. If k 0 we are done by
induction; otherwise 0 < k a,,(n) <_ a(n). By Corollary 4.21 then,

ipred(,o,(n))(n) ia+k(n)

<_ Lo.(n)+ ((2aa+(n))a(n) 1) La(aa(nl)

5 L,(n)+ ((2aa(nl)a(n) 1)
Thus,

L,(n) <_ Lp,:ed(,,a(n))(n) + a2(n)

+ ((2aa(n))a(n) 1 La(a2(n)) + a2(n),La(n)
\ /

and by induction,

However by an easy induction, da(n) is monotone in n, hence da(a2(n)) <_ da(n)
d(n)- 1; so



MORE NEARLY OPTIMAL UNBOUNDED SEARCHING, PART II 207

THEOREM 4.23. For any ordinal , 2 g < co,

L(n) L2(n) / o(lg lg n).

Proof. Since L(n) >_ L2(n) by a straightforward transfinite induction, it is only
necessary to prove that the right-hand side is an upper bound; this we do by transfinite
induction. For 2 the result is obvious. If is a successor ordinal, then

L(n) _< Lpred(Q (n) + a(n)Lpred(e) (Opred(e) (n)),

and by induction,

L2(n) + o(lglgn) + a(r)(lgapred()(r) W O(lglgapred()(n)))
n2(n) + o(lglgn) + o((lg* n)(lglg* n)) + o((lg* n)(lglglg* n))
n2(n) + o(lglgn).

If is a limit ordinal, d(n) o(lg* n) from Corollary 4.18. Then from Lemma 4.22,

+
o O(lg*

L2(n) + o(lg lg n).

COROLLARY 4.24. For any ordinal , 2 <_ < eo,

n(n) lg n + O(lg lg n).

Theorem 4.23 can be improved by strengthening Lemma 4.22 to

L(n) g Lk(n)+ ((2ak+(n))d(n)a(n) 1)(Lk(ak(n))+ ak(n)),

for all integers k > 2. Applying this with k / 1 in place of k we conclude

L(n) <_ Lk+l(r) -b o(ak(r))
<_ Lk(n) + Ok+l(n)Lk(ak(r)) -b

<_ Lk(n) + O(ok+l(n) lgok(r)) -b O(Ok(r))
<_ Lk(n) + o(ak(n)).

This improves considerably on the result in Corollary 4.24; for example, taking k 2
yields

(7) L(n) L2(n)+ o(lg* n).

5. Conclusion. Clearly, generalized Ackermann’s functions and corresponding
infinite search algorithms can be obtained for ordinals beyond e0. However, our anal-
ysis of L(n) depends critically on Cantor normal form, making it difficult to extend
to >_ e0. We conjecture that (7) can be strengthened to state that if a and T are
any ordinals, 2 <_ a < T, then

Lr(n) La(n) + O(lg aa(n)).
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MINIMUM WEIGHTED COLORING OF TRIANGULATED GRAPHS, WITH
APPLICATION TO MAXIMUM WEIGHT VERTEX PACKING AND CLIQUE

FINDING IN ARBITRARY GRAPHS*

EGON BALAS? AND JUE XUE

Abstract. Efficient algorithms are known for finding a maximum weight stable set, a minimum weighted
clique covering, and a maximum weight clique of a vertex-weighted triangulated graph. However, there is
no comparably efficient algorithm in the literature for finding a minimum weighted vertex coloring of such
a graph. This paper gives an O(] VI 2) procedure for the problem (Algorithm 1). It then extends the procedure
to the problem of finding in an arbitrary graph G--(V, E) a maximal induced subgraph G(W) color-
equivalent (as defined in 3) to a maximal triangulated subgraph G(T) (Algorithm 2). Finally, it uses this
latter algorithm as the main ingredient of a branch-and-bound procedure for the maximum weight clique
problem in an arbitrary graph. Computational experience is presented on arbitrary random graphs with up
to 2,000 vertices.

Key words, graph coloring, vertex packing, maximum clique finding, triangulated graphs

AMS(MOS) subject classifications. 05, 90, 68

1. Introduction. Given an undirected graph G (V, E), a stable set (independent
set, vertex packing) in G is a set of pairwise nonadjacent vertices, and a clique in G
is a set of pairwise adjacent vertices. A clique in G is a stable set in G, the complement
graph of G, and vice versa.

A vertex coloring of G is an assignment of colors to the vertices of G in such a
way that adjacent vertices get different colors. Equivalently, a vertex coloring is a
collection of stable sets (color classes) such that each vertex belongs to at least one
color class. A clique covering (of the vertices) of G is a collection of cliques such that
every vertex belongs to at least one clique. A clique covering of G is a vertex coloring
of G, and vice versa.

A well-known pair of combinatorial optimization problems asks for finding a
maximum clique and a minimum vertex coloring in G or, equivalently, for finding a
maximum stable set and a minimum clique covering of (3. Both problems are NP-
complete on general graphs, but solvable in O(IEI/Ivl)time on triangulated graphs,
i.e., graphs that have no chordless cycles of length at least 4.

If the graph (3 has nonnegative integer weights on its vertices, say w(v), v V,
we have the weighted version of the above pair of problems. For the first problem, the
weight of a clique is simply the sum of the weights of its vertices. On the other hand,
for the second problem, a weighted vertex coloring (y, ) of G is a collection 0:-
{$1, , Sq} of stable sets (color classes) along with nonnegative integer weights y(Si)
of the color classes, such that for every vertex v, the sum of weights of the color classes
containing v is at least equal to the weight of v. Thus a vertex can be assigned more
than one color (can belong to more than one color class), but two adjacent vertices
cannot be assigned the same color. A minimum weighted vertex coloring is one that
minimizes the sum of weights of the color classes used.

Received by the editors July 5, 1989; accepted for publication (in revised form) April 30, 1990. This
research was supported by National Science Foundation grant ECS-8601660, Office of Naval Research
contract N00014-85-K-0198, and Air Force Office of Scientific Research grant AFOSR-370292. Reproduction
in whole or in part is permitted for any purpose of the U.S. Government.

? Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania
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Let 5f be the collection of all maximal stable sets (independent sets, vertex
packings) of G; then the maximum weight clique problem on G is

(WK)

while the minimum weigh

(ws)

max Y (w(v)x(v): v V)

s.t.

(x(v): vS)<-l, SSf

x(v) integer, x(v) >_- O, v V,

ted vertex coloring problem is

min Y (y(S): S

s.t.

2 (y(S): v S) -> w(v), v V

y(S) integer, y(S)_-> O, S

It is well known that if G is perfect (i.e., for every induced subgraph of G, a
maximum clique and a minimum coloring of the subgraph have the same cardinality),
then the linear programming relaxations of (WK) and (WS), obtained by removing
the integrality conditions from both constraint sets, have integer optimal solutions
equal in value [4]. Furthermore, Gr6tschel, Lovfisz, and Schrijver [9] have shown that
for perfect graphs both problems are solvable in polynomial time. Their approach uses
the ellipsoid method for linear programming.

When G is triangulated (chordal) and unweighted, finding a maximum clique and
a minimum coloring, as well as a maximum stable set and a minimum clique covering,
can be done in O(]E[ +[VI) time, as shown by Gavril [7]. As to the weighted versions
of these problems, since a triangulated graph G has at most[V[ maximal cliques, a
maximum weight clique can be found by listing all maximal cliques and picking the
one with maximum weight. A maximum weight stable set and a minimum weighted
clique covering in a triangulated graph can be found in O([ V[2) time by a method due
to Frank [6].

However, no special method has been published so far for solving the minimum
weighted vertex coloring problem on a triangulated graph. In this paper we give such
an algorithm, whose time complexity is O( VI2). We then extend the algorithm to the
problem of finding in an arbitrary graph G (V, E) a maximal induced subgraph
G(W) that is color-equivalent (as defined in 3) to a maximal triangulated induced
subgraph G(T). Finally, we show how this latter algorithm can be used as the main
ingredient of a branch-and-bound method for solving the maximum weight clique
problem on an arbitrary graph, in a vein similar to that used in Balas and Yu [2].

2. Minimum weighted coloring of triangulated graphs. Given a graph G (V, E),
and a set S V, we write G(S) for the subgraph of G induced by S. A vertex v V
is called simplicial if all vertices adjacent to v are pairwise adjacent to each other, i.e.,
if v is contained in a unique maximal clique. An ordering o-= (vl," "’, vn) of the
vertices of G is called a perfect elimination scheme if, for i-- 1,..., n, vi is simplicial
in G({vi, vi+l," , vn}). It is well known (see, for instance, Golumbic [8]) that a graph
is triangulated if and only if it admits a perfect elimination scheme. Finding such a
scheme or showing that it does not exist takes O([E[ /lvl) time (see Rose, Tarjan, and
Lueker [12]). We denote by o’-(vi) the rank (position) of vi in r. Further, we write
B(v) and A(v) for the set of vertices adjacent to v that are before v and after v,
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respectively, in r; i.e., B(v):={uV:(u,v)E, O’--I(u)<O’--I(v)} and A(v):=
{u V: (u, v)E, r-l(u)> r-l(v)}. We call B(v) and A(v) the set of predecessors
and successors, respectively, of v, and consider both B(v) and A(v) ordered by o-.

Finally, for any sequence o-, we write {r} for the (unordered) set of elements in
From the above property of triangulated graphs it follows that every maximal clique
of G is of the form {vi} U A(vi) for some vi o-. Each maximal clique of G will also
be considered ordered by r.

Let o-= (vl,." ", vn) be a perfect elimination scheme for the triangulated graph
G (V, E), with n vl. Our algorithm consists of two steps applied iteratively: Step
1 determines the membership of a color class (stable set) Si; Step 2 determines its
weight y(S) and updates the vertex weights w(v) and the membership of the sequence
r of vertices not yet fully colored. (A vertex is said to be fully colored when its weight
is matched by the sum of weights of the color classes to which it belongs.)

The algorithm uses two kinds of labels: when a vertex v is included into the color
class St under construction, it gets the label 0 and all its predecessors get the label v.
When a vertex w of the previous color class S,-1 is removed (not retained for St), its
label 0 is erased and the labels w of its predecessors are also erased. Since the current
color class St is constructed from the previous one (St-l), a vertex v whose successor
in St is different from the one in S,-1 may for a while have two nonzero labels (from
the point where the new successor is introduced, to the point where the old successor
is removed); but when the new color class St is completed, every vertex has exactly
one label.

ALGORITHM 1.
Initialization. Set k := 1, o"1 := o-, $1 := , all v oh unlabeled.
Iterative Step. Let o v,,. ., v,,). Set :=p and go to 1.
1. (Fill up a color class).

If v is unlabeled, set S := S t_J {v,}, label v with O, and label all v B(v)
with v,.

If v, is labeled with both 0 and some nonzero label, set S :-S\{v,}, erase
the label 0 of v,, and erase the label v, of all v B(v,).

In all other cases continue.
Set i:= i- 1
If i_-> 1, go to 1; otherwise go to 2.

2. (Determine weight and update). Set

y(Sk):=min {w(v): vSk}

-y(S) if v is labeled with 0
w(v) :=

w(v) otherwise

r+, := \{v: w(v)=0}.

If {o-+1} , stop: y(S1),""", y(S,) is minimum weighted coloring of G.
Otherwise, for every vii labeled with 0 and such that w(vji)= 0, erase the label

Vji of all vj B(Vj,); set Sk+ := Sk, k ".= k-4-1; and go to the Iterative Step.

THEOREM 1. Algorithm 1 finds a minimum weighted coloring ofG in 0(I VI2) time.

Proof Each set S generated in Step 1 is stable by construction and is hence a
valid color class, and each vertex is fully colored before it is removed from o-k in Step
2. Thus when the algorithm stops, the vector y is a weighted coloring of the vertices
of G. To prove that Y (y(S): i= 1,..., k) is minimum, we will show that there exists
a clique K* of G that is intersected by every one of the color classes $1,"" ", S. It
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then follows that the weight w(K*) (:= (w(v): v K*)) of the clique K* is equal to
the value Y (y(S,)" 1,..., k) of the coloring found by Algorithm 1.

For 1,..., k, let o-, be the subsequence of o- generated at iteration of the
algorithm, and let G, be the subgraph of G induced by the vertices in o-t. To prove
the existence of K* with the above-mentioned property, we first show that for
1,. ., k, the color class St constructed at iteration (i) intersects every maximal clique
of Gt, and (ii) contains exactly one successor of every v

In Step 1, we examine from right to left every vertex vji of rt and put it into St
unless vi or one of its successors is already in St. Since every maximal clique K of Gt
is of the form {vi}U A(vi) for some v, trt, it follows that the first (from the right)
vertex of K that does not belong to any maximal clique already "represented" by a
vertex in St is included in St. Thus the only way the maximal clique K could end up
not being intersected by St is if every vertex of K belonged to some clique Ki K
represented in St by some vertex v, K. But then the leftmost vertex vh of K would
belong to more than one maximal clique of Gt(vh,"’, vjp)--a contradiction. This
proves (i). To see (ii), notice that if St contains more than one successor of some

v {crt}\St, then those successors must be adjacent to each other (since v is simplicial
in Gt(vh,..., vp))--a contradiction.

On the other hand, there exists at least one maximal clique of G, say K*, that
has a vertex in every Gt, 1,. ., k. To see this, note that every vertex of Gk is also
a vertex of Gk-1, Gk-2,’’’, G1. It then follows that K* intersects every color class
St, hence w(K*) >-_ (y(St): 1,. , k); and since w(K*) cannot exceed the value
of a coloring, the inequality holds with equality and (y(St): 1, , k) is minimum.

Next we calculate the complexity of Algorithm 1. The Initialization Step is
O(IE +IV[) O([ vz]), namely, the time required for finding o’.

During Step 1, all vertices are scanned in turn from right to left, and possibly
labeled with 0 or have their label of 0 removed. Once scanned, a vertex is no longer
examined during the given iteration (of Step 1). Before being scanned, a vertex v may
be examined, and possibly given a label or have a label removed, if one of its successors
is included into St, or if one of its successors is removed from St. However, either of
these events occurs at most once during an application of Step 1, since a vertex once
included into St stays in for the rest of the iteration, a vertex once removed from St
stays out for the rest of the iteration, and every vertex of {ot}\St has exactly one
successor in St, for 1, , k. To summarize, every vertex of Gt is examined at most
three times during one application of Step 1, i.e., one such application takes O([V[)
time, and during the whole algorithm Step 1 takes O(1VI2) time.

During Step 2, finding the minimum weight over St and updating the vertex weights
takes O([ V[) time, hence O([ V[2) time for the entire algorithm. On the other hand,
erasing the labels of the predecessors of vertices removed from St as a result of getting
fully colored, takes deg (v) operations for each such vertex v; and since each vertex
gets fully colored only once during the whole algorithm, the complexity ofthis operation
is 0( (deg(v): v V))=O([E])<-O([V[2). Thus the complexity of Step 2 is also
O(I VI2) for the whole algorithm.

In formulating the pair of problems (WK), (WS) in 1, we have assumed that
the vertex weights w(v) are integers. If the w(v) are nonnegative reals, the maximum
weight clique problem is still an integer program; but in the minimum weighted coloring
problem it no longer makes sense to require the weights y(S) of the color classes to
be integers. Rather, it makes sense in this case to allow the y(S) to be nonnegative
reals, like the w(v), i.e., to replace the integer program (WS) with the corresponding
linear program, say, (WSL). It should be obvious that the above algorithm solves
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(WSL) just as well as it solves (WS), i.e., if applied to a problem in which the vertex
weights are real numbers rather than integers, the algorithm will find a minimum
weighted coloring with nonnegative real weights of the color classes.

Algorithm 1 is illustrated on an example in 4.

3. An extension. Given a maximal triangulated induced subgraph (MTIS) G(T)
of an arbitrary vertex-weighted graph G (V, E), and a set W_= V, W T, we will
say that the induced subgraph G(W) is color-equivalent to G(T), if G(W) has a
minimum weighted coloring (y, ow) whose restriction to G(T) is a minimum weighted
coloring of G(T) of the same weight as (y, O). We say that G(W) is a maximal induced
subgraph color-equivalent to G(T) (with respect to (y, O)) if no vertex of V\ W can
be fully colored by extending some color classes of O. The motivation for this comes
from the wish to extend the Balas-Yu procedure [2] for finding a maximum (unweight-
ed) clique in an arbitrary graph to the weighted case. In that approach, a MTIS G(T)
is first found, along with a maximum clique K* and a minimum coloring C of G(T).
Since G(T)is triangulated, IK*I ICI. The coloring C is then extended to a maximal
(with respect to C) induced subgraph G(W) of G, by adding to the induced subgraph
all of those vertices that fit into some color class of C (i.e., are not adjacent to any
vertex in that color class). Since G(W) is then guaranteed to have no larger clique
than K*, one can use a branching rule based on the principle that any clique of G
greater than K* must contain at least one vertex in V\ W.

Consider now the following extension of Algorithm 1. Let G(T) be a MTIS of
G. Balas and Yu [2] give an O(IEI+ VI) algorithm for finding such a subgraph. Let
cr be a perfect elimination scheme for G(T), and let K* be a maximum weight clique
of G(T). Further, let - be any ordering of the vertices in V\ T.

In Algorithm 1, every vertex not in S, has exactly one successor in S,. Since the
graph G(W) which Algorithm 2 is designed to construct extends beyond G(T), a
vertex v W\S, may have more than one successor in S, (if v e W\ T). Thus when we
include some vertex vj, into S, and label with vj, all its predecessors, some of the latter
may end up with several nonzero labels. Conversely, when a vertex v, is removed from
S, and the label v, of each of its predecessors is erased, some of the predecessors may
still not be eligible for inclusion into S,, because of other nonzero labels (coming from
other successors in S,) they may have.

ALGORITHM 2.
Initialization. Let k := 1, cr := (’, or), $1 := , all v o1 unlabeled.
Iterative Step. Same as in Algorithm 1, except for: (i) the fact that v; may

have several nonzero labels, and (ii) the stopping rule, which becomes"
If {O’k+l} r , set Si := Si\{rk+l}, 1, , k. If any v {crk+l} can be

fully colored by inclusion into some of the color classes $1," ", Sk, proceed with
the inclusion; then stop: y(S1),’", y(Sk) is a minimum weighted coloring of
G(W), where W is the set of fully colored vertices.

THEOREM 2. Algorithm 2 finds a maximal induced subgraph G(W) of G, color-
equivalent to G(T), and a minimum weighted coloring y(S1),’’’, y(Sk) of G(W), in

O(IEI. Ivl) time.

Proof. By construction, each S, i= 1,..., k is independent and the variables
y(S1),’’’, y(Sk) satisfy the coloring constraints for all v W and for no v V\(W).
Hence, G(W) is a maximal induced subgraph for which y(S1), , y(Sk) is a weighted
coloring. To see that this weighted coloring is minimum, define y(S)T):=y(S),
i=l,...,k. Then by the same reasoning as in the proof of Theorem 1,
y(S T), , y(Sk T) is a minimum weighted coloring for G(T) (with some color
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classes possibly repeated, i.e., Sifq T= Sfq T not excluded for some i# j), and
(y(Si fq T): 1,- , k) (y(Si): i= 1, , k). Thus G(W) is color-equivalent to

G(T) and y(S1),’", y(Sk) is a minimum weighted coloring for G(W).
As to the complexity of the Algorithm, during Step 1 of each iteration a vertex v

may be examined at most deg (v) times (once for each successor in S,-1 or S,). Thus,
the complexity of Step 1 is O(Y deg(v): v V)=O(IEI) for one iteration, i.e.,
o(1 1, vI) for the whole algorithm. The complexity of Step 2 is the same as in
Algorithm 1. Finally, the complexity of the last step (checking for the maximality of
W) is again o(1 1, vl).

The next section illustrates the algorithm on a numerical example.

4. An example. Consider the graph G shown in Fig. 1, with the vertex weights
w(v) in boxes. Applying to G the procedure of Balas and Yu [2], we find the maximal
triangulated induced subgraph G(T), where T :-- { 1, 2, 3, 4, 6, 8}, and the perfect elimi-
nation scheme o-:= (6, 2, 3, 4, 8, 1). We first illustrate Algorithm 1 on the triangulated
graph G(T), whose edges are drawn in heavy lines.

FIG.

At the start, o’1 :--o- and the vertex weights for T, in the order of rl, are w :=
(4, 3, 3, 2, 4, 3). The algorithm puts vertex 1 into the color class $1, labels it with 0,
and labels with 1 the remaining vertices, as they are all predecessors of 1. It then
assigns y(S1) the value 3, updates the vertex weights to be w2 (4, 3, 3, 2, 4, 0), generates
0-2: o-1\{1} =(6,2,3, 4, 8), and erases the labels of all predecessors of 1. Three more
iterations follow until a minimum weighted coloring is obtained. A listing of the steps
of the algorithm follows, with L representing the list of labels at the end of the step.

Initialization: o-1:=(6,2,3,4, 8, 1), wl:= (4,3,3,2,4,3),
L:= (, , ,,,)

Iteration 1.
Step 1. L:- (1, 1, 1, 1, 1, 0), S := {1}
Step 2. y(S1)=w(1)=3, w2:= (4, 3, 3, 2, 4, 0), or2:= (6,2,3,4, 8),

L:= (, , ,,)
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Iteration 2.
Step 1. L := (0, 3, O, 8, 0), $2 := {8, 3, 6}
Step 2. y ($2) := w(3) 3, w := (1, 3, O, 2, 1, 0), 0-3 := (6, 2, 4, 8),

L:= (0, 5, 8, O)
Iteration 3.

Step 1. L := (0, O, 8, 0), $3 := {8, 2, 6}
Step 2. y(S3):=w(6)=w(8)=l, w4:= (0,2,0,2,0,0), 0-4:= (2,4),

L:= (0, )
Iteration 4.

Step 1. L := (0, 0), S4 :-- {4, 2}
Step 2. y(S4) := w(2) w(4) 2, w := (0, 0, 0, 0, 0, 0), 0-5 := :
The total weight of the coloring is 9, which is also the weight of the two maximum

weight cliques, (1, 2, 3) and (1, 4, 8).
To illustrate Algorithm 2, we apply it to G. For this purpose, we order the vertices

of V\ T into the (arbitrary) sequence -= (5, 7), and obtain the sequence of steps listed
below. Since vertices may now have multiple labels at the end of an iteration, labels
of the same vertex will be separated by a comma, and labels of different vertices by a
semicolon.

Initialization: 0- := (5, 7, 6, 2, 3, 4, 8, 1), w := (4, 2, 4, 3, 3, 2, 4, 3),
L := (; ; 3; ; 3; ; ; )
Iteration 1.

Step 1. L:= (7; 0; 1; 1; 1; 1; 1; 0), S:= {1, 7}
Step 2. y(S):= w(7) 2, w2 := (4, 0, 4, 3, 3, 2, 4, 1),

0-2:= (5, 6, 2, 3, 4, 8, 1), L:= (; 1; 1; 1; 1; 1;0)
Iteration 2.

Step 1. L:= (0; 1; 1; 1; 1; 1; 0), $2: {1, 5}
Step 2. y(S2):=w(1)=l, w3:= (3,0,4,3,3,2,4,0), 0-3= (5, 6, 2, 3, 4, 8),

L :- (0; ; ; ; ;)
Iteration 3.

Step 1. L:= (6; 0; 3; 0; 8; 0), $3 := {8,3, 6}
Step 2. y(S3):--w(3)=3, w4:-- (3,0, 1,3,0,2, 1,0), 0-4:--- (5, 6, 2,4, 8),

L := (6; 0; ; 8; 0)
Iteration 4.

Step 1. L := (6; 0; 0; 8; 0), S4 :--- {8, 2, 6}
Step 2. y(S4): w(6)= w(8)= 1, wS:= (3, 0, 0, 2, 0, 2, 0, 0), 0-5:=(5,2,4),

L := (; 0; )
Iteration 5.

Step 1. L := (4; 0; 0), $5 := {4, 2}
Step 2. y(Ss):= w(2) w(4) 2, w6: (3, 0, 0, 0, 0, 0, 0, 0), 06 :--- (5),

L:= (); 0"6 T=.

At the last iteration, since 0"6 0 T , we check whether any of the vertices left
in 0"6 can be fully colored by extending the color classes at hand. Now {0"6} {5}. Of
the color classes found, vertex 5 "fits" only into {1, 5} and {4, 2, 5}. The weights of
these classes are 1 and 2, respectively, while w(5)=4. Thus 5 cannot be included in
W. G(W), with W T t0 {7}, is a maximal induced subgraph of G, color-equivalent
to G(T); and {S,-.., Ss} is a weighted coloring of G(W) of the same total weight
9 as that found earlier for G(T). Note that vertex 5, only partially colored, is not
included in G(W).
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5. Application to the maximum weight clique problem on an arbitrary graph. We
now consider the maximum weight clique problem (WK) on an arbitrary graph
G (V, E). As already mentioned, this is the same as the maximum weight vertex
packing (stable set) problem on G, the complement of G. We will extend to the
weighted case the algorithm of Balas and Yu [2] for finding a maximum cardinality
clique in a general graph. The basic idea of that approach is to perform branch-and-
bound so as to generate only polynomially solvable subproblems.

As in the Balas-Yu algorithm, we start by finding a maximal triangulated induced
subgraph (MTIS) G(T) of G. This can be done by the O(]E +IV]) algorithm TRIANG
described in [2], which requires only a trivial modification to also find a maximum
weight clique in G(T), say, K0. Next we extend G(T) to a maximal induced subgraph
G(W) for which Ko is still a maximum weight clique. This is done by using Algorithm
2 of 3 to find a maximal W, T W__c_ V, and a minimum weighted coloring (y, ) of
G(W), such that G(W) is color-equivalent to G(T) (with respect to (y, 5e)). Then if
W V, we are done" Ko is a maximum-weight clique of G. Otherwise we branch, based
on the same considerations as in the unweighted case, stated in the next theorem. Let
N(v) := {u V\{v}" (u, v) E}.

THEOREM 3 (Balas and Yu [2]). Let Ko be a maximum weight clique of G( W),
and let v,. ., Vm) be an arbitrary ordering of the vertices in V\ W. If G has a clique
K1 such that w(K1)> w(Ko), then K1 is contained in one of the m sets

V/:= {vi}U N(vi)\{Vl, vi-,}, i= 1,..., m,

where for i= 1 we define {v,. vi-} .
We now describe the branching rule used in our algorithm. A node of the search

tree is indexed by a string and characterized by a pair [/,, E,], where /, and E, are
sets of vertices of G forcibly included in, and excluded from, the graph on which the
current subproblem is defined. In the terminology of 0-1 programming, 1 and E, are
the index sets of variables fixed at 1 and 0, respectively, while the variables correspond-
ing to V := V\(I, LJ Et) are free. Let G(W,) be a maximal induced subgraph of G(V)
for which K, is a maximum weight clique, and let V,\ W, {v,. ., v,,}. We generate
m new nodes (subproblems) t,..., t,,, by defining

(1)
I,, := 1, U { v,}

E,, := E, U V\({v,} U N(v,))) U {v, ," ", ’Ui_l}

The subproblem corresponding to node of the search tree consists of finding a
maximum weight clique in G(V). (If K is a clique in G(V), then 1, K is a clique
in G.) A formal statement of the algorithm follows, with L, K*, and P, denoting the
list of active nodes of the search tree, the clique with currently the largest weight, and
the subproblem at node (defined on the induced subgraph G(V,)), respectively.

ALGORITHM 3.
O. Initialize. Put into L the problem defined on G V, E). Set := 0,/, E, :=, V :- V, K* := and go to 1.
1. Select a Subproblem. If L , stop: the current clique K* is of maximum

total weight in G. Otherwise choose a subproblem P, and remove it from L.
If w(V L)<= w(K*), discard P and go to 1.
Otherwise go to 2.
2. Find a MTIS G(T,). Find a MTIS G(T,) of G(V), along with a perfect

elimination scheme o-, and a maximum weight clique K, of G(T,). If w(/, K,) >
w(K*), set K* := I, U K,.
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If Tt V, discard Pt and go to 1. Otherwise go to 3.
3. Find a maximal G(W) color-equivalent to G( T). Apply Algorithm 2 to

G(V) with cr := o’, to find a maximal induced subgraph G(Wt) of G(V,) color-
equivalent to G(Tt). If Wt V, discard P and go to 1. Otherwise go to 4.

4. Branch. Order the vertex set V\W into a sequence {vl, , Vm}. Generate
m new subproblems defined by (1), place them into L, and go to 1.

6. Computational results. The above algorithms were implemented in C and tested
on 114 random graphs of various densities (where density is the probability of a pair
of vertices being joined by an edge, equal for all pairs), having between 100 and 2000
vertices and with costs randomly drawn from a uniform distribution of the integers
between 1 and 10. The problems were run on a HP9000/835 workstation. Tables 1 and
2 summarize the results. There are two problems in each class, and the entries of the
tables represent their averages.

The results are stated in the framework of the maximum weight clique problem
on an arbitrary graph. This, of course, is the same as the maximum weight vertex
packing problem on the complement graph.

As can be seen from the tables, problem difficulty for our algorithm increases with
both the size and the density of the graph. This, of course, is not peculiar to our
approach, but is intrinsic to the nature of the problem. To see why dense problems
tend to be harder, it suffices to think of the fact that the size /c(G) of a maximum
clique in G increases with the density of G, and the task of enumerating all the cliques
is exponential in /(G).

The most promising feature of Algorithm 3 is that, although the number of nodes
of the search tree grows significantly with problem size and in particular with graph
density, the algorithm invariably tends to find the maximum weight clique rather early
in the procedure" at level 0-6 of the search tree for densities below 50 percent; at a
somewhat higher level for higher densities (see the last column).

Until very recently, algorithms proposed for these problems were able to solve
only instances of a much more modest size. Thus, the algorithms for weighted vertex
packing discussed in Nemhauser and Trotter [10] and in Balas and Samuelsson [1]
were tested on graphs with up to 50 vertices and 50 percent density. Recently, Pardalos
and Rodgers 11 proposed a depth first branch-and-bound procedure for the (unweight-
ed) maximum clique problem, based on an unconstrained quadratic 0-1 programming
formulation, and Desai and Pardalos [5] implemented a version of the same approach
addressing the maximum weight vertex packing problem. Subsequently, Carraghan
and Pardalos [3] developed a simpler and apparently faster branch-and-bound pro-
cedure for the maximum clique problem. These codes are a substantial improvement
over earlier attempts, in that they are able to solve much larger problems. Based on
the detailed description of [5], we implemented the Desai-Pardalos procedure. Also,
Panos Pardalos kindly made available to us the code of the weighted version of the
Carraghan-Pardalos procedure whose unweighted version is described in [3]. We
compared our algorithm with both of these procedures and the results are shown in
Table 3. (The Desai-Pardalos algorithm, which is for the maximum weight vertex
packing problem, was applied to the complement G of G to find a maximum weight
clique in G.)

We will refer to the three algorithms by the initials of their authors. All three
procedures use depth first branch-and-bound. The difference between DP and CP
seems to be mainly in the search strategy (choice of subproblem to be developed next),
and in computer implementation efficiency.
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TABLE
Performance of Algorithm 3 on random graphs with 100-500 vertices.

Nodes of Maximum Weight of Optimum
search CPU clique 1st clique found at

IV % tree seconds weight found level

100 10 13.0 0.06 28.5 28.5 0.0
100 20 32.0 0.09 37.0 35.5 0.5
100 30 51.0 0.15 45.5 45.5 0.0
100 40 72.0 0.19 57.0 53.0 2.0
100 50 99.5 0.27 69.5 62.0 4.0
100 60 198.5 0.55 84.0 83.0 2.5
100 70 301.5 0.97 104.5 101.0 1.5
100 80 387.0 1.71 137.0 135.0 4.0
100 90 269.5 1.84 213.5 208.5 14.0

200 10 68.0 0.26 34.5 34.5 0.0
200 20 113.0 0.47 49.0 43.0 1.0
200 30 244.0 0.83 56.5 49.5 3.0
200 40 890.0 2.45 68.5 63.0 2.0
200 50 1726.5 5.76 77.5 77.0 1.5
200 60 6411.0 23.21 96.5 93.5 6.0
200 70 18011.0 87.96 129.5 123.5 5.5
200 80 60038.0 536.52 186.5 184.5 12.0

300 10 152.5 0.75 36.5 34.5 2.0
300 20 258.0 1.29 46.5 45.0 2.5
300 30 1071.5 3.55 56.0 55.5 1.5
300 40 2961.0 10.51 73.0 70.5 1.5
300 50 13611.0 48.73 86.5 80.5 5.0
300 60 42078.0 208.66 117.5 103.5 5.5
300 70 427806.0 2590.35 150.0 141.0 8.5

400 10 250.5 1.48 35.5 35.5 0.0
400 20 539.0 2.94 50.0 49.0 1.5
400 30 3486.0 11.78 60.0 57.5 1.5
400 40 11379.0 43.08 78.5 76.0 2.0
400 50 58286.0 232.41 96.0 86.0 5.0
400 60 345979.0 1880.25 117.5 110.0 7.0

500 10 316.5 2.32 42.5 40.0 1.0
500 20 1510.5 6.19 53.0 47.5 3.5
500 30 6419.0 25.52 68.5 59.0 4.0
500 40 25902.5 120.25 83.5 75.0 3.5
500 50 179050.0 842.21 101.5 89.5 5.5

IV number of vertices.
%" density of the graph.

There are two main differences between these two procedures and the BX
algorithm. First, while the DP and CP procedures use a straightforward heuristic to
find a lower bound (a feasible solution), the BX algorithm uses, at certain nodes of
the search tree, the more elaborate lower bounding procedure of finding a maximal
triangulated induced subgraph G(T) and a maximum clique of G(T). Second, while
none of the algorithms uses any upper bounding procedure in the usual sense of
bounding from above all descendants of a given node, the BX procedure uses the
minimum weighted coloring of G(T) to find a maximal induced subgraph G(W)
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TABLE 2

Performance of Algorithm 3 on random graphs with 600-2000 vertices.

Nodes of Maximum Weight of Optimum
search CPU clique 1st clique found at

[V[ % tree seconds weight found level

600 10 499.0 3.56 39.0 39.0 0.0
600 20 3236.0 12.21 53.5 50.5 2.5
600 30 13247.5 53.87 67.5 64.5 2.5
600 40 58723.0 277.73 84.0 79.5 4.0

700 10 512.0 5.12 41.0 40.0 1.0
700 20 4541.0 20.41 58.0 56.0 1.0
700 30 20689.0 99.05 72.5 66.5 3.0
700 40 128439.0 660.08 88.0 80.5 4.5

800 10 683.0 7.20 43.5 41.0 1.0
800 20 7438.5 33.10 57.5 52.0 2.0
800 30 38414.5 191.33 71.0 69.0 4.0
800 40 305658.5 1429.39 89.0 84.5 5.5

900 10 712.0 10.58 46.0 45.5 1.0
900 20 12353.0 55.43 59.0 52.0 3.0
900 30 50771.0 297.69 73.5 68.0 4.0

1000 10 1017.5 13.25 47.0 41.5 2.0
1000 20 17581.5 82.72 58.5 53.0 3.5
1000 30 85078.5 503.91 75.5 70.5 3.5

1500 10 4043.0 43.42 47.5 45.0 2.0
1500 20 59633.5 373.13 66.0 60.0 3.5

2000 10 10928.5 106.47 49.0 49.0 0.0
2000 20 144626.0 1258.88 67.0 64.0 4.0

IV number of vertices.
%: density of the graph.

color-equivalent to G(T), which provides an upper bound for all descendants of the
current node associated with vertices in W and permits their immediate discarding.

As a result, the BX procedure can be expected to produce a much smaller search
tree than the DP and CP algorithms, which is confirmed by the data of Table 3. At
the same time, the BX algorithm spends more computational effort on every subprob-
lem, and thus, for the comparison to be meaningful, it has to answer the question
whether this extra effort is justified. The data on CPU time indicate that the BX
algorithm is considerably faster than the DP procedure. It is of comparable speed with
the CP algorithm on sparse and medium-density problems (up to 60 percent density),
and substantially faster on high density problems (upwards of 70 percent), with the
difference increasing fast with density.

In conclusion, it seems that the lower and upper bounds provided by the maximum
weight clique of a triangulated subgraph and the minimum weighted coloring of a
maximal induced color-equivalent subgraph can considerably speed up the perform-
ance of branch-and-bound algorithms for the maximum weight clique problem,
especially for the most difficult class of problems, those on dense graphs. It should
perhaps be mentioned that this class (maximum weight clique problems on dense
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TABLE 3
Comparison of algorithms.

Desai-Pardalos Carraghan-Pardalos Balas-Xue

Nodes of
search CPU

]V % tree seconds

Nodes of Nodes of
search CPU search
tree seconds tree

CPU
seconds

100 10 301.0 0.86
100 20 730.0 1.37
100 30 1200.0 2.225
100 40 1893.5 3.1
100 50 5477.0 8.22
100 60 14286.5 21.49
100 70 52014.5 80.79
100 80 271583.0 469.555
100 90 1424553.0 3000.02*

250.5 0.21 13.0 0.06
481.5 0.22 32.0 0.09
1007.0 0.24 51.0 0.15
1576.0 0.25 72.0 0.19
3513.0 0.37 99.5 0.27
11801.5 0.82 198.5 0.55
36140.0 2.75 301.5 0.97

202337.0 16.47 387.0 1.71
5336203.5 557.94 269.5 1.84

200 10 1549.5 6.355
200 20 3266.0 9.29
200 30 9239.0 19.755
200 40 41144.5 68.615
200 50 129729.0 224.53
200 60 577034.0 1000.01"
200 70 1662354.0 3000.01"
200 80 5075041.0 10000.01"

834.5 1.03 68.0 0.26
2135.5 1.08 113.0 0.47
6250.0 1.28 244.0 0.83

21536.5 2.01 890.0 2.45
84271.5 5.31 1726.5 5.76

428524.0 26.86 6411.0 23.21
2453445.5 176.15 18011.0 87.96

82429937.0 6628.08 60038.0 536.52

300 10 3736.0 21.055
300 20 8898.5 33.425
300 30 60344.0 118.965
300 40 174104.5 353.34
300 50 599293.0 1000.01"
300 60 530515.5 1000.01"
300 70 5002772.0 9000.01"

2044.0 2.46 152.5 0.75
7279.0 2.74 258.0 1.29
26668.0 3.70 1071.5 3.55
99465.0 7.91 2961.0 10.51

593909.0 34.62 13611.0 48.73
4355127.0 280.75 42078.0 208.66
88107834.0 6173.27 427806.0 2590.35

IV number of vertices.
%: density of the graph.
*: time limit exceeded without solution.

graphs, or maximum weight vertex packing on sparse graphs) is very frequent in
applications.
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APPROXIMATE LEVELS IN LINE ARRANGEMENTS*

JIli MATOUEK"

Abstract. An arrangement L of n lines in the plane is considered. A d-approximate level k for L is a

polygonal line meeting every vertical exactly once, such that for its every point p there are at least k-d
and at most k+ d lines of L above p. A d-approximate leveling for L is a collection P1, P2," ", Ptn/2aJ,
where every Pi is a d-approximate level 2di. A deterministic algorithm is given that, for a given L and a

parameter r= n, computes an (n/r)-approximate leveling for L, whose approximate levels consist of O(r2)
segments in total.

The time complexity of this algorithm is O(nr4/3(log n)4/3(loglog n+log r) c) (c a small constant),
which is now outperformed by algorithms of Matouek [Proc. 5th AnnualACMSymposium on Computational
Geometry, 1989, pp. 1-10] and Agarwal [Proc. 5th Annual ACM Symposium on Computational Geometry,
1989, pp. 11-21]. A substantially different and elementary method is used here. An approximate leveling
can be directly used for approximate halfplanar range counting, but it can also be used for plane partitioning
applications, and thus as a subroutine in many recent computational geometry algorithms.

Key words, line arrangement, level, approximate level, deterministic algorithm, range counting, computa-
tional geometry

AMS(MOS) subject classification. 68Q25

1. Introduction, statement of results, and applications. We shall present a deter-
ministic algorithm computing approximate leveling for an arrangement of lines in the
plane. Let us introduce the necessary definitions first.

A finite set L of lines in the plane determines a cell complex in the plane, called
the arrangement of L. We shall not distinguish between the arrangement and the
underlying set of lines.

Let L be an arrangement of n nonvertical lines. The level k (1 <-_ k <= n) of L is the
set of points X--(Xo, Y0), where Yo is the maximum number such that the semiline
{(xo, y); y=>yo} meets at least k lines of L. It is easy to see that each level is an
x-monotone polygonal line consisting of edges of the arrangement.

By a layer we shall mean a polygonal line meeting every vertical line exactly once.
We say that a layer P is a d-approximate level k for L if it lies between levels k-d
and k + d of the arrangement L (we take the closed region between the levels, and if
k- d < 1 then we only require P to lie above level k + d; similarly for the other end).

A d-approximate leveling for L is a sequence P1, P2," ", P[n/2dJ, where /9/ is a

d-approximate level 2di for L. The complexity of an approximate leveling is the total
number of segments of its polygonal lines. The notion of d-approximate leveling
appeared in [Ma].

The paper of Edelsbrunner and Welzl [EW2] is perhaps the first paper which
considers approximate levels and gives a method for their construction. This method
first constructs the exact level and then its approximation. We shall consider this
method in 2.

A "global" construction of an approximate leveling was given in the original form
of the present paper [Mall in 1987. Here we shall present the method of [Mall, slightly
improving the running time and the complexity of the leveling, and we shall prove the
following theorem.

Received by the editors October 19, 1987" accepted for publication (in revised form) June 13, 1990.

? Department of Computer Science, Charles University, Malostransk6 nfim. 25, 118 00 Prague 1,
Czechoslovakia. Present address, School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia
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MAIN THEOREM. Given an arrangement L of n lines and a number r<_-n, one
can find an (n/r)-approximate leveling of complexity O(r2) for L, deterministically
and in time O(nr4/3(log n)4/3(log log n+log r)C), c a small constant.

(In order to avoid cumbersome calculations, we shall not try to optimize the value
of c.)

Some of the ideas of [Mal] were used in [Ma], where another deterministic
algorithm (of time complexity O(nr log r)) for the same problem was given. This was
further improved by Agarwal [Aga] to O(n log nr (log r)) (w <3.3 is a constant). Let
us also note that much simpler and even slightly more efficient methods are available
if we permit randomized algorithms (see, e.g., [E&al] and [Aga]). However, the method
used in [Ma], [Aga] was different from the one presented here, and quite heavy
algorithmic tools were used (e.g., the AKS sorting network), while our algorithm will
be elementary.

The immediate use of an approximate leveling is for an approximate halfplanar
range counting, which has some significance since the known algorithms for an exact
halfplanar range counting require either a large space or query time.

The halfplanar range counting problem is the following algorithmic problem: Given
a set P of n points in the plane, preprocess it so that, given a query halfplane h, the
number of points of P lying inside h can be determined quickly. The efficiency of
query-answering in this problem depends on the amount of memory we are allowed
to use (and also on the time we have for the preprocessing). A result of Chazelle [C]
basically says that given O(m) memory space, we can achieve a query time O(n/v)
at best. (Strictly speaking, this result does not quite apply to the halfplanar range
counting problem, since the algorithm for which the lower bound works must be able
to do something more general, but all known algorithms are of such a form.) After
the effort of many authors (e.g., [EWl], [HW], [W]) and the combination of many
previous results, a halfplanar range counting algorithm almost attaining the query time
O(n/v/-) with memory space m for a full range of m’s (from O(n log n) to O(n))
was finally given in [Agal].

However, in some applications we might be interested only in counting the number
of points inside a query halfplane with a prescribed error only; this is what we call
an approximate halfplanar range counting. By the well-known geometric duality (see,
e.g., [E] for a definition), an equivalent problem is the following: Given a set L of
lines, determine for a query point p the number of lines of L lying above p (maybe
with some error in the approximate version).

Having an (n/r)-approximate leveling of complexity O(r2) for an arrangement
L, we may preprocess the resulting subdivision of the plane for point location (e.g.,
by the algorithm of Kirkpatrick [K], in time and space O(r)). Then given a point p,
we can find in time O(log r) the belt in our approximate leveling where p lies, and
thus count the number of lines of L lying above p with error at most n/r. Thus the
algorithm of the Main Theorem is a basis for a preprocessing step in an algorithm for
the approximate halfplanar range counting.

Using such an algorithm, further approximate counting problems can be handled
within similar time and space bounds (with some additional logarithmic factors). For
example, applying the well-known range tree method, we can pass to approximate
counting of points inside a query double wedge or inside a query trianglemsee, e.g.,
[PS] for an explanation of the range tree method.

Perhaps a more significant application of an approximate leveling was found
recently ([Ma], [Aga]). An (n/r)-approximate leveling of complexity O(r) for an
arrangement L of n lines can be straightforwardly used for partitioning the plane into
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O(r2) (possibly unbounded) triangles, such that no triangle is intersected by more than
O(n/r) lines of L. Such a partitioning of the plane is a key to an efficient divide-and-
conquer strategy in many planar geometric problems. We shall not give these applica-
tions here; they can be found in [Aga], [Agal], [E&al], [CF].

In 2, we give some more technical definitions. In 3 and 4, we describe basic
operations with approximate levelings. In 5 we give the algorithm proving the main
theorem, using the above operations.

2. Preliminaries. For the sake of simplicity we shall deal only with nondegenerate
line arrangements. The results hold also for the general case, as one can show by a
perturbation argument (simulation of simplicity, see [E]). We say that a set of lines L
is in generalposition if no three lines of L meet at a common point, no two are parallel,
and no two of their intersections have the same x-coordinate.

We shall need the following technical notion" A (d, A)-approximate leveling for
an arrangement L of n lines is a collection P1,’’’, Ptn/j, where the P is a dA-
approximate level di (the number dA is called the accuracy ofthe approximate leveling).
Note that a d-approximate leveling as defined in the previous section is a (2d, 1/2)-
approximate leveling (not a (d, 1)-approximate leveling). Let us also remark that the
notion of a (d, A)-approximate leveling is introduced just to optimize the time bound
in the Main Theorem; with a slightly worse time bound, we could do with d-approximate
levelings only.

In our algorithm, we shall need some "base case" method for the construction of
a d-approximate leveling. The easiest such method is the following" Construct the
whole arrangement (by [EOS], this can be done in time O(n2)), and take the appropriate
levels (2di, i= 1, 2,..., [n/d]) as the d-approximate levels.

A more efficient method is to construct each of the levels 2id by the method of
[EW2]. The construction of level/ requires time O(n log n) plus O((log n)2) per edge
of the level, and from this we obtain the time bound for the construction of a
d-approximate leveling of order O(b(n,n/d).log2 n), where b(n,r) denotes the
maximum possible number of edges of r distinct levels in an arrangement of n lines.
The best-known upper bound for b(n, r) was given by Welzl [W1 ]; b(n, r) O( n3/2 rl/2).
However, a famous conjecture about so-called /c-sets (see [E] for references and
discussion) essentially says that b(n, 1)= O(n+) for every 6 > 0, and thus the validity
of this conjecture would imply b(n, r) O(n+r). Let us summarize our discussion in
the following lemma.

LEMA 1. Given a collection L of n lines and a parameter r n, one can find an
(n/r)-approximate levelingfor L in time O(b(n, r) (log n)2) O(n3/2(log n)2r/). If the
k-set conjecture holds, then the bound is O(n+r) for every 6 > O.

Finally, we shall quote two results Of [Ma], the second one with an unessential
modification, in the following two lemmas.

LEMMA 2. For every arrangement of n lines and every r <= n, there exists an (n/r)-
approximate leveling of complexity O(r2).
LA 3. Let a and b be layers, consisting of n segments in total, such that a lies

completely above b. Then a layer c lying between a and b and having a minimum number
of segments among all such layers can be found in time O( n).

3. Simplifying an approximate leveling.
LEMMA 4. Let given polygonal lines PI, P2, , Ptn/aJ form a (d, A)-approximate

leveling ofcomplexity Mfor an arrangement L ofn lines. Then a (2d, A + 1)-approximate
leveling of complexity O((n/d)) for L can be found in time O(M).
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The proof of this lemma is a slight variation of the proof of Lemma 4.5 in [Ma].
The algorithm finding the new leveling is as follows (recall that Pi is an Ad-approximate
level di):

For i= 1, 2,. ., [n/2d], consider the region between approximate levels P2i-A-1
and PZ+A+I. Using Lemma 3, find a layer R inside this region, which consists of as
few segments as possible.

The first thing we have to show is that R,. ., Rtn/2a really form a (2d, A + 1)-
approximate leveling for L. Each Ri lies between P2-A- and P2/A/I, and thus (by
the properties of P2i-a-1 and Pi/a+l) also between levels (2i-A-1)d-Ad and
(2i + A + 1)d + Ad, and thus also between levels 2id 2(A + 1)d and 2id + 2(A + 1)d.
This says precisely that R is a 2(A+ 1)d-approximate level 2di, as required.

We also have to show that this new approximate leveling has the claimed com-
plexity. We note that the region between P2i-a-1 and P2i/A+I must contain all the
levels 2di- d through 2di + d, thus also any d-approximate level 2di, so that it suffices
to know that for every arrangement of n lines there exists a d-approximate leveling
of complexity O((n/d)). However, this is what Lemma 2 says.

4. Merging approximate levelings.
LEMMA 5. Let L1, L2,"" ", Lk be line arrangements with m lines each and let a

(d, A)-approximate leveling A of complexity at most C be given for each L. Then a

kd, A)-approximate leveling for L L Lz Lk of complexity M
O(k2C(m/d)) can be found in time O(M log M).

Proof Similarly as the levels for a line arrangement were defined, one can define
the levels for an arrangement of polygonal lines. These levels can be computed by the
technique of left-to-right plane sweeping in time O(M log M), where M is the number
of edges plus the number of intersections of the polygonal lines (see, for example,
[PSI for the details of the algorithm for segment intersection reporting by plane sweep).

Let us consider the arrangement Q of all polygonal lines of the Ai’s. If x is a

point of a level q in this arrangement of polygonal lines, this means that it has exactly
q polygonal lines of Q above it, and thus there are at least qd-kAd and no more
than qd + kAd lines of L above x. Therefore, the level q of the arrangement Q is an

Adk-approximate level qd for L, and the levels ik (i--1, 2,..., [m/dJ) of Q form
a (kd, A)-approximate leveling for L.

Now it remains to bound M, the total number of vertices of Q. The starting
observation is the following: Given two x-monotone polygonal lines P and P’, consist-
ing of s and s’ segments, then P and P’ may intersect in at most s + s’ points (unless
they have a common segment, which we may exclude by a perturbation argument).

Now let us consider two collections of polygonal lines, P1 ,’" P and P’I, ",Pr:
If Pi has s segments and P’i has s’i segments, then the total number of intersections
among the polygonal lines of the first collection and the polygonal lines of the second
collection is at most

+ sj r (s + + Sr + S + + S’r).Si
i,j---

Applying this on every pair of the k given approximate levelings, we get the bound
M= O(kC(m/d)). This proves Lemma 5. [3

5. Proof of Main Theorem. Let us describe the algorithm first, and then we

determine the value of parameters occurring in its description and its time complexity.
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Initial step. Divide the lines into groups by m lines each. For every group first
compute an (ml/ro, 1)-approximate leveling by the method of Lemma 1, and then,
using Lemma 4, compute an (ml/rl, 2)-approximate leveling of complexity O(r) for
each group (it will be r r0/2).

Step (i= 1, 2,. ., I). At the beginning, we have (mi/ri, i+ 1)-approximate
levelings of complexity O(r,2-) for the groups by mi lines. We aggregate the groups into
k-tuples, and we merge the groups in every ki-tuple into a new group by mi+l--kimi
lines. By the procedure of Lemma 5 we compute an (miki/r, + 1)-approximate leveling
for each new group from the approximate levelings for the old groups. Then, by the
procedure of Lemma 4, we pass to (m+l/r+l, i+2)-approximate levelings of com-
plexity O( 2ri+l) for the new groups.

After the Ith step, all the groups of lines will be merged into a single one, and
we will have an (n/r1+l,I+2)-approximate leveling of complexity O(rl/l)2 for our
arrangement. We will arrange things so that r1+l -> 4(1 + 2)r (recall that r is the number
of approximate levels we want in the end). We then keep only every (I+2)nd
approximate level, dropping the others, and we get an (n/4r, 1)-approximate leveling.
We use the simplification step (Lemma 4) once more, yielding an (n/2r, 2)-approximate
leveling of complexity O(r2), and this in turn gives us the desired (n/r)-approximate
leveling of complexity O(r2) for the given arrangement.

We determine the parameters of the algorithm. In the sequel, the symbol "log"
will mean logarithm base 2.

The value of ml will be determined in the end to balance the time complexity of
the initial step and of the further steps. The other parameters will be described in terms
of m.

The sequence {sl, s2, "}, given by s 2, s 22i-2 (i _-> 2), satisfies the recurrence
si+l ss_ sl (i >= 2). Let I be the smallest integer such that mls+ >= n (obviously
I_-< [loglog hi+l). We define k=si for i=1, 2,...,I-1 and kl=n/(mlkl_) and
mi ki-lmi-1 for i-2, 3,..., I (then we get m= ml" 22‘-2 for i= 2, 3,..., I and
ml/l n). Finally, we set r=4r(I+2)2I/-.

Let us analyze the time complexity of the algorithm. The initial step takes time
O(m31/2rl/2(log m)) per group of lines (Lemma 1); thus O(nml/2rl/Z(logm)2)
O(nm 11/2(r log n log log n)1/2(log ml)2) in total.

The complexity of Step for every newly formed group is by Lemmas 4 and 5
O( 2 2. kri log (kr)) in total, and substituting for k,kiri ri log (kiri)) thus O(n/(miki) 2

r, and mi, we get the bound:

O(n/ml" (rlog n log log n. 2-i+2) (log log n+log r+2i-e))

for the complexity of Step i.
Finally, the complexity of the last step will be of order r+1, which can be neglected

compared to the other steps.
If we now put m=(rlog n)5/3, we get, after a routine calculation, that the

complexity of the whole algorithm is O(nra/3(log n)a/3(log log n +log r)C), as
claimed.

Let us remark that if the k-set conjecture were true (see 2), we would
get a better complexity of the initial step of our algorithm, O(nm rl) for every 6 > 0,
and choosing ml=(rlogn)2, the total complexity would be O(n(logn)l+rl/).
On the other hand, we might avoid the rather complicated algorithm of [EW2] for
level construction (see Lemma 1) and construct the whole arrangement for the
initial groups of lines instead; in this case, the total complexity comes out as
O(n(log n)3/2r3/2(loglog n+log r)C).
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PARALLEL ALGORITHMS FOR CHANNEL ROUTING IN
THE KNOCK-KNEE MODEL*

JOSEPH J/JA AND SHING-CHONG CHANG$

Abstract. The channel routing problem of a set of two-terminal nets in the knock-knee model is
considered. A new approach to route all the nets within d tracks, where d is the density, such that the
corresponding layout can be realized with three layers is developed. The routing and the layer assignment
algorithms run in O(log n) time with n/log n processors on the CREW PRAM model under the reasonable
assumption that all terminals lie in the range 1, N], where N O(n).

Key words, channel routing, parallel algorithms, layout, VLSI design, line packing, left-edge algorithm
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1. Introduction. The recent advances in the VLSI technology allow the fabrication
of highly complex systems on single chips. Sophisticated software tools are needed to
successfully design such systems. In particular, the routing phase is a critical and
time-consuming part of the overall design process. Unfortunately, it turns out that
most routing problems are NP-complete, and hence no efficient algorithms to generate
optimal solutions seem to be likely. There are few exceptions, however. For example,
various river routing (one-layer) problems, the two-layer channel routing with no
constraints, and few routing problems in the knock-knee model can be solved with
efficient algorithms [Detal], [MP], [O], [P], [PL].

In this paper, we consider the channel routing problem of two-terminal nets in
the knock-knee model. A routing algorithm that uses d tracks, where d is the density,
is presented in [PL] such that the routing can be realized with three layers. This
algorithm can be viewed as a nontrivial extension of the left edge algorithm [O] in
which the routing is done row by row, left to right according to a greedy strategy.
However, this method seems to be inherently sequential. We develop a new strategy
to obtain an optimal routing (which is in general different from the one obtained by
the [PL] method) such that both the routing and the layer assignment algorithms have
linear time sequential implementations. Moreover, they both can be implemented on
the CREW PRAM model in O(log n) time with n/log n processors, where n is the
number of nets. Hence both algorithms are optimal in the sense that the corresponding
total work is O(n). In our analysis, we will make the reasonable assumption that all
the terminals lie in the range [1, N], where N O(n). If the terminals are arbitrary,
our algorithms run in time O(log n) with n processors on the EREW PRAM model.

We use the PRAM (Parallel Random Access Machine) model where the available
processors operate synchronously and have access to a shared memory unit. The EREW
PRAM assumes that no two processors can read from or write into the same memory
location, while the CREW PRAM allows concurrent read but no concurrent write. We
will occasionally refer to.the Common CRCW PRAM model, where concurrent read

* Received by the editors February 18, 1988; accepted for publication (in revised form) July 27, 1990.
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and concurrent write are allowed. For a concurrent write, the processors write the
same value into a single memory location.

Parallel algorithms for computing prefix sums, list ranking, sorting, and computing
all nearest smaller values are used frequently in our algorithms. Given n elements
ao, al,"" ", a,_l in consecutive memory locations and an associative operator., the
prefix sums computation consists of evaluating the n partial sums si a0 * a ai,

for 0_-<i=< n-1. There is a simple optimal algorithm to solve the problem in time
O(log n) with n/log n processors on the EREW PRAM model. If each a is a number
that can be represented with O(log n) bits and is the addition operator, the prefix
sums can be computed in time O(log n/log log n) time with n log log n/log n processors
on the common CRCW PRAM model [CV]. If the ai’s belong to a linked list, then
the corresponding problem can be handled optimally by using the list ranking algorithm
[CV]. Arbitrary n numbers can be sorted in O(log n) time with n processors on the
EREW PRAM model [C]. When the numbers involved are integers in the range 1, N],
where N O(n), each number occurring at most a constant number of times, and the
identical numbers can be easily distinguished, the numbers can be sorted within the
same time bound of computing prefix sums. In our case, the numbers are the terminals
of a given set of nets and hence each number can occur at most twice, once as a top
terminal and once as a bottom terminal. Such n numbers can then be sorted in O(log n)
time with n/log n processors on the EREW PRAM, and in time O(log n/log log n)
with n log log n/log n processors on the CRCW PRAM. The all nearest smaller values
problem is defined in [BS] as follows. Let A= (al, a2,"" ", an) be n elements drawn
from a totally ordered domain. For each a, find the nearest elements in A that are
smaller than a, the left nearest smaller element a and the right nearest smaller
element ak with j <i< k if they exist. This problem can be solved in O(log n) time
using n/log n processors on the CREW PRAM and in time O(log log n) time using
n/log log n processors on the CRCW PRAM [BSV]. For more details about shared
memory algorithms, see [KR].

The rest of the paper is organized as follows. The basic definitions needed for the
rest of the paper and our overall approach are introduced in the next section, while
in 3 we develop a routing strategy and establish its correctness. The layer assignment
algorithm is presented in the last section.

2. Definitions. We assume that the reader is familiar with the basic definitions
related to channel routing on a grid (see, for example, [O], [PL]). In this paper, we
restrict ourselves to the two-terminal net channel routing problem (CRP) {N
(t, bi) ll <- n}, where ti is the top terminal on a gridpoint of the top boundary line
and b is the bottom terminal on a gridpoint of the bottom boundary line. ti and bi
will also represent the integer displacements of these terminals relative to a fixed origin.
N is a left (right) net if t < b (t > bi). Otherwise it is a vertical net. We will also
represent a net N as N -[1, r], where li <- ri, li min { ti, b} and ri max { t, b}. We
refer to l and r as the left and right terminals of N, respectively. The local density
d, at x is defined to be the number of nets l, r] such that li <-- x < ri. The density d is
given by d maxx {dx}. A routing layout in the knock-knee model consists of a set of
edge-disjoint paths (made up of gridline segments) connecting the terminals of each
net. Hence a shared gridpoint could be one of two types: crossing and knock-knee
(Fig. l(a)). For a layout with channel width t, we can use horizontal lines (called
tracks) to route all the nets. We assume that all the bottom (top) terminals are on
track 0 (track + 1) and all the tracks in between are numbered 1 to from bottom to
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(a) (b)

FxG. 1. (a) Types of shared gridpoints, (b) diagonal representation of a knock-knee.

top. A layout for a CRP is optimal if the channel width is minimum. Clearly, d is a
lower bound on the channel width.

For any two terminals ti and bj of two different nets Ni (t, b) and N--(tj, b),
a vertical constraint between t and b occurs if they are in the same column. If N is
routed through a track at least as high as that of N, then the possible layouts are
shown in Fig. 2(a). Otherwise we have to introduce a detour. Some possible detours
are shown in Fig. 2(b). To introduce a detour for Ni, we have to find a detour column
dc(ti) for terminal t as shown in Fig. 2(b) such that we can route terminal t to dc(ti)
and then move to the track assigned to N. A right detour (left detour) is introduced
when dc(ti) is to the right (left) of the terminal column. Figure 2(b)(1) is an example
of a right detour and Fig. 2(b)(2) is an example of a left detour.

Let L1, L2," ’’, Ls be a set of conducting layers stacked on top of each other
such that L1 is on the bottom and L, is on the top. A wiring of a layout is an assignment
of single layer to each layout segment such that (1) no two segments of two distinct

N. N.

I| I|

b| bj

() (2) (3)

(a)

l

Nj Nj

Ni N

tic( dc(

(.=) (2)

FIG. 2. Some possible layouts of two nets with terminals in the same column.
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nets share a gridpoint on the same layer, (2) a routing path may change layers by a
via at a gridpoint, and (3) no wire can use a gridpoint on a layer which is between
two layers with a via at that gridpoint. It is known that any routing in the knock-knee
model can be realized with four layers [BB] and that three layers suffice for the channel
routing problem [PL].

A theory for wiring layouts has been developed in [LP], [PL], and [L]. One of
the results shown is a characterization for layout wirability with three conducting
layers. Since we will use this characterization to derive our layer assignment algorithm,
we briefly introduce the necessary terminology. The reader is referred to these papers
for a more formal presentation and for the proofs. Given a routing layout R of an
instance of CRP, let D be the underlying grid determined by the channel and bounded
at both ends by two vertical columns such that all the edges in R are contained in D
(but not on the boundary of D). The partition grid G(D) is the dual of D, i.e., the
graph whose vertices are centers ofthe grid cells and whose edges join vertices belonging
to adjacent cells (horizontal, vertical, and diagonal). Each knock-knee in R can be
represented with an edge in G(D) as shown in Fig. l(b). The diagonal diagram of R
is the set of edges of G(D) representing all the knock-knees in R. A set P of edges
of the partition grid G(D) is called a legal partition if the following properties hold:

(1) Every internal vertex is incident on an even number of edges of P.
(2) The set of diagonals in P is identical to that of the diagonal diagram.
(3) None of the forbidden patterns in Fig. 3 appear in P.

FIG. 3. Forbidden patterns.

A legal partition of a layout R exists if and only if R can be wired with three
conducting layers.

Our basic approach is as follows. We first partition all the nets into d groups,
where d is the density. Each group is defined as a chain (or list) of nets. If we view
each net as an interval defined by its left and right terminals, then each chain consists
of a set of nonoverlapping intervals. We then try to put each chain into a track to
achieve an optimal routing. However, this initial partition may require complex detours
to resolve vertical constraints and the final layout may not have an optimal three layer
assignment. Hence we modify this partition by interchanging nets between chains to
satisfy certain properties to be defined later. With this new partition, we assign one
track to each chain and determine the layout very quickly. The corresponding diagonal
diagram will have special properties which will be used to develop optimal algorithms
for finding a legal partition and a three layer assignment after introducing some
modifications to the diagonal diagram.

3. Channel routing. Given an instance ofCRP of density d, our goal is to determine
a layout of all the nets in d tracks. In addition, the resulting layout or a slight
modification of it should be realizable in three layers.

The algorithm developed in [PL] constructs the layout track by track by laying
each track from left to right. The overall strategy can be viewed as a nontrivial extension
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of the line packing (or left edge) algorithm, where a mechanism is provided to solve
conflicts arising in columns. Our method is different and consists of two main steps:

1. Partition the nets into d chains satisfying certain properties to be outlined
below. In particular, the nets in each chain define a set of nonoverlapping
intervals.

2. Assign a track number to each chain. Then wire all the nets simultaneously.
Our starting point is an initial partition of the nets into a set of d chains. We will

denote the successor (predecessor) of a net N by succ (N) (pred (N)). The algorithm
below appeared in [DS] and was independently discovered by the authors.

ALGORITHM CREATE CHAINS.
Input: terminals li’s and ri’s of all nets N1, N2," ", An.
Output: d chains of nets, where d is the density of the corresponding channel routing

problem.
1. Sort all the terminals from left to right. If a right and a left terminal are equal, put

the right terminal before the left. Otherwise, if two terminals are equal, put the
bottom terminal before the upper terminal if both terminals are left. If both terminals
are right, then the top terminal is placed before the bottom terminal.

2. Assign +1 to each left terminal and -1 to each right terminal. Compute the prefix
sums of all the terminals.

3. For each right terminal ri whose prefix sum is p, find the closest left terminal / to
the right whose prefix sum is greater than p. Set succ (Ni) N, ifj exists. Otherwise
set succ (N) nil.

As an example, consider the channel routing instance of Fig. 4(a). The correspond-
ing sorted list, prefix sums, and chains are shown in Figs. 4(b) and 4(c).

LEMMA 1. The number of chains created by the algorithm above is exactly d,
where d is the channel density. This algorithm can be implemented on the CREW
(CRCW, respectively) PRAM in time O(log n) (O(log n/log log n)) with n/log n
(n log log n/log n) processors, where n is the number of nets.

Proof The correctness proof follows from [DS]. The running times follow from
known algorithms for computing prefix sums and the nearest smaller values as indicated
in the Introduction.

The chains above do not seem to be adequate for performing the routing fast.
Complex detours may be required to resolve vertical constraints and the final layout
may not possess a three-layer assignment. Consider, for example, the CRP given in
Fig. 5(a). Algorithm Create Chains will generate the chain structure as shown in Fig.
5(b). Figure 5(c) shows a possible layout corresponding to this chain. To generate this
layout in parallel, we have to identify all the detour columns very quickly. However,
the detour column of terminal may be in any column between and the column of
its successor (or predecessor) terminal t’, and moreover, the location of this detour
column depends on all the terminals between and t’. Without additional constraints,
it will be difficult to get all the detour columns in parallel. Even if we can find all the
detour columns quickly, the corresponding diagonal diagram may be very complex.
There may be an arbitrary number of diagonals in a column of the diagonal diagram.
For example, there are five diagonals in the column of t4 of Fig. 5(c). A complex
diagonal diagram will complicate the task of finding a three layer assignment. To
overcome these problems, we modify the chain structure such that we can determine
the detour columns very quickly and the diagonal diagram can be simplified with at
most two diagonals in each column.
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FG. 4. (a) A CRP, (b) corresponding sorted list and prefix sums, and (c) chains.

We modify the chains generated by Algorithm Create Chains so that they have
the following property.

Column Property (CP): Let c be any column. Then either
1. c is empty, or
2. c contains one terminal, or
3. c contains two terminals ti and b of nets N/ and N, respectively.

If one of b, t is a left terminal and the other is a right terminal, then both

Ni and N belong to the same chain and one is the successor of the other.
Suppose that both b and ti are right terminals. The other case can be dealt
with similarly. Let NI succ (Ni) and Nj succ (N). Then the left terminals
of NI and N either share a column or the column closer to c, say column
c’, has only one terminal. If they share a column, say , NI must be a right
net and N must be a left net. If the column e’ has only a bottom (top)
terminal, then the corresponding net must be the successor of N (N) (see
Fig. 6(b)).

The following algorithm outlines how to modify the chains so that the above
property holds.

ALGORITHM MODIFY CHAINS.
Input" A set of chains produced by the algorithm create chains.
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t5

(a)

blo b b

N9 N4

N3 N1 0

N8 N5

N2 N1

N7 N6

N N

(b)

4 6

8 9 10 11

(c)
12

4 6

Ng N4

N3 N1
N8 N 5

N2 N10

N7 N6 ,,
NI N1

8 9 10 11 12

(d) (e)

FIG. 5. A CRP with layouts generated by Algorithms Create Chains and Modify Chains.

Output: A set of chains satisfying the property (CP).
1. Mark each column with two right or two left terminals as active.
2. For each active column c with a top right terminal ti and a bottom right terminal

bj, do the following:
If the left terminals of succ (Ni) and succ (N) are in the same column c’, then
mark both c and c’ as inactive.
If the left terminals of succ (Ni) and succ (N) are in two distinct columns, c’
and c", say c’ containing the left terminal of succ (N) is closer to c, then mark
c inactive if c’ has only one terminal. Otherwise, c’ contains another left terminal
b,. Let Nk--pred (N,). Then create the pair (Ni, Nk). Mark c and c’ as inactive.
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FIG. 6. Possible successors of two nets with right terminals in the same column.

3. Group the pairs (Ni, Nk) into maximal groups (Nko, Nk), (Nk,Nk2),’’’,
(Nk,-, Nk,). Update the successors of these nets by setting the new successor of
Nki to be the previous successor of Nki+ for all 0_--< < t-1. In addition, set the
new successor of Nk, to be the previous successor of Nko.

4. Repeat the procedure for active columns with two left terminals.
5. Adjust the chains in such a way that whenever the configurations of Fig. 6(a) occur,

they will be replaced by the corresponding configurations of Fig. 6(b) (similarly
for columns with two left terminals).

As an example, consider the chains of Fig. 5(b). In Step 2, when we detect the
column of t and by, the column of closer successor has another net N11 with predecessor
N2. Hence we construct the pair (N, N2). Similarly we will construct (N2, N3). The
final chain structure is shown in Fig. 5(d).

LEMMA 2. The algorithm above modifies the chains generated by Algorithm Create
Chains such that the new chains satisfy property (CP). Moreover, the algorithm runs in

O(log n) time with n/log n processors on the CREW PRAM model

Proof To simplify the presentation we will introduce a new graph called the link
graph. There is a vertex vc corresponding to each column c. There is an edge between

vc and v, if and only if c contains a terminal of a net whose successor or predecessor
has a terminal in c’. Let us call a column good if it satisfies property (CP) except
possibly the ordering stated in Fig. 6(b).

Note that the link graph of each of the groups created in Step 3 has the form
shown in Fig. 7(a). Let c be the rightmost column involved in a group determined in
Step 3. It is easy to check that if c is connected to a, then a has only one terminal
and appears as shown in Fig. 7(a). After the modifications of Step 3, the link graph
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acco,

(a) (b)

FIG. 7. Forms of groups in the proof of Lemma 2.

of the group will be of the form given in Fig. 7(b). Hence every column with two right
terminals will be good after Step 3. Note that several columns with left terminals will
be taken care of in this step and that every good column with left terminals will remain
good after Step 3. However there might still be some columns with left terminals which
are not good (e.g., column c). Step 4 will take care of these columns.

As for the time complexity, Steps 1 and 2 are simple local operations, Step 3 can
be easily done with list ranking. Similar comments apply to Steps 4 and 5. Actually
the same time and processor bounds hold for the EREW PRAM model. Hence the
lemma follows.

The track assignment and the wire layout will be described next. Suppose that
track k has been assigned to net Ni (ti, bi). Then the wire of N will consist of the
interval [1, r] on track k, a vertical line segment from b up to [li, r], and a vertical
line segment from t plus a possible detour to [1, ri]. Therefore the problem comes
down to determining how to connect a terminal on the upper row down vertically to
its track. If ti is in a column with only one terminal or there is another terminal in the
same column which goes to a lower track than k, then we can connect t down to [lg, ri]
directly without any detour. Otherwise, the column of ti has another bottom terminal
bj of a net N which is assigned to a higher track, say k’. Once property (CP) is satisfied,
we can always find a left or right detour from t to [I, ri]. If N is a right (left) net,
then the detour column of ti, dc(ti), must be in the column ofthe successor (predecessor)
of N or N whichever is closer to ti. It is easy to see that the line segments between
tg and dc(t) on tracks k and k’ are empty as well as the vertical line segment connecting
tracks k and k’ on column dc(tg). Hence it is easy to construct a right (left) detour
using these three line segments. Each detour column can be determined in constant
time with one processor once we have the modified chain structure. This seems unlikely
for the chains generated by Algorithm Create Chain. Based on the above observations,
we can assign an arbitrary track number to each chain and will always be able to
generate a layout. But if we assign track numbers carefully, we can avoid the detours
extending beyond the leftmost terminal. The algorithm below describes how to achieve
this.

ALGORITHM WIRE NETS.
Input: A chain of nets as modified by Algorithm Modify Chains.
Output: A wire layout for each net.
1. For each chain, assign the leftmost terminal l as the primary key, and, if li is a

bottom terminal, assign 0 as the secondary key, and 1 otherwise. Sort the chains
according to their keys by using the bucket sort and the prefix sums algorithms.
The track number of each chain is its corresponding rank.
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2. For
(1)

(2)

(3)

each column c, do the following:
If c contains one terminal of a net N, then connect that terminal vertically to
the track of N.
Suppose c contains two terminals of a single net. Then connect these two
terminals vertically.
Suppose that c contains two terminals of two distinct nets N ={tl, bl) and
M (t2, b2) where tl and b2 lie on column c. If N and M have the same track
number, then wire the terminals to this track using a knock-knee. Otherwise
there is detour only if the track number of N is less than that of M. In this
case, it is a left or right detour depending on whether c is a right or left terminal.
The detour extends either to the column of successor (for a right detour) or
predecessor (for a left detour) of either N or M whichever is closer. All the
cases that can arise and the corresponding routing are shown in Fig, 8.

(1) (2) (3) (4) (5)

N M’ N N N’ M M’

(6) (7) (8) (9) (10)

FIG. 8. Possible detours of nets with terminals in the same column. N’ and M’ represent the successor or
the predecessor of nets N and M with terminals sharing a column.

Consider the example of Fig. 4 again. Then the routing obtained by the algorithm
above is given in Fig. 9(a).

LEMMA 3. Given an instance of the channel routing problem, the algorithm above
provides a routing layout of all the nets in the knock-knee model. The time complexity of
this algorithm is O(log n) with n/log n processors on the CREW PRAM model

THEOREM 1. Given an instance of the channel routing problem of density d, it is
possible to wire all the nets in d tracks in time O(log n) time on the CREW PRAM model
with n/log n processors, where n is the number of nets.

4. Layer assignment. In this section, we show that a modified version of the routing
produced by the algorithm of the previous section can be laid out in three layers.
Reference [PL] provides necessary and sufficient conditions for the realization of a
wiring in three layers. As stated in 2, the problem is essentially reduced to finding a
legal partition. The routing layout produced by the algorithm in [PL] has a special
property, namely, every column is either empty or contains one diagonal or a diagonal
\ on the bottom and a diagonal / above it. Their algorithm proceeds from left to right,
looking at each column and making vertical connections (and possibly changing the
routing) so that the resulting partition is legal. Unfortunately, we encounter a major
difficulty in our case. Each column of our routing layout could have two diagonals (\
and /) in an arbitrary order (because our routing uses left and right detours). This
makes it necessary to change the wire layout more substantially than was done in [PL].
In the rest of this section, we outline how to overcome this difficulty.
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(a)

9 2 3 7 6 13 145 11

23 4 6 7 9 101112

(b) N N
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14 15 16

20 17 18 16 21 25 15 24 23 19 22

17 18 19 20 21 22 23 24 25

FIG. 9. (a) The layout generated by Algorithm Wire Nets, (b) its corresponding diagonal diagram, and
(c) its corresponding constraint graph.

By adding dummy diagonals if necessary, we can assume that each column is
either empty or contains exactly two diagonals. As in [PL], our partition will be
constructed by adding vertical edges only. Define a reference line as a vertical line that
touches the endpoint of some diagonal. For each reference line, the diagonals touching
this line will partition it into several line segments. Number these line segments starting
from the topmost segment. Note that there are two possible ways of adding vertical
segments (to create a legal partition): add the odd-numbered or the even-numbered
segments. We have to choose (if possible) those segments that will not create a forbidden
pattern.

We define the constraint graph as follows. The two possible choices of vertical
segments corresponding to reference line Li are represented by two vertices v2i- and
v2. Two vertices of the constraint graph are connected by an edge if and only if the
corresponding choices create a forbidden pattern. Note that forbidden patterns can
be created only between adjacent reference lines.

LEMMA 4. The total number ofedges between the vertices corresponding to adjacent
reference lines is less than or equal to two.

Proof Since the maximum number of diagonals between two adjacent vertical
reference lines is 2, there are at most two "constraints" between {v2_, v_} and
{V2i+l V2i+2}, for each i.

A column is a pair of vertices {v2_, v2i} corresponding to a single reference line.
Our goal is to select a vertex from each column in such a way that no two selected
vertices are connected by an edge. A constraint graph will be called legal if such a
selection is possible. The constraint graph corresponding to the layout produced by
our algorithm may not be legal, in which case the routing layout has to be modified.
Our strategy will be to identify the reference lines which might create problems (to be
defined precisely), and modify the routing around these reference lines in such a way
that the corresponding graph will become legal.

A simple case that can be handled immediately is when none of the vertices of
the constraint graph has two edges adjacent to a single column. It can be easily verified
that the constraint graph is legal in this case. A simple algorithm, to select a proper
subset of vertices is the following. Assign a weight of 0 to each reference line Lk if
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there is an edge between V2k_ and V2k or between V2k-2 and V2k_ Otherwise assign
a weight of 1. Compute the prefix sums of all reference lines and select V2k if the rank
of Lk is even; otherwise, select Vzk-1.

In the rest of this section, we will show how to modify the wiring in such a way
that the corresponding constraint graph is legal. We first introduce the following
classification of reference lines (cf. [PL]): Trivial (Fig. 10), Overlap (Fig. 11), Disjoint
(Fig. 12), Inclusion (Fig. 13). Each type is shown with its possible constraint graph.
Consider a reference line of type T. If one of the corresponding vertices has two edges
adjacent to a single column, then we can select the vertex of degree 0 and remove this
column (with the edges incident on it). Note that if the remaining graph is legal, then

,/’

FIG. 10. Trivial reference lines.

0 0 2 0 4 0 5

A

0 6 0 7 0

FIG. 11. Overlap reference lines.
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D D 2 D D 4 D 5 D 6 D 7 D

FIG. 12. Disjoint reference lines.

2 4

,/,’

/,

6 7

< X > X > <
FIG. 13. Inclusion reference lines.

the original graph is legal too. Similar comments can be made regarding reference
lines of type D2, D4, Ds, D7, I1, 13, 15, and I7. We will now develop an algorithm
to handle reference lines of type D, D3, DG, Ds, 12, 14, 16, and Is. In most of these
cases, the wiring will be modified and then some vertices of the constraint graph will
be selected. Finally the removal of the columns with selected vertices will result in a

graph with the property that none of its vertices has two edges adjacent to a single
column. The procedure involves a detailed case study which is summarized by the
following algorithm.

ALGORITHM MODIFY
Input" Wiring layout produced by Algorithm Wire Nets.
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Output: A new wiring with its modified constraint graph and a set of selected vertices.
1. Generate the diagonal diagram, delete all half diagonals and add necessary dummy

diagonals. Determine the constraint graph and mark all reference lines of type D1,
D3, D6, Ds, 12, I4, 16, 18 as active.

2. For each inactive reference line, select the vertex of degree 0 if the other vertex has
two edges adjacent to a single column. Remove selected columns.

3. Handle type 12 active reference lines as follows. Let L, L_2, L-2k be a maximal
consecutive set of active 12’s. We want to modify every other Li starting with L in
a way that depends on the type of its left neighbor Li_l. All the cases that can arise
are shown in Fig. 14 with the corresponding modifications. In each such case, a
vertex (of degree 0) of Li-1 is selected, and a vertex of L is selected if the other
vertex has two edges adjacent to a column. The columns of selected vertices are
removed. Handle type I6 reference lines in a similar fashion.

4. Handle type /4 active reference lines as shown in Fig. 15. Select v2 and remove
corresponding column. Handle type Is similarly.

(1) (2) (3) (4) (5)

(6) (7) (8)

FIG. 14. Transformations on type 12 reference lines.

(9)
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FIG. 15. Transformations on type 14 reference lines.

5. Handle active type D1 as shown in Fig. 16. Select v2i_ and remove edges between
Li and its neighbors. In Fig. 17 a maximal set of consecutive Dl’s is considered.
Li, Li+I,. ., Lk are all of type D. Modify as shown and select all the odd vertices
of Li- Lk. As before selected columns are removed. Repeat the same procedure for
types D3, 06, and D8.
We can check that whenever a vertex is selected and the corresponding column

removed, the constraint graph is legal if the remaining graph is. Moreover, at the
completion of the algorithm, the remaining graph has no vertices with two edges
adjacent to a single column. Therefore the overall modified constraint graph is legal.

FIG. 16. Transformations on type D reference lines.
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,/,

FIG. 17. Maximal set of consecutive Dl’ s.

If we return to the example of Fig. 4, then the routing produced by the algorithm
of the previous section is given in Fig. 9. The layer assignment algorithm will change
the wiring of N16 and N21 (Fig. 18) and the final layout is shown in Fig. 19.

THEOREM 2. Given an instance of the channel routing problem, it is possible to

determine a three.layer assignment of the routing layout in time O(log n) time with
n/log n processors on the CREW PRAM model

16 21 16 21

16 21 16 21

Ca) (b)

FIG. 18. Changes in the wiring of NI6 and N21.
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SOME OBSERVATIONS ON SEPARATING COMPLEXITY CLASSES*

RONALD V. BOOK"

Abstract. Cai [J. Comput. System Sci., 38 (1989), pp. 68-85] proved that for almost every set A,
PH (A) # PSPACE (A). For every set A, there is a restricted relativization of the class PSPACE (A), denoted
PQH (A), with the property that PQH (A) lies between PH (A) and PSPACE (A) (as was previously studied
in [Theoret. Comput. Sci., 15 (1981), pp. 41-50] and [Theoret. Comput. Sci., 40 (1985), pp. 237-243]). It is
shown here that PH # PSPACE if and only if, for almost every set A, PH (A) # PQH (A). Cai’s proof shows
that for almost every set A, PQH (A) PSPACE (A), so that for almost every set A, PQH (A) bounds
PSPACE (A) away from PH (A).

Bennett and Gill ISLAM J. Comput., 10 (1981), pp. 96-113] proved that for almost every set A,
P (A) NP (A). For every set A, there is a restricted relativization of the class NP (A) (previously studied
in ISLAM J. Comput., 13 (1984), pp. 461-487]), denoted NPB(A), with the property that NPB(A) lies
between P (A) and NP (A). It is known ISLAM J. Comput., 13 (1984), pp. 461-487] that P# NP if and only
if there exists a set A such that P (A) NP (A). It is shown here that BPP AM if and only if for almost
every set A, P (A) NPa (A). A result of Kurtz [Inform. and Control, 57 (1983), pp. 40-47] is used to show
that for almost every set A, NPB (A) bounds NP (A) away from P (A).

In addition, it is shown that membership in PSPACE can be characterized in terms of the PQH
)-operator and membership in AM can be characterized in terms of the NPa )-operator.

Other results involving quantitative restrictions on access to information from oracles and qualitative
restrictions on the use of such information are presented.

Key words, complexity classes, relativizations, polynomial time, polynomial space, P, NP, BPP, AM,
PSPACE, the polynomial-time hierarchy, the BP-operator, uniform witnesses

AMS(MOS) subject classifications. 68Q15, 03D15

1. Introduction. Recently, there have been a number of results regarding properties
of complexity classes relative to "almost every" oracle set. Of particular interest are
the following results:

(a) Bennett and Gill [BGS1] showed that for almost every set A, the classes P (A),
NP (A), co-NP (A), and PSPACE (A) are pairwise distinct.

(b) Cai [Ca86], [Ca89a] showed that for almost every set A, PH (A)#
PSPACE (A).

As yet, no one has been able to prove that results such as these can be used to
establish similar properties of the unrelativized classes. The purpose of this paper is
to present some observations that suggest that certain results of this type (i.e., separation
results based on the use of random oracles) will not provide information about the
separation of the corresponding unrelativized classes.

For every set A, there is a restricted relativization PQH (A) of the class
PSPACE(A) (previously studied in [BWS1], [BBS85]), where PQH(A)=
PH (A QBF), with the property that PH (A)

_
PQH (A) PSPACE (A). It is shown

that the following points hold.
THEOREM A.
(a) PH PSPACE if and only iffor almost every set A, PH (A) PQH (A).
(b) For almost every set A, PQH (A) PSPACE (A).
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Some of these results were announced at the 5th IEEE Conference on Structure in Complexity Theory,
Barcelona, Spain, July 1990. This research was supported in part by National Science Foundation grants
CCR86-11980 and CCR89.13584.
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It is well known that PH PSPACE if and only if some set S that is (=< P

or < PH- -) complete for PSPACE fails to be in PH. Since for every set A, A PH if and
only if for almost every set B, A PH (B), such a set S is a "uniform witness" to the
separation of PH and PSPACE if for almost every set C, S PQH (C)- PH (C). This
suggests that S is not oracle-dependent. (The reader should note that Cai’s witnesses
to the separation of PH (A) and PSPACE (A) are oracle-dependent.)

In addition, it is shown that for every set A, there is a restricted relativization of
the class NP (A) (previously studied in [BLS84]), denoted NPB (A), with the property
that P (A)

_
NPB (A) NP (A) and such that the following points hold.

THEOREM B. (a) BPP # AM ifand only iffor almost every set A, P (A) NPB (A).
(b) For almost every set A, NPB (A) NP (A).
It is well known that BPP AM if and only if some NP-complete set S is not in

BPP (and that P NP if and only if some NP-complete set is not in P). Since for
every set A, A BPP if and only if for almost every set B, A P (B), such a set S is a
"uniform witness" to the separation of BPP and AM if for almost every set C,
SNPB(C)-P(C).

The reducibilities studied by Bennett and Gill and by Cai are Turing reducibilities
whose access to the oracle is restricted only by the running times or work space of the
oracle machines used to implement them. In the case of polynomial time-bounded
computation, such reducibilities are not known to characterize membership in the
classes P, NP, or co-NP; rather, they can be used to characterize membership in the
classes BPP, AM, co-AM, and PH. In the case of polynomial space-bounded
reducibilities, such reducibilities are known to characterize membership in the class
PSPACE.

The results presented here provide evidence for the thesis that theorems about
complexity classes relative to random oracles are results about the quantitative restric-
tions on access to information and the qualitative restrictions on the use of such
information. If the access to information from the random oracle and the use made
of such information are restricted so as to be essentially the same for both of the
relativized classes, then one can make conclusions about the comparison of the
unrelativized classes. This is seen from the result that PH # PSPACE if and only if for
almost every set A, PH (A) PQH (A), since it is known that for every set A, PQH (A)
PH (A QBF). The intrinsic characterizations of the unrelativized complexity classes
in terms of the appropriate reducibilities and restricted relativizations provide one
method of specifying the restrictions on the access and use of information. (Indeed,
the study of quantitative restrictions on the access and use of information provided
by oracles in relativized computation has been the subject of extensive investigations;
see [Bo89] for an overview.)

(The reader should note that in their study of the isomorphism problem for
NP-complete sets, Kurtz, Mahaney, and Royer [KMR89] take a somewhat different
viewpoint regarding the use of relativizations.)

Three notions are interwoven here: intrinsic characterization theorems for member-
ship in the polynomial complexity classes, where in each case the characterizations
involve reducibilities to "almost every oracle set"; known results about relations among
these classes that are based on certain (sometimes restricted) relativizations; and
conclusions about the relations among these classes that can be obtained by the use
of uniform witnesses for proving the separation of the restricted relativizations of these
classes. None of the results presented here is technically difficult since all of them
depend on results from the literature. The framework described here may be useful
for obtaining a better understanding of the implications of certain technical results.
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The paper is organized in the following way. Some basic definitions and back-
ground are presented in 2. Both parts of Theorem A, as well as a number of related
results, are developed in 3. The topic of 4 is the question of whether, for almost
every oracle set, the polynomial-time hierarchy relative to that set is infinite. Both parts
of Theorem B, as well as a number of related results, are developed in 5. The topic
of 6 is the question of whether Cai’s result [Ca86], [Ca87] that for almost every A,
the Boolean hierarchy relative to A is infinite, provides evidence that the unrelativized
Boolean hierarchy is infinite. Section 7 contains some remarks.

2. Preliminaries. In this paper the alphabet is fixed to be E {0, 1}. The set of all
strings over 2; is denoted by 2;*. A linear order < for strings is assumed and we write
2;*={Wo, Wl,w2, w3,’’’} where Wo<Wl<w2<’’’. The collection of all one-way
infinite sequences over 2; is denoted Z0,.

The length of a string x will be denoted by [x[. The cardinality of a set S will be
denoted by ]]S[I. For a set S, the characteristic function of S is denoted by Xs.

We assume a pairing function (,):2;* x Z*- 2;* that is computable in polynomial
time and has inverses computable in polynomial time.

For sets A, B
_

2;*, the join of A and B, A@ B, is defined to be the set {0x, ly[x
A,yB}.

It is assumed that the reader is familiar with the well-studied complexity classes
such as P, NP, BPP, and PSPACE, and the properties of the polynomial-time hierarchy.
For more information about properties of these complexity classes, see the textbook
by Balcfizar, Dfaz, and Gabarr6 [BDG88].

Let B 2;*. The characteristic sequence c bobs’’, of B is an element of 2;0,

such that bn 1 if and only if wn B. For an element a 2;0,, B is the set with
characteristic sequence a.

Define I (0) I (1) =1/2 on 2;, making 2; into a probability space. By taking the
completion of the infinite product on this probability space, one obtains the measure
I on 2;0,. The measure , is defined in such a way that for a measurable class C of sets,
u(C) is a real number in the interval [0, 1]; this measure on 2;0, corresponds to the
measure I on 2;, which can be interpreted as the Lebesgue measure on the interval
[0, 1] if one identifies the element in 2; with the real number in [0, 1] in the usual
way. That is, for a class C of sets, ,(C) I ({c e 2;0, B C}). In structural complexity
theory, virtually all classes of languages studied in the context of open problems such
as P ? NP, PH ? PSPACE, etc., are measurable and are closed under finite variation.
Thus, we can use the 0-1 Law from probability theory due to Kolmogorov [Ko33] in
the same way that Bennett and Gill [BG81] used it. For our purposes, this means that
every suitable class of languages has measure that is either 0 or 1. This provides
justification for saying that for a class C of sets such that ,(C) 0, the property
identifying C holds for almost every set. (For additional explanation, see the work of
Lutz Lu90].)

For an oracle machine M, L(M, A) denotes the set of strings accepted by M
relative to oracle set A, and L(M) denotes the set of strings accepted by M when no
oracle queries are allowed by M. Recall that set A is Turing-reducible to set B in
polynomial time written A < P

r B, if A P (B). Also, we consider Turing reducibility
computed nondeterministically in polynomial time" A _-< P B if and only if A NP (B).

Let QBF denote the collection of quantified Boolean formulas that are satisfiable;
it is well known that QBF is <-_P-complete, for PSPACE. In the present paper, no
specific properties of QBF, other than its =< Pro-completeness for PSPACE, are needed.
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Thus QBF may be thought of as denoting any set that is <P-complete (or < P
=m =T- or

NP .H----T or -complete) for PSPACE.
Let SAT denote the collection of conjunctive normal form formulas that are

satisfiable; it is well known that SAT is -<Pro-complete for NP. In the present paper,
no specific properties of SAT, other than its _<-P-completenessm for NP are needed.
Thus, SAT may be thought of as denoting any set that is <_- Pro-complete (or _-< --complete)
for NP (an exception is made in 6 where <-Pm-completeness is required).

Generalizing on the properties of the class BPP [Gi77] of languages recognized
by polynomial-time probabilistic Turing machines with bounded probability of error,
Sch6ning [Sc87] defined the "BP-operator" in the following way. For any class C,
BP. C is the class of sets A such that for some C in C, some polynomial p(n), and
all x Z*,

Prp(ixl) [y" x A iff (x, y) C] >

where for any predicate P and natural number m, Prm[y: P(y)] is the conditional
probability Prm [P/2;m] 2-rex ]]{y] P(y) and lY] m}]].

As Sch6ning observed, the class BPP is BP. P. Babai and Moran [BM88] observed
that the "Arthur-Merlin" class AM (sometimes denoted AM (2)) can be characterized
as BP. NP, so that it is the nondeterministic counterpart to BPP.

There are some results that will be useful in various places in this paper and are
brought together here.

LEMMA 2.1 [TW89]. (a) PH BP. PH t_l keO BP" E.
(b) PSPACE BP" PSPACE.
(c) For every suitable class C, BP. BP. C BP. C.
LEMMA 2.2. (a) [BG81] For every set A, A BPP if and only iffor almost every

set B, A P (B).
(b) [NW88] For every set A, A AM ifand only iffor almost every set B, A NP (B).
(c) [NW88] For every set A, A PH ifand only iffor almost every set B, A PH (B).
(d) [Ni90] For every set A, A PSPACE if and only if for almost every set B,

A PSPACE (B).
As a corollary of the arguments [NW88], there is the following fact.
COROLLARY 2.3. For every k and every set A, A BP. Z[ if and only iffor almost

every set B, A E(B).

3. PH versus PSPACE. Cai [Ca89a] proved that for almost every set A, PH (A)
PSPACE (A). (Babai [Ba87] gave a short proof of this fact.) In both proofs the witness
to the separation of PSPACE (A) from PH (A) depends on the oracle set A. Careful
examination of the proofs shows that a stronger statement was established.

PROPOSITION 3.1. For every fixed set B and for almost every set A, PH (A@B)
PSPACE (a@ B).

This observation will be used in this section and the next. It will be applied in the
context of certain restricted relativizations of the class PSPACE that are defined by
limiting the amount of access to the oracle set that a polynomial space-bounded oracle
machine may have. These restricted relativizations were introduced in [Bo81 ], [BW81 ],
[BBS85].

For every set A, let PQUERY (A) be the collection of sets L such that L’s
membership in PSPACE (A) can be witnessed by a deterministic oracle machine that
uses at most polynomial work space and is restricted in such a way that there is also
a polynomial that bounds, as a function of the size of the input, the number of queries
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allowed in any computation. For every set A, let NPQUERY (A) be defined in a similar
way but with the change that the machines are nondeterministic. For every set A, let
oPQ(A) PQUERY (A), PQ(A) NPQUERY (A), PQEi+l(A) U {NPQUERY (B)
B PQ(A)} for each => 1, and PQH (A) U EP(A). It is clear that for every set A,
PU (A) PQH (A)

__
PSPACE (A) and PH PSPACE PQH (A).

The first result is concerned with the PH ?PSPACE problem.
THEOREM 3.2. PH PSPACE if and only if for almost every set A, PH (A)

PQH (A) if and only if there exists a set A such that PH (A) PQH (A).
Proof It is known [BBS85] that for every set A, PQH (A)= PH (A@ QBF), and

it is known [BW81] that PH PSPACE if and only if for every set A, PH (A) PQH (A).
Hence, PH PSPACE if and only if for every set A, QBF PH (A). Thus, if for almost
every set A, PH (A) PQH (A), then there exists a set A such that PH (A) PQH (A)
and PH PSPACE.

Suppose that PH PSPACE. Then QBF is not in PH. As noted in Lemma 2.1(a),
U _->0 E= PH BP. PH U _->0 BP. E, so QBF ! PH implies that for every k, QBF
BP. E. From Corollary 2.3, for every k and every set A, A BP. Z if and only if
for almost every set B, A E(B). Since for every k, QBF BP. E, it follows that for
every k and for almost every set A, QBFeE(A). Hence, for almost every set A,
QBF U k=>0 E(A) PH (A). Thus, for almost every set A, PH (A) PQH (A). [3

Theorem 3.2 shows that if there exists one set A such that PH (A) PQH (A),
then for almost every set A, PH (A) PQH (A). By using the 0-1 Law one sees that
PH PSPACE if and only if for almost every set A, PH (A)- PQH (A). Thus, if for
almost every set A, PH (A)= PQH (A), then for every set A, PH (A)= PQH (A).

It is known [LS86], [BBS86] that PH PSPACE if and only if there exists a sparse
set S such that PH (S) PQH (S)ifand only if for every sparse set S, PH (S) PQH (S).
(It is known [BBS85] that for every sparse set S, PSPACE (S)= PQH (S).) In Theorem
3.2, the condition "for every" is relaxed to "for almost every" and by doing so the
restriction to sparse oracle sets disappears.

Since for every set A, PQH (A)=PH (A@QBF) and PSPACE(A@QBF)=
PSPACE (A), Proposition 3.1 yields the following fact.

COROLLARY 3.3. For almost every set A, PQH (A) PSPACE (A).
Thus, for every set A, PQH (A) serves as an "upper bound" or "cover" for PH (A),

and for almost every set A, PQH (A) strictly separates PH (A) from PSPACE (A).
Also, PH PSPACE if and only if for almost every set A, PQH (A) lies strictly between
PH (A) and PSPACE (A).

For an arbitrary set A, how much difference is there between PQH (A) and
PSPACE (A)? Combining the fact that for every set A, PQH (A)= PH (AO)QBF) and
PSPACE(A@QBF)=PSPACE(A) with another result of Cai (Theorem 4.2 of
[Ca89b]), one obtains the following result.

PROPOSITION 3.4. For almost every set A, for every set B such that for all n,
II{x BIIxl<--n)ll--2’, PSPACE (A)g PQH (AO)B).

Thus, for almost every set A, the PQH operator must have access to a set of very
high density in addition to the set A if it is to recognize all of the sets in PSPACE (A).

Consider the two classes, {A[PH (A) PQH (A) PSPACE (A)} and
{A[PH (A)=PQH (A) PSPACE (A)}. These two classes have opposite measures,
either zero or one, depending on whether PH is equal to PSPACE.

The problem of whether PH is equal to PSPACE is a "uniform" problem in the
sense that it depends precisely on whether QBF is in PH. The set QBF is a "uniform
witness" to the possible separation of PSPACE from PH.

A set S is a witness to the separation of two complexity classes C and D if S
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belongs to the symmetric difference of C and D. Let R denote some type of relativization
of complexity classes which lies between that given by many-one reducibilities and
that given by Turing reducibilities. A set S is a uniform witness to the separation, for
almost every set A, of Ce(A) and De(A), iffor almost every set A, S is a witness to

the separation of Ce (A) and De (A).
Notice that if a set S is a uniform witness to the separation, for almost every set

A, of Ce (A) and De (A), then that separation is not oracle dependent.
In most of the results of the present paper, the reducibility R is Turing reducibility.

With only a few exceptions, the pairs of complexity classes that are studied here are
known to have the relationship that one is included in the other, say C D, and for
every set A, Ce(A) De(A).

(The reader may ask why we define uniform witnesses with respect to almost every
oracle set instead of with respect to every oracle set. For a reducibility R lying between
many-one and Turing reducibilities, it is the case that for every set A, A Ce(A), so
that there is no set S such that for every set A, S is a witness to the separation of
ce(a) and De(a) (since S Ce(S)ADe(S)).)

The proof of Theorem 3.2 yields the following fact.
COROLLARY 3.5. PH PSPACE if and only if QBF is a uniform witness to the

separation, for almost every set A, of PH (A) and PQH (A), if and only if QBF is a

uniform witness to the separation, for almost every oracle set A, of PH (A) and
PSPACE (a).

The PQH )-operator, as a restriction of the PSPACE )-operator, has an unexpec-
ted property.

THEOREM 3.6. For every set A, A PSPACE if and only iffor almost every set B,
A PQUERY (B) if and only iffor almost every set B, A NPQUERY (B) if and only
iffor almost every set B, A PQH (B).

Proof The argument in one direction follows from the fact that for every set B,
PSPACE c__ PQUERY (B)_ NPQUERY (B)_ PQH (B).

Recall from the definition that for every choice of A and B, if A PQUERY (B),
then A’s membership in PSPACE (B) can be witnessed by a deterministic oracle
machine that uses polynomial work space and is restricted so that it can make at most
a polynomial, say p(n), number of oracle queries in any computation. Since in space
p(n) one can generate in turn all strings of O’s and l’s of length p(n), this leads
immediately to the fact that for every set A, if for almost every set B, A PQUERY (B),
then A ePSPACE. Similarly, for every set A, if for almost every set B, A
NPQUERY (B), then A PSPACE. From Lemma 2.2(c), it follows that for every set
B, if for almost every set B, A PQH (B)= PH (BQBF), then A PH (QBF)=
PSPACE.

Sch6ning [Sc87] has observed that for appropriate classes C, any predicate in
BP. C can be expressed in terms of an alternation of two polynomial-bounded quan-
tifier applied to a predicate in C; hence, BP. C___ PH (C). It follows that if C has the
property that PH (C)=C, then BP. C=C. This fact provides some intuition for
Theorem 3.6 since for every set B, PH (PQH (B))=PH (PH (BQBF))=
PH (B@ QBF)= PQH (B).

The following fact is obtained by combining Corollary 3.3 and Theorem 3.6, and
is interesting in its own right.

COROLLARY 3.7. For every set A, A PSPACE if and only iffor almost every set

B, A PQH (B). However, for almost every set B, PQH (B) PSPACE (B).
A different approach has been taken elsewhere. Many of the combinatorial prob-

lems that have been shown to be _-<P,,-complete for PSPACE implicitly involve the
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encoding of the transitive closure of some binary operation. An interpretation of
transitive closure as an operation on a class of languages was developed earlier [Bo79],
and it was shown that for every set A, PSPACE (A) is "weakly transitively closed"
while PH (A) PSPACE (A) (PQH (A) PSPACE (A)) if and only if PH (A) (respec-
tively, PQH (A)) is weakly transitively closed. Proposition 3.1 can be interpreted as
saying that for every B and for almost every set A, PH (A) B) is not weakly transitively
closed; hence, for almost every set A, neither PH (A) nor PQH (A) is weakly transitively
closed.

4. Is the polynomial-time hierarchy infinite? The polynomial-time hierarchy is not
known to extend beyond the class P. Yao [Ya85] proved that there exists a set A such
that the polynomial-time hierarchy relative to A is an infinite hierarchy of classes: for
every k, Z(A)# Z/I(A). There is an interesting open question that is related to the
present study. Suppose that for almost every set A, the polynomial-time hierarchy
relative to A is an infinite hierarchy of classes, i.e., for almost every set A, for every
k, Z(A) Z+I(A). Does this imply that the (unrelativized) polynomial-time hierarchy
is itself an infinite hierarchy?

Suppose that one could prove that: (1) for almost every set B, for every k,
Z(B) Z+I(B). Then it is likely that the proof would also show that (2) for almost
every set B, for every k, Z(BQBF) Z+I(B QBF), which would mean that (3)

PQ (B)for almost every set B, for every k, E[Q(B) X;k+
Thus, if for almost every set B, the classes EP(B), zP(B), form a properly infinite
hierarchy, then it is likely that for almost every set B, the classes EPQ(B), EPQ(B),"
form a properly infinite hierarchy.

If (1) is considered as evidence that the unrelativized polynomial-time hierarchy
is infinite, then (3) ought to give equal evidence that the unrelativized polynomial-query
hierarchy is infinite. But for every k> 0, ;Q= PSPACE, that is, the unrelativized
polynomial-query hierarchy collapses to PSPACE. There is one result to consider.

For every k > 0, let Bk be a set that is < P complete fort’-

THEOREM 4.1. The following are equivalent: (a) the polynomial-time hierarchy
extends to infinitely many levels;

(b) for every k > O, B+
(c) for every k > O, B+
(d) for every k > 0 and for almost every set A, B+ ! E [(A).

5. P, NP, BPP, AM. Bennett and Gill [BG81] proved that for almost every set
A, the classes P (A), NP (A), co-NP (A), and PSPACE (A) are pairwise distinct. A
careful examination of the proof shows that a stronger statement was established.

PROpOSXON 5.1. For everyfixed set B and almost every set A, the classes P (A B),
NP (A@ B), co-NP (A B), and PSPACE (AB) are pairwise distinct.

This is a generalization of an obs6rvation made by Kurtz [Ku83] in his refutation
of the random oracle hypothesis of Bennett and Gill.

While studying the problems of whether the class P is equal to the class NP and
whether the class NP is closed under complementation, Book, Long, and Selman
[BLS84] developed results about relativizations of the classes P and NP that involve
restricted access mechanisms for obtaining information from the oracle set. These
results would allow one to make conclusions such as P NP or NP co-NP if one
could establish properties such as those of Bennett and Gill about these relativizations.

For oracle machine M, a set A, and a string x, let Q(M,A,x)={ylthere is
a computation of M on x relative to A that queries the oracle about y’s membership
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in A}. For every set A, let NPB (A)= {L(M, A) Ithere is a polynomial q such that for
all x, IIQ(M, A, x)ll <= q(Ixl)}.

The subscript "B" in the notation NPB refers to the fact that for M, A, and x,
IIQ(M, A, x)l is bounded in size by a polynomial in Ixl.

The following facts are immediate from the definitions or were established by
Book, Long, and Selman [BLS84].

LEMMA 5.2. (a) For every set A, P (A) NPB (A) NP (A) and NP NPB (A).
(b) For every set A, NPB (A) P (A SAT).
(c) P= NP if and only iffor every set A, P (A)= NPB (A), if and only iffor every

set A, SAT P (A).
(d) NP= co-NP if and only iffor every set A, NPB (A)--co-NPB (A) if and only

iffor every set A, SAT NP (A).
Consider the problems of whether P is equal to NP and whether NP is closed

under complementation. While one might like to have a result similar to Theorem 3.2
for these problems, only Lemma 5.2 is known. However, a more powerful result,
similar in scope to Theorem 3.2, does hold for the problem of whether BPP is
equal to AM. (At this point the reader may wish to review the material at the end
of 2.)

THEOREM 5.3. BPP AM if and only iffor almost every set A, P(A) # NP(A).
Proof The class BPP is closed under -< P so that SAT BPP if and only if NP c BPP.

Since BP. BPP= BPP, AM--BP. NP, and BPP_ AM, this implies that BPP# AM if
and only if NP g BPP if and only if SAT BPP. From the characterization of member-
ship in BPP and the 0-1 Law, SAT BPP if and only if for almost every set A,
SAT P(A). Hence, BPP AM if and only if for almost every set A, SAT P(A). By
Lemma 5.2(c), for almost every set A, SAT P (A) if and only if for almost every set
A, P (A) NPB (A). [3

Thus, a necessary and sufficient condition for P and NP to be different is the
existence of a set A such that P (A) NP (A), while a necessary and sufficient condition
for BPP and AM to be different is that for almost every set A, P (A)# NP (A).

An argument similar to the proof of Theorem 5.3 yields the following result.
THEOREM 5.4. AM co-AM if and only if for almost every set A, NP (A)#

co- NPB (A) if and only iffor almost every set A, NP (A) P (A SAT).
Theorems 5.3 and 5.4 and their proofs yield the following facts.
COROLLARY 5.5. (a) BPP AM if and only if SAT is a uniform witness to the

separation, for almost every set A, of P (A) and NP (A), ifand only ifSAT is a uniform
witness to the separation, for almost every set A, of P (A) and NP (A).

(b) AM # co-AM if and only if SAT is a uniform witness to the separation, for
almost every set A, of NPB (A) and co-NP (A), if and only ifSAT is a uniform witness

to the separation, for almost every set A, of NP (A) and co-NP (A).
Other sets can serve as uniform witnesses in Corollary 5.5(a) as long as such a

set S has the property that S AM, and for every set A, P (A) NP (A), if and only
if S P (A). From the results of Book, Long, and Selman, the latter condition forces
S to be a set that is <_--hard for NP. Similarly, any set that is <--hard for co-NP can
serve as a uniform witness in Corollary 5.5(b).

The proof of Theorem 5.3 suggests a characterization of AM which is different
from that given by Nisan and Widgerson.

THEOREM 5.6. For every set A, A AM if and only if for almost every set B,
A NP (B).

A characterization of membership in AM due to Tang and Watanabe [TW89] will
be used to prove Theorem 5.6.
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LEMMA 5.7 [TW89]. For every set A, A AM if and only iffor almost every tally
set T, A NP (T).

Proof of Theorem 5.6. Recall that a tally set can be viewed as a set of nonnegative
integers in unary notation while a set over the alphabet Z {0, 1} can be viewed as a
set of nonnegative integers in binary notation. For a tally set T, let bin (T) denote the
corresponding set over Z, while for any set A

_
Z*, let tally (A) denote the correspond-

ing tally set; notice that for every tally set T, tally (bin (T))= T and for every set
A___E*, bin (tally (A))--A. Since a string over Z representing integer n has length
O(log n) and for any fixed e > 0 there are only 2 c’lgn strings in Z* of length c. log n,
it is clear that for any tally set T, NP (T) NPB (T) NPB (bin (T)).

From Lemma 5.7 one sees that for every set A, if A AM, then for almost every
tally set T, A NP (T), and, hence, for almost every tally set T, A NPB (bin (T));
thus, if A 6 AM, then for almost every set C, A NPB (C). On the other hand, for
every set C, NPB (C) NP (C). Hence, for every set A, if for almost every set C,
A NPB (C), then for almost every set C, A NP (C). Thus, if for almost every set C,
A NP (C), then A AM by Lemma 2.2(b). [-I

While to some extent Theorem 5.6 is parallel in form to Theorem 3.6, the reader
should note that the proofs involve very different ideas.

Consider what Bennett and Gill proved. For each set A, they defined a set
RANGEa and its complement CORANGEA; showed that for almost every set A,
RANGEa NP (A) PSPACE (A), CORANGEa NP (A), RANGEa P (A), and
CORANGEa P (A); and they concluded that for almost every set A, P (A) # NP (A),
NP (A) # co-NP (A), and NP (A) # PSPACE (A). The proofs depend on witnesses
whose specification depends on the oracle. Kurtz made certain observations that
indicated that the arguments of Bennett and Gill showed more than was claimed.
Generalizing on the observations of Kurtz, one sees that for every set B, the following
holds: for almost every set A, RANGEa P (A B) so that CORANGEa P (A B)
and NP (A) g P (AB); in addition, RANGEa NP (AB) but CORANGEA

NP (A B) so that P (A0) B) # NP (AB) and NP (AB) co-NP (A B). In
particular, for almost every set A, RANGEAC_p(ASAT) so that CORANGEa

: P (A SAT) and NP (A) - P (A SAT), and CORANGEa NP (AO) SAT) so that
NP (AO) SAT) co-NP (A SAT). It is clear that for every set A, NPB (A)

_
NP (A)

_
NP (a03 SAT), P (a SAT)

_
Ar(A), and P (a03 SAT) c_ NP (a03 SAT) z(a).

These facts yield the next result.
THEOREM 5.8. For almost every set A, (a) NP (A) # NP (A),
(b) [Ku83] NP (a) - P (a SAT),
(c) P (A SAT) NP (A SAT),
(d) P (A SAT) +/-(A),
(e) a(A) NP (A(R) SAT),
(f) NP (ASAT) # Z(A).
Thus, for every set A, NP (A) serves as an "upper bound" or "cover" for P (A),

and for almost every set A, NP (A) separates P (A) from NP (A). Also, BPP # AM
if and only if for almost every set A, NPB (A) lies strictly between P(A) and
NP (A).

Notice that Theorem 5.6 does not address the possibility of P (ASAT) being
included in NP (A), the possibility that NP (A) # P (A SAT), or the possibility that
P (A) # NP (A).

The following fact is obtained from Theorem 5.6, Lemma 2.2(b), and Theorem
5.8(a), and is of interest in its own right (see [BLS84]).

COROLLARY 5.9. For every set A, A AM if and only if for almost every set C,
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A NP (C) ifand only iffor almost every set C, A NPB (C). However, for almost every
set c, NP (C) NP C ).

One interpretation of Corollary 5.9 is that for every set A, NP (A)-NPB (A) is
very "thin." Since NP (A)- NPB (A) is countable, it has measure 0, so that discussing
"thinness" in a formal manner does not appear to be helpful. However, Corollary 5.9
shows that {A] NP (A) # NPB (A)} is a set of measure 1.

Corollary 5.9 states that membership in AM can be characterized by using the
operator NP( or by using the restricted operator NPB (). However, for almost every
set B, the operator NP () has more power than the restricted operator NPB ()! No
claim is made for the existence of a uniform witness in the separation for almost every
oracle set C of NPB (C) and NP (C); the proof is based on the results of Bennett and
Gill, whose separation results are oracle dependent.

The operator NPB has the property that P NP if and only if for every set A,
P (A) NPu (A). Thus, if there exists a set A such that P (A1) # NPu (A1) then P # NP.
It is conceivable that P NP, but for almost every set A2, P (A2)= NP(A2) so that
BPP= AM; this situation has not been ruled out.

Another property of NPu () is that NP co-NP if and only if for every set A,
SAT NPu (A) if and only if for every set A, NP (A) P (A@ SAT). It is conceivable
that NP# co-NP, but for almost every set A2, NPu (A2)= co-NPB (A2) so that AM
co-AM; this situation has not been ruled out.

Notice that BPP# AM if and only if for almost every set A, P (A)4 NP (A)#
NP (A), and AM co-AM if and only if for almost every set A, P (A) NP (A)
V (ASAT).

6. The Boolean hierarchy on NP. There has been a great deal of interest in the
Boolean hierarchy on NP. There are several different definitions but all are equivalent
in the sense that in each case the union of the classes so defined is the Boolean closure
of the class NP; equivalently it is the class of sets that are bounded truth-table reducible
in polynomial time to SAT, where SAT denotes any set that is V-complete for NP.
It is not known whether there are any classes in the hierarchy other than NP.
Kadin [Ka88] showed that if the Boolean hierarchy extends to only finitely many
levels, then the polynomial-time hierarchy extends to only finitely many levels.
Relativizations of the Boolean hierarchy on NP have been studied and it is known
[Ca et a188] that there is a set relative to which the Boolean hierarchy is infinite.
In fact, Cai [Ca86], [Ca87] has shown that for almost every set A, the Boolean
hierarchy relative to A is infinite. More formally, for every set A and for every
k> 0, let B,(A) denote the kth class in the Boolean hierarchy on NP (A); then
Bk(A) Bk+I(A).

The following observation is based on Cai’s proof.
PROPOSITION 6.1. For every fixed set C, for almost every set A, andfor every k > O,

B,(A C) # B,+,(A C).
The next fact follows immediately from Proposition 6.1.
PROPOSITION 6.2. For almost every set A and every k>0, Bk(A@QBF)#

Bk+I(A@QBF).
The Boolean hierarchy on QBF is the union over all k of the classes Bk(QBF)

or, equivalently, the class of sets that are bounded truth-table reducible in polynomial
time to QBF, i.e., the class PSPACE.

If Proposition 6.1 is evidence that the Boolean hierarchy on NP is infinite, then
Proposition 6.2 ought to give equal evidence that for every k>0, Bk(QBF)#
Bk+I(QBF), that is, the Boolean hierarchy based on PSPACE is infinite. But for every
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k > O, Bk(QBF)= PSPACE, so that the Boolean hierarchy based on QBF has just one
level.

Thus, it is difficult to see how to use the fact that for almost every set A, the
Boolean hierarchy relative to A is infinite to show that the Boolean hierarchy on NP
is infinite.

7. Other comparisons. Consider the problem of whether the class P is equal to
the class PSPACE, or whether the class NP is equal to the class PSPACE. Recall that
Bennett and Gill showed that for almost every set A, NP (A) is properly included in
PSPACE (A). Using arguments similar to the proofs of Theorems 3.2 and 5.3, it is
easy to show that:

(a) BPP PSPACE if and only if for almost every set A, P(A) PQUERY (A)
if and only if for almost every set A, QBF P (A); and

(b) AM PSPACE if and only if for almost every set A, NP (A) NPQUERY (A)
if and only if for almost every set A, OBF : NP (A).

The results above discuss possible relationships among the classes BPP, AM, PH,
and PSPACE. In order to consider the corresponding relationships between the classes
P, NP, PH, and PSPACE, different reducibilities must be considered, reducibilities
that can be used to characterize membership in these classes.

For two sets A, B, define A < e
=(log n-T) B if there exists a deterministic polynomial-

time oracle machine M that recognizes A relative to B, that runs in polynomial time,
and that is restricted so that for some constant c and all n, any computation of M on
an input of length n can have at most c. log n oracle queries. It is shown in [TB91]
that for any set A, A P if and only if for almost every set B, A < e

(og,-T) B.
For two sets A, B, define A <NP

--0ogn-,,) B if there exist a nondeterministic single-
valued transducer G that runs in polynomial time and a nondeterministic acceptor E
that runs in polynomial time with the following properties:

(i) there is a constant c such that for all n, on an input of size n, any computation
of (3 that produces output yields a string of at most c. log n strings;

(ii) for all inputs x, x e A if and only if E accepts (x, y), where, y is the string of
answers obtained by evaluating the characteristic function of B on each of the strings
that (3 produces on input x. It is shown in [BT90] that for any set A, A e NP if and
only if for almost every set B, A < NP

(logn--tt) B.
For every set A, let P(og)_r(A)-(BIB<-og_r)A) and let NPog)-tt(A)-

{B]B < NP A}. It is shown in [BT90] that P # NP if and only if for almost every(log n--tt)

set A, Pogn)- (A) NPlog,)-,, (A).
The reader may recall that the polynomial-time hierarchy extends to infinitely

many levels if and only if there exists a sparse set S such that the polynomial-time
hierarchy relative to S extends to infinitely many levels if and only if for all sparse
sets S, the polynomial-time hierarchy relative to S extends to infinitely many levels
[BBS86], [LS86]. Tang and Watanabe [TW89] showed that polynomial-time Turing
reducibility to almost every tally set characterizes membership in the class BPP and
that nondeterministic polynomial-time Turing reducibility to almost every tally set
characterizes membership in the class AM. It is easy to see that for every tally set T,
PQUERY (T)= NPQUERY (T)= PSPACE (T)= PQH (T); similarly, for every tally
set T, NPB (T)= NP (T). Combining these observations with the results above yields
the following fact.

THEOREM 7.1. (a) BPP AM if and only iffor almost every tally set T, P T)
NP (T).

(b) AM co-AM if and only iffor almost every tally set T, NP (T) co-NP r).
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(C) BPP PSPACE ifand only iffor almost every tally set T, P (T) PSPACE (T).
(d) AM PSPACE ifand only iffor almost every tally set T, NP (T) PSPACE (T).
Thus, if one could obtain results such as those of Bennett and Gill and of Cai for

tally oracle sets, then the unrelativized classes would be separated.
Can one use results about "almost every oracle set" to separate unrelativized

complexity classes? The results presented here provide evidence that this can be done
if the access to information from the random oracle and the use made of such
information are restricted so as to be precisely the same for both of the relativized
classes. This is a strong restriction but it may be necessary.

If there is a uniform witness to the separation, for almost every set A, of PQH (A)
from PH (A), then PH is not equal to PSPACE; and if there is a uniform witness to
the separation, for almost every set A, of NPB (A) from P (A), then BPP is not equal
to AM (so P is not equal to NP). Results such as this suggest the concept of a
"uniformity principle." This idea is consistent with the fact that the problems "is PH
equal to PSPACE?" and "is BPP equal to AM?" are uniform in nature since in each
case the answer depends on a single uniform witness.

Results such as those of Cai and of Bennett and Gill seem to depend on some
notion of a "nonuniformity principle." It is possible that the formulation of such a
principle would lead to a better understanding of the essential nature of comparing
complexity classes by considering their relativizations. This is an interesting open
problem involving the foundations of computer science.
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AN O(n log2 h)TIME ALGORITHM FOR THE THREE-DIMENSIONAL
CONVEX HULL PROBLEM*

HERBERT EDELSBRUNNERt AND WEIPING SHI$

Abstract. An algorithm is presented that constructs the convex hull of a set of n points in three
dimensions in worst-case time O(n log h) and storage O(n), where h is the number of extreme points. This
is an improvement of the O(nh) time gift-wrapping algorithm and, if h o(2"/IGg2 n), of the O(n log n) time
divide-and-conquer algorithm.

Key words, computational geometry, convex hull, three dimensions, output sensitive
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1. Introduction. The convex hull of a set of points S in three-dimensional space
is the smallest convex set that contains S. If S is finite then the convex hull of S is a
convex polytope with vertices, edges, and facets making up its boundary. The convex
hull problem is to determine the points in S that are vertices of this convex polytope
(the extremepoints of S, or ext (S)), possibly together with some ordering and adjacency
information. Finding efficient convex hull algorithms is one of the most intensively
studied problems in computational geometry (see Preparata and Shamos (1985) and
Edelsbrunner (1987) for more information). Table 1.1 summarizes the current best
results on the worst-case complexity of the convex hull problem not including the
result of this paper. The D(n log n)l lower bounds in two and three dimensions are
due to Yao (1981) and simple proofs follow from Ben-Or (1983). Matching upper
bound in two and three dimensions can be found in Graham (1972) and in Preparata
and Hong (1977). The (n/d/2j) lower bound in d_->4 dimensions follows from the

TABLE 1.1
The current best results for finding the convex hull, where n is

the number of input points, h is the number of extreme points, F is

the number offaces ofany dimension, and d is assumed to be a fixed
constant. The first part of the table shows the best results that do not

depend on h and assume the worst case over all values of h. The
second part gives the output-sensitive results.

Dimension Lower bound Upper bound

2 fl(n log n) O(n log n)
3 f(n log n) O(n log n)

d -> 4 Q(n [d/2j O(n [d/2])
O(n [d/zj log n)

2 f( n log h) O(n log h)
3 fl(n log h) O(nh)

d :> 4 f(n log h + F) O(n q- F log h)
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same lower bound on the maximum number of faces of the convex hull of n points
(see, e.g., Edelsbrunner (1987)). The O(n a/2) upper bound is a careful implementa-
tion of the beneath-beyond method due to Seidel (1981) and is also described in
Edelsbrunner (1987). The O(n ta/2 log n) upper bound is due to Seidel (1986). The
O(n log h) lower bounds in two and three dimensions are given by Kirkpatrick and
Seidel (1986). The currently best output-sensitive algorithm in three dimensions, which
takes O(nh) time, is the gift-wrapping algorithm of Chand and Kapur (1970). In d _-> 4
dimensions, O(F) is the size of the convex hull, and therefore a trivial lower bound.
The O(n:Z+ F log h) time algorithm is due to Seidel (1986).

It is interesting to note that the lower bounds of Table 1.1 in two and three
dimensions also hold for the weaker problem of finding all extreme points, without
any order and adjacency information. In higher dimensions the complexity of this
problem is considerably less than that of constructing the convex hull itself. By solving
n linear programs the extreme points can be found in O(n) time using results of
Megiddo (1984), if the number of dimensions is a fixed constant. At this point, it is
worth mentioning that in three dimensions the hard part of the convex hull problem
is to identify extreme points; thereafter, O(h log h) time suffices to construct the
adjacency and order information. This allows us to be loose in explaining what exactly
our algorithm outputs. We will design it such that it produces all extreme points plus
the pairs that define edges of the convex hull, but we will ignore the order of edges
around vertices. Because the edges define a three-connected planar graph, O(h) time
suffices to find the unique embedding (see Hopcroft and Tarjan (1974) and also
Kirkpatrick (1987)).

For the two-dimensional convex hull problem, Kirkpatrick and Seidel (1986) give
an O(n log h) time algorithm and prove it is asymptotically optimal if the complexity
of the problem is measured in terms of input and output sizes. They also raise the
question of whether there exists an O(n log h) time algorithm for constructing the
convex hull in three dimensions. Up to now, the best deterministic three-dimensional
convex hull algorithm whose complexity depends on n and h is the O(nh) time
"gift-wrapping" method of Chand and Kapur (1970). Using randomization, a concept
we do not consider in this paper, Clarkson and Shor (1989) give an algorithm running
in expected time O(n log h).

This paper presents an O(n log h) worst-case time algorithm for the three-
dimensional convex hull problem. Following Kirkpatrick and Seidel (1986), the
algorithm uses the approach "marriage before conquest" in which it first determines
how the solutions of the subproblems will combine and then proceeds to solve the
subproblems recursively. The main idea of the algorithm is to first project S onto two
carefully chosen planes. Then we use the O(n log h) time two-dimensional convex
hull algorithm to find the convex hulls for the projected points. The two two-dimensional
convex hulls are projections of edge sequences of the convex hull of S. They are used
to partition S into subsets in a balanced way. By recursively finding the convex hulls
for each of the subsets, we can get the convex hull of S.

Section 2 presents the algorithm, 3 assesses its complexity, 4 remarks on
problems caused by points not in general position, and 5 concludes this paper with
a brief discussion of the results.

2. The algorithm. Let S be a finite set of points in three-dimensional space. We
assume general position, that is, no four points are coplanar and no three points lie
on a common vertical plane. This assumption is algorithmically justified by the concep-
tual perturbation technique of Edelsbrunner and Miicke (1990). With this assumption,
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the convex hull of S is a simplicial polytope, that is, every facet is a triangle. In
addition, no edge or facet is vertical.

We call the part of the convex hull of S that can be seen from (0, 0, ) the upper
hull of S (see Fig. 2.1). Similarly, the lower hull of S is the part of the convex hull
that can be seen from (0, 0,-). Thus, both the upper hull and the lower hull are
simply connected subsets of the boundary of the convex hull of S. Indeed, the boundary
ofthe convex hull is the union ofthe upper hull and the lower hull, while the intersection
of the upper hull and lower hull is the cycle of edges that admit vertical supporting
planes.

FIG. 2.1. The upper hull of S.

The following algorithm shows how to construct the upper hull; the method to
construct the lower hull is symmetric. The union can be constructed in O(h) time once
we have both the upper and the lower hull. When we describe the procedure we assume
that the reader is familiar with the O(n) time three-variable linear programming
algorithms of Dyer (1984) or Megiddo (1983), the O(n) time planar ham-sandwich
cut algorithm of Megiddo (1985), the O(n log h) time two-dimensional convex hull
algorithm of Kirkpatrick and Seidel (1986), and one ofthe optimal planar point location
algorithms of Kirkpatrick (1983), Cole (1986), Sarnak and Tarjan (1986), and
Edelsbrunner, Guibas, and Stolfi (1986).

When we describe the algorithm we use the notational convention that a set
primed means the projection of the set onto the XY-plane. For example, S’=
{(x, y)l (x, y, z) S}. The nondegeneracy assumption that no three points of S lie in a
vertical plane implies that no two points lie on a common vertical line which guarantees
a bijection between S and S’.

ALGORITHM 3D_UPPER_HULL (S, ).
Input. S is a set of points in space. is a simple closed polygonal curve in space
whose vertices form a subset of S. ’, the projection of onto the XY-plane, is the
boundary of a simple polygon and all points of S’ lie on the boundary or inside this
polygon.
Output. The part of the upper hull of S whose relative boundary is , represented as
an edge-point adjacency list.
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Method
if IsI- 3

O: then return
1" else do a 4-division of S’ using two intersecting lines in the XY-plane;
2" use three-variable linear programming to find the triangle of the upper

hull that intersects the vertical line through the center of the 4-division;
3" project S onto the vertical plane of the first line and compute the two-

dimensional upper hull;
4: do the same for the second line;
5" project the two three-dimensional polygonal paths obtained in Steps 3

and 4 onto the XY-plane;
6: recurse inside each connected region of the thus constructed subdivision;
7: return the combination of all recursively computed upper hulls

endif.
End of Algorithm.

Below, we explain in detail each of the steps above.
Step O. If ]SI--3, then return N which, in this case, is a triangle in space.
Step 1. Use the algorithm of Megiddo (1985) to find two lines 11 and la that divide

the XY-plane into four quadrants containing about a quarter of the points each.
Because the points in S’ are in general position (no three are collinear) we can assume
that neither 11 nor la contains a point of S and that each quadrant contains at least
[[S’[/4] points. If the equations of these lines are

11" alx + by + c 0 and la" azX + bay + ca O,

then the intersection point p (Px, Py) of 11 and la is given by

C2 ba a2 c2
p,=--- and py=---.

1 b al b

Let F1 and Fa be the vertical planes that intersect the XY-plane at 11 and l (see Fig. 2.2).

FIG. 2.2. Cut by two vertical planes, F and F2.
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Step 2. Use the algorithm of Dyer (1984) or Megiddo (1983) to solve the following
three-variable linear programming problem:

minimize 3/1Px -[" 72 Py AI- ")/3

subject to ylxi q- 3/2Yi q- 3/3 -> 2’i for all (xi, y, zi) S.

The solution to this linear program is a plane F:z- 3+ 3/2y+ 3/3, such that every
point of S lies on or below F and it has the lowest intersection point with the vertical
line through point P=(Px, Py) among all those planes. The 4-partition computed in
step 1 is such that each quadrant contains at least one point (because [IS’]/4J _-> 1)
which implies that, indeed, the vertical line through p intersects the upper hull. We
can also assume that p is not collinear with any two points of S’ and thus F is unique.
By our nondegeneracy assumption F passes through exactly three points, a=
(ax, ay, az), b (b, by, bz), and c= (Cx, ey, Cz) of S, and is given by the equation

x y z 1

ax ay az 1

c Cy cz 1

=0

(see Fig. 2.3).
Step 3. Project S onto the plane F where the direction of the projection is parallel

to F fqF2. Call the obtained point set S(F) and assume a bijection between S and
S(F). Using Kirkpatrick and Seidel’s algorithm compute the two-dimensional upper
hull of S(F) and let H1 be the corresponding polygonal path in space, that is, the
vertices of H are points of S and the projection of H onto F, along F (q F2, is the
upper hull of S(F).

Step 4. Project S onto the plane 1-’2 along the direction parallel to F fq F1. Let the
resulting set be S(F2) and compute H2 in complete analogy to H in Step 3.

Step 5. Initialize H - Y. Add H, H2 and the triangle abc to H; H’ is a subdivision
of the XY-plane. Discard duplicate edges and edges whose projections lie outside ’.

FIG. 2.3. Use linear programming to find a supporting triangle.
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Build a planar point location data structure based on H’. The data structure can be
any one of the optimal methods described by Kirkpatrick (1983), Cole (1986), Sarnak
and Tarjan (1986), and Edelsbrunner, Guibas, and Stolfi (1986). Associate each region
R’i of H’ with an initially empty set Si. For every point q S, decide which region R
contains q’; put q into set S. We also add points of S to S whose projections lie on

Discard points inside a’b’e’the boundary of R.
Step 6. For every region R of H’ do H - H t.J 3D_UPPER_HULL (Si, i), where N

is the boundary of R’.
Step 7. Return H.
Before the first call of the 3D_UPPER_HULL algorithm, we find the convex hull of

S’ and let N be the three-dimensional polygonal curve that projects onto its boundary.
Remark. The fairly complicated general point location method in Step 5 can be

avoided if we exploit special properties of H and H. The partitioning of S into
subsets Si can be done in linear time since the polygonal paths, H and H, are
monotone and the two-dimensional convex hull algorithm of Kirkpatrick and Seidel
(1986) not only produces H1 and H2, but also "sorts" S into IHll and [H21 buckets.
We spend a paragraph explaining how this works.

Assume for simplicity that l is the Y-axis and 12 is the X-axis. Then H is
monotone in the Y-direction and H is monotone in the X-direction. Consider the
regions of the subdivision formed by H and H that lie to the left of H and below
H (see Fig. 2.4 where H consists of the branches labeled N and S and H consists
of the branches labeled E and W). Observe that there is a polygonal path Q that is
X- and Y-monotone and separates H from H (dotted line in Fig. 2.4); it can be
constructed in linear time from either H or H. If a point q lies in region Ri then
the vertical line through q meets Q somewhere inside Ri or the horizontal line through

and once inH we canq does so. Thus, after doing binary search twice, once in H
narrow down the search to at most two regions. If q lies below or to the right of Q
then the horizontal line has priority over the vertical line, and vice versa if q lies above
or to the left of Q. The two binary searches are done implicitly in the two-dimensional
convex hull construction and thus add no extra time to the algorithm.

FIG. 2.4. Projection of H1, H and triangle abc. H is decomposed into N (North) and S (South) and
H’2 is decomposed into E (East) and W (West), and all four branches are connected to p. Note that some
branches share common parts.
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In the remainder of this section, we argue that the algorithm correctly finds the
part of the upper hull of S whose projection onto the XY-plane lies in N’. We use
induction on the number of points in S. If IS[ 3, the algorithm is trivially correct.
When ISI > 3, every edge e (and therefore every vertex) on HI and H2 must also be
on the upper hull of S since there exists a plane that passes through e and has all
other points of S below it. For the same reason triangle abe must be on the upper
hull. Points inside triangle a’b’c’ cannot be on the upper hull because all these points
are under the facet abe and can therefore not be seen from (0, 0, +oe). It remains to
show that by partitioning S into subsets the algorithm does not lose any edges of the
upper hull.

Recall that every facet is a triangle because we assume that no four points are
coplanar. If there were an edge piPj on the upper hull and Pi Si and pj S, j, then
the projection onto the XY-plane of the edge PiP must cross some edge of H, H,
N’ or triangle a’b’c’. We then have at least four points on the same plane, violating
the nondegeneracy assumption.

Remark. It is not absolutely necessary that the points are in general position for
our algorithm to work. However, with the nondegeneracy assumption it is significantly
simpler to describe, to understand, and to code.

3. Analysis. Finally, we are ready to assess the time-complexity of the algorithm.
We start by proving a general lemma on the total cost of certain trees. Then we show
by a geometric argument that the cost of the algorithm can be modeled by such a tree
and finally conclude with the main result of this paper.

DEFINITION. Let T (V, E) be a rooted tree with a cost function c: V- [0, +oo).
If there is a constant a (0, 1), such that c(/x) _-< tee(t,) for every node/x and its parent,, then we say the cost function c is fading and ce is the fading factor.

LEMMA 3.1. In a rooted tree T V, E) withfading costfunction c andfadingfactor
c, iffor each level the sum of the costs of all nodes at this level is bounded by C, then
the sum of the costs of all nodes in the tree is at most C(logl/ ]V] + O(1)).

Proof The proof consists of two steps. We first change the shape of the tree by
repeated application of a path compression operation without increasing its total cost
nor violating the level cost bound. Then we claim that after changing the shape, the
tree has height log l/ IV] + O(1) and finish the proof.

Path compression operation. Arbitrarily pick a node v from the bottommost level
and make it a new child of one of its ancestors.

It is clear that after the application of this operation T is still a tree, c is still
fading, and the total cost of the tree did not change. To change the tree we number
its levels 0, 1, 2, etc. with the root at level zero. If some level that is not the bottommost
level has fewer than Ice -i] nodes, then we apply the path compression operation and
make v a child of its ancestor at level i- 1. This is done until level has at least [a -i]
nodes, for each but the bottommost level i. The cost of level increases only if in the
end it has exactly [a -i] nodes (except for the bottommost level which may have fewer
nodes). These [c -i] nodes have a cost that does not exceed the cost of the root and
is therefore not greater than C.

Now consider the total number of nodes in the resulting tree, where is the height
of the tree (so level is the bottommost level). We have

,- ’- (1/c)’- (1/,)’-
Ivl=> Z L-J -> Z --- ---> -Ivl.

i--o i=o 1/-I 1/-I
It follows that 1-< log l/ VI + logl/ 2 + 1, and that the total cost of the tree is at most
C(logl/. Ivl/ O(1)).
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In order to apply Lemma 3.1 to the algorithm of the preceding section, think of
the algorithm as a rooted tree whose nodes correspond to recursive calls. The cost of
a node is the time spent at this node. We will be able to argue that this cost is fading
if we can show that the number of points decreases by a constant factor from one
level of the recursion to the next.

LEMMA 3.2. In Step 5 of the algorithm, each set Si contains at most [31SI/4] points.
Proof Denote the four quadrants defined by 11 and 12 as NE, NW, SW, and SE.

We claim that each set Si contains points from at most three of the four quad-
rants. The assertion follows because each quadrant contains at least [ISI/4J of the
points in S.

Note that no line parallel to 11 intersects H more than once, and that no line
parallel to 12 intersects H more than once. Take a region R of the subdivision defined
by H and H; its boundary can be decomposed into two connected chains, one in

H and one in H. To show that R cannot intersect all four quadrants, we remove
a’b’c’, and call the remaining branches of H N (North) and S (South) and those of
H E (East) and W (West). Next, we connect each branch to point p by a straight
line segment, as shown in Fig. 2.4. These modifications can only increase regions of
the subdivision. Region R is bounded by only two of the four branches, say N and
E, and cannot intersect SW because N intersects only NE and NW and E meets only
NE and SE. [3

Using the two lemmas we are ready to give the analysis of the algorithm still
assuming general position of the points.

THEOREM 3.3. The algorithm described in the previous section constructs the convex
hull of a set S of n points in three-dimensional space in time O( n log2 h) and storage
O(n) in the worst case, where h ext (S).

Proof Let T(n, h) be the time-complexity of the algorithm, write Si for the
recursively considered subsets, and set ni Isl and hi [ext (Si)[. Then

O(n) if h-<_3,
T(n, h)--

O(n log h)+i T(ni, hi) otherwise.

Think of T(n, h) as a node in a tree, with cost n log h and children T(ni, hi). Every
time we recurse we find some new edges or facets on the convex hull, since otherwise
there is no way to partition S into proper subsets which would contradict Lemma 3.2.
So the number of nodes in the tree is at most the number of edges and facets on the
hull which is O(h).

Now, increase the cost of each node in the tree from ni log hi to ni log h. If c is
the cost of a node then, by Lemma 3.2, the cost of each child is at most [3c/4] and
therefore the cost is fading.

At any one level of the tree, the algorithm works on different polygonal regions
R’I, R, R, with boundaries ’1, , , Let IRII be the number of points
in R (that is, inside and on ), and III be the number of vertices of I. For the
total cost at this level we have

t k )Rlllogh<-- n+ E ’il logh.
i=1 i-----1

Since each I is a simple polygon, each edge of the (planar) subdivision defined by
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the 31 occurs in at most two polygon boundaries on this level. Hence,
k

2 1ll=<6h-lZ=<6n.
i=1

This implies that the cost at each level is bounded by 7n log h. Since the cost is fading,
at each level it is bounded by O(n log h), and the total number of nodes in the tree
is O(h), we have T(n, h) O(n log2 h) by Lemma 3.1.

The O(n) storage can be guaranteed if we declare H, , and S as global variables.
For other subroutine calls, such as 4-partition, linear programming, two-dimensional
convex hull and point location, O(n) storage suffices and it is immediately returned
after each call. [3

Remark. To demonstrate that the above analysis is tight, we show that there are
point sets for which the algorithm in 2 indeed takes (R)(n log2 h) time. To see this
consider the situation where the projections onto the XY-plane of extreme points form
a vr--by-x/- grid and nonextreme points are evenly distributed in the grid. Since each
call to the two-dimensional convex hull algorithm takes (R)(n log h) time, and the depth
of recursive calls is (R)(log h), the algorithm described in 2 runs in (R)(n log2 h) time.

4. Coping with degenerate point sets. As remarked earlier, point sets that are
not in general position can be (conceptually) perturbed to satisfy the general
position assumption with various definitions of this notion. For all details we refer to
Edelsbrunner and Miicke (1990) where such a perturbation method is described. Still,
there are two questions that need to be answered. First, how can we make sure that
the perturbation does not change S in a way that significantly changes its convex hull
and possibly increases the number of extreme points? Second, how does the perturba-
tion affect the implementation of the necessary primitive operations?

We start with a brief review of the main features of the conceptual perturbation
method, called SoS, of Edelsbrunner and Mficke (1990). SoS simulates an infinitesimal
perturbation of the point coordinates that removes all degeneracies relevant to the
algorithm of 2. This is done by perturbing each coordinate differently, that is, there
is a sequence of the coordinates so that the amount of perturbation of a coordinate is
astronomically smaller than that of the preceding coordinates. Furthermore, because
the perturbation is arbitrarily small everywhere, extreme points remain extreme and
interior points remain interior. However, a point that is not extreme but lies on the
boundary of the convex hull will end up either as an extreme point or in the interior
of the convex hull. The decision made by SoS is based on the point and coordinate
indices, arbitrarily assigned, and thus is by and large arbitrary.

If we accept this arbitrariness then the main theorem of this paper still applies,
even if the point set S is not in general position. However, h must be redefined as the
number of points that lie on the boundary of the convex hull, rather than the number
of vertices of the convex hull. Another way to deal with nonextreme points on the
boundary of the convex hull is to devise a sequence of the coordinates that guarantees
that nonextreme points are perturbed below the upper hull. Such schemes are possible
but tedious, and we refer to Rosenberger (1990, Chap. 5.2), where related ideas are
explicated for the two-dimensional convex hull problem.

The next and related issue is how to simulate the perturbation. This is discussed
at length in Edelsbrunner and Miicke (1990), except that they do not cover all primitive
operations needed for our algorithm. The tricky part is in Steps 3 and 4 of our algorithm,
where points are projected onto vertical planes F and F2. These planes as well as the
directions of projection depend on the input points. As a consequence, the primitive
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operations in the two-dimensional convex hull constructions are significantly more
involved than in the plain plane case, although still of constant size. A detailed study
of these operations together with possible simplifications is left as a future project.

5. Discussion. This paper presents an algorithm for constructing the convex hull
of n points in three-dimensional space in worst-case time O(n log2 h) and storage
O(n), where h is the number of vertices of the convex hull. It should be mentioned
that the hidden constant in the big-O notation is rather large, although not astronomical.
This is because the algorithms for the planar 4-partition, three-dimensional linear
programming, and output-sensitive two-dimensional convex hull construction used in
our algorithm all have large multiplicative constants.

It seems natural to ask if the time-complexity can be further reduced to O(n log h).
The bottleneck of our method is the construction of two-dimensional hulls. All
other operations can be done in time O(n). It might also be interesting to see if the
algorithm of this paper can be extended to four and higher dimensions; compare to
the O(rt z-k- F log h) algorithm of Seidel (1986).

Acknowledgments. The second author thanks Franco P. Preparata and Bernard
Chazelle for discussions on the problem of this paper.
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A GENERAL SEQUENTIAL TIME-SPACE TRADEOFF
FOR FINDING UNIQUE ELEMENTS*

PAUL BEAMEt

Abstract. An optimal (n2) lower bound is shown for the time-space product of any R-way branching
program that determines those values which occur exactly once in a list of n integers in the range [1, R]
where R_-> n. This (n2) tradeoff also applies to the sorting problem and thus improves the previous
time-space tradeoffs for sorting. Because the R-way branching program is such a powerful model, these
time-space product tradeoffs also apply to all models of sequential computation that have a fair measure
of space such as off-line multitape Turing machines and off-line log-cost random access machines (RAMs).

Key words, lower bounds, time-space tradeoff, computational complexity, sorting, branching programs
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1. Introduction. The goal of producing nontrivial lower bounds on the time or
space complexity for specific computational problems in A/’ has largely been elusive.
Also, concentration on a single resource does not always accurately represent all of
the issues involved in solving a problem. For some computational problems it is possible
to obtain a whole spectrum of algorithms within which one can trade time performance
for storage or vice versa. Thus the question of obtaining lower bounds that say something
about time and space simultaneously has received considerable study as well.

The most interesting model for studying time-space tradeoff lower bounds that
has been developed is the R-way branching program model. The R-way branching
program is an unstructured model of computation that has unrestricted random access
to its inputs and which makes no assumption about the way its internal storage is
managed. The model is powerful enough that lower bounds proven in it apply to a
wide variety of sequential computing models including off-line multitape Turing
machines with random-access input heads. A particularly convenient model for which
the lower bounds for R-way branching programs apply is that of a random access
machine (RAM) with its input stored in a read-only memory, with a unit-cost measure
of time and with its read-write storage charged on a log-cost basis.

The R-way branching program model was introduced by Borodin and Cook
[BC82], who used it in showing the first nontrivial general sequential time-space
tradeoff lower bound for any problem. They showed that any R-way branching
program requires a time-space product of 2(ne/log n) to sort n integers in the
range [1, n2].

Since [BC82], time-space tradeoff lower bounds on R-way branching programs
have been shown for a number of algebraic problems such as discrete Fourier trans-
forms, matrix-vector products, and integer and matrix multiplication [Yes84], [Abr86].
In addition to these results, Reisch, in [RS82], has claimed an improvement of the
sorting lower bound to -(n2 log log n/log n) using the same approach as in [BC82].
[RS82] presents an improvement of only one of the two key lemmas in [BC82]; this
change appears to necessitate an overhaul of the second, more complex lemma as well
in order to obtain the claimed bound. However, even this bound leaves a gap between
the upper and lower bounds for sorting.

* Received by the editors March 16, 1989; accepted for publication (in revised form) June 28, 1990.
This research was supported by National Science Foundation grant CCR-8858799.

? Computer Science Department, FR-35, University of Washington, Seattle, Washington 98195.
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The first problem considered here, the UNIQUE ELEMENTS problem, is to produce,
given an input list of n integers, a list of those integers that occur only once in the
input. No particular order is required for the output of UNIQUE ELEMENTS. It is related
to sorting, but its output provides much less information about the input than a sorted
list provides. The main result of this paper is that any R-way branching program for
UNIQUE ELEMENTS requires time T and space S such that S. T gl(n 2) and that this
bound is achievable using a simple RAM algorithm.

Borodin and Cook showed their time-space tradeoff for a somewhat unusual form
of the sorting problem and derived bounds for the usual form of sorting by a straight-
forward reduction. In this paper their problem will be termed the RANKING problem
and SORTING will be reserved for the usual form of output in which the elements are
presented in sorted order. An easy reduction of UNIQUE ELEMENTS to the SORTING
problem is shown which also yields an l)(n 2) time-space product lower bound for
SORTING. This improves the previous bounds in the amount of the tradeoff and also
improves the range of inputs for which the bound holds. In this expanded range it is
also shown that the tradeoff gap for sorting is closed, at least for R-way branching
programs, since the O(n2) time-space product is optimal.

A particularly remarkable feature of these results is the relative simplicity of the
arguments required when compared with the involved arguments used in [BC82].

2. Definitions. An R(n)-way branching program consists of a directed acyclic
rooted graph of out-degree R R(n) with each nonsink node labelled by an index
from {1,. ., n} and with the R out-edges of each node labelled 1,. ., R. Edges of
the branching program may also be labelled by a sequence of values from some output
domain. The size of a branching program is the number of nodes it has. An R-way
branching program is levelled if the nodes of the underlying graph are assigned levels
so that the root has level 0 and the out-edges of a node at level only go to nodes at
level l+ 1.

Let x =(Xl,’" ", xn) be an n-tuple of integers chosen from the range [1, R]. An
R-way branching program computes a function of input x as follows. The computation
starts at the root of the branching program. At each nonsink node v encountered, the
computation follows the out-edge labelled with the value of xi where is the index
that labels node v. (Variable xi is queried at v.) The computation terminates when it
reaches a sink node. The sequence of nodes and edges encountered is the computation
path followed by x. The concatenation of the sequences of output values encountered
along the path that x follows is the output of the branching program on input x.

The time used by a branching program is the length of the longest computation
path followed by any input. The space used by a branching program is the logarithm
base 2 of its size.

Any branching program can be levelled without changing its time and with at
most squaring its size (see [BFK+81]). Because this leaves the time used unchanged
and changes the space used by no more than a factor of 2, it will usually be assumed
without loss of generality that R-way branching programs are levelled.

Let x (Xl, , xn) be an n-tuple of integers. An input value xi is unique in x if
there is no j # such that x xj. The UNIQUE ELEMENTS problem is, given an n-tuple
of integers x as input, to produce as output a list (in arbitrary order) of exactly those
values x that are unique in x.

In addition to the UNIQUE ELEMENTS problem the following two problems will
also be of interest. The SORTING problem is, given an n-tuple of integers x as input,
to produce as output the values of the x’s in sorted (e.g., nondecreasing) order. The
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RANKING problem is, given an n-tuple of integers x as input, to produce a list (in
arbitrary order) of the ranks of all the inputs xi in the sorted order of x where xi’s
rank is output as a pair (i, rank (x)).

3. Unique elements.
THEOREM 1. Any R-way branching program computing UNIQUE ELEMENTS for

input integers in the range [1, R], where R >-n, requires time T and space S such that
S" T l)(n2).

The general outline for the proof of this theorem is essentially the same as was
used in the previous proofs of time-space tradeoff lower bounds for R-way branching
programs [BC82], [Yes84], [Abr86], [Abr87] and which was originated in the context
of comparison branching programs in [BFK+81]. The R-way branching program is
broken up into layers and each layer is considered as a collection of shallow branching
programs, one rooted at each node on the interlayer boundary. It is shown that any
shallow branching program produces many output values for only a tiny fraction of
the input n-tuples. Because the problem requires a large number of outputs to be
made, if the time is not large then a large number of outputs must be made during
some layer and therefore during some shallow branching program. The bound then
follows since the total number of shallow branching programs must be sufficient to
compensate for the small fraction of inputs for which each produces enough outputs.

Most problems for which time-space tradeoff lower bounds have been shown
require a fixed large number of outputs, e.g., n outputs are required for sorting. In
contrast, certain input vectors for UNIQUE ELEMENTS require few outputs or possibly
none at all. However, a large number of outputs is required for a sufficiently large
fraction of the inputs that the technique still applies.

It will be convenient to express the argument in a probabilistic format. Denote
the uniform distribution on [1, R] by U.

LEMMA 2. If x is chosen at random from U then

Pr[x contains >-n/(2e) unique elements]> 1/(2e-I).

Proof Let u(x) denote the number of unique elements in x and let

1 if x is unique in x,
Y/=

0 if not.

Then E[Y] Pr [Y 1]=[(n-1)/n]"-1 =(1-1/n)"/(1-1/n)> e-. Thus

E[u(x)]=E Y E[ Y] >-
i=1 i=1 e

Since there are never more than n unique elements in x, an application of Markov’s
inequality shows that Pr [u(x) > n/(2e)]> 1/(2e- 1). (For let a Pr [u(x)_-> n/(2e)].
Then a.n+(1-a).n/(2e)>E[u(x)]>n/e. Solving for a yields the desired
result.)

For the UNIQUE ELEMENTS problem, say that an output value is correct for input
x if it is the value of a unique element in x. Say that a branching program correctly
outputs at least m values on input x if all values output along the computation path
in that x follows are correct for x and at least m values are output along that
computation path.
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LEMMA 3. Let P be an R-way branching program of height <-_ n/4 where R >-_ n. Let
x be chosen at random from U. For m <-n/4,

Pr [ correctly outputs at least m values on input x] <-e-’/2.

Proof. Consider a computation path 7r in . Let Q be the set of indices of
variables that are queried along 7r and V. be the set of the first m values that are
output along 7r. Some of the values in V. can be values of variables queried along 7r

but it is possible that some values in V are not. Call the values in V that are not
values of any variable queried along 7r extra values and suppose that there are exactly
k extra values in V. Let s-n-IQ=l-k. Since IQ=l<-_n/4 and k<-_lV=l-m<-n/4, it
follows that s _-> n/2.

Assume that x has nonzero probability in U. The fact that an input x follows
the path 7r in only determines the values of the variables whose indices are in Q.
The remaining s + k variables are completely unconstrained so there are exactly nS+k
possible inputs in [1, n] that can follow 7r in . For how many of these inputs are
the values in V correct? In order for all the values in V to be correct it must be the
case that, whatever the location of the k extra values in V among the s + k uncon-
strained input variables, each of the remaining s variables must avoid all m values in

V=. Thus there are at most (n- m) choices of the remaining s variables that would
permit the values in V to be correct. Since there are exactly (s+ k)!/s! ways that the
k extra values can occur in the input,

(s+k)! (n-m)
Pr V is correct for x lx follows -] _-<.

S! n s+k

<--_ 1-

e-m/:.

Since each input follows exactly one path in , the statement of the lemma
follows. S

Proof of Theorem 1. Consider an R-way branching program N for UNIQUE
ELEMENTS. Assume without loss of generality that N is levelled. Suppose that N uses
time T and space S, i.e., N has height T and has 2s nodes. For convenience we can
also assume without loss of generality that n is a multiple of 4 and that T is a multiple
of n/4. (Since N must at least query all inputs to produce an output, T is at least n
anyway.)

Divide the levels of N into layers of height n/4 where layer consists of the
portion of the branching program from level (i 1) n/4 to level in/4. View each node
v at a level that is a multiple of n/4 as the root of an R-way subbranching program
of height n/4 consisting of all nodes reachable from v in the layer whose levels start
at v’s level.

There are T/(n/4)=4T/n layers in N. By Lemma 2, a large fraction of x in
[1, n] require at least n/(2e) output values. For each such input x, at least
(n/(2e))/(4r/n) n/(Ser) outputs must be made during some single layer. An input
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reaches at most one node at each level and so reaches the root of only one subbranching
program per layer. Now, for an input x chosen at random from U,", by Lemma 3 each
subbranching program can correctly output >=nZ/(8eT) values on x only with prob-
ability <e-(nz/16eT"). (Note that n2/(8eT)< n/4 since T_-> n.)

Consider the probability, for x chosen at random from U, that there exists a sub-
branching program in 3 that correctly outputs at least nZ/(SeT) values on input x.
Since there are only 2s nodes in , the number of subbranching programs that need
to be considered is no more than 2s and thus this probability is less than 2 s e-(n2/16eT").
But, by Lemma 2, for x chosen at random from U, the probability is > 1/(2e- 1) that
the UNIQUE ELEMENTS problem requires at least n/(2e) output values. Therefore
must have

1
2s e-(n2/16eT)

2e-1

so that S f(n2/T), i.e., ST f(n2). [3

Because the proof technique for Theorem 1 is probabilistic, it can be applied to
show that the tradeott for UNIQUE ELEMEN’rs holds for average time and space as
well (see [Abr86]) in the case that the input integers are chosen uniformly from 1, n].

Any problem for which n input variables must be read before some output is
produced requires branching program time T >- n and therefore space S => log n. Thus,
for inputs in the range [1, n], the following theorem demonstrates that the tradeott in
Theorem 1 is optimal.

THEOREM 4. For any S with n >- S >- log n there is an n-way branching program that
solves the UNIQUE ELEMENTS problem for inputs in the range [1, n] using O(S) space
and O(n/S) time.

Proof The n-way branching program is a straightforward implementation of the
following RAM program:

ALGORITHM UNIQUE ELEMENTS.
b-0
for j= to In do

for i=lto Sdo
A[i] -0

end for
for i=l to n do

if b <xi -< b+S then do

k-xi-b
if A[k]<2 then A[k]-A[k]+ 1

end if
end for

for i=lto Sdo
if A[i] 1 then Output b +i

end for
b-b+S

end for

Each of the S entries in the array A only contains either 0, 1, or 2, and the other
variables only store values that require only O(log n) bits of storage. Each of the
O(n/S) passes through the outer loop uses only O(n) time. Thus the program uses
O(S) space and O(n2/S) time. [3
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The technique of Theorem 4 does not apply if the range of inputs is significantly
larger, say [1, nO] for c > 1. For inputs in this range the best upper bound known is
an O(n2 log n) time-space product used by a number of straightforward algorithms.
If this really is the best possible then it leaves a log n gap which seems to be difficult
to close using the approach of Theorem 1 since larger ranges of inputs only increase
the likelihood that inputs are unique. It would be interesting to close this gap.

4. Sorting. Borodin and Cook’s time-space tradeoff [BC82] of S. T f(n2/log n)
for sorting n distinct integers actually holds for the RANI(ING problem on inputs in
the range [1, n]. In order to get the bound for SORTING they use an easy reduction
which uses small amounts of additional time and space from RANKING for inputs in
the range 1, n e] to SORTING for inputs in the range [1, n3]. In [RS82], Reisch’s better
bound of S. T---(rl 2 log log n/log n) is for RANKING distinct integers in the range
[1, n log n/log log n] and gives a similar reduction in the range for SORTING. The
above bounds for UNIQUE ELEMENTS will yield an improvement in both ofthese results.

With the output of the SORTING problem on inputs in the range 1, n it is possible
to solve the UNIQUE ELEMENTS problem for inputs in the range 1, n] using only small
amounts of additional storage and time. Intuitively think of the index and value of
the most recently generated output of the sorting program being stored along with a
flag bit that is if the stored value is the only one of its kind seen so far. When a new
output for the sorting problem is produced it is compared with the stored value. If the
flag bit is 1 and the compared values are different, then the stored value is output as
a unique element. The flag and the stored value are then reset appropriately.

In the context of n-way branching programs the reduction is implemented by
creating 2n copies of the program for SORTING to handle the different values of the
stored input as well as the flag bit. The test of the flag bit and of the stored output of
the sorting problem against the new one is handled implicitly since the state information
of the modified branching program will be sufficient. The edges on which outputs
occurred in the SORTING program have to be routed to the appropriate copy of the
original program and the outputs for SORTING have to be replaced by the unique
elements also where appropriate. This reduction uses no additional time and only
O(log n) additional space. Thus the following corollary of Theorem 1 is obtained.

COROLLARY 5. Any R-way branching program for SORTING for input integers in
the range [1, R], where R >-n, requires time T and space S such that S. T 12(n).

It is worth remarking that the bounds in [BC82] and [RS82] hold for distinct
inputs to the SORTING problem. However, if the range of inputs is restricted to [1, n],
as could be the case for the bound proven here, then the problems for distinct inputs
are trivially solvable. The statement to Corollary 5 does hold for distinct inputs except
that R must be at least M

2 in this case. The reduction from UNIQUE ELEMENTS to
sorting distinct values is achieved by appending an input’s index to its value as the
low order log n bits. The sorting algorithm is used as above except that outputs are
not checked for simple uniqueness but rather for uniqueness in an interval of n
consecutive values in [1, R]. In fact, in general, SORTING can be used in this same
way to solve the following UNIQUE INTERVALS problem: Given an n-tuple of integers
x in the range [1, R], produce a list (in arbitrary order) of those ie[1, n] such that
the interval [(i-1)R’+ 1, JR’] for R’= JR n contains a unique value from x.

The average case argument for UNIQUE ELEMENTS with input integers chosen
uniformly from 1/n] that was alluded to in the last section can be used to show that
the tradeoff for SORTING in Corollary 5 also holds for average time and space for
input integers chosen uniformly from 1, R] for R _-> n: The key observation is that the
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probabilistic analysis of a branching program for the UNIQUE INTERVALS problem for
a random input n-tuple in [1, R] is essentially the same as for UNIQUE ELEMENTS in
the range 1, n]. Then the reduction from the UNIQUE INTERVALS problem to SORTING
gives the desired average case lower bound tradeoit.

The following theorem shows that Corollary 5 for SORTING is optimal for input
integers in the range [1, n] although the branching program that shows this is not
obviously expressible as a RAM program, as was the case with the program for UNIQUE
ELEMENTS in the proof of Theorem 4. As was the case for UNIQUE ELEMENTS, there
is a log n gap for inputs in ranges such as {1, n2].

THEOREM 6. For any S with n >- S >- log n there is an n-way branching program that
solves the SORTING problemfor inputs in the range [1, n] using O(S) space and O(n2/S)
time.

Proof First consider the situation when S n. The output of the SORTING problem
only depends on the number of inputs of each value, not on their order in the input.
There are n_l ways of selecting k numbers in the range [1, n]. The branching
program has a root node and a node for each of the ways of selecting k inputs from
1, n] where 1 _-< k <- n. The program makes one pass through the inputs, traversing the
nodes in the obvious way. On the edges leading to each node that describes the entire
selection of n numbers, the entire sorted sequence is output. Since (n+k-ln_)< 2n+k-
the program uses O(n) space and O(n) time.

The modification of the branching program for smaller values of S gets a little
trickier. It would be nice simply to make a pass through the inputs and record how
many inputs there are of each value in the range 1 through S, then output that prefix
of the sorted list and proceed on through the ranges S + 1 to 2S, 2S + to 3S, etc. The
problem is that there might be too many inputs in some of these ranges. In order to
handle this, the program never stores more than S values below the largest value in
the range for which it is currently recording. When the (S + 1)st value is found, the
upper end of the range being recorded is lowered until the count of inputs below the
largest value in the range is at most S. At the end of the pass through the input the
portion of the sorted list corresponding to the range is output. Each range is initially
set at length S and starts where the previous range left off.

To store the necessary markers and to record the number of inputs which take on
the largest value of the range requires only O(log n) space and the record for the
remainder of the range requires at most O(S) space. Each pass through the input
either reduces the number of inputs by S or outputs the sorted list for all values in a
range of length S. Thus there are a total of O(n/S) passes through the input for a
total time of O(n2/S). [-]

5. Conclusions. This paper shows the first optimal time-space tradeoff lower
bounds for UNIQUE ELEMENTS and for SORTING that apply to any general sequential
model that has a fair measure of space, without restrictions on its mode of accessing
the inputs or on the structure of its computation. In comparison with previous work
for SORTING, the bounds are better and the argument is considerably simpler. In
addition, the UNIQUE ELEMENTS problem deals with questions of distinctness in a
direct way and arguments about it may provide intuition that will be helpful for
studying the element distinctness problem which seems to be the next natural problem
to be attacked in the area of time-space tradeoffs for R-way branching programs.

There is a sense in which the lower bounds proven here for SORTING and those
in [BC82] and [RS82] are orthogonal. The bounds in [BC82] and [RS82] hold for
RANKING as well as for the SORTING problem. There do not seem to be any reductions
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using small time and space between the RANKING and UNIQUE ELEMENTS problems,
so the previous bounds for RANKING are not improved by these results.

Clearly, the most interesting open problem in the area of time-space tradeoff is
that posed in [BC82]mnamely, to prove a nontrivial tradeoff for some decision problem
in an unrestricted unstructured model like the R-way branching program. As mentioned
above, the element distinctness problem seems to be a natural candidate. Good
time-space tradeoff lower bounds have been shown for models with unstructured
computation but restricted access to the inputs [Kar86], as well as for structured models
with unrestricted access to the inputs [BFM/87], [Kar86], [Yao88]. However, there
appears to be a big stumbling block in the way of achieving similar results for R-way
branching programs since, so far, the limit of time-space product lower bounds for
R-way branching programs has been O(nm) where n is the number of inputs and rn
is the number of outputs.

In one aspect, the inability to prove tradeoffs for decision problems may be due
to a lack of intuition about measures of "progress" for solving them; in structured
models a good measure of progress for the problem of element distinctness has led to
interesting and nearly optimal time-space tradeoff lower bounds [BFM/87], [Yao88].
However, it also seems likely that in addition to better measures of progress a more
sophisticated handling of how branching programs make their progress is also needed.
In the general framework for the time-space tradeoff shown here and in virtually all
similar tradeoffs for branching programs it is granted that every input that could make
good use of a subbranching program has been routed to the root of that subbranching
program. The recent result of Yao [Yao88] for comparison branching programs uses
a more careful accounting but it remains to be seen if even this accounting will be
effective for R-way branching programs.
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concerning these results.
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THE POWER OF ALTERNATING ONE-REVERSAL COUNTERS
AND STACKS*

OSCAR H. IBARRA? AND TAO JIANG$

Abstract. The relation between reversals and alternation is studied in two simple models of computation:
the 2-counter machine with a one-way input tape whose counters make only one reversal (1-reversal 2CM)
and the one-way pushdown automaton whose pushdown store makes only one reversal (1-reversal PDA).
The following is shown: (a) alternating 1-reversal 2CM’s accept all recursively enumerable languages; (b)
alternating 1-reversal PDA’s accept exactly the languages accepted by exponential time-bounded determinis-
tic TM’s. The first improves on the known result that alternating 1-reversal 4CM’s accept all recursively
enumerable languages. The second improves an earlier result that alternating PDA’s with no restrictions on
reversals accept exactly the exponential-time languages.

Key words, alternation, reversal, counter machine, pushdown automata, Turing machine, computational
complexity, recursively enumerable set
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1. Introduction. A well-known result in automata theory is the equivalence of
Turing machines (TM’s) and two-counter machines: every recursively enumerable
language can be accepted by a two-counter machine with a one-way input tape (2CM
for short) [HOPC79]. When the counters are restricted to make only one reversal (i.e.,
once a counter decreases its count, it can no longer increase), the power of the device
is substantially reduced. Call this restricted device 1-reversal 2CM (or 1-reversal mCM
when there are m counters, rn > 0). One-reversal mCM’s have been studied in many
places in the literature (see, e.g., [BAKE74], [CHANSla], [GURAS1], [IBAR78]).
For example, it was shown in [IBAR78] that the class of languages accepted by
1-reversal _mCM’s has decidable properties similar to those of the regular sets.
Languages accepted by nondeterministic 1-reversal mCM’s have semilinear Parikh
maps [IBAR78] and can be accepted by nondeterministic log n space-bounded TM’s
[BAKE74], [GURA81].

Generalizing nondeterminism to alternation can significantly increase the comput-
ing power of 1-reversal mCM’s. For example, it was shown in [HROM85] that P
(equal to the class of languages accepted by deterministic TM’s in polynomial time)
equals the class of languages accepted by alternating 1-reversal mCM’s in polynomial
time and that every recursively enumerable (r.e.) language can be accepted by an
alternating 1-reversal 4CM. We describe the idea behind the proof of the latter result.
Let M1 be an arbitrary 2CM. An alternating 1-reversal 4CM M2 simulates M1 as
follows. Each counter C of M1 is simulated by two counters C1 and C2 of M2. The
value of C is represented by the difference of the values of C and Cz. Incrementing
(decrementing) C corresponds to incrementing C (C2). Zero-testing of C corresponds
to checking that the values of C and C2 are equal.
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By slightly modifying the construction above, one can reduce the number of
counters of M2 to 3. In this paper, we show that, in fact, every r.e. language can be
accepted by an alternating 1-reversal 2CM. The proof uses an entirely new technique
which is much more involved. We note in passing two related results: every r.e. language
can be accepted by a nondeterministic one-way two-pushdown machine whose push-
down stores make only one reversal [BAKE74]; every r.e. language can be accepted
by an alternating 1-tape 1-counter machine (i.e., a single-tape TM with one counter)
which runs in constant reversals [YAMA87]. Our result cannot be improved in the
sense that every language accepted by an alternating 1CM (whose counter is un-
restricted) is in U c>o DTIME(cn). Alternating 1CM’s are quite powerful, even when
the counter is restricted to make at most one reversal. For example, we show that Dyck
languages on k letters [HOPC79], parenthesis languages [LYNC77], and linear context-
free languages can be accepted by alternating 1-reversal 1CM’s.

Next consider the one-way pushdown automaton (PDA). Define a 1-reversal PDA
to be one whose pushdown store makes only one reversal (i.e., once the pushdown
store pops it can no longer push). It is well known that nondeterministic PDA’s accept
exactly the context-free languages (CFL’s) and that nondeterministic 1-reversal PDA’s
accept exactly the linear CFL’s [HOPC79], the latter being a proper subset of the
CFL’s. (Linear CFL’s can easily be accepted by nondeterministic log n space-bounded
TM’s.) When we make the devices alternating, we show that alternating PDA’s are
equivalent to alternating 1-reversal PDA’s. It is known that alternating PDA’s accept
exactly the languages in U c>o DTIME(cn) [CHANSlb], [LADN84]. This can now
be improved" alternating 1-reversal PDA’s accept exactly the languages in

Ue>o DTIME(cn).
This paper only studies 1-reversal machines. Bounding the number of reversals

by a small nonconstant function of the input length, for TM’s, PDA’s, and CM’s, has
also been studied before [BAKE74], [CHANSla], [FISH68], [HART68], [KAME70],
[RYTT85]. There is renewed interest in reversal complexity because of its connection
to uniform Boolean circuit depth and parallel time (see, e.g., [CHEN87], [HONGS0],
[PIPP79]).

2. Alternating 1-reversal 2-counter machines. An m-counter machine (mCM for
short) is a one-way finite automaton augmented with m counters, m > 0. A/c-reversal
mCM is an mCM with the property that each counter reverses (i.e., changes from
increasing to decreasing mode and vice versa) at most /c times in any computation.
An alternating (/c-reversal) mCM is a straightforward generalization of a nondeter-
minigtic (/c-reversal) mCM, by allowing the machine to make not only existential
moves but also universal moves. It is known that languages accepted by nondeterminig-

tic /c-reversal mCM’s are in NSPACE(log n) [BAKE74], [GURA81]. Here we show
that alternating 1-reversal 2CM’s accept all r.e. languages. This shows that alternation
drastically increases the power of 1-reversal 2CM’s. It is well known that deterministic
2CM’s (with unrestricted counters) accept all r.e. languages. Hence the above result
shows a trade-off between two resources: reversals and alternation.

THEOREM 1. Every r.e. language can be accepted by an alternating 1-reversal
2CM.

The proof consists of first showing that every r.e. language can be accepted by a
deterministic 2CM which increases and decreases its counters in a very special way,
and then showing that this machine can be simulated by an alternating 1-reversal 2CM.
For simplicity, we will only consider binary languages (i.e., subsets of {0, 1}*). We
assume that the one-way input has a right endmarker, $. We also assume, without loss
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of generality, that a counter machine accepts an input by entering an accepting state
with the counters reset to 0.

A configuration of an alternating 2CM is a 5-tuple (q, x, i, nl, n2), where
q is the current state,
x is the input,

is the distance between the input head and the right endmarker $,
n l, n2->-0 are numbers stored in the first counter and the second counter,

respectively.

Throughout, qo denotes the initial state of a machine.
DEFINITION. Let N be the set of nonnegative integers. A relation R {0, 1}* x N

is verified by an alternating 2CM in k reversals, where k -> 0, if for every (x, i, n, n2)
{0,1}*xN3, when (qo, x,i,n,n) is given as the initial configuration, the
machine accepts if and only if (x, i, n, n2) R and the machine makes at most k
reversals.

Obviously, if a relation R is verified by an alternating 2CM in k reversals, then
the relation R r {(x, i, n, n2) l(x i, n, nl) R} is also verified by an alternating 2CM
in k reversals. We are only interested in the relations that can be verified by alternating
2CM’s in zero or one reversals. Note that, if an alternating 2CM verifies some relation
in zero reversals, it can only decrease its counters when started on the initial configur-
ation.

LEMMA 1. The relation R ={(x, i, n, n2)lx{0, 1}*, O<=i<-Ix[, and 0<n2=2nl}
and R= {(x, i, nl, n2)l x {0, 1}*, 0 -< i<=lxl, and 0< n2<_- 2n} are verified by alternating
2CM’s in zero reversals.

Proof The proof is obvious. Even a deterministic 0-reversal 2CM can perform
the verifications.

The next lemma says that an alternating 2CM can check, in zero reversals, whether
the number stored in one of its counters is a power of two.

LEMMA 2. R3={(x,i, nl,nz)lx{O, 1}*, O<=i<=lxl, 0<n_-<Zn, and n2=2 for
some m=>0} and R; {(x, i, nl, nz)lXG {0 1}*, O<=i<--Ixl, 0< n2=<Znl, and n2 2mfor
any m >= 0} are verified by alternating 2CM’s in zero reversals.

Proof We show how R3 is verified by an alternating 2CM in zero reversals. The
same idea also applies to R;.

Given (qo, x, i, n, n2) as the initial configuration, the machine first generates a
side process to verify that 0< nzN2nl, using the machine for R2. Then it guesses
whether n- 1. If the machine guesses that n 1, it verifies that the guess is correct
and accepts. Otherwise, it decrements the first counter by some d >= 0 and verifies that
n2 --2(n- d), using the machine for R1. Then it decrements the second counter by
some d2 > 0 and verifies that nl- d 2(n2- d2), and so on. The machine keeps "halv-
ing" its two counters alternately until it (nondeterministically) chooses to stop. Then
it verifies that one counter contains 1 and the other contains 2.

DEFINITION. Let n > 0 be the number contained in a counter (of some alternating
2CM). Then there is a unique pair of nonnegative integers m and d such that d < 2
and n 2m+ d. We call 2 and d the base and offset of the counter, respectively.

Lemma 2 gives a way to calculate the base of a counter in zero reversals. The
following lemma shows that an alternating 1-reversal 2CM can increase the base of a
counter without changing its offset.

LEMMA 3. R4={(x,i,n,,n)lx{O, 1}*, O<--i<-_lxl, and n=2m+d, n2=2’n+l+d
for some m >= 0 and 0_-< d < 2m} is verified by an alternating 2CM in zero reversals.
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Proof The basic idea is as follows. Given an initial configuration (qo, x, i, nl, n2),
the machine verifying R4 guesses and verifies that one of the following is true: (1)
Both counters contain powers of 2, or (2) Neither counter contains a power of 2. In
case (1), it verifies that n2 2nl, using the machine for R. In case (2), it repeatedly
decreases both counters until their values become powers of 2. Then it verifies that
the value of the second counter is twice the value of the first counter. The details of
the construction are given below.

procedure VR4(qo, x, i, n, n);
loop

do existentially
(i) do universally

(a) Verify 0< he= 2nl and both n and nz are powers of 2;
(b) exit;

end;
(ii) do universally

(a) Verify 0< n _<-2n2 and nl is not a power of 2;
(b) Verify 0 < n_-< 2n and n2 is not a power of 2;
(c) n:= nl- 1; n2:= n- 1;

end
end

endloop
end. {The end of VR4} [3

Lemma 4 shows that an alternating 1-reversal 2CM can compute exponential
functions.

LEMMA 4. R5 {(x, i, n, n)lx {0, 1}*, n >= O, and n: 2n,} is verified by an alter-
nating 2CM in one reversal

Proof The machine verifying R5 works as follows. Given the initial configuration
(q0, x, i, n, n), the machine first verifies that n: is a power of 2 using the machine for
R3. Then it decreases the first counter by 1 and divides the second counter by 2. To
do the division, the machine repeatedly decreases the second counter by until it
guesses that the counter value has reached the next power of 2. To make sure that the
guess is correct, the machine generates side processes to verify that each intermediate
value of the second counter is not a power of 2, using the machine for R, and the
last value of the second counter is a power of 2, using the machine for R3. Then the
machine decreases the first counter by 1 and divides the second counter by 2, and so
on. This process is continued until the first counter contains 0 and the second counter
contains 1 simultaneously.

The following procedure describes the detailed construction.

procedure VR5(qo, x, i, nl, n2);
do existentially

I. Verify n 0 and n2= 1;
II. do universally

(i) Verify nz is a power of 2;
(ii) {First n2 n2/2, n n + n2/2}

n:= n2- 1; nl:= hi+ 1;
loop

do existentially
(a) do universally

(al) Verify 0 =<//2 -< 2hi and r/2 is a power of 2;
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(a2) exit;
end;

(b) do universally
(b l) Verify n: is not a power of 2;
(b2) n::=n:-l; nl:=nl+l;

end
end

endloop;

{Now verify n2 2 and nl 2 + m + 1 for some m _-> 0}
loop

do existentially
(a) Verify n=2 and n2 1;
(b) {n2-n2/2, n-n-n2/2-1}

nl:=n-2; n::=n:-l;
loop

do existentially
(b 1) do universally

(bll) Verify O<-_n2<-2nl and n2
is a power of 2;

(b12) exit;
end;

(b2) do universally
(b21) Verify 0-<_ n2 -< 2n and n:

is not a power of 2;
(b22) n2:=n:-l; n:=n-l;

end
end

endloop
end

endloop
end

end
end. {The end of VR5.}

DEFINITION. Define the function num: {0, 1}* N as follows: num (ala2" an)
2 + a2n-1 + a22n-2 +" -+- an. For each string x {0, 1}*, num (x) is called the corre-
sponding number of x.

It is easy to see that the function num is one-to-one. The next lemma says that
an alternating 1-reversal 2CM can compute the corresponding number of an input and
store it in one of its counters.

LEMMA 5. R6 {(x, i, nl, nz)lX ala2" an {0, 1}*, 0 -< =< n, n 2 i, n2
num (an+l-i""" an)} is verified by an alternating 2CM in zero reversals. (Note that for
a (x, i, nl, n2) R6, if IX I, then n2 =num (x).)

Proof (sketch). The alternating 2CM verifying R6 works as follows. Given an
initial configuration (qo, x, i, n,n2), first it verifies that O<n<=n2<2nl and nl is a
power of 2. Then it decrements the first counter by some d > 0 (d is supposed to be
nl/2) and, simultaneously, decrements the second counter by d if the current input
symbol is 0, or by 2d if the current input symbol is 1. Meanwhile, it verifies that for
each d, 0 < d < d, n- dl is not a power of 2. Then the machine shifts the input head
one square to the right. Let n and n be the new contents of the counters. The machine
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repeats the above procedure for the configuration (qo, x, i- 1, n, n). This repetition
is continued until the input head reaches the right endmarker $. At that moment, it
verifies that both counters contain l’s. r3

Before giving the proof of Theorem 1, we recall how a deterministic 1-tape TM
can be simulated by a deterministic 2CM [HOPC79]. Let M be a deterministic 1-tape
TM and M’ be the simulating deterministic 2CM. Given input x, the computation of
M’ consists of two phases. In the first phase, M’ computes 2hum(x), stores it in one
counter, and resets the other counter to zero. In the second phase, M’ simulates the
changes of M’s configuration by multiplying/dividing the numbers in its counters by
2, 3, 5, or 7. Thus the second phase can be divided into a sequence of subphases such
that in each subphase, M’ decreases one counter from a positive number dl to 0 and
increases the other counter from 0 to some positive number d2. For the details of the
simulation, see [HOPC79]. Note that the input head of M’ is not used in the second
phase.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We show that a deterministic 1-tape TM can be simulated
by an alternating 1-reversal 2CM. Let M be a deterministic 1-tape TM and M1 be a
deterministic 2CM which simulates M in the way described in the last paragraph
above. We construct an alternating 1-reversal 2CM M2 to simulate M1. From the above
discussion, it suffices to show that M, when given an input x, can simulate the two
phases of the computation of M on x.

Let C1 and C2 be the two counters of M. The computation of M2 (on x) is
divided into three stages. In the first stage, m2 computes 2hum(x) and stores it in C2 as
follows. Initially both C and C2 contain zeros. M increments C by n and C by n2

for some n, n2 > 0, and verifies that nl 2Ixl and nz =num (x) using the machine for
R6. Then it increments C1 by d for some d > 0 and verifies that n + d 2hum(x) using
the machine for Rr.

In the second stage, Mz increments C2 by d2 for some d2> 0 and verifies that
3(n+ da)= n+ d2. Then it increments C by d3 for some d3>0 and verifies that
nl + d + d3 nz+ d2. (Now the base of C =the base of C2 2num(x)+l and the offset
of C the offset of C2 2num(x).)

In the third stage, M2 simulates the second phase of M’s computation by going
through the subphases one by one. We describe how Mz simulates a subphase SP.
Suppose that in SP MI changes its state from q to q2, decreases one of its counters
from dl to 0, and increases the other from 0 to d2. Also suppose that at the end of the
simulation of the subphase preceding SP, qa is remembered in Mz’s finite control, the
offset of C d, the offset of C2 do, and the base of C the base of C2 2m. (The
reader can verify that these conditions are satisfied at the end of the second stage.)

Mz increments C2 by e for some el > 0 and verifies that 2" + do + el 2m+l -k- d,
using the machine for R4. It repeats this "base-raising" process 3 times. (Now C
contains 2"+2+ d and C2 contains 2m+3+ d.) Then it increments Ca by some ea> 0
and verifies that the current base of C is 2m+3. Let d= da + e2-2m+2 (i.e., d is the
current offset of Ca). M2 guesses a state (of M) q and remembers it in the finite
control. Then it verifies that d d2 and q q, and, at the same time, initiates the
simulation of the subphase following SP.

The verifications of d= d2 and q= q are done by directly simulating the
operations of M1 in SP. M uses C1 to imitate the decreasing counter of M and C2
to "oppositely" imitate the increasing counter, i.e., when the decreasing counter of M
is decremented by 1, C is decremented by 1, and when the increasing counter of M
is incremented by 1, C2 is decremented by 1. It verifies that the offsets of C1 and C
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become zero at the same time, and the state of M1 is then q.
It is easy to see that Ms makes at most one reversal on all inputs.
Since alternating 2CM’s accept only r.e. languages, we have the following corollary.
COROLLARY 1. Alternating 1-reversal 2CM’s are equivalent to alternating 2CM’s.

3. Alternating 1-reversal 1-counter machines. Every language accepted by an alter-
nating 1CM is in U c>o DTIME (cn) [LADN84]. Although we do not know the exact
complexity of alternating 1CM’s, we can show that they are quite powerful even when
the counter is restricted to make at most one reversal. We show, e.g., that Dyck
languages on k letters [HOPC79], parenthesis languages [LYNC77], and linear CFL’s
can be accepted by alternating 1-reversal 1CM’s.

A Dyck language on k letters (k -> 1) [HOPC79] is a CFL defined by the grammar
Gk ({S}, Zk, P, S), where Z {[1, [e," ", [, ]1, ]2," ,]k} and P {S [iS]i, S --> SS,
S [i ]ill <- -< k}. The Dyck language on k letters is denoted by D. The significance
of Dyck languages arises from the fact that they form an example of a "hardest CFL"
[GREI73] using homomorphic reductions. It is known that D is in ATIME (log n)
[IBAR88]. We will show that Dk can be recognized by an alternating 1-reversal 1CM.
The proof of this result is based on a nice characterization of Dyck languages given
in the next lemma. The characterization is a variation of the one given in [IBAR88]
and is more suitable for implementation on an alternating 1-reversal 1CM. There is a
simple characterization of D1 [HOPC79]: a string is in D1 if and only if x has an
equal number of [l’s and ]l’s, and in any prefix of x, the number of [l’s is greater than
or equal to the number of ]l’s. We call a string that satisfies this condition balanced.

For simplicity, we consider only the language D2. The generalization to arbitrary
k can be carried out in an obvious manner.

DEFrVrON. Let w be a string in D1. We say that w is reducible if there are x
and y both nonnull, such that w =xy and x, y D1. If w is not reducible, it is called
irreducible.

DEFNvroy. For a string w, let wi: denote the substring starting at the ith position
and ending at the jth position. The single letter wi: is denoted by wi. Let h be the
homomorphism defined as follows: h([1)= h([e)= [1 and h(]l)= h(]e)= ]1. Let w
l<-_i<j<=[wl, and let w be a left bracket (i.e., w=[1 or [2). (i,j) is a matched pair if
w and w are compatible (i.e., if wi [1 then w ]1; if w [2 then w ]2) and h(w:)
is balanced and irreducible.

LEMMA 6. A string w is in De if and only if the following conditions hold: (i)
h(w) D1; (ii) for each 1 <-_i<-_lwl, if wi is a left bracket, then there exists a j such that
i<j<=lwl and (i,j) is a matehed pair.

The proof is an induction on the length of a string. See [IBAR88] for more details.
Using Lemma 6, we have the following theorem.
TI4ZORZM 2. De can be accepted by an alternating 1-reversal 1CM.
Proof We describe an alternating 1-reversal 1CM M accepting D2. Given an

input w, M first generates a process to verify that h(w) D1, i.e., w has an equal
number of left and right brackets, and in any prefix of w, the number of left brackets
is greater than or equal to the number of right brackets. Then M moves the input head
to the right and, for each symbol w scanned by the input head, 1 -< i_-<]w], it verifies
that if wi is a left bracket then there exists a j, i<j<=lwl, such that (i,j) is a matched
pair, i.e., w and w are compatible, wi: has an equal number of left and right brackets,
and in any proper prefix of w:, the number of left brackets is greater than the number
of right brackets.

Suppose that the input head is looking at a left bracket w and the counter is zero.
A crucial step in the above construction is that for each j, i<-j <= w, M can check
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whether the number of left brackets is greater than (=, or <) the number of right
brackets in wi:. This is done as follows. M sets the counter to wl- (by guessing and
verifying). Then while moving the input head to the right, it decrements the counter
by 2 for each left bracket scanned. Let c be the counter value when the input head
leaves wj, i<-j <=lw[. It is easy to see that the number of left brackets is greater than
(=, or <) the number of right brackets in wi. if and only if lw[-j > (=, or <) c. The
latter fact can be verified easily.

Let G’= (V, E’, P’, S) be an arbitrary context-free grammar (CFG). A parenthesis
CFG [LYNC77] G induced by G’ is G=(V,E, P, S) where E=E’U{(,)} and P=
{A-(a)IA-, is in P’}. (Assume that "(" and ")" are not in E’.) A parenthesis CFL
is a language generated by a parenthesis CFG. It was shown in [BUSS87] that
parenthesis CFL’s are in ATIME (log n). We show that parenthesis CFL’s are accepted
by alternating 1-reversal 1CM’s.

THEOREM 3. Every parenthesis CFL can be accepted by an alternating 1-reversal
1CM.

Proof (sketch). Let L be a parenthesis CFL generated by G=(V, , P, S). We
construct an alternating 1-reversal 1CM M to accept L. Given an input w, M verifies
that S w in a top-down fashion. The process is recursive and described informally
below.

Let Wi: be a substring of w. Suppose that A Wi: j. Then W "-"(" and w "),"
and w:j is of the form (Xo(a)xl’" (ak)Xk), where the Xs’S are strings over E-{(,)},
the as’s are strings overZ, andthere exist A1, ., Ak Vsuchthat As (cs), 1 =<s=< k.
The verification of A > wi.. can be done by guessing the As’s and the ending position
of each (as), and verifying that As (cs), 1 -< s _-< k, and A- (xoAx AkXk) P.
Note that the parentheses in each (as) form an irreducible balanced string. Thus the
correctness of the guessed ending position of each (as) can be verified as in the proof
of Theorem 2. We leave the details to the reader.

Now we consider the linear CFL’s. It is well known that linear CFL’s are exactly
the languages accepted by nondeterministic 1-reversal PDA’s [HOPC79]. We show
that linear CFL’s are accepted by alternating 1-reversal 1CM’s.

THEOREM 4. Every linear CFL can be accepted by an alternating 1-reversal 1CM.

Proof (sketch). Let G (V, E, P, Ao) be a linear CFG. The alternating 1-reversal
1CM M accepting the language generated by (3 operates as follows. Let w be a
string in the language. Suppose that Ao==>xAy==>xx2A2y2y:= .x
x,A,ym. yl ==>x’’ XmZym’’" y W is a derivation of w from Ao. Let d Ixil and
e, [y,I, 1-<_i-< m. For convenience, let do eo 0 and n--Iwl. M first guesses x, yl,

and A1 such that Ao-xAy P, and verifies that Wdo+:d=X and Wn_e+l:n_eo=Y!.
(By convention, let w:j--e if i>j.) Then M shifts the input head dl cells to the
right and increments the counter by e. It guesses x2, y2, and A2,’-" and so on.
Generally, M guesses x, y, and A such that Ai_-xiAiYi P, and verifies that
wa+...+ai_,+.a+...+a,--Xi and w,_ ei-l-1..Fl_el ,_=y. Note that, at this moment,
the input head is scanning Wa+...+a,_ and the counter value is e + + ei_ Thus, the
above verifications can be done easily. M then moves the input head di cells to the
right and increments the counter by e. Finally, M guesses z such that A, - z P and
verifies that Wa,+...+dm+l:n_e, em-- Z.

4. Alternating 1-reversal pushdown automata. Let NPDA (APDA) denote the class
of languages accepted by nondeterministic (alternating) PDA’s, and NPDA(k)
(APDA (k)) denote the class of languages accepted by nondeterministic (alternating)
k-reversal PDA’s. It is well known that NPDA (1) NPDA (3) NPDA (5)...
and Uk_-> NPDA (k) NPDA. For the case of alternating finite-reversal PDA’s, we
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prove that a similar hierarchy does not exist. In fact, we show that APDA (1) APDA.
Since APDA-Uc>o DTIME (cn) [CHAN81b], [LADN84], the above result implies
that APDA (1) U c>o DTIME (cn).

We will give a direct simulation of alternating PDA’s by 1-reversal alternating
PDA’s. The definition of an alternating PDA is the same as the one in [LADN84]
except that the input head movement is one-way, from left to right, and the acceptance
of an input is by empty pushdown store. (It is easy to show that the two notions
of acceptance are equivalent.) Formally, an alternating PDA is a 7-tuple M
(Q, qo, U, E, F, Zo, 6), where

Q is a finite set of states,
q0 Q is the start state,
U
_
Q is the set of universal states,

Z is the input alphabet ($ Z),
F is the pushdown store alphabet,
Zo F is the start symbol of the pushdown store,
6 is the transition function from Q ( (_J {$}) F to the finite subsets of Q {0, 1}
(F2 F U {e}), where e represents the empty string.

Again, the input is delimited on the right by the marker $. If the machine is in state
q, scanning a on the input tape and Z on the top of the pushdown store, and if
(q’, d, y) 6(q, a,Z), then the machine can enter state q’, move the input head d
squares to the right, and replace the top symbol Z by the string y. We say that the
machine is pushing if[y] > 1, idling if]yl 1, and popping if[y 0.

A configuration of M is a 4-tuple (q, x, i, c), where
q e Q is the current state,
x * is the input,
i, where 0 <-iN Ix is the distance between

the input head and the right endmarker $,
a F* is the contents of the pushdown store, where

the rightmost symbol is the top of the pushdown store.

The set of accepting configurations are those of the form (q, x, i, e). We say that M is
k reversal-bounded (or, M is an alternating k-reversal PDA) if M makes at most k
reversals (i.e., alternations from pushing to popping and vice versa) on all inputs. The
following theorem shows that the restriction on the number of reversals does not affect
the power of alternating PDA’s.

THEOREM 5. APDA (1) APDA.
Proof If suffices to show that APDA

_
APDA (1), i.e., every alternating PDA can

be simulated by an alternating 1-reversal PDA.
Let M (Q, qo, U, Z, F, Zo, 6) be an alternating PDA. To simplify the proof, we

make the following (nonessential) assumption: if D belongs to the range of 6, then
either (i) DQ{0,1}F2, (ii) D_Q{0,1}xF, or D___Q{0,1}{e}. That is,
when M makes a branch, the operations of its pushdown store are either (i) all pushings,
(ii) all idlings, or (iii) all poppings. Thus the configurations of M can be divided into
three groups: pushing configurations, idling configurations, and popping configur-
ations, according to the type of the pushdown store operations in the moves associated
with them.

Let x be an input and 7r(x) be the computation tree of M on x. The simulating
alternating 1-reversal PDA M’ simulates M on x by exploring 7r(x). The idea is as
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follows. Denote the level (i.e., height) of the pushdown store of M at a node c by
lev (c). Suppose that M’ is looking at some node c (of r(x)) which is a pushing
configuration, and intending to explore a subtree rooted at c. Denote the subtree by
Tc. Suppose lev (c)-<lev (c’) for all c’ of To, which is a pushing configuration. If
lev (c) < lev (c’) for all c’ c of To, which is a pushing configuration, M’ simulates M
faithfully. Otherwise let VALLEYc {c’ c’ of Tc is a pushing configuration, lev (c’)=
lev (c), and for all c" of To, if c" c is an ancestor of c’ and lev (c") lev (c’), then c"
must be an idling configuration}. (Intuitively, VALLEYc is the set of nodes of Tc where
the pushdown store of M returns to the same level as at c for the first time.) M’
universally generates IVALLEYcl + 1 processes. For each c’ VALLEYc, a process is
assigned to the task of exploring the subtree (of To) rooted at c’. The additional process
is for exploring the subtree obtained from Tc by pruning the subtrees rooted at the
members of VALLEYc. Note that in each of the new subtrees, the pushdown store of
M at the root is of the lowest level among all the pushing nodes (configurations). In
this way, 7r(x) is divided into a bunch of subtrees such that M makes at most one
reversal in each of them, and it is then explored directly. The difficulty is in how to
make sure that the explorations of those subtrees are combined correctly.

Now we give the details of M’. The set of states of M’ is a superset of the set of
states of M. Assume that Q f3 F , and +, $, Z are new symbols not in F. Then the
pushdown store alphabet of M’= F U Q kJ { :, $, z}, where Z is the start symbol, :
is the "counting" symbol, and $ is the "cancellation" symbol. The uses of and $
will be discussed later. The operation of M’ is described by the following procedure.
In the procedure, we use the variables STATE, HEAD, and TOP to denote the current
state, the distance between the input head and the right endmarker $, and the symbol
on the top of the pushdown store, respectively. If C (q, x, i, c) is a configuration of
M’ with q Q, then CM denotes (q, x, i, cM), the corresponding configuration of M,
where cM is obtained by erasing the symbols that do not belong to F.

procedure SIMULATE (x);
{Simulate M on x.}
Push Z/ onto the pushdown store;
STATE := qo;

UPHILL: {Let C (q, x, i, c) be the current configuration and
CM (q, X, i, cM) be the corresponding
configuration of M. Explore the subtree of 7r(x) rooted
at CM until a popping configuration is encountered.
Let Z TOP be the current top symbol.}

case of CM
popping: goto DOWNHILL;

idling: Simulate M for one step;
goto UPHILL;

pushing: loop
do existentially

(i) Simulate M for one step;
goto UPHILL;

(ii) Replace Z by some 4q’Z,
where q’ Q, 0 =<j =< i,

and (q’,x,j, aM) is
a pushing configuration of M;

do universally



288 O.H. IBARRA AND T. JIANG

(a) continue;
(b) Replace Z by SZ;

HEAD := j’ for some j’ -< i;
do universally

(bl) Verify HEAD =j;
(b2) STATE :-- q’;

goto UPHILL;
end

end
end

endloop
endcase;

DOWNHILL: {Let C and CM be as in UPHILL. Explore the subtrees of
7r(x) rooted at CM until a pushing or accepting
configuration is reached. Let q STATE be the current state.}

case of C
popping: Simulate M for one step;

if TOP F then pop until some Z F
is on the top of the pushdown store;
goto DOWNHILL;

idling: Simulate M for one step;
goto DOWNHILL;

pushing: Pop;
loop

if TOP Q then reject;
do existentially

(i) Pop until TOPS : again;
(ii) Verify that TOP--q and HEAD=number

of 4’s (in the pushdown store) following
the top symbol;
Pop until the pushdown store is empty;

end
endloop

endcase
end. {The end of SIMULATE.}

It should be noticed that, in procedure SIMULATE, "simulate M for one step"
means that M’ universally (existentially) branches if M universally (existentially)
branches. It is not hard to show that the procedure can be implemented on an alternating
1-reversal PDA.

Procedure SIMULATE consists of two blocks: UPHILL and DOWNHILL. For
a given input x, UPHILL is used to explore the subtrees of 7r(x) consisting of pushing
and idling nodes (configurations). During the exploration, every time M’ is looking
at a pushing node (call it e), it guesses whether there are some pushing nodes where
the pushdown store of M returns to the same level as at e for the first time. If M’
guesses that there are no such nodes, it faithfully simulates M for one step. Otherwise,
it guesses those nodes and does the following for each of them nondeterministically,
one at a time, and then simulates M for one step. Let c’ be a node that M’ has guessed.
First it guesses and records the configuration of M at e’. Since the pushdown store of
M at c’ is the same as at e, only the input head position (in the form of : i) and state
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(in the form of q) need to be pushed onto the pushdown store. Then it universally
generates two processes. The first process is to continue the current work at c. When
this process reaches e’, the input head position and state of M at c’ must be at the
top ofthe pushdown store and it accepts. The second process is to initiate the exploration
starting at c’. Since a configuration may be repeated many times, there is a danger that
the second process reaches some node where the configuration of M is the same as
the one at c’, and accepts because the input head position and state of M at c’ are
stored at the top of the pushdown store. This may lead to the acceptance of some
inputs which are not accepted by M. To resolve this problem, before the exploration
starting at c’ is initiated, the marker $ is attached to the segment (i.e., q) representing
the input head position and state of M at c’, to indicate that the segment has been
"canceled." Note that since M’ can make at most one reversal, it cannot simply
erase 4 q.

DOWNHILL is used for exploring the subtrees of r(x) consisting of popping
and idling nodes. When M’ is simulating a popping move of M, the symbols that do
not belong to F are considered as "garbage" and erased whenever they appear on the
top of the pushdown store. When it encounters a pushing node, M’ verifies that the
input head position and state of M at that node are consistent with the ones (which
have not been canceled, i.e., no $ is attached) stored at the top of the pushdown store.
If there are several input head position and state pairs stored at the top of the pushdown
store consecutively (i.e., not separated by some ZF), it nondeterministically chooses
one and checks the consistency.

The correctness of SIMULATE can be verified by using induction on the number
of reversals that M makes in a computation tree.

It is known that APDA=two-way APDA (=the class of languages accepted
by alternating two-way PDA’s) ASPACE (n) c>0 DTIME (c n) [CHAN81b],
[LADN84]. From Theorem 5, we have Corollary 2.

COROLLARY 2. APDA (1) two-way APDA ASPACE (n) U c>0 DTIME (cn).
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INTERPOLATION AND APPROXIMATION OF SPARSE MULTIVARIATE
POLYNOMIALS OVER GF(2)*

RON M. ROTH? AND GYORA M. BENEDEK$

Abstract. A function f: {0, 1} {0, 1} is called t-sparse if the n-variable polynomial representation of

f over GF(2) contains at most monomials. Such functions are uniquely determined by their values at the
so-called critical set of all binary n-tuples of Hamming weight >-n [log2 t] 1. An algorithm is presented
for interpolating any t-sparse function f given the values off at the critical set. The time complexity of the
proposed algorithm is proportional to n, t, and the size of the critical set. Then, the more general problem
of approximating t-sparse functions is considered, in which case the approximating function may differ
from f at a fraction e of the space {0, 1} n. It is shown that O((t/e). n) evaluation points are sufficient for
the (deterministic) e-approximation of any t-sparse function, and that an order of (t/e)(t’e) log n points
are necessary for this purpose, where a (t, e)=> 0.694 for a large range of and e. Similar bounds hold for
the t-term DNF case as well. Finally, a probabilistic polynomial-time algorithm is presented for the
e-approximation of any t-sparse function.

Key words, interpolation of sparse polynomials, approximation of sparse polynomials, learning of
Boolean functions, Reed-Muller codes

AMS(MOS) subject classifications. 41A05, 41A10, 68Q20, 68R99, 94B35

1. Introduction. Consider a Boolean function f’{0, 1}n-{0, 1} which maps a
vector [Xn-lXn-2... X0] into f(xn_, xn-2,..., Xo). One common way to classify such
functions is by the minimal number for which there exists a t-term disjunctive normal
form (in short, t-term DNF) expression equivalent to f; that is, an expression consisting
of an inclusive OR of up to products (AND) of variables, each variable possibly
complemented (NOT). Another way of classifying Boolean functions is by the number
of nonzero monomials in the (unique) n-variable polynomial representation off over
GF(2),

2n--1
in-1 i,1-2 io(1) f(xn-, Xn-2, Xo) E fi Xn-lXn-2 X" 0

i=0

where & in-in-2.. i0] is the n-bit binary representation of i, and summation is carried
out over GF(2) (XOR). An n-variable Boolean function f is t-sparse if the number
of nonzero monomials in the polynomial representation (1) of f is at most t.

In this work we first address the problem of interpolating t-sparse functions, that
is: Given n, t, and the values of a t-sparse function f at a subset P of {0, 1}", can f be
determined uniquely? If so, is there an efficient algorithm (i.e., in time complexity
polynomial in n, t, and IP]), by which f can be retrieved?

These questions arise in several applications, e.g., in the study of function learnabil-
ity and inductive inference [1], [2], [13]-[15]. In this model, a "student" tries to
"learn" an underlying function f, given the values off at some set of points P

_
{0, 1 }".

Knowing the value of n (and, sometimes, t), the question is whether the student can
retrieve f efficiently out of its values at P.

In 2 we show that, for the unique interpolation of f, the set P must contain a
"critical set" consisting of all binary n-tuples of Hamming weight =>n-[log2 t]- 1.
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This result applies to the nonadaptive setting, where the points of evaluation do not
depend on values off at previously-queried points. It turns out that adaptive schemes
do not yield any significant reduction in the number of necessary queries. The existence
of such a critical set has been proved (independently) also by Clausen et al. in [4].
Our result is somewhat stronger, showing that finding the parity of the truth table of
f requires at least as many evaluation points as required for finding the truth table itself.

In 3 we present a deterministic nonadaptive algorithm which retrieves the
underlying function f out of its values at this critical set in O(t. n. -’l+[lg2tJ(7)) biti=0

operations. Establishing the correspondence between the interpolation problem and
the decoding of certain error-correcting codes, our interpolation algorithm may also
serve as a [syndrome-based] decoding algorithm for Reed-Muller codes [9, Chap. 13].
We conclude our interpolation discussion by showing that, for fixed > 1, deciding
whether there exists a t-sparse function passing via a given (arbitrary) set of evaluation
points is NP-complete ( 4).

Interpolation algorithms have been presented also by Ben-Or and Tiwari [3],
Clausen et al. [4], and Grigoriev, Karpinski, and Singer [6]; however, in their model,
f is evaluated at n-tuples over an extension field GF(2m) (in which case evaluation
points can be shown to be sufficient), whereas in our case the evaluation points are
confined to n-tuples over the ground field GF(2). This extension field model has been
motivated, in part, by the fact that the size of the critical set is nonpolynomial in n
and t.

Another way of overcoming the nonpolynomial nature of Boolean interpolation
is by considering the more general problem of approximating Boolean functions. In
this scheme, we may end up with a function f whose truth table differs from that of
f at less than e. 2 entries for some (prespecified) 0< e-<_ 1. This scheme is widely
used in the context of function learnability, with the functions usually being represented
as DNF expressions.

Much work has been done on the (still unresolved) problem of finding an efficient
algorithm for the t-term DNF approximation [8], [11], [13]-[15]. The last two sections
in this paper are devoted to the t-sparse polynomial approximation problem. In 6
we present an approximation algorithm which, given n, t, e, and a (small) probability
p of failure, finds an e-approximation for any t-sparse function with probability >_-1-p,
requiring O((tZnZ/e) log (tn/p)) bit operations. We believe that this result may shed
light on the t-term DNF approximation problem as well, and it exhibits one of the
advantages of the polynomial representation in studying the learnability of Boolean
functions.

Preceding the presentation of the above algorithm, we obtain in 5 lower and
upper bounds on the number of evaluation points required for the approximation of
t-sparse functions. We show that O(( t e n) points are sufficient for the (deterministic)
e-approximation of any t-sparse function, and that an order of (t/e) (’’)" log n points
are necessary for this purpose, where ce (t, e) => 0.694 for a large range of and e (Thms.
5.1, 5.3). Similar bounds are derived for the t-term DNF case as well.

2. Background and basic results. Given a function f over {0,1} n, let f&
[fofl...f2n-1] denote the column vector of coefficients of f as defined by (1) and let

/(0,..., 0, 0, 0)
f(0, ,0, 0, 1)

F: f(0, ,0, 1, 0)

f(1, ,1", 1, 1)
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denote the truth table of f Let A be the 2 x 2 matrix given by

and define the 2nx 2 matrix An as follows: Ao[1] and, for n >_-1, An - A(R)An_,
where (R) stands for the direct (or Kronecker) product of matrices. For instance,

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

Writing f as a polynomial in

(2) f(xn_,, x,_2, Xo) fo(Xn--2, Xn--3, Xo)-[- Xn--1 L(Xn--2, Xn--3, Xo),

it is easy to show by induction on n that for every function f over {0, 1}n, F Anf [9,
Chap. 13, 2]. Also, since An Al, we have f AnF and, in particular, the parity of
the number of l’s in F is equal to the coefficient of Xn-Xn-2’’" XO in the polynomial
representation of f

Remark 2.1. It is sometimes convenient to use the following equivalent definition
of An. Given two binary n-vectors i= [in-in-2... io] and [jn-ljn-2..-jo], we say
that is dominated by i, denoted j=__i, if jk <- ik for all 0_-< k_-< n- 1. It can be readily
verified that An[i,j]= 1 if and only if j=_i, with and standing for the binary
representations of and j, 0_-< i, j <_- 2 1 [9, Chap. 13, 2].

The t-sparse interpolation problem can now be formulated in the following coding
theory terms. Assume that the values off are given at some points in {0, 1} n. These
values can be written as a binary /-tuple s Hf, known as the syndrome of f, where
H is an 2 submatrix of An. The interpolation process can now be viewed as the
decoding of the vector f given the vector s. In order to achieve unique interpolation,
every 2t columns of H must be linearly independent, or else there would be two
distinct t-sparse functions f and f2 such that Hf Hf2. On the other hand, if every
2t columns of H are linearly independent, then s determines f uniquely, provided the
latter is t-sparse. Therefore, H must be a parity-check matrix of a binary linear code
of length 2n, dimension _->2n- 1, and minimum distance _->2t + 1.

The above discussion leads us to the well-known relation between the interpolation
problem and Reed-Muller codes [9, Chap. 13], which we briefly summarize below.
For every u {0, 1}n, denote by w(u) the Hamming weight of u. Let S(n, r) be the set
of all vectors u{0, 1} with w(u)>-_n-r and let V(n, r)[S(n, r)[--i=o (7) (when
r > n or r < 0 we define ()___a 0). From the properties of the Pascal triangle it is easy
to verify the identity V(n, r) V(n 1, r) + V(n 1, r 1).

Now, let H,r be the binary V(n, r) 2" matrix consisting of the rows of An whose
indices are of binary representation S(n, r), with the order of these rows maintained
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as in A.. It is easy to verify that

The matrix Hn, is known as the parity-check matrix of the binary (n- r-1)st order
Reed-Muller code of length 2n, the minimum distance of which is 2r+l. The next lemma
is a direct corollary of the known properties of Reed-Muller codes.

LEMMA 2.1. For l_-<t=<2n, the V(n, l + [logz t] values of a t-sparse function
f’{0, 1}"-{0, 1} at S(n, 1+ [log2 t]) are sufficient in order to determine uniquely any
such function f

Proof This follows from the fact that every 2t columns in H,,l+tog2, are linearly
independent.

The following lemma is the converse of Lemma 2.1. Moreover, we show that
finding the coefficient of xn_X,_z’"Xo in f requires as many evaluation points as
required for finding f itself.

LEMMA 2.2. In order to find the parity of the truth table of any t-sparse
function f" {0, 1 }" - {0, 1 }, 1 -< _-< 2 ", the values off should be specified at all points of
S(n, +/og t] ).

Proof First, [1 1... 1] is the only evaluation point distinguishing the zero func-
tion from x,_x,_2’’’Xo. Now, let 0<r=<l+[log2t] and assume that z
[00.a_0 11... 1] is not one of the evaluation points. Denote by )j the complement of

the variable xj, and define the functions f and g by

(4) f(Xn-1, Xn--2, Xo) n--2n--3 n--r" Xn--r--lXn--r--2 Xo

and

(5) g(Xn_l, Xn_2,... Xo) - Xn_ n_2n_3 ,-r" Xn-r-lXn-r-2" Xo"

It is easy to see that the (nonzero) sumf+ g (=n-1 "f) vanishes at all points of {0,
except z. Substituting 1 + xj for g in the right-hand sides of (4) and (5), and expanding
the expressions thus obtained, we conclude that f and g are both t-sparse functions
taking the same value at every evaluation point. On the other hand we have w(F)= 2,
whereas w(G)= 1.

We can therefore summarize with the following theorem.
THEOREM 2.1. For 1 <--_ <= 2", the V(n, 1 + [log2 t] values of a t-sparse function

f’{0, 1}"-{0, 1} at S(n, 1 + [log: t]) are necessary and sufficient in order to determine
uniquely any such function f

We now turn to the adaptive case, where the points of evaluation may depend on
values of the underlying function at previously queried points. In such a scheme, any
interpolation procedure can be described in a form of a tree: Each vertex corresponds
to an interpolation query, whose result determines which one of the successive subtrees
we should pick next. Each leaf in the tree is associated with at most one n-variable
function, and every t-sparse function must be associated with at least one leaf.

Let Vo be a leaf corresponding to the zero function, let lo be its distance from the
root, and let Po denote the lo interpolation points queried from the root up to Vo. For
unique interpolation, none of the nonzero t-sparse functions should vanish at Po.
Following similar arguments, as given in the proof of Lemma 2.2, we obtain the lower
bound lo >-- V(n, [log2 t] ). This leaves quite a marginal benefit, if any, in using adaptive
interpolation algorithms, compared with the nonadaptive case.

3. Interpolation algorithm for t-sparse functions. There exists a well-known decod-
ing algorithm for Reed-Muller codes, based on majority logic circuits [9, Chap. 13,
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6, 7]. However, this algorithm is not suitable for our purposes, as its time complexity
is proportional to 2n. Instead, we describe a recursive procedure for solving deterministi-
cally the n-variable t-sparse interpolation problem: given the values of a t-sparse
function f: {0, 1}"--> {0, 1} at the critical set specified in Theorem 2.1, the algorithm
retrieves f in O(t. n. V(n, 1 + [log2 tJ)) bit operations. A similar algorithm has been
discovered recently by Hellerstein and Warmuth [7] also.

The procedure, named INTERPOL, is presented in Fig. 1. Given an underlying
n-variable t-sparse function f, the input to INTERPOL consists of the number of
variables n, an integer r such that 2r- 1, and the vector s Hn,rf of values of f at
S(n, r). The output of INTERPOL is the support F of the coefficient vector f, i.e., the
set of indices of the nonzero entries of f.

The first steps of INTERPOL check whether either r or n is zero, in which case
s is a scalar and, therefore, f can be determined in a straightforward manner. Note
that when r 0 and s 0 there is no solution for f, causing the procedure to raise the
"failure" flag.

In case both n and r are nonzero, we enter the recursion stage. Let fo and fl
denote the first and second halves of the coefficient vector f, each fj being a vector of

procedure INTERPOL(n, r, s) output: F;
/,

Interpolation algorithm for n-variable t-sparse functions, <-2r- 1.
s Hn, rf, where f is the t-sparse underlying (interpolated) function.
F is the support of f, i.e., the set of indices of the nonzero entries of f.
The procedure returns an error code "’failure" in case there is no t-sparse function f satisfying s Hn.rf.

,/
begin

if 0 then
if [0] then F-Q else return "failure"
/* An empty set (F=) corresponds to f-=0. */

else if n 0 then
if then F {0} else F
/* F={0} corresponds tof 1. */

else begin

So the V(n 1, 1)-prefix of s;
s+ <--the V(n- 1, r)-suflix of s;
F+ INTERPOL(n 1, r, s+);
if ("failure" while finding F+) then return "failure"
else begin

Fo INTERPOL(n 1, 1, So);
F,-Fo@F /* &(FoUF+)-(Fo(F+) */;
if IFol + IF1] => 2 or ("failure" while finding Fo) then
begin

s2- [the entries of of indices i2n-1, i6 S(n, r- 1)];
S S0 "q’- S2
F1 INTERPOL(n 1, r- 1, s);
F0 Fl@ F+
if Ifol/lf[>-2 or ("failure" while finding F1) then

return "failure"
end;
F-{il i F or i-2"-tF1}

end
end

end;

FIG. 1. Procedure INTERPOL.
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length 2n-1. The basic idea is to find f by computing the two vectors fo and fl using
recursive calls to INTERPOL. In order to find these vectors, we first issue the call
INTERPOL(n- 1, r, s/), where s/ is a vector consisting of the last V(n 1, r) entries
of s. This corresponds to interpolating the (n- 1)-variable polynomial f/, associated
with the vector f/---a fo+fl (and represented by its support F/). Interpolation failure
at this stage indicates that is greater than 2r- 1.

Wenowperform a second call to INTERPOLwith the parameters INTERPOL(n 1,
r-1, So), where So is a vector consisting of the first V(n- 1, r-1) entries of s. If no
failure has occurred at this call, the computed set Fo is the support of fo, allowing us
to compute the support F of fl fo+ f+ (or, in set notation, F Fo F). The sum
of the sizes of Fo and F now determines whether a third call to INTERPOL should
be made. Such a call, when required, recalculates the sets Fo and F. To do this, we
need to compute an intermediate vector s2 which consists of the entries of s of indices
i2n-l, iS(n,r-1) (note that s2 is of the same length (V(n-l,r-1))
as the previously obtained vector So). The set F1 is recomputed by the call INTER-
POL(n-1, r-1, s), where s =So+S2, and then Fo is updated accordingly. At this
point we must have w(f) IFol 4-IF1]-<- 2 1, unless was not in the right range in the
first place. Finally, the support F of f is obtained as the union of Fo and a 2n-l-offset
ofF1.

To summarize, given n and t, the interpolation of t-sparse functions f over {0, 1}
is carried out first by querying the values s- H,/tog and then calling INTERPOL
using the parameters INTERPOL(n, 1 + [log t], s).

LEPTA 3.1. Let f be a t-sparse function over {0, 1} and let r be an integer such
that <= 2 1. Given the values s H,f offat S( n, r), the output of INTERPOL(n, r, s)
equals the set of indices of the nonzero coefficients off.

Proof. Consider first the case when r 0. Here must be zero and, therefore, both
f and s must be zero. Hence, if s 0, our assumption on the range of is readily not
satisfied, in which case INTERPOL returns "failure."

Assuming from now on that r > 0, we continue the proof by induction on n. When
n 0, we have either f-= 0 or f-= 1, according to the value of the scalar s (note that r
might be greater than n).

Now suppose that both n and r are nonzero. Recalling the definitions of fo, fl,
and f+, by (3) we have So H-l,-lfo and s+= Hn_l,rf+ Hn_l,r(fo4-f). Note that our
assumption on implies w(f/) -< =< 2 1 and, therefore, by the induction hypothesis,
the execution of INTERPOL(n- 1, r, s/) will end up with the support F/ of f/.

Second, we find either fo or f, and then solve for the other half. Note that at
least one of these vectors must have weight <--t/2<=2r---l. Suppose first that W(fo) <
w(fl). Noting that So-- Hn-,r-lfo, the induction hypothesis implies that the execution
of INTERPOL(n 1, r 1, So) will result in the support Fo of fo, allowing us to calculate
the support F of f. Now, if, indeed, w(fo)=<2-- 1, all the above executions of
INTERPOL must end successfully (i.e., without the "failure" flag raised) and, therefore,
we must have
(6) IFol / IF, W(fo) / w(fl) --< 2r- 1.
Furthermore, since there exists at most one solution f of weight 2r- 1 to s--Hn.f,
the existence of a solution fo for So Hn,rfo, with a vector fl f/ + fo satisfying (6), is
a sufficient criterion for a successful interpolation of f.

Now, suppose that (6) does not hold, or that the execution of INTERPOL(n 1,
r 1, So) returns "failure" at one of its recursion levels. This implies that w(fl) =< 2r- 1
and, therefore, f should be recovered successfully by INTERPOL. The corresponding
vector s ____a Hn_l,r_lf can be found by observing that Hn_,r_ is a submatrix of Hn_,
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hence, sl can be written as the sum of So and the vector s2 consisting of the entries of
s of indices i=>2n-l, i S(n, r-1). Now, failure to satisfy (6) this time implies that
w(f) _-> 2 r, in which case INTERPOL returns "failure."

THEOREM 3.1. The interpolation of n-variable t-sparse functions can be carried out
in O(t. n. V(n, 1 + [log2 t])) bit operations.

Proof Let -(n, r) denote the number of bit operations required while executing
INTERPOL(n, r, s). We assume that set operations are bounded by the size of the sets
times n, and that s is sorted according to ascending order of indices i, S(n, r). Note
that given such an index i, its successor can be evaluated by the rule - + [2 n-r-wi+l]
(where [. stands for the ceiling function), and it takes O(n. V(n, r)) bit operations
to generate all such indices i. This rule can also be used to extract s2 out of s in
O(n. V(n 1, r 1)) bit operations. We thus have

’(n,r)=’(n-l,r)+2. ’(n-l,r-1)+O(n. V(n-l,r-1))+O(n’2min"’r)),

with the initial values -(0, r)= O(1) and -(n, 0)= O(n). It follows by induction on n
that there exists a constant/3 such that

’(n,r)<=fi.(Zr+-l).(n+l) V(n,r).

Hence, we conclude that the execution of INTERPOL(n, 1+ [log2 t],s) involves
O(t. n. V(n, 1 + [log2 t])) bit operations.

4. The Interpolation Decision Problem is intractable. The time complexity of the
procedure presented in 3 is polynomial in n when is fixed. This observation can
be put in contrast with the next theorem which establishes the intractability of the
t-Interpolation Decision Problem (in short, t-ID), defined as follows: Given a fixed
integer t, an instance ofthe problem consists of an integer n and a subset R {(vi; s)}=
of {0, 1}n {0, 1}. The problem is to decide whether there exists an n-variable t-sparse
function f such that f(v) s for all 1 _-< _-< m.

THEOREM 4.1. For any fixed t> 1, the t-Interpolation Decision Problem is NP-
complete.

The proof of Theorem 4.1 is carried out, in part, by a reduction from the so-called
Hypergraph t-Colorability Problem (in short, Hyper-t-Col) to the t-ID Problem. For
fixed t, an instance of the Hyper-t-Col Problem consists of a finite set Q and a collection
c= {Q1, Q2,..., Q,,} of subsets (or constraints) Q Q. The problem is to decide
whether there exists a function (or coloring) A:Q-{1,2,..., t}, such that each Qi
contains two elements y and z for which A(y) A(z). A similar reduction is used in
11 to show the intractability of the problem of deciding whether there exists a t-term
DNF passing via a given set of points.

LEMMA 4.1 [5, p. 221], 11 ]. For every fixed >-2, the Hypergraph t-Colorability
Problem is NP-complete.

Lemma 4.1 holds even when each Q in % is of size _-<3. Without loss of generality
we can also assume that every Q is of size _->2 and that the Q are distinct. This means
that I <- V(n, 3) (n + 1), where n

LEMMA 4.2. For 2 and 3, the t-ID Problem is NP-complete.
Proof First, it is easy to verify that the t-ID Problem is in NP. Now, we use the

following reduction from the Hyper-t-Col Problem to the t-ID Problem. Given
an instance (Q={qo, q,...,q,-}, c) of the Hyper-t-Col Problem, let u=
[Ui,o U,l... u,_l] {0, 1}" be the characteristic vector of Q-Q, 1-<i<_-]]. That is,
u, 0 if and only if q Q. Also, let e denote the vector in {0, 1} of weight n- 1
whose zero is at location j, 0 <-j <_- n 1. The corresponding instance of the t- ID Problem
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is now given by (n, R(o,)), where
A n--1)b=o u{(.,,R(Q,W) {(ej, 1

Note that ]R(Q,>[ < V(n, 3).
The proof of the validity of the reduction is very similar to the proof in 11 ], and

it is presented here for the sake of completeness. First, assume that (Q--
{qo, ql,..., q,-}, c) is t-colorable by a coloring X" Q-{1,2,..., t}. We show the
existence of a t-sparse function f" {0, 1}" - {0, 1} which passes via the set R(Q,>. Let
f be the n-variable polynomial defined by f=’l= T, where each Tl is a monomial
given by

T1 I-I x,
s.t. x(qj)=/:l

and Tl & 1 if all the q are colored by (in which case c must be empty). Clearly, each
variable x is missing from exactly one monomial (Txq)) and, therefore, T(e)=
(1, x(qj)), where 6( .,. stands for the Kronecker delta function. We thus havef(ej) 1
for all 0=<j -<_ n 1. Now, let Q , letui [U,o u, u,,_] be the characteristic vector
of Q-Q and suppose, to the contrary, that f(u)= 1. This implies Tt(u)= 1 for at
least one and, therefore, we must have u, 1 for every j such that x(q)# I. Hence,
whenever u, 0 we have x(q)= l, implying that all the elements of Qi have the same
colora contradiction.

We now show that the existence of an n-variable t-sparse function f satisfying
f(v) s for every (v; s) R(o, implies the existence of a valid coloring of Q. Suppose
that such a function f exists, and write f=kI=l T, k<=t (<-3), where each T is a
nonzero monomial in the variables xj, 0=<j <-n- 1. First, we show that if xj appears
in f at least once, then it must be missing from exactly one monomial. Indeed, assume
that x appears in T implying Tl(e)=0. Since f(e)=k

/=1 Tl(ej)= 1, we must have
T/(e) 1 for exactly one monomial T/, 2 =< 1-< k, the only monomial from which xj is
absent. Therefore, every variable xj which appears in f can be assigned a well-defined
index l(x) of the monomial T/ from which it is missing.

Now, define a coloring X" Q-{1, 2,..., t} as follows. If x appears in f, then
x(q) =/(x); otherwise, assign x(qj) 1. We now show that the above is indeed a valid
coloring of Q. Suppose, to the contrary, that there exists a constraint Qi such that
l’(qj) lo for all qj e Q. Assume first that, for some q Qi, the corresponding x appears
in f (in which case lo l(xi)), and let u be the characteristic vector of Q-Q. Since

x appears in each TI, lo, we have f(u)= T(u)=0. This means that for at least
one variable xr appearing in T, the corresponding entry U,r in u must be zero, implying
qr Qi. On the other hand, /(Xr) l0 and, therefore, x(q,.) lo, contradicting the
assumption that all elements of Q are colored by lo.

It remains to consider the case where there exists a constraint Q c such that
neither of the variables x, corresponding to q Q, appear in f Now, since f(u) --0,
f must have an even number of nonzero monomials. Hence, for every q Q, the
corresponding vector ej satisfies f(e)= 0, resulting in a contradiction. [-1

ProofofTheorem 4.1. To complete the proof of the theorem we present a reduction
from the t-ID Problem to the (t+2)-ID Problem. Let (n,R,) be an instance of the
t-ID Problem; the corresponding instance of the (t+2)-lD Problem is given by
(n + 2, R,+), where

R,+e={(llv; s) l(v; s) Rt}
{(00...0; 0)}
U{(0100... 0; 1), (1000... 0; 1)}

(the size of R+2 is, therefore, ]Rt[+ 3).
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To prove the validity of the reduction, we must show that there exists an n-vari-
able t-sparse function f satisfying Rt if and only if there exists an (n +2)-variable
(t + 2)-sparse function ft+2 satisfying R,+2. Indeed, if f satisfies R,, then

f,+(x,+,, x,, x,_, Xo) - x,+,x, f,(x,_, Xo) + x,+ + x,

satisfies Rt+2.
On the other hand, let ft+2 be an (n + 2)-variable (t + 2)-sparse function satisfying

R,+2. Since f+2(0, 0,..., 0)= 0 and f,+2(0, 1, 0, 0,..., 0)=f+2(1, 0, 0, 0,..., 0)= 1, we
can writer+2 4) + xn+ + xn, where b is an (n + 2)-variable t-sparse function containing
neither the linear terms x,+l and x,, nor the constant 1. We now define the t-sparse
function f:{0, 1}" - {0, 1} by f(x)__a b(11 x). Since f+2(11 v)=f(v) for every v

f must satisfy R,.
By the proofs of Lemma 4.2 and Theorem 4.1 it follows that Theorem 4.1 still

holds even if we restrict the size of R {(vi;si)}i to be smaller than V(n, 3). When
S(n, 1 + [log t]) is contained in R, however, the t-Interpolation Decision Problem is
easy to solve.

5. Approximation of Boolean functions. In the following sections we consider the
problem of approximating t-sparse functions f: {0, 1}n- {0, 1}, given the values of f
at various evaluation points in {0, 1}. Let F and G be the truth tables of two functions
f, g {0, 1} - {0, 1}, and let e be a real number in the interval (0, 1 ]. We say that f and
g are e-close if w(F+G)< e. 2, or, equivalently, if Prob If(x) g(x)] < e, where x is
chosen uniformly from the space {0, 1}. Given a function f, any function g which is
e-close to f will serve as an e-approximation off Two functions which are not e-close
are said to be e-far.

A set P of points in {0, 1} is called an e-approximation set for t-sparse functions,
if every two t-sparse functions f, g: {0, 1} -{0, 1}, taking the same values at P, are
necessarily e-close. Having such a set P and the values of a t-sparse function f at P,
we can e-approximate f by taking any t-sparse function g whose truth table coincides
with that of f at P. On the other hand, consider a set Q of points in {0, 1} such that
knowing the values of any t-sparse function f at Q is sufficient for finding an (e/2)-
approximating function f for f In such a case, Q must be an e-approximation set,
since every two t-sparse functions f and g whose truth tables coincide at Q have the
same (e/2)-approximating functions f. By the triangle inequalityf and g must therefore
be e-close.

We begin by obtaining bounds on the minimum size L(n, t, e) of any e-approxima-
tion set for t-sparse functions over {0, 1} (note that our discussion in the foregoing
sections corresponds to the special case e _-< 2-). As in the interpolation case, we shall
concentrate on the nonadaptive model, pointing out that similar bounds can be obtained
for the adaptive case as well.

Let f: {0, 1} - {0, 1} be a t-sparse function with each monomial being a product
of at least k variables. Then, it is easy to see that the truth table of f is of Hamming
weight _-< t. 2-k. On the other hand, by the properties of Reed-Muller codes we have
the following lemma.

LEMMA 5.1. Let thepolynomial representation ofa nonzerofunctionf: {0, 1} - {0, 1}
consist of a sum of monomials, each being a product of at most k variables. Then, the
truth table F off satisfies

w(F) => 2"-k"



300 R.M. ROTH AND G. M. BENEDEK

Proof The vector F is a nontrivial linear combination of columns of A, (cf. 2)
whose indices are of Hamming weight _-<k. Now, these column vectors are exactly the
rows of H,,k. Therefore, F is a nonzero codeword of the kth order Reed-Muller code
of length 2" (which is the dual of the (n k 1)st order Reed-Muller code [9, p. 376])
and, as such, its weight is at least 2"-k.

Let F(n, t, k) denote the set of all t-sparse functions f:{0, 1}" {0, 1} such that
each monomial in the polynomial representation off is a product of at most k variables.
Note that iff and g are two distinct functions in F(n, t, k), thenf-gF(n, 2t, k)-{0}
and, therefore, by Lemma 5.1, f and g are 2-k-far. Hence, any two such functions
should not take the same values at any e-approximation set. Setting k L-log2 e J, we
obtain the following information bound

(7) L(n, t, e) >-_ L(n, t, 2-k)>-loglF(n,t,k)l=log V(V(n, [-log eJ), t).
For a large range of values of n, t, and e, we can obtain a tighter lower bound

on L(n, t, e) which is presented in Theorem 5.1, following the next definitions.
Let H:[0, 1]- [0, 1] be the function given by

if x=0

H(x)= x. log2 x-(1-x) log2 (1-x) if0<x-<,
otherwise

and, for 0_-< p <- 1, let E(p) be the curve in the real plane defined by

E(p)&{(6, tx)lH((1-tx)B)= p" (I+6H(/x)),0-<<_-I,0<_-/<_-1/2}.
Using the notations Pl ((5-,,/)/10) 0.276 and p2& ((5 +,{)/10) H((3- vr)/4)
0.509, we now define the function y [0, 1 --> [0, 1 by

(1-p). H(p/(1-p)) if0=<p_-<pl
(8) y(p)= log2 ((1 +x/-)/2)(0.694) ifp <p<-p.

max,,)zo) {H(6)/(1 + 3H(/x))} if p < p <= 1

Fig. 2 depicts y(p) versus p. Some of the properties of y(. are summarized in
Lemma 5.5 and Remarks 5.1-5.3 below.

1.0

0.694

Pl I)2

FIG. 2. "y(p) versus p.
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THEOREM 5.1. For t>0 and e(0, 1], let ce(t, e)& y((log t)/(log(t/e))). Given
any fixed 0 > O, there exists an integer ’, depending only on O, such that

whenever e < and z <= t e <= 2 n.
Here 12(g(n)) stands for an expression which is bounded from below by a. g(n)

for some positive constant a. When t/e << 2 and e-<_ 1/n (for some fixed positive
constant e), (9) becomes

L(n, t, e)=fI((t/e) (t’- log n).

On the other hand, when e is constant (independent of n) the information bound (7)
yields a better bound than (9). Note also that the range t/e >-2 has been excluded
from Theorem 5.1 (see, however, Remark 5.4 below); in fact, in this range of parameters
the values of the underlying functionf can be specified at all points of S(n, 1 + [log2 tJ
(Theorem 2.1), still obtaining an algorithm whose time complexity is polynomial in
and 1/e. As the proof of Theorem 5.1 is rather long, we postpone it to the end of this
section.

The following is the analog of Theorem 5.1 for the t-term DNF case. Let
LDNF(n, t, e) denote the minimum size of any DNF e-approximation set, i.e., a set
P {0, 1} such that every two t-term DNF functions over {0, 1} n, taking the same
values at P, are necessarily e-close.

2n--1THEOREM 5.2. (i) For e <- and t e <

(10)

LDNF(n, t, e) >= -. t/e) log2 n+ 1--1og2 (t/e)+4e
2n--1(ii) For e < and t/ e >=

Liyv(n, t, e) (2").
The proof of Theorem 5.2 is presented after that of Theorem 5.1.1
The following theorem establishes a nonconstructive upper bound on L(n, t, e).
THEOREM 5.3. Given n, t, and 0< e < 1,

L(n, t, e)<-[lg V(2n’ 2t)]-log (1 e

and, therefore,

L(n, t, e)= O((t/e) n).

Proof Let K denote the set of all 2t-sparse functions f over {0, 1} with w(F)=>
e. 2 n. It is sufficient to show that if L is an integer not smaller than the right-hand
side of (10), then there exists an L 2" submatrix H of An (cf. 2) such that for any
fK we have Hf0.

For every f K there exist less than (1-e) 2 rows a in An for which a. f 0.
Therefore, for every integer L there exist less than (l-e) L. 2nL- IKI distinct Lx2
matrices H, with rows taken from An, such that Hf=0 for at least one f in K (here
H may contain the same row of An more than once). Now, [gl--< V(2L 2t) and, so, if

(11) (l-e). 2n. V(2n, 2t)=<2n,

Due to integer roundings, the proofs of Theorems 5.1 and 5.2 yield slightly better lower bounds than

the ones stated in the above theorems. However, for the sake of clarity, we chose to state these theorems
in their present form.
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we can always find an L x 2 matrix H for which Hf # 0 whenever f K. The theorem
now follows by taking the logarithms of both sides of (11). [3

The t-term DNF analog of Theorem 5.3 takes the form of the following theorem.
THEOREM 5.4. Given n, t, and 0 < e < 1,

2. log ( i=o 2i" (n))
LDNF(n, t, e) < --O((t/e). n).

-log (1 )
Proof The proof here is similar to that of Theorem 5.3. Let FDrF denote the set

of all t-term DNF functions over {0, 1} n. Given an integer L and two functions f,
f2 FDrF which are e-far, there exist less than (l-e) L. 2"L ordered multisets P of L
points in {0, 1}" such that both f and f2 take the same values at P. Hence, if

we can always find a DNF e-approximation set of size <=L. The theorem now follows
2 (2-).by the inequality [FDrF[----<]i=0

We now turn to the proof of Theorem 5.1, starting with a series of lemmas.
LEMMA 5.2. Given integers n, m, r, and s, where 2 <= m <-_ n and 0 <= r <-_ m, let B be

an L x n binary matrix such that every L x m submatrix ofB contains among its rows at
least V(m, r)-s distinct elements of S(m, r). Then,

L>= V(m-2, r-1) (log2 (n-m+2)-log2 (1+ 2V(m-2, r-1)

A special case of this combinatorial result, for r m and s 0, was proved in 12].
Proof For every u S(m- 2, r- 1), let Lu denote the number of rows of B whose

(m-2)-suffix is equal to u, and let C. denote the L.x (n-m +2) submatrix of B
consisting of the (n-m+2)-prefixes of these rows (in case L.=0, C. denotes an
"empty" matrix). Assuming that L. > 0, let M. denote the number of pairs of identical
columns in C., and let N denote the number of distinct columns in C., each such
column appearing n times in C., i= 1, 2,..., N. We have

N

(12) ni=n-m+2,
i=1

and

2 M.=2 2=2 ni--2ni
i=1 i=1

Since N. =1 n ni we thus obtain

2. Mu=>- n
i=1

v (2) (n_ m +2)2
i=1 N

-(n-m+2),

or

(n--m+2)2

2Mu+n-m+2
On the other hand, we must have Lu >= log2 N to allow N distinct columns in C..

Therefore,

2)L">-lg2 2//-+ -;2



INTERPOLATION AND APPROXIMATION OF POLYNOMIALS 303

yielding

L._-> log2( (_---m+2)2L=>
uS(rn-2,r-1) uS(m-2,r-1) \ Mu + n m + 2

(13)
2 V(m 2, r 1) log2 (n rn + 2) log2 (2Mu + n m + 2).

uS(m-2,r--1)

Let ci and cj be two identical columns (if any) in Cu. These two columns define
two row vectors, namely, [0 1 u] and [1 0 u], both in S(m, r), which are missing from
the L x rn submatrix of B consisting of the ith and jth columns, together with the last
rn- 2 columns of B. Enumerating over all pairs of columns out of the first n-m + 2
columns of B, we obtain

(14) 2. Mu<=S
uS(m-2,r-1) 2

Since the logarithmic function is convex, we can use Jensen’s inequality [10,
p. 277] to obtain

2uS(m--2,r--1) log2 (2Mu + n rn + 2)
V(m-2, r-1)

<__ log2 (ZuS(m_Z,r_,) (2Mu + n m + 2))V(m-2, r-1)

( 2-’uS(m-2"r-1))u)(15) =log2 (n-m+2)+
V(m-2, r-

,4) ( s.(.-+))__=< lo82 (n-rn+Z)+vi_Z,r_l).

(s.(n-m+l) )=log2(n-m+2)+log2 +2;(_2,712
Combining (13) and (15) we thus obtain

L>-2 V(m-2, r-1).log2(n-m+2)

-V(m-2, r-1) log2(n-m+2)+log2 1+2(_2,;1)
=V(m-2, r-1) log(n-m+2)-log2 1+2(_2,;21)

LEMMA 5.3. Given n, t, and 2-’_-< e <_-1, let k = [-log2 e] and let m and r be
integers satisfying the following two conditions"

(i) max (k, 2) <-_ m <- n; and
(ii) there exiscs an integer l, O<-l<-r, such that 2m-. V(r, 1)+ V(m,r-l-1)<-_2t.

Then,

L(n, t, e) >: V(m 2, r 1). log2 (n m + 2) -log2 1 + (n- ---, r 1)

Proof Let L L(n, t, e) and let B be an L x n binary matrix whose rows form an
e-approximation set of size L. Let rn and r be integers satisfying conditions (i) and
(ii), and let C be an L x rn submatrix of B consisting, say, of the last rn columns of
B. We now claim that C contains among its rows at least V(m, r)-2"-k+ 1 distinct
row vectors of S(m, r).
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Assume, to the contrary, that 2m-k such rows are missing from C, say the rows
m--1

zi [Zi, m-lZi,,,-2... Zi,0], 1 <--i<--2m-k. For each z we associate a term thi 1-Is=o Y,s,
where y,s =xs if z,= 1, and yi,= otherwise. It is easy to verify that for every
u {0, 1}’, the(u) 1 if and only if u z. Substituting 1 + x for in b, and expanding
the expressions thus obtained, each b becomes a sum of up to 2 monomials.

For each i, 1 <- <- 2m-k, let sci denote the sum of those monomials in bi which are
products of at most m r + variables, where is an integer guaranteed by condition
(ii). Write b -i bi and sc-a- i : and let _a_ b-:. It can be verified that sc is a sum
of up to 2m-k" V(r, 1) monomials and r/ is a sum of up to V(m, r 1) monomials.
Hence, by condition (ii), b is 2t-sparse. On the other hand, the truth table of th, when
regarded as an n-variable function, is of weight 2m-k" 2n-m>- e" 2 and so, b can be
written as a sum of two functions which are both t-sparse and e-far, contradicting the
fact that they take the same values at an e-approximation set. Since the above discussion
applies to any L x m submatrix C of B, we can now apply Lemma 5.2 with s 2m-k 1,
thus concluding the proof of the lemma. [3

When k-n we can set m=n and r-l=l+[log2t] in Lemma 5.3, yielding
L(n, t, 2-n)-> V(n-2, [log2 tJ), which, in view of Theorem 2.1, is quite close to the
true value. Theorem 5.1 is virtually a restatement of Lemma 5.3, optimizing with respect
to m, r, and l, and using the following well-known approximation of V(n, r) (see, for
instance, [9, p. 310]).

LEMMA 5.4. For every two integers n and r l n, 0<= I <- 1,

n. H(/z)-1/21og2 (2n) =<log2 V(n, r)<-_n H(tz).

LEMMA 5.5 Let , Wl, w2" [0, 1] x [0, 1] - [0, 1] be given by

H(3)
/(,)

1 + H()’

0)1 ((, /./,
A

1 + ,SH(/.)

and

(.D2 t, [d, --A H((1 -/)6)
1 + H(/.)

For any pc[0, 1], let DI(p) and D2(p) be the sets of pairs (6, Ix) in the unit square
[0, 1 x [0, 1 defined by

(16) Di(p)={(6, tz)6[O, 1]x[O, 1]lp>-toi(6, tx)}, i=1,2,

and let y* [0, 1 - [0, 1 be defined by

(17) y*(p)A max {q(6,/x)}.
(6,/x) D1 (p) f-] D2(p)

Then,

y*(p) >= y(p), p [0, 1],

where 3’(" is defined by (8).
Proof Let XI(p) and X2(p) be the sets given by

X,(p) a__ {(3,/a,) Dl(p)f"] D2(p) I/z --> 1/2}
and

(18) X2(p) =a {(,/z) G Dl(p) ["] D2(p) ]/z =<1/2},
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and let the functions yl, y2:[0, 1]- [0, 1] be defined by

(19) yi(p) max {q(6,/)}, i= 1, 2.
(a,)X(p)

Clearly, y*(p)=max {yl(p), y(p)}.
We start by analyzing the function (. ). Given p [0, 1], X(p) is equal to the

set of pairs (6,/) [0, 1 x [1/2, 1 satisfying both

(20) p _>- w1(8,/) w|(8, 1)
1+8

and

(21)

Note that (20) is independent of/., as is the expression q(8,/z) q(8, 1), which is to
be maximized in (19) to obtain yl(p). Also, (21) is satisfied for every p and 8 if/z 1.
Therefore, by (19) and (20) we can write

(22) yl(p) max {q(8, 1)}.
O6<=min {1,p/ (1 --p)}

The maximum value of q(., 1) in the interval [0, 1] is attained at 8o 4 ((3 -,,/)/2),
in which case q(8o,1)=logz((l+,f)/2)0.694. Hence, for p->pl=wl(8o,1)
8o/(1+8o) ((5-/)/10) 0.276, we have y|(p)=q(8o, 1)=log2 ((1 +,,/)/2). Since
q(8, 1) is monotonously increasing when 8 < 8o, the maximum in (22) for p_-< pl is
attained when 8 p/(1 -p). Hence,

y,(p)={(1-p).H(p/(1-p)) if0p--<pl
log2 ((1 +,,/)/2) if p < p _--< 1’

implying y(p) y(p) for 0 -< p <_-- P2.
We now turn to the function T2(" ). For every 8[0, 1] and /z _-<, we have

8H(i)<-8<=H(8/2)<-H((1-tz)8) and, therefore, (18) boils down to

X2(p) {(8,/) [0, 1] x [0, 1/2lip --> o(a, )},

implying yz(p) --> y(p) for p2 < p --< 1. Therefore, y*(p) >- y(p) for every p
Remark 5.1. Referring to the notations of the last proof, we can verify that the

functions y and /2, and therefore y and y*, are all nondecreasing. Indeed, for any
p =< fi we have Xi(p)

_
X(), i= 1, 2.

Remark 5.2. For fixed 8, both 0(8, ) and co2(8,/z) are monotonously nonincreas-
ing with respect to , whereas w|(8,/z) is monotonously nondecreasing. Hence, if
(8(p), tz(p)) is a pair attaining the maximum in (17) for a given p, we can assume that
8(p) and/z(p) are such that p w2(8(p), tz(p)). We thus have

*(p) O(a(p) /z(p)) H(8(p))
(23) -> 1"

p Wz(8(p),#(p)) H((l-p.(p))8(p))-

that is, y*(p) is always above (or on) the line p--p. Furthermore, it can be readily
verified that both 8(p) and /z(p) are nonzero, unless pc{0, 1}, implying a strict
inequality in (23) whenever p e (0, 1).

Remark 5.3. Similarly,

(24) Tz(P) max q(8,/z) max 0(8,
p O2(,/J,)
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i.e., T2(P)- )’(P) whenever p2 < p-<-1. Note also that

/92 092 60’ 10

and that

(25) Te(P2) -> + oH(1/2)
log2

In fact, by applying Lagrange multipliers on (24), it can be verified that (25) holds
with equality; this implies that 3’(’) is continuous (even ditterentiable) within the
interval [0, 1] and that y*(p) is actually equal to y(p).

Proof of Theorem 5.1. Given n, t, and e, let h & [log2 tJ, k - [-log2 e] (->2) and
a h/(k + h). By the continuity of y(p) for every 0 > 0 there exists an integer No(0)/9---

such that

cr(t,e)=Y\log(t/e) <= y p+ 1) <- y(p)+ O/2
k+h

whenever k+ h -> No(O). Therefore, we choose r to be at least 2 u()+, allowing us to

replace the exponent c(t, e)-0 in (9) by 3/(0)-0/2, thus simplifying the analysis in
the sequel.

Given n, k, and h, let m, r, and be integers satisfying the following three conditions:
(a) k<-m<-n;
(b) 2m-k. V(r, l)=<2h; and
(c) V(m,r-l-1)<=2h.
Using the notation or(m, k, r) - 2m-k-l/V(m 2, r- 1), by Lemma 5.3 we have

(26) L( n, t, e -> V(m 2, r 1) log2 + r( rn, k, r)
n-m+2

for any m, r, and satisfying (a)-(c). We now maximize V(rn-2, r-l) under the
above three conditions.

Let x l r > 0. By Lemma 5.4, (b) is implied by 2m-k. 2rq(’)--< 2h and so, we can

k+h-m](27) r=
H(/x)

<A <1 andLet rn be in the range 1/2(k + h) -<_ m -<_ k + h, and define A a m/(k + h), 5

1-

,H()’

that is, A =(1 + H(/))-1 and, by (27), r= [6. m].
For any 01 0 there exists an integer N(O) such that

og V(m-2, -)=og v(;(k+ )-2, [. ;(+)] -1)

_-> ;(+ ) (n()- 0,)

< fi < 1 we can set " to be at least 22u,)+ inwhenever (k+h)N(O). Since =
which case

(28) V(m-2, r-1)2+)u)-*.

set
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Hence, whenever t e >= z we have

(29) V(m-Z,r-1)>=- (t/e)t,
where/3 is any constant satisfying

H(6)
t_-< 0,: (, )- 0,

1 + 6H(/z)
(recall the notations of Lemma 5.5).

Plugging the values of ,,/x, and 6 into (c), we obtain the following condition

(30) V(h(k+h), (1-/z). 6. ,(k+h))<=2,
which implies (c). By Lemma 5.4, (30) is satisfied when h(k+h). H((1-tz)6)<:h,
and, by the definition of p, we thus obtain the condition

H((-))
(3) p_>-h. H((1-)) o(, ),

1 + H()
i.e., (6,/z) 6 D2(p) (see Eq. (16)). Hence, at this point, (31), together with the definition
of r in (27), guarantee conditions (b) and (c).

Refer now to condition (a). Clearly, m =< n since we require m =< k + h <: n. As for
the lower bound on m, it can be easily verified that the inequality k-<_ m (k + h) is
satisfied if

/4()p_-> o,(6, ),+ /4()
i.e., (6, tz)6 D,(p).

Now, let 0 be fixed in the interval (0, 1] and let po satisfy y(po) 0/2. We
distinguish between the following cases.

Case 1. 0 <: p < po. In this case we have a (t, e) 0 =< y(p) 0/2 =< 0 and, therefore,
the theorem follows from the information bound L(n, t, e)--O(log n) (Eq. (7)), which
holds for any >= 1 and e-<.

Case 2. po =<p=<l-0. Let (6=6(p),/x=/z(p)) be a pair which attains the
maximum in (17). Note that, since (6, tz)6 D(p)fqDz(p), conditions (a), (b), and (c)
are satisfied. By Remark 5.2 we also have

for all po -< p :< 1- 0. Therefore, there exists a positive constant 02, depending only
on 0, such that p<:q,(6, tz)+oo(6,1)-O. This allows us to bound cr(m,k, r) from
above by

log2 o-(m, k, r) m k 1 log2 V(m 2, r 1)
(28) k + h
-<_ k- -(k+ h)(6(, )-+ /4()
<-_ (k+ h)(p-qt(6, t.)-wa(6, tz)+ 0,)- 1

02- O<=-(k+h)(O2-O,)-l <:-k 1
1 -po

(assuming 0 => 0). Hence, we can set 0 min (0, 02), z => 2(1 Po)/02, and, by Lemma
5.5,/3 y(p) 0/2 <= y*(p) 0, (in (29)), yielding

3,(p)--0/2 ce(t/e)--OV(m-2, r-1)=> (t/e) >:-. (t/e)
and (assuming z-> 1)

o(m, k, r)<- /.
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Case 3. 1-0<p<-l. Set r=m=h and 1=0; for these values we have
h,V(rn 2, r- 1) . 2 and it is easy to check that conditions (b) and (c) are satisfied.

Condition (a) holds since, for this range of p, we have k =< h < n (assuming 0 =< 1/2). On
the other hand,

and

and

(t/e) "t’)- <= (t/e)- _<- 4.2k+h)-) 4- 2 (h/t’)(-) <= 4.2h

o-(rn, k, r)
2,,_2

21 k < 4e.

In Cases 2 and 3 we thus have

V(m -2, r- 1) f(( t/ e ’t’)-)

tr( m, k, r) <- (/-e.

Recalling that log n rn + 2) -> log n + 2 k h >- log n + 2 log2 t/e )), the theorem
is now implied by (26).

Remark 5.4. We now consider briefly the case where t e > 2n, e => 2-n. Referring
to the notations of the last proof, our proof fails if the optimal value for rn turns out
to be greater than n. When k+h<=n(l+O/2) we can still repeat the proof with
k’= [k/(1 + 0/2)] and h’= [h/(1 + 0/2)], yielding

L(n, t, e) O((t/e)""-).
Assume now that k+ h > n(1 + 0/2). Recalling that m =(k+ h)/(1 + H(/x)), we thus
have to add the following condition

k+h
(32) l+6H()_->

to conditions (a)-(c) while maximizing V(m-2, r-1) in (26) (note that, since k_<-n,
equality in (32) implies condition (a)). Instead of going through the steps of the proof
of Theorem 5.1, we can obtain a simpler bound by assuming equality in both (31) and
(32), resulting in the combined condition

(33) l+6H(tz)_ 1 H((1-/x)6)
k+h n h

For h < n there exists a unique solution (6,/x) to (33), satisfying
k hH-’() +-

1- H(/.t)

and when h n we can take 6 1. The lower bound is now obtained by plugging the
solution for 3 into the right-hand side of

L(n,t,e)>= V(m,r)-2"-+l V(n, [6. n])-Zn-+l,
the latter bound being a simplified version of Lemma 5.3. Finally, noting that n k <
h-nO n(H((1-tx)6)-O/2), we have

L(n, t, e)>=2")-/4)-2"a-’)a)-/2)=)(2
for every fixed 0 and for sufficiently large n (compare with part (ii) of Theorem 5.2).
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Proof of Theorem 5.2. (i) The proof is similar to that of Lemma 5.3. Let L
LDNF(n, t, e) and let B be an L x n binary matrix whose rows are the elements of a
DNF e-approximation set of size L. Let k& I-log2 e] (->2), h [log2 t], and m
k+ h + 1, and let C be an L x m submatrix of B consisting (say) of the last m columns
of B. We show that C contains among its rows at least 2"--2h+1+ 1 distinct vectors
of {0, 1}m.

Assume, to the contrary, that 2h+l distinct row m-vectors are missing from C, and
let 4i Hm_- yi,, _-<i__-< 2h+l y, {x, ff}, be as defined in the proof of Lemma 5.3
Let v denote the inclusive OR operation and define the two functions

2 2h+l

f= V and g= V b,
i=1 i=2+1

both over {0, 1} n. Note that for i l, qSi and bl (regarded as functions over {0, 1}") do
not take the value 1 simultaneously at any point of {0, 1} n. Therefore, the truth table
of b =f+ g is of weight 2h+l 2 2-k. 2 -> e. 2. On the other hand, our contrary
assumption implies that 4 takes the zero value at every evaluation point. It follows
that the truth tables of f and g coincide at each evaluation point, in spite of the fact
that they are e-far.

Substituting r=m=k+h+l<-log2(t/e)+l<n and s=2+1-1 in Lemma 5.2,
we obtain,

L>=2t’+h-l (log2 (n+ l-k-h)-logz (l +
(34) >- 2k+h-1 log +

n+l-k-h

>-" (t/e) log2
8 n + 1 log2 t e)

(ii) Suppose that e < and that t e >_-2n-1 The idea is to find t’ and e’ such that
t’ =< t, e =< e’ < 1/2, and 2n-2 =< t’/e’ < 2n-1. Having done that, we substitute k’
and h’---a [log t’J in (34), thus yielding

LDNF(n, t, e)--> LDN(n, t’, e’)

--> 2’+h’-l log2 ( n + 1 --1 k’ h ’+ 2 ’-1

1 1 )-l> 2n-4 logz
n+l k’- h’+2’-I

--> -" 1og2

Indeed, assuming that n->4, set e’=max(e, 22-") (<1/2) and t’= [e’. 2"-2]. We
thus have t’/e’>=2"-2, e’>= e and t’=max (1, [e. 2"-2])_-<max (1, e- 2"-1)_-< (assum-
ing # 0). Furthermore,

1
2_

t’ e’ 2n-2+l
2_+

E E E

as required. [3

The discussion in this section can be extended easily to the adaptive scheme as
well. In particular, the proof of Lemma 5.3 and, consequently, of Theorem 5.1 and
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Theorem 5.2, apply also to this case, except that the approximated function is now
2t-sparse (or 2t-term DNF).

6. Probabilistic polynomial-time approximation algorithm. In this section we
describe an algorithm for finding e-approximations of t-sparse functions over {0, 1} n.
The algorithm is adaptive and, given a (prespecified) probability p of failure, its running
time is O((t2nZ/e) log(tn/p)) bit operations. The approximation is carried out by
actually finding monomials of the underlying function which are "short," i.e., each is
a product consisting of few variables.

Given a function f {0,1}" {0,1}, for every u{0,1}, O<=l<-n, we associ-
ate a function f. defined as follows: For /=0 we have f-f, where denotes the
"empty vector." Now, given f., u {0, 1} , < n, we define f.o and f.l by the unique
decomposition

(35) f.(x,_,_, x,_,_, Xo) =fo0(x,__,..., Xo) + x,_,_ o(x,_,_, Xo)

(see Eq. (2), 2). In particular, when l= n, f. is a coefficient of f. We now define a
binary directed tree T(f) whose vertices correspond to f., u U ’=o {0, 1}, and for
# n we have edges directed from f. to the two vertices f.o and j.. Clearly, f=f

is the root of T(f) and f., u {0, 1}", are its leaves. Now, let W be a binary subtree
of T(f) growing from the root j and let A(W) denote the set of leaves of W. Using
the notation x", u=[u_lu_2 Uo]{0, 1} for ’"’-’,"u’-2.. Uo

"’,-"n-2 "X,-l, we can write, by
(35), the identity

(36) f= x" .f
s.t. fuA(W)

for any binary subtree W of T(f). Note that if f is t-sparse, A(W) contains at most
leaves which are not identically zero.

The heart of our algorithm (procedure APPROX in Fig. 3) is a partial Depth First
Search (DFS) on the vertices of T(f), starting at the root f and resulting in a binary
subtree WDVS of T(f). Using randomization, we "weigh" the truth table of x". f..; if
its relative weight (= the weight of a truth table divided by its size) turns out to be less
than 0 - e/t, we climb back to the father of f. and, in this case, f. becomes a so-called
negligible leaf of WDFS. Otherwise, we continue down into T(f) unless f. is a leaf of
T(f) (and, thus, of WDVS); in this case f.-= 1 and, so, we have found a monomial x"
off Such a leaff., referred to as a terminal leaf, is now added to the approximating
function of f Exploring the subtree growing down from a nonnegligible vertex f. in
T(f), we then climb back to the father of f..

The above procedure is implemented in APPROX as follows. The input parameters
are n, t, e, and the allowed probability p of failure. We also assume that there exists
a subroutine ("oracle") which, given z {0, 1}", returns the value of the underlying
function f at z. The output of APPROX is an e-approximation f of f, represented by
its nonzero monomials. The main module in APPROX consists of one call to the
procedure DFS which traverses T(f), inducing the subtree WDvs.

The routine DFS is recursive, and at each recursion level we regard the vertex f.,
u {0, 1} (the input parameter to DFS) as a root of the subtree growing down from
f.. The truth table off. is weighed by a procedure named NONZERO, which checks
whether the relative weight of x" f. is at least e/t, using not-too-many samples of f..
The specifications of NONZERO are as follows:

(a) If the relative weight of x". f,, is at least 0 e/t, NONZERO returns "true"
with probability ->_ 1 q, where q a_P(in + 1).
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procedure APPROX(f; n, t, e, p) output:
/,

e-approximation of a t-sparse Boolean function f over {0, 1} n.
p is an upper bound on the probability of failure.

f is the approximating function of f
We assume the existence of a subroutine ("oracle") which, given z {0, }n, returns f(z).

,/
begin

f<--0; O-elt; qpl(tn+ l)"
/* n, t, 0, q, and f are global for all subsequent routines. */
DFS([], O)

end;
procedure DFS(u, I);
/* Perform DFS starting at the vertex fu, u {0, 1}t. */
begin

if NONZERO(u, I) then
if l=n then /* a terminal leaf */

else begin DFS([u 0], I+ 1); DFS([u 1], I+ 1) end
end;
procedure NONZERO(u, I) output: "true" / "false";
/* Check whether the relative weight of xu.fu is at least 0. */
begin

if 2-w(u) < 0 then
NONZERO "false"

else begin
i<-0;
N<-[(logq)/(log(1-0"ZW(U)))]" /* Z-w(")=00N=0. */
repeat

i-> i+1;
choose at random ze {0, 1}
b Ev /([v z])

until (i >_-- N) or (b 1);
NONZERO (b 1)

end
end;

FIG. 3. e-approximation of Boolean functions.

(b) Iff. is identically zero, NONZERO always returns "false."
(Note that the output of NONZERO is unspecified if the relative weight of a nonzero
x" .f. is less than 0.) The value assigned to q guarantees an overall probability of
failure which is not greater than p. In case NONZERO returns a "false" answer on
weighing fu (meaning that the relative weight of x"-f., is, most likely, smaller than
e/t), we return to the father of f.. The same holds also when NONZERO returns
"true" and f. is a terminal leaf, in which case the monomial x" is added to the
approximating function f. Otherwise, we continue down the tree T(f).

We now consider the implementation of the routine NONZERO, in view of the
above specifications (a) and (b). Given 0= e/t, cl=p/(tn+ 1), and the parameter
u{0,1}, we pick at random a set P of N=[(logq)/log(1-O.2W("))] points in
{0, 1}"-I and then ask for the values of f at the set Q.

_
{0, 1}" defined by

(37) Q.= {[v z] lye {0, 1}/, v_u, and ze P}.

By Remark 2.1, it is easy to verify that the values of f. at P are given by

f,(z)= E /([vz]), zP.
s.t.
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Sampling the truth table off. in this manner, NONZERO returns "false" if and only
iffu vanishes at P. The choice of N guarantees an error probability =<q for answering
"false" instead of "true." Note that when 2-w(")< 0, the relative weight of xu. f. is
definitely smaller than 0 and, therefore, no sampling is required. In the special case
when 2-w(") 0 (in which case N--0) we take one sampled value of f.. If this value
is zero, the relative weight of xu.f. is proven to be less than 0 and, therefore,
becomes a negligible leaf. Otherwise, NONZERO returns "true."

We now state the validity and the time complexity of APPROX.
LEMMA 6.1. The procedure NONZERO complies with the above specifications (a)

and (b).
Proof First, note that NONZERO returns "true" only when it actually samples

a nonzero value of f.. Therefore, when fu is identically zero, NONZERO will always
return "false," thus establishing requirement (b). As for requirement (a), assume that
the relative weight of x". f. is at least 0. This means that the relative weight off. is at
least 0.2w(" and, therefore, the probability of having N zero samples of f. is not
greater than (1-0.2w(")) N, which, due to the choice of N, is not greater than q (this
applies also to the special case when 0 2-w("), where the truth table of f. is all-one
and, therefore, NONZERO will return "true" due to the one sample it makes).

LEMMA 6.2. (i) DFS traverses at most 2t( n 1)+3 vertices of T(f); (ii) at most
tn + 1 of these vertices correspond to nonzero functions f..

Proof Every nonzero vertex f. in T(f) is situated on a path from the root fl to
some nonzero leaf of T(f). Since the number of such nonzero leaves is at most t, the
number of nonzero vertices in T(f) is at most tn + 1, which is also an upper bound
on the number of nonzero vertices in any subtree of T(f). This proves part (ii) of the
lemma.

As for part (i), let f. be an inner vertex in WDFS, i.e., a vertex which is not a leaf.
Clearly, f. 0, or else, by Lemma 6.1, NONZERO must return "false" on weighing
f., making f. a negligible leaf, rather than an inner leaf, of WDFS. Therefore, the inner
vertices of WDFS are all nonzero inner vertices of T(f), the number of which is at
most r--t(n- 1)+ 1. Hence, the total number of vertices in WDvs is at most 2r+ 1
2t(n-1)+3.

LEMMA 6.3. The procedure APPROX returns, with probability >= 1-p, an e-approxi-
mation ffor any n-variable t-sparse function f

Proof First, note that NONZERO might return a wrong answer ("false" instead
of "true") only at a vertex f. whose corresponding function x" f. is of relative weight
>= 0 e/t. By Lemma 6.2, the number of such vertices is at most tn + 1 and, therefore,
the probability of the answers of NONZERO being all correct is at least (1- q)’"+ =>
1- (tn + 1)q= 1-p.

Consider now an execution of APPROX where all the answers of NONZERO
are correct. Let denote the set of terminal leaves in Wos. The approximating
function, computed by APPROX, is given by

J= 2 x" f..
s.t. fuX

Now, let A(Ws)- denote the set of all negligible leaves of WFs and define
the function f by

(38) f= E xU "f-
s.t./uX

By (36) we have f=j+jT.. It suffices to show that the relative weight of j7 if less than
e. Let f. A be a negligible leaf encountered during any of the recursion levels of DFS.
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If fu is identically zero, then the contribution of x"-fu to f is zero. On the other hand,
iffu # 0, then, assuming the answers of NONZERO being all correct, the relative weight
of x". f. is less than e/t. Now, the number of nonzero leaves in WDFS is bounded from
above by the number of nonzero leaves in T(f) which, in turn, is upper-bounded by
t. In particular, the number of nonzero negligible leaves in WDFS is at most and,
therefore, the relative weight of f is less than t. (e/t)= e. [3

THEOREM 6.1. The e-approximation of any n-variable t-sparse function f can be
performed, with probability <=p offailure, by querying O(( t2n/ e) log tn/p)) values of
f, involving O( n) bit operations per query.

Proof The number of queries issued at each call to NONZERO is given by (see
Eq. (37))

(39) IQ,I=2w’’. N=2w"). [(logq)/log(1-O.2W")]=O((1/O).log(1/q)).
Now, by Lemma 6.2, the number of calls to NONZERO is at most 2t(n-1)+3.
Substituting O=e/t and q=p/(tn+l) in (39) yields a total number of
O((t2n/e) log (tn/p)) queries. It is easy to verify that each such query in NONZERO
involves O(n) bit operations.

Finally, we show how APPROX can be used to approximate any t-sparse function,
without knowing the value of in advance. In such a scheme, we perform M _-< [log2
iterations of APPROX; the mth iteration (m 1, 2,..., M) is executed with t, 2m,
and the global variables of. APPROX are set to Om
p/(t,,n+ 1). Let WDFs(m) denote the tree traversed by DFS during the mth iteration,
and let W*DS(m) denote the subtree of WDS(m) obtained by deleting its negligible
leaves. Note that each leaf of W*Ds(m) corresponds to some nonzero function f. and,
therefore, the number of such leaves cannot exceed t. Now, the iteration process
terminates when, for the first time, t,, becomes greater than or equal to the number of
leaves of W*vs(m) (in which case m M-<_ [log2 t]). By arguments similar to those
given in the proof of Lemma 6.2, the number of inner vertices in WDFs(M) is not
greater than tM(n- 1)+ 1 and, therefore, the number of negligible leaves in WDs(M)
is at most tM(n--1)+2. It thus follows that the relative weht of jT, defined by (38)
for the Mth iteration, is less than e. Hence, the output fM of the last iteration of
APPROX is, with probability -<p of failure, an e-approximation off It can be easily
verified that the above process involves a total of O((t2nZ/e). log (tn/p)) queries.

Finding the t-term DNF counterpart of the above procedure still remains an open
problem. The approximation problem in the t-term DNF case has also been dealt with
in the literature in a wider context, namely, when the approximation factor e is
measured according to an arbitrary distribution induced on {0, 1}n (and not necessarily
according to the uniform distribution). For related work see, for instance, [8], [11],
[13]-[15].
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LOWER BOUNDS FOR COMPUTATIONS WITH THE
FLOOR OPERATION*

YISHAY MANSOUR, BARUCH SCHIEBER$, AND PRASOON TIWARI$

Abstract. A general lower bound technique is developed for computation trees with operations
{+,-, *,/, [. J, <} and constants {0, 1}, for functions that have as their input a single n-bit integer. The

technique applies to many natural functions, such as perfect square root (deciding if the square root of the

input is integral or not), computing the parity of [log xJ, etc. The arguments are then extended to obtain

the same lower bounds on the time complexity of any RAM program with operations {+,-, *,/, [. J, <}
that solves the problem. Another related result is described in a companion paper Proc. 29th IEEE Symposium
on Foundations of Computer Science, 1988] and [J. Assoc. Comput. Mach., 1991, to appear].

Key words, algorithms, lower bound, square-root, Newton iteration, mod operation, floor operation,
truncation
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1. Introduction. Much effort has been devoted in recent years towards proving
lower bounds on the running time of algorithms that involve arithmetical operations
and comparisons. (See, e.g., [Sto76], [PSS1], [Sch82], [SY82], [Ben83], [DO85].)
However, several difficulties are encountered when we try to extend these lower bounds
to more realistic computation models. First, all of the above-mentioned lower bounds
assumed that the set of available arithmetic operations is {+,-, ,,/},1 and the proof
techniques break down when the floor operation (or the equivalent integer division
operation) is in our repertoire. Including the floor operation in the repertoire increases
the power of the model considerably. For example, Stockmeyer [Sto76] proves that
when the set of available operations is {+,-, ,,/}, deciding if an n-bit integer is odd
or even takes (R)(n) time. This can be done in constant time when the floor operation
is in our repertoire. Second, most of the known lower bounds use the computation (or
the decision) tree model. This computation model does not have the capability of
indirect addressing, while most of the realistic models do have this capability. Finally,
all the above-mentioned techniques are applicable only when the inputs are either real
or rational numbers, and cannot be applied to problems where the inputs are restricted
to be n-bit integers, where n is the size of the problem at hand. In this paper we
attempt to tackle some of these difficulties.

The models of computation considered in this paper are the computation tree
model [Str72], [Str83], [Ben83], and the Random Access Machine (RAM) model
[Sch79], [AHU74]. A detailed description of each of these models is given in the next
section. It appears that the two computation models are incomparable. On one hand,
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a computation tree is a nonuniform model of computation, while a RAM is the
corresponding uniform model of computation, and hence, weaker in this sense. On
the other hand, a RAM is capable of indirect addressing while a computation tree is
not. So far, the power of indirect addressing has not been fully characterized, and it
is not known whether it is a substantial theoretical advantage.

The proof techniques of this paper apply to a large class of functions. This is the
class of M(n)-invariant functions defined as follows: A boolean function f(. is said
to be M(n)-invariant if for any A < M(n), there exist two positive n-bit integers ao
and al, both divisible by ,, such thatf(ao) f(al). Many functions are M(n)-invariant
for a suitable choice of M(n). For example, it is easy to verify that the following
Perfect Square Function is 2n/z-l-invariant: given an integer a, output "1" if the square
root of a is an integer (in this case we say that a is a perfect square) and "0" otherwise.
Another example is the function ([log x] mod 2), which is 2n--invariant.

We prove an f(/log log M(n)) lower bound2 on the depth of any computation
tree with operations {+,-,*,/, [.1} and constants {0, 1}, that computes an M(n)-
invariant function for all n-bit integer inputs. If M(n) is not a constant function, then
this implies that there is no finite depth computation tree with operations
{+, -,.,/, [. } and the rational numbers as the set of allowable constants that computes
an M(n)-invariant function for all integers. We then extend the arguments to obtain
the same lower bounds on the time complexity of any RAM program with operations
{+,-,.,/, [. J}. It should be noted that the assumption that only the constants {0, 1}
are available is essential to the lower bound proof. In contrast, in a companion paper
[MST89], we show that, on n-bit integer inputs, every function can be evaluated in
O(1) steps if arbitrary constants (that depend on n) are available. The reason is that
every function of one variable, when restricted to n-bit integer inputs, can be represented
as a polynomial of degree 2"; and these polynomials can be evaluated using O(1)
operations from the set {+,-,.,/, [. } if arbitrary constants are available.

While working on their book [GLS88], GrStschel, Lovisz, and Schrijver asked if
there exists a strongly polynomial algorithm for computing the greatest common divisor
(gcd) of two integers when the floor operation is in the repertoire. (See [GLS88,
pp. 32-33 and 225].) This problem was settled in the negative in a companion paper
[MST88b]. The main result in that paper is: any computation tree with operations
{+,-,.,/,mod} and constants {0, 1} that computes the gcd of two n-bit integers a
and b must have depth 12(log log n). The same lower bound holds also for deciding
whether two given integers a and b are relatively prime, for any two n-bit integers a
and b. (Observe that the floor and mod operations can implement each other in a
constant number of steps.) In this paper a similar technique is applied to other problems.
The major difference is that the functions considered in this paper have a single input,
compared to two inputs for the gcd problem. This enables us to prove an f(/log n)
lower bound, compared to the f(log log n) lower bound in [MST88b]. The gap between
the lower bound in our case (e.g., when applied to the Perfect Square Function) and
the known logarithmic upper bound is only quadratic, which is much smaller than the
doubly exponential gap for the gcd problem.

The lower bound proof given here for the RAM model can be extended to the
case of more than one input. Hence, by incorporating the results here with the results
from [MST88b] we can obtain an f(log log n) bound on the time complexity of any
RAM program with operations {+,-,,,/, [.J} and constants {0, 1} that decides

The base of all logarithms in the paper is two.
Any constants, other than zero and one, must be computed explicitly.
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whether two given integers a and b are relatively prime, for any two n-bit integers
a and b.

For the algebraic tree model (i.e., trees that use only algebraic operations, including
+, -, ,, and/), good lower bound techniques are known when all the inputs are either
real or rational numbers. These techniques are applied in [SY82] for algebraic decision
trees and in [Ben83] for algebraic computation trees. On the other hand, few results
are known when the inputs are restricted to be integers (as in our case). Among them
is [Yao89], which extends the results in [Ben83] to this case. Even less is known when
the set of operations contains the floor operation.

The power ofthe floor operation has been considered in several papers. In [BJM88]
the model of an analytic computation tree is introduced. (An analytic computation
tree operates on real numbers and has the floor operation in its repertoire.) Using
topological arguments, that paper shows that there are certain classes of languages
which cannot be recognized by analytic computation trees. The expressive power of
computation trees with various sets of operations is compared in [JMW89], and the
same paper also contains lower bounds for computation trees with operations
{+, -, DIVe}, where DIVc denotes integer division by constants. Their proof technique
is based on methods from Geometry of Numbers [Cas71]. [LM85] proves an f(log p)
lower bound on the depth of any computation tree with operations {+, -, ,, [. } that
decides whether a given triangle in the plane contains a point with integer coordinates,
where p is the (binary) length of the input.

For the RAM model, Paul and Simon in [PS81] prove an f(n log n) lower bound
for sorting n integers on RAMs with operations {+;-, ,,/}. (See also [DO85].) Their
result also applies to RAMs with indirect addressing. The power of RAMs has been
extensively studied in [Sch79] and [Sim81]. [IMR83] sheds more light on the nature
of the floor operation and indirect addressing. Other relevant references are [Cob66],
[Pat72], and [Kun73].

The paper is organized as follows. Section 2 includes some preliminary definitions.
Section 3 is devoted to the proof of the O(/log log M(n)) lower bound on the depth
of any computation tree with operations {+, -, ,,/, [. ]}, that computes M(n)-invariant
functions. In 4 we extend the lower bound to the RAM model. For completeness,
we describe in 5 the known upper bound for computing the Perfect Square Function.
Finally, in 6 we summarize our results and list some open problems.

2. Preliminaries. In this section, we first recall the definition of the computation
models used in this paper. Then, we define some properties of polynomials and rational
expressions. Finally, we define a lexicographic order on the set of polynomials and
prove some of its properties.

2.1. The computation models. We assume that the reader is familiar with the
computation tree model (see, e.g., [Str83], [Ben83]) and the RAM model (see, e.g.,
[AHU74], [Sch79]) used in this paper. Below, we briefly recall these models, and
define some additional terminology used throughout the paper in relation to these
models.

The computation tree model. A computation tree T for a one input problem is a
tree with labeled vertices. The label of a vertex u is denoted f,. The tree T has four
types of vertices:

(1) An input vertex: The root of the tree is the input vertex and it is labeled with
the single input.
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(2) Computation vertices: Each computation vertex , has only one child, and is
labeled with either a binary operation and its two operands: g h, or a unary operation
and its operand: g. Throughout this paper, g, h U {f,[ is an ancestor of , in T}
and OP, where cg is the set of available constants, and OP is the set of available
operations. In this paper, OP- {+,-, *,/, [. }, and the set will be restricted to be
the set {0, 1}. Note that the label f of a computation vertex represents a function of
the input.

(3) Comparison vertices: Each comparison vertex , is labeled with g:h, where,
again, g, h c kJ {f,] is an ancestor of , in T}. Each comparison vertex has two
children.

(4) Output vertices: The output vertices are the leaves of T. Each leaf , of T is
labeled with an element from the set {0, 1}.

The computation for input a starts at the root of the tree T. When it arrives at a
computation vertex ,, the function f is evaluated at the input a, and then the
computation proceeds to the only child of 9. When the computation arrives at a
comparison vertex labeled with g:h, the functions g and h are evaluated at the input
a. The computation proceeds to the left child if g(a)<h(a), and to the right child
otherwise. The computation terminates at a leaf by producing the value of the label
associated with it as the output.

We remark that when OP {+,-,.,/}, we can associate a rational expression
r(x) (x), to each computation vertex ,. This rational expression will have the
following interpretation: For all inputs a, if the computation on the tree T with the input
a arrives at the vertex ,, then f(a)= r(a).

The Random Access Machine (RAM) model. A RAM program is a sequence
((1: Yl), (2: Y2)," ", (r: Yr)), where each ’)/i is either (i) a common instruction defined
in [Sch79], or (ii) an instruction which applies an operation from the set of available
operations OP to a set of operands, and stores the result in a memory location. A
memory location can be accessed using either direct addressing, that is by specifying
its address explicitly, or indirect addressing, that is by specifying an address of a
location containing its address. A RAM without indirect addressing is defined in a
similar manner, except that no indirect addressing of the memory is allowed.

The input to a RAM program for a one input problem is given in the first memory
location when the program starts. In this paper, this input is assumed to be an integer.
(Note that individual bits of the input cannot be accessed in one step.)

A RAM program is said to solve a decision problem if for each instance of the
problem, the first memory location contains the correct answer when the RAM executes
the halt instruction.

Consider a RAM program of time complexity h, without indirect addressing.
All computations of can be simulated by a computation tree Th of depth O(h), in
a straightforward manner. On the other hand, if is capable of indirect addressing, no
straightforward simulation by a computation tree of depth O(h) appears possible. In
[Mey89], it is established that a RAM program of time complexity h with indirect
addressing can be simulated by a computation tree of depth O(h log h).

2.2. Polynomials and rational expressions. In the sequel, we consider the degree
and the height of univariate polynomials and rational expressions.

The degree of a polynomial P(x), denoted deg (P), is the maximum exponent of
x appearing in any monomial of P(x).

The height of P, denoted hgt (P), is the maximum among the absolute values of
the coefficients of P.
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For a set A of polynomials, the degree of A, denoted deg (A), is defined by
maxpA deg (P). Similarly, the height of A, denoted hgt (A), is maxpA hgt (P).

For a rational expression R(x)= P(x)/Q(x), where P and Q are polynomials,
define the degree of R to be the larger of the degrees of P and Q. Similarly, define
the height of R to be the larger of the heights of P and Q. Notice that cancellations
are not allowed in our definition of the degree and the height of rational expressions.
For example, the degree of R(x)= P(x)/P(x) will be the degree of P and not zero,
and the height of R will be the height of P and not one.

Let P(x) and Q(x) be two polynomials. Then, P(x) Q(x) has the usual meaning
for o{+,-,,}. For o=/, P(x)/Q(x) is the rational expression R(x)= P(x)/Q(x).
For two rational expressions P(x)/Q(x) and P2(x)/Qz(x), we define
(P(x)/Ql(x)) (P2(x)/Q(x)) to be the rational expression

P(x)Q2(x)o Pz(x)Q(x) 4

Ql(x)Q(x)

if o{+,-}; the rational expression P(x)P2(x)/Q(x)Q(x) if o=,; and the rational
expression P(x)Q2(x)/Q(x)P2(x) if =/.

LEMMA 2.1. Let P(x) and Q(x) be two polynomials. Then, for
o{+,-}, deg (Po Q)-< max {deg (P), deg (Q)}

and

and

hgt (P Q) -< hgt (P) + hgt Q); deg (P Q) =< deg (P) + deg (Q)

hgt P Q) =< min { 1 + deg (P) ), 1 + deg (Q) } hgt (P) hgt (O).

Proof We only prove the bound on hgt (P. Q). Observe that when we multi-
ply two polynomials, each of the coefficients of the product is the sum of at most min
{(1 + deg (P)), (1 + deg (Q))} terms, each of them being the product of a coefficient in
P by a coefficient in Q. The bound stated in the Lemma is an immediate con-
sequence.

LEIMA2.2. Let R(x)=P(x)/P2(x) and S(x)=Q(x)/Q2(x) be two rational
expressions. Then, for o{+,-}, deg(R S)<-deg(R)+deg(S) and hgt(R S) <-
2 min{(l+deg (R)), (l+deg (S))} hgt (R) hgt (S); deg (R, S)<-deg (R)+deg (S)
ana hgt (R S) -< min { 1 + deg (R)), 1 + deg (S))} hgt (R) hgt (S).

Proof The bounds follow from Lemma 2.1 and from the fact that for o {+,-},
R S= (P, Q2 QIP2)/P2Q2.

For a polynomial P(x), let the leading monomial of P(x) be the monomial of
maximum degree in P(x). Let the leading coefficient of P(x) be the coefficient of its
leading monomial.

LEMMA 2.3. Let P(x) and Q(x) be two polynomials with integer coefficients,
and let L be the the leading coefficient of Q(x). Then, P(x)
(A(x)Q(x)/L+I)+(R(x)/L+I), where A(x) and R(x) are polynomials with
integer coefficients, hgt (A)=<hgt (P)(2 hgt (Q)), hgt (R)-<hgt (P)(2 hgt (Q))+’,
6=max {-1, deg (P)-deg (Q)}, and deg (R) < deg (Q).

Proof The proof is by induction on 6. The hypothesis holds for the basis case
6=-1 with A(x)=0 and R(x)= P(x).

Throughout the paper, the product operator is omitted when no confusion may arise.
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For the induction step, assume that the hypo,thesis holds for all j < 8, for some
6 > -1. We prove it for 6 deg (P)-deg (Q). Let L be the leading coefficient of P(x).
Consider the polynomial S(x)= LP(x)-xQ(x). Clearly, hgt (S)<_-2 hgt (P) hgt (Q),
deg (S) _-< deg (P) 1.

Applying the hypothesis to the pair S(x) and 0(x), yields S(x)-
(A(x)O(x)/L)+(R(x)/L). Substituting for S(x), we get

1
P(X)=L+I (A(x)+ Lx)Q(x)+ L+I R(x).

In addition, hgt (A)<=hgt (P)(2 hgt (Q)), hgt (R)<-hgt (P)(2 hgt (Q)) +1, and
deg (R) < deg (Q).

COROLLARY 2.4. Let P(x) and Q(x) be two polynomials with integer coefficients of
degree strictly less than a positive integer D, and height strictly less than M, and let L be
the leading coefficient of Q(x), then P(x)=(a(x)Q(x)/Ll)+(R(x)/L), where a(x)
and R (x) are polynomials with integer coefficients, hgt (A) < 20-lMO, hgt (R) <
2OMo+ 1, and deg (R) < deg (Q).

2.3. A lexicographic order on the polynomials. We define a lexicographic order on
the set of univariate polynomials. For this purpose, we use the following lexicographic
order on the set of monomials.

DEFINITION 1. For two monomials cx and dxj, cx > dx if either (1) >j or (2)
i=j and Icl> Idl.

We say that a univariate polynomial is written in its normal form if it is written
as a minimal sum of monomials, and these monomials are sorted in descending
lexicographic order. Throughout this paper, we assume that all polynomials are written
in their normal form.

DEFINITION 2. For two polynomials P(x) and Q(x), P(x) > Q(x) if, when written
in their normal forms, there exists some i-> 1, such that (the ith monomial in P) > (the
ith monomial in Q), and all the monomials preceding it are identical in both P and Q.

Below, we relate the lexicographic order defined on the polynomials, and the
order among their values at certain points.

LEMMA 2.5. For each polynomial P(x), there exists a positive integer 7r(P) such
that for all a > 7r(P) the sign of P(a) is the same as the sign of the leading coefficient
of P. Furthermore, 7r(P) <_-hgt (P)/ILI+ 1, where L 0 isthe leading coefficient of P.

Proof Without loss of generality we may assume that L > 0. (In case L < 0 we get
the bound by considering -P(x).) It is not difficult to see that the Lemma holds if we
take 7r(P) to be the value of the largest real root of P(x). It is well known (see, e.g.,
[Hou70, Thm. 2.2.4]) that every root of P(x) is bounded from above by
hgt (P)/L+ 1. [3

From Lemma 2.5 it follows that for any two polynomials Q(x) and R(x), there
exists a positive integer 7r(Q R) such that for all a > 7r(Q R), either always Q(a) <
R(a) or always Q(a) >= R(a).

3. A lower bound for computation trees. In this section, we prove an
12(/loglogM(n)) lower bound on the depth of any computation tree with OP=
{+,-, ,,/, [. }, that computes an M(n)-invariant function, for all n-bit integers. We
assume that "0" and "1" are the only constants explicitly involved in any operation
performed in the tree (and that any other constant used in the tree must be computed).
If we drop this assumption (i.e., when the set of rational numbers is the set of allowable
constants), then the following theorem implies that there is no finite depth computation
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tree with OP {+, -, ,,/, [. }, that computes an to(1)-invariant function, for all
integers.

First, we prove the following key lemma.
DEFINITION 3. Let the set S(h) be the set of all n-bit integers that are

multiples of h.
LEMMA 3.1. Let T be any computation tree for a one input problem of depth h with

OP {+, -, *,/, [" }. Then, there is an integer h < 224h2 and a leaf V of T, such that for
each input a S(h ), the computation follows the path from the root of T to its leaf

Proof of Lemma 3.1. Let be the path from the root of T to the leaf v. Denote
the vertices on the path by vl, v2,- ", v, in that order, where vl is the root of the
tree T and vi is a child of vi_. We will define the path and the integer , inductively,
starting with the path v,/.)2 (Vl is the input vertex and v2 is its only child), and , (1) 1.
(S( 1 consists of all n-bit integers.) As part ofthe induction hypothesis, we will maintain
five properties of the path and the set under consideration. These properties are
described below.

Suppose that (a) we have selected a prefix of , which starts at v, and ends at
a vertex vi+, and (b) we have defined a parameter A (i) with the following properties:

(1) For each input a GS(A (i)) the computation follows the path from the
root to Vi+l

(2) For each computation vertex v on the path from the root to the vertex V+l,

excluding the vertex v+, there is a pair of polynomials (F(x), G(x)) with integer
coefficients, such that for each input a S(A(i), G(a) 0, and f(a)--F,(a)/G(a).

(3) The leading coefficient of each of the polynomials G(x) is positive.
(4) For each polynomial F,,(x) and each a S(Ai), the sign of F,(a) is the same

as the sign of the leading monomial of F,,(x). This also holds for all polynomials G,(x).
(5) Let {F,;, Glv is a computation vertex, j <- i}. Define Di deg () + 1

and M hgt (;i). Then, Di <2, and max {h (’), M}<2
We show how to define h (i+1 and how to choose the vertex vi+ such that Properties

1-5 will be satisfied by the set S(h(+) and the prefix of that starts at v, and ends
at vi/2. The parameter )t (g+l) will be a multiple of (). Notice that this implies that
S(h (i+)

_
S(h(), therefore, by the induction hypothesis we have that Properties 1-5

are satisfied by the set S(h (+) and the prefix of that starts at v and ends at vg/l.

In order to complete the proof of the lemma we need to show that (a) there exists an
outgoing edge of vi+ such that for each input a S(h (+)) the computation follows
this edge, and (b) Properties 2-5 are satisfied also for the vertex vi+ and the set S(h(+)).

By the definition of the tree T, the vertex vi+ is either a comparison vertex or a
computation vertex. If it is a comparison vertex then a comparison g:h is resolved.
If it is a computation vertex then either f,+, g h, for {+, -, ,,/}, or flAi+l-- [g] is
evaluated. Here, g, h {0, 1} I,.J {f. Dj is a computation vertex, j -< i} and
{+,-, ,,/, [. }. We will use the following notation in the rest of this proof.

(P(x) P2(x)) (’[(g’ 1)
t (F(x),G(x))

if g {0, 1},
if g=f,

and

(h, 1)
(Q(x), Qz(x))--

(F,(x), G(x))
if h {0, 1},
if h=f.

Finally, let P(x)= Pl(x)Q2(x), Q(x)= P2(x)Q,(x).
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The proof is based on a case by case analysis. In each case, we will define
the next vertex vi+2 on the path , the parameter A i+1), and the polynomials
(F,+I(x),

First, we resolve the case when v+l is a comparison vertex. Let B(x)=
P(x) Q(x) O. Then, Lemma 2.5 guarantees the existence of a positive integer r(B),
and e{<,>}, such that for all integers a> r(B), (P(a)/P2(a))(Q(a)/Q2(a)).
Thus, for all integers a with this property, that arrive at the vertex vi+, the next vertex
v+2 is either the left child of v+ (if is <), or the right child of vi+ (if is >).
Define , (i+l) j (i),./T(B). Recall that each of P and Q is a product of two polynomials
of degree less than Di, and height at most M. Therefore, deg (P), deg (Q) < 2Di and
hgt (P), hgt (Q)< DiM. Lemma 2.5 implies that r(B)-<_ 2DM, hence (i+1)<224,+2.
For each a e S(, +1)) Properties 1-5 are satisfied.

Next, consider the case when +1 is a computation vertex. The following
possibilities may arise.

Suppose that e {+, -}. This case is very similar to the case of a comparison vertex
discussed above. Following the argument in that case, let B(x)= P(x)o Q(x). Define
,+1)__ ,i)zr(B). Let (F,+(x), G,+l(X))= (B(x), P2(x)Q2(x)). The degree of B is less
then 2D, and its height is bounded by 2DiM2. Therefore, D+ < 2Di, M+I <- 2DM.
For each a e S(, i+)) and (F,+(x), G,+(x)), Properties 1-5 are satisfied.

Suppose that o=,. This is the simplest case. Let (F,+(x),G,+(x))=
(P(x)QI(x),P2(x)Q2(x)). Define /(i+1)__.(i). Clearly, for each a_S(A (i+l)) and
(F+(x), Gi+(x)) Properties 1-5 are satisfied.

Next, suppose that o=/. Let p be the sign of the leading coefficient of Q(x).
Define (F,+,(x), G,+,(x))= (pP(x), pQ(x)) and A+) A. It follows that D+I <2Di,
Mi+ <-_DiM2. This is the only case where G,+,(x) is not a product of G(x)’s, for
j-<_ i. Nevertheless, G+(a) O, for any a S(A+)) because T is a well-defined
computation tree that does not contain any division by zero. Clearly, for each
a S(A (i+1)) and (F,+(x), G,+,(x)), Properties 1-5 are satisfied.

The only remaining case is when floor. The rest of this section is devoted to
this case.

We may assume, without loss of generality, that the operand of any floor operation
is nonnegative. Then, Property 3 implies that the leading coefficient of P(x) may be
assumed to be positive.

In the trivial case when P(x) Pz(X), we just define (F,+,(x), G,+(x)) (1, 1).
We distinguish between two nontrivial cases.

Case 1. P(x)< P2(x). Let B(x)= P2(x)-P(x). Since the leading coefficient of
B is positive, Lemma 2.5 guarantees the existence of a positive integer 7r(B) such that
B(a) > 0, for all a> 7r(B). This implies that 1 > P(a)/Pz(a)>=O, for all a> r(B). Let
A (i+1) "r/’(B)A (i). We conclude that for integers a S(Ai+)), [Pl(a)/Pz(a)J =0. Define
(F,+(x), G,+(x))= (0, 1). By an argument similar to that in the case where vi+ is a
comparison vertex, it can be shown that for each a S(A+)) and (F,+(x), G,+(x)),
Properties 1-5 are satisfied.

Case 2. P2(x) < P(x). Let L be the leading coefficient of Pz(x). Corollary 2.4
implies that P1 (x) L-d (A(x) P2(x + R (x) ), where the coefficients of A(x) and R (x)
are integers, d =deg (P)-deg (P2)+ 1, and deg (R) < deg (P2).

Consider the constant term of A(x). We denote this constant by eLd + y, where
c is an integer and y is a nonnegative integer such that 0_-<y<Ld. Let A(x)=
(x) + eLd + 3’; that is, (x) is equal to the polynomial A(x) minus its constant term.
The parameter A (i+) will be chosen to be a multiple of LdA (i). This implies that for
each a S(A/I)), each monomial of L-drip(a) evaluates to an integer. Hence, for each
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such integer a,

P(a) LdPz(a)
We distinguish between two subcases.

Subcase 1. y > O. Consider the polynomial L-d (yP2(x) + R (x)). Since deg (R)
deg (P2) the leading coefficient of this polynomial is L-dy times the leading coefficient
of P(x) (which is L). Let B(x)= P2(x)-L-d(yp(x)+R(x)). The leading coefficient
of B(x) is (1- L-dy)L. Since 0< L-dy< 1, the leading coefficient of B(x) is positive.
Using Lemma 2.5, let r be the minimum multiple of Ld such that r_-

max { r(B), r(yP2+ R)}. Then, 0 < L-d (yPz(a) + R(a)) < Pz(a), for all a > r. This
implies that 0< (yPz(a)+ R(a))/Lap2(a)< 1, for all a> r. We conclude that for each
such a, [Pl(a)/P(a)J =L-d/(a)+c. Define Ai+I= rA i), and (Fvi+l(X), Ovi+,(x))--
(/(x)+ eLd, Ld). For each a S(A i+1) and (F,+,(x), G,+,(x)), Properties 1-4 are
satisfied.

Below, we prove that Property 5 is also satisfied. To get the bound on Di+l
and Mi+ it is sufficient to consider the new polynomial L-d(x)+c. Clearly,
deg (L-df(x) + c) < Di. The height of the polynomial can be bounded using Corollary
2.4 as follows:

2
24(i+)2hgt(J,(x)+cLd)<=hgt(A)<(2M)D<

To get the bound on A i+), recall that LdB(x) Ldp2(x)--(yP2(x)+ R(x)). There-
fore, deg (LdB)<D, and hgt (LdB)<=Ld hgt (P2)+hgt (R)<MiD’+2DMDi+. Since
LdB is a polynomial with integer coefficients also 7r(B)_-< hgt (LdB)+ 1. This implies
that A (i+1) < A(i)(2Mi) Di+l <224(i+’)2.

Subease 2. y 0. Clearly R(x) < LdP(x). Using Lemma 2.5, let r be the minimum
multiple of Ld such that r _-> max {r(R), r(Ldp2-- R)}. Then, for all a > r, 0_-<

R(a)/Ldpz(a)<l if (leading coefficient of R(x))>-O, and -l<R(a)/Ldpz(a)<O
otherwise. Let ? be e if the leading coefficient of R(x)>-_ O, and e-1 otherwise. We
conclude that for each such a, [Pl(a)/P(a)J L-d,(a)+ . Define A+ 7"/ (i), and
(Fi+,(x), Gv,+,(x))=(/(x)+Ld, Ld). For each aGS(Z (i+l)) and (Fi+,(x), G,+,(x)),
Properties 1-4 are satisfied.

Below, we prove that Property 5 is also satisfied. To get the bound on D+l and

Mi+ it is sufficient to consider the new polynomial L-d(x)+ . To get the bound on
Z (i+ we have to consider also the polynomial Ldpz(x)- R(x). By an argument similar
to that in Subcase 1, Property 5 holds.

Lemma 3.1 readily implies the following theorem.
THEOREM 3.2. Let f(. be an M(n)-invariant function. Then any computation tree

with OP {+, -, *,/, [" } and constants {0, 1 }, that computesf(. ), for all n-bit integers,
has depth (x/log log M(n)).

Proof We prove the lower bound by contradiction. Suppose that there is a
computation tree T of depth h <1/2x/log log M(n), that computes f(.) for all n-bit
integers. By Lemma 3.1 there exists a Z < M(n) such that the computation for each
input a S(A) follows the same path in T.

Since f(. is an M(n)-invariant function, there are two inputs a0, al S(A), such
that f(ao)f(a). Since ao and a follow the same path in T, T produces the same
output for both of them. However, for either ao or a the value is incorrectma
contradiction.

COROLLARY 3.3. Let f(. be an m(n)-invariant function. If M(n) (2"), for a

fixed e, then any computation tree with OP= {+,-, *,/, [. J} and constants {0, 1}, that
computes f(x) for all n-bit integers must have depth (/log n).
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Corollary 3.3 implies an O(x/log n) lower bound on the depth of any computation
tree with OP {+, -, *,/, [. }, that solves the following problems.

(1) Decide if [log aJ is odd or even, for any n-bit integer a. (Let M(n)=2 "-1,
a0 A, and al 2A.)

(2) Decide if [log log aJ is odd or even, for any n-bit integer a. (Let M(n) 2 n/2,
ao A, and a )t 2.)

(3) Decide if an n-bit integer a is a Perfect Square, i.e., decide if v/-d is an integer.
(Let M(n) 2 n/2-, ao ,2, and a 2A2.)

We remark that the lower bounds apply also to the computation problems that
correspond to each of the above decision problems; this is because these computation
problems are at least as hard as the decision problems.

4. A lower bound for RAMs. In this section, we extend the techniques of the
previous sections in order to obtain an f(x/10g log M(n)) lower bound on the time
complexity of any RAM program with operations {+,-,.,/, [. J} that computes an
M(n)-invariant function for all n-bit integers. As discussed in the following paragraphs,
the main issue in this section is the indirect addressing capability of the RAM.

Consider a RAM program of time complexity h, without indirect addressing.
All computations of can be simulated by a computation tree Th of depth O(h), in
a straightforward manner. On the other hand, in the case when is capable of indirect
addressing, no straightforward simulation by a computation tree of depth O(h) appears
possible. (In [Mey89], it is established that a RAM program of time complexity h
with indirect addressing can be simulated by a computation tree of depth O(h log h).)
Paul and Simon [PS81] show that a simulation by a computation tree of depth O(h)
is possible, provided one restricts the set of inputs in a suitable manner. However, this
simulation also depends on the fact that the set of instructions does not include the
floor operation, but consists only of {+,-,.,/}.

We assume that the reader is familiar with the arguments in [PS81]. The main
idea in that paper is to restrict the set of inputs so that no pair of distinct polynomials
used to compute addresses (for indirect addressing) evaluate to the same address value
on any input in the restricted set.

In the proof of the following theorem, we combine the ideas of [PS81] with the
arguments of the previous sections.

THEOREM 4.1. Any RAM program with OP {+,-, *,/, [. ]}, that computes an
M(n)-invariant function for all n-bit integers has time complexity O(x/log log M(n)).

The proof of this theorem is the same as the proof of Theorem 3.2, except that
the use of Lemma 3.1 in that proof is replaced by the following lemma.

LEMMA 4.2. Let be a RAM program for a one input problem of time complexity
h with operations {+,-,.,/, [. ]} andprogram ((1: y), (2: y2), , (r: yr)). Then, there

224h2is a A < such that the same sequence ofinstructions is executedfor all inputsfrom S(A ).
Proof The proof is very similar to the proof of Lemma 3.1. The main additional

effort is in establishing a correspondence between a set of rational functions and the
set of memory locations accessed by the RAM program on any given input. This idea
appears in the work of Paul and Simon [PS81].

Let us denote by YI, Y2," ", Y the sequence of instructions asserted in the
224h2statement of the lemma. We will show that there exists a A < such that is the

sequence of instructions executed for all inputs from S(A), and y is the halt instruction.
As in the proof of Lemma 3.1, the sequence and the integer A are defined

inductively, starting with the empty sequence and the set At)= 1. (S(1) consists of all
n-bit integers.) In addition, define Ai) to be a set of rational functions such that the



COMPUTATIONS WITH THE FLOOR OPERATION 325

set of memory locations accessed by the RAM program in the first steps, on input
aS(,(i)), is a subset of {F(a)/G(a)IF(x)/G(x)A(i}. To begin with, define A
to be the empty set, and let jl 1.

Following that proof, suppose that we have (i) selected a prefix of , which starts
at yl and ends at yj,+; (ii) defined ,), and therefore, constructed the set S(h )) of
inputs; and, in addition, (iii) defined a set ,4 i. Furthermore, assume that Properties
1-5 of Lemma 3.1 are satisfied, and in addition, the following sixth property is also
satisfied:

(6) If r(x) and s(x) are two distinct rational functions in A(i, then r(a) s(a),
for any a S(h (i)).

Property 6 implies that for any input a S(A(i), all rational functions in the set
A(i) evaluate to different values. Therefore, for each input a S(i), we may set up a
one to one correspondence between the rational functions in the set A(/), and the set
of memory locations accessed by the RAM program.

Suppose that all the operands of the instruction YJi+, have been identified. Then,
as in the proof of Lemma 3.1, we define h (/1), which is a multiple of h (i) such that
Properties 1-5 are also satisfied for the instruction "yj,+, and each input a S(A(+).
If yj,+ is not the halt instruction, then we also select the next instruction YJ,.+2 in the
sequence . In the following, we show how to identify the operands of YJ,+l, define
A(i+, and prove that Property 6 can also be maintained in this construction.

Initialize A(i+1 to A(. Suppose that the value in the memory location t, denoted
by MEM(t), is an operand for the instruction yj,+. By the definition of the RAM, the
following two cases may arise:

(1) Direct Addressing, i.e., is an integer constant.
(2) Indirect Addressing, i.e., MEM(rn). Without loss of generality, we may

assume that m is an integer.
Next, we identify a rational function, denoted by w(x), that must be included in

the set A(i+).
In the first case, include w(x)= (a constant polynomial) in the set A(i+.
In the second case, let k be the largest index such that the instruction Yk assigns

a value to the location MEM(m). By the induction hypothesis, this value (which equals
t) is the value of the rational function Fk(x)/Gk(x), evaluated at the input a S(h (i).
Include w(x)= F(x)/G(x) in the set A(i+1.

To identify the operand of y,+,, corresponding to MEM(t), let be the largest
index such that the instruction yj, assigns a value to the location with address w(x).
Then, the operand of y,+,, corresponding to MEM(t), is given by F(x)/G(x).

In this manner, we identify all the operands of the instruction
In a similar manner, include in A(+ the rational function corresponding to the

address of the location where the result of the instruction yj,+ is stored.
In order to maintain Property 6, we only need to ensure that (r(x)-s(x))[, O,

whenever a S(A(g+)), for any r(x), s(x) A(i+1). This will guarantee that all rational
functions in the set A(+ evaluate to different values at each input a S(h(i+)).
Implying that different rational functions in A(i+) correspond to different memory
locations. By Lemma 2.5, this can be achieved by updating h(+l). The same lemma
also implies that such updates can be performed without violating Property 5.

5. The O(log n) upper bound for OP {+, -, ,/, 1-1}. For completeness, we
briefly recall how a RAM (without indirect addressing) can solve the Perfect Square
Problem for n-bit inputs in O(log n) steps. This is a well-known algorithm [Ra165]
based on the Newton Iteration for computing the square root of a number.
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Suppose that the input integer is a, 0 < a < 2n. The first step is to determine k such
that 22k -< a < 22k/2. This is described in the following paragraph. Recall that ’1’ is the
only constant allowed in the computation. Therefore, we must compute all the other
constants needed in the algorithm.

Use repeated squaring to compute numbers 22i, 1, 2, , m, such that m is the
least integer for which 22-> a. Clearly, m-<_ [log n ]. Finally, use these numbers and
determine k by a binary search for the leading bit of a.

The next step is to compute c such that a 2Zk(1 + c). Now apply the following
Newton Iteration:

a + x
starting with xo 2k 1 +Xi+l

2Xi
2If we denote the error by e x- a, then it is easy to verify that e+l (e/2xi). It

follows that for some i= O(log n) iterations, O<-xi-a <- 1. If a is a perfect square,
then its square root is [x], and this can be tested easily.

6. Conclusion. We have proved an (/log log M(n)) lower bound on the depth
of any computation tree with operations from the set {+,-,.,/, [. }, that computes
an M(n)-invariant function, for all n-bit integers. We then extended the arguments
to obtain the same lower bound on the time complexity of any RAM program with
the operations {+,-,.,/, [.]} that computes this function. We claim that many
functions are M(n)-invariant for a suitable choice of M(n) and give some examples.

For all M(n)-invariant functions considered in the paper our lower bound is not
tight. It would be interesting to find a specific M(n)-invariant function for which this
bound is tight, or to achieve tight lower bounds for the functions considered here.

Finally, see [MST88a] for a discussion of other related problems.
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We also wish to thank Tom Leighton for suggesting the Perfect Square Problem, and
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Note added in proof. In a subsequent paper [MST89a], we prove that there is a

computation tree of depth O(/) with operations {+,-,.,/, [. ], < } and constants
{0, 1 } that computes to accuracy of one, for all integers b in the range [22r-2, 22r 1 ].
Combining this upper bound with the lower bound in this paper yields an O(v/-) tight
bound for this problem.
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PROBABLY APPROXIMATE LEARNING OF SETS AND FUNCTIONS*

B. K. NATARAJAN?

Abstract. Probably approximate learning is the inference of a set (also called a concept) from a small
number of sample points, under the probabilistic measure of success proposed in [L. G. Valiant, Proc. ACM
Symposium on Theory ofComputing, 1984, pp. 436-445]. Within this model, necessary and sufficient conditions
are identified for efficient learning of a class of concepts defined on the strings of the binary alphabet. These
results are with respect to both time and information complexity measures and are in terms of the asymptotic
behaviour of the Vapnik-Chervonenkis dimension of the class. Corresponding results are also obtained for
the case when the error in the learning process is to be one-sided, in that the inferred concept is required
to be a subset of the concept to be learned. The scope of the learning model is then widened to include the
inference of functions. The Vapnik-Chervonenkis dimension is also extended to obtain a measure called
the "generalized dimension" of a class of functions. Using this measure, necessary and sufficient conditions
for efficient learning of classes of functions are identified. These results are obtained for functions defined
on the strings of the binary alphabet as well as for functions defined on the continuous domain of the real
numbers.

Key words, probabilistic inference, sets, functions
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1. Introduction. This paper concerns algorithms that learn sets and functions from
examples for them. The motivation behind the study is a need to better understand
the space of problems known as "concept learning problems" in the Artificial Intel-
ligence literature.

What follows is a brief definition of concept learning. Let E be the {0, 1} alphabet
and E* the set of all strings of finite length on . Let f denote a subset of E* and F
a set of such subsets. We call f a concept and F a class of concepts. We use the term
concept instead of set to conform to the artificial intelligence literature. An example
for f is a pair (x, y), x E*, y {0, 1}, such that x f if and only if y 1. A learning
algorithm for F is an algorithm that does the following: given a sufficiently large
number of randomly chosen examples for anyf F, the algorithm identifies g F, such
that g is a good approximation of f. (These notions will be made formal later.) The
aim of this paper is to study the relationship between the properties of F and the
number of examples necessary and sufficient for a learning algorithm.

Let us place this paper in perspective. There are numerous papers on the concept
learning problem in the artificial intelligence literature. See Michalski, Mitchell, and
Carbonell [14] for a broad review. Much of this work is not formal in approach. On
the other hand, many formal studies of related problems have been reported in the
inductive inference literature. See Angluin and Smith [1] for an overview. Unfortu-
nately, the basic assumptions of inductive inference turned out to be too abstract to
permit the work significant practical import. More recently, Valiant [24] introduced a
new formal framework for the problem, with a view towards probabilistic performance
analysis. The framework appears to be of both theoretical and practical interest and
the results of this paper are based on it and its variants. Related results appear in 1],
[22], [4], [13], [5]-[8], and [11], amongst others. There is some overlap of results
between Blumer et al. [8] and this paper. Specifically, Blumer et al. [8] obtain results
on the learnability of concepts on general domains while we obtain results that hold

* Received by the editors June 21, 1989; accepted for publication (in revised form) July 13, 1990. Some
of the work presented here was performed at the Robotics Institute of Carnegie Mellon University.

? Hewlett Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304.
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for concepts on discrete domains such as the strings over a finite alphabet. Our results
are significant for two reasons: first, many domains of interest are discrete, and second,
our proof techniques are much simpler than those used by Blumer et al. [8].

We begin by describing a formal model of learning, a variant of the model first
presented by [24]. Specifically, in 2 we define the notions of probably approximate
learning and polynomial-sample learnability for classes of concepts on E*. We then
obtain necessary and sufficient conditions for polynomial-sample learnability, in terms
of the Vapnik-Chervonenkis dimension of a class of concepts. Section 2.1 deals with
a slightly different learning model, one in which the learner is required to learn with
one-sided error, i.e., the concept output by the learner must be conservative in that it
is a subset of the concept to be learned. Section 3 deals with the time complexity of
concept learning, identifying necessary and sufficient conditions for efficient learning.
Section 4 generalizes the learning model to functions from E* to E*. We define the
notion of polynomial-sample learnability in this setting and introduce a generalization
of the Vapnik-Chervonenkis dimension of classes of functions. We then obtain
necessary and sufficient conditions for polynomial-sample learnability in terms of the
generalized dimension of a class of functions. Finally, 5 considers the learnability
of spaces of functions on the reals. We identify conditions necessary and sufficient for
such learnability.

2. Learning concepts on discrete domains. We begin by describing our variant of
the learning framework proposed by [24]. A concept f is any subset of E*. Associated
with each concept f is the indicatorfunction Ins :Z* - {0, 1} such that Ins(x)= 1 if and
only if xf In the interest of simplicity, we will use f to denote both the set f and
the indicator function Ins, relying on the context for clarity. An example for concept
f is a pair (x, y), x Z*, y {0, 1} such that y =f(x). The length of an example (x, y)
is Ixl / lyl Ixl / 1.

Notation. For a string x, Ixl is the string length, while for a set S, IS[ is the
cardinality.

A class of concepts F is any set of concepts on E*. A learning algorithm for F is
an algorithm that attempts to infer an approximation to a conceptf in F from examples
for it. The concept f F that is to be approximated (or learned) is called the target
concept. The learning algorithm takes three parameters as input: the error parameter
e, the confidence parameter 6, and the length parameter n. The parameters e and 6
are real numbers in the half-open interval (0, 1], while n is a natural number. The
significance of these parameters will be discussed shortly. The learning algorithm has
at its disposal a subroutine EXAMPLE, which at each call returns a randomly chosen
example for the target concept. The example is chosen randomly according to an
arbitrary and unknown probability distribution P on E--<", in that the probability that
a particular example (x,f(x)) will be produced at any call of EXAMPLE is P(x).

Notation. N denotes the set of natural numbers. For n N, E=<" is the set of all
strings of length at most n in E*.

With these supporting definitions in hand, we present our main definition.
DEIYrrION 1. Algorithm A is a probably approximate learning algorithm for F if:
(1) A takes as input reals e, 6 (0, 1], and n N.
(2) A may call EXAMPLE, which returns examples for somef F. The examples

are chosen randomly and independently according to an arbitrary and unknown
probability distribution P on E-<-".

(3) For all conceptsf F and all probability distributions P on E-<", with probabil-
ity at least (1- 6), A outputs a concept g F such that P(fAg)<= e.
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Notation. For any two sets f and g, fag is the symmetric difference between f
and g, i.e., fag= (f-g)U (g-f). Also, P(f) denotes the weight of the distribution
P on f, i.e., P(f)= ,,fP(x).

In the above, the learning algorithm is required to output a concept g that
approximates the target concept to within e. That is, P(fAg)<_ e. Since e controls the
error in the output of the algorithm, we call it the error parameter. The confidence of
the learning algorithm that its output is within the allowed error is at least (1-6).
Hence, we call 6 the confidence parameter. Thus, the output of the learning algorithm
is probably a good approximation of the target concept. This explains the title of this
paper.

Note that as yet we have placed no restrictions on the kind of procedures we will
permit as learning algorithms. When we speak of the output of the algorithm, we do
not imply that this output is finitely presentable. In fact, we use the term "algorithm"
in a very broad sense, with the only restriction being that of statistical measurability
given below. In placing this restriction, it is convenient to define the notion of the
learning operator associated with a learning algorithm A, by replacing the calls to
EXAMPLE with a sequence of examples provided as input. In words, takes as input
e, 6, n, and C, where C is a sequence of examples. Then, runs A on inputs e, 6,
and n. When A calls EXAMPLE, gives A successive examples from C, rather than
allowing A to obtain random examples from EXAMPLE. If the number of examples
demanded by A exceeds the number of examples in C, (e, 6, n, C) is undefined. Else,

outputs the concept output by A.
DEFINITION 2. The learning operator associated with a learning algorithm A is

given by:

Learning Operator xlt
input

e, 6(0, 1], nN
C: sequence of examples.

begin
Let C (xl,yl), (x2,y2),’"
Run A on inputs e, 6, n.
At the ith call of EXAMPLE by A

if C has fewer than items, is undefined.
else give A the example (xi, yi).

Output A’s output.
end

We will require that the learning algorithm A be such that certain statistical
properties of are well definedmwe require that computes a random function.
Specifically, for each set of inputs e, 6, n, and C, and each output x, the probability
that (e, 6, n, C) will output x should be defined. We say that A is admissible if it
satisfies this property. Note that if A is deterministic, computes a function, and
hence A is definitely admissible. It is easy to see that even if A tosses coins and uses
the results in its computations, A would still be admissible. But ifA were nondeterminis-
tic, A may or may not be admissible. Henceforth, we will only be concerned with
admissible algorithms.

We seek to establish the quantitative relationship between the number of examples
required for learning and the properties of the class of concepts in question. The next
step toward this aim is to set up a complexity measure for learning algorithms, to
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measure the number of examples required by the algorithm as a function of the various
parameters. Specifically, we introduce the notion of the sample complexity of a learning
algorithm, which is a measure of the number of examples required by a learning
algorithm as a function of e, 6, and n.

DEFINITION 3. The sample complexity of a learning algorithm A is the function
s R R N- N such that s(e, 6, n) is the maximum number of calls of EXAMPLE
by A, the maximum being taken over all runs of A on inputs e, 6, and n.

Notation. R is the set of reals.
DEFINITION 4. A class F is said to be polynomial-sample learnable if there exists

a learning algorithm for F with sample complexity O(p(1/e, 1/6, n)), where p is a
polynomial function of its arguments.

The introduction of n as a parameter in the sample complexity merits some
discussion. Specifically, we require n to be provided as input to the learning algorithm
and that the probability distribution be on Z=n. We then define the sample complexity
as above. Alternatively, we could omit n as input to the algorithm, and define a sample
complexity (e, 6, n), such that on any run in which the inputs are e and 6, and the
length of the longest example seen is n, the algorithm calls EXAMPLE at most (e, 6, n)
times. While this alternative appears to be more "natural," it leads to some unintuitive
consequences. For instance, there exist probability distributions for which the algorithm
could seek infinitely many examples, while guaranteeing that at any point in its
execution, the number of examples drawn is polynomially small in the length of the
longest example seen up to that point. See Pitt and Warmuth [20]. To avoid such
difficulties, we include n as input to the learning algorithm. It is important to note
that this does not change any of the results in this paper. (Please see Appendix for
details.)

We now turn our attention to a measure of complexity for a class of concepts.
DEFINITION 5. Let F be a class of concepts on a universe X. We say that Fshatters

a set S X if the set {f Slf F} is the power set of S.
Notation. For any set S, the power set of S is the set of all subsets of S, denoted

by 2s.
Example 1. Let S be the set {0, 1, 2}, and let F be the class of sets {0, 2, 4}, {0, 4},

{2}, {4}, {0, 2}, {0, 1, 4}, {1, 2}, { 1, 4}, {0, 1, 1}. F shatters S. To see this, take any subset
of S, say S {0, 1}. Then, {0, 1, 4} F and {0, 1, 4} f-)S= {0, 1}. The same holds for
any other subset S of S. [3

The significance of the above definition is that if F shatters a set S, then each
string x in S is "independent" of the others. That is, knowing whether or not xf
tells us nothing about the membership inf of any other string in S. Thus, the cardinality
of the largest set shattered by a class is a measure of the number of "degrees of
freedom" possessed by it. With this in mind, we define the following.

DEFINITION 6. Let F be a class of concepts on a universe X. The Vapnik-
Chervonenkis dimension of F, denoted by dimc(F), is the least integer d such that
every set shattered by F is of cardinality at most d.

We also define an asymptotic form of the Vapnik-Chervonenkis dimension as
follows.

DEFINITION 7. Let F be a class of concepts on Z* and let f F. The projection fn
off on Z_-_n is the set of strings of length at most n in f, i.e., f, =ff-)Zn. Similarly,
the projection F, of F on Z=" is given by F, {f]f F}.

DEFINITION 8. The asymptotic dimension of a class of concepts F is the function
d N- N such that for all n, dimvc(F,) d (n). We denote the asymptotic dimension
of F by dim (F).
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For simplicity, we drop the prefix asymptotic, relying on the context for clarity.
If dim (F) is O(p(n)) for some polynomial p, we say that F is of polynomial dimension.

The following lemma establishes a relationship between the cardinality of Fn and
dime(Fn). The lemma is a weak form of a well-known result. See Vapnik and Cher-
vonenkis [25] or Assouad [3] for the strong form. We prove it here for completeness,
as we will use a similar proof technique in a more general lemma later in the paper.

LEMMA 1 (Shattering Lemma). Let d dim,c (Fn). Then,

2

Proof The first inequality is immediate from the definition of shattering.
Specifically, if Fn shatters a set of size d, then IFnl => 2a. The second inequality is proved
through the following claim.

CLAIM 1. Let X be any finite set and let H be a set of subsets of X. If d is the
cardinality of the largest set shattered by H, then

IHI-<_ (IXJ + 1) e.
Proof By induction on ]XI, the cardinality of X is thus proved.
Basis. The basis is clearly true for IXI 1.
INDUCTION. Assume that the claim holds for IX] k and proves true for k+ 1.

Let IX k + 1 and let d be the cardinality of the largest set shattered by H. Pick any
x X and partition X into the two sets {x) and XI X-{x). Define H to be the set
of all sets in H that are reflected about x. That is, for each set h in HI, there exists
a set h H such that h differs from h only in that h does not include x. Formally,

n {hllh1E H, there exists h E H, h # hi and hi h U {x}}.

Let H2 H-H1. Surely, the sets of H2 can be distinguished on the elements of

X1. That is, no two sets of H2 can differ only on x, by virtue of our definition of H.
Hence, we can consider H2 as a class of sets defined on X. Surely, H2 cannot shatter
a set larger than the largest set shattered by H. Hence, H2 shatters a set of cardinality
at most d. Since ]X,] =< k, by the inductive hypothesis we have [H[-< (]Xl] + 1) d.

Now consider H Again, the sets of H are all distinct on X. Suppose H
shattered a set S c_ X1, IsI-> d. Then, H would shatter S U {x}. But, ]S U {x}[-> d + 1,
which is impossible by assumption. Hence, H shatters a set of at most d- 1 elements
in X. By the inductive hypothesis, we have

IHI[<=(IX1]/I)a-.
Combining the two bounds, we have

-Iu2l / Iu, I--< (Ix, / 1) d / (IX, / l) d-1

<-(k+ 1) e +(k+ 1)e-’ <- (k+ 2)(k+ 1)a-I

=<(k+2)=<(Ix +1) a.
Thus the claim is proved.

Returning to the lemma, we see that X _-<n and IX[ _-< 2n+l. Hence, if the largest
set shattered by Fn is of size d,

IFnl (2n+ q- 1)d <_ 2(n+2)d.

This completes the proof of the lemma.
We need the following supporting definition before we can give the main theorem

of this section.
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DEFINITION 9. Let f: X - Y. The set of all examples forf is denoted by graph(f).
That is, graph(f) {(x, y)]x X, y =f(x)}. We sayf is consistent with a set of examples
S, if S c_ graph f).

For a concept f, we use graph(f) to denote graph(In/), the graph of the indicator
function of f.

We can now use Lemma 1 to prove the main theorem of this section. This theorem
is limited to concepts on the discrete domain of *, and hence is a special case of the
general results of [8]. The significance of our theorem rests on two factors: first, many
problems of interest concern the discrete domains of the strings of finite alphabets;
second, for such domains, the simple proof techniques used here suffice, avoiding the
heavy machinery of [25] that is used in [8].

THEOREM 1. A class F is polynomial-sample learnable ifand only ifit is ofpolynomial
dimension.

Proof We first show the "if" direction. The following is a learning algorithm
for F.

Learning Algorithm A1
input: e, 6, n.

begin:
call EXAMPLE

1((n+2)dimce (Fn)ln(2)+ln())times.
let S be the set of examples seen.
pick a concept g F consistent with S
and output g.

end

We now show that A1 does indeed satisfy our requirements. Let f be the target
concept. We require that with probability (1- 6), A1 should output a concept g F,
such that the p(fAg) <_ e.

Let g, Fn be such that P(f, Ag,)>__ e. For a particular such g,, the probability
that any call of EXAMPLE will produce an example consistent with g, is at most
(1-e). Hence, the probability that m calls of EXAMPLE will produce examples all
consistent with g, is at most (l-e) m. Now, there are at most IF,[ choices for gn.
Therefore, the probability that rn calls of EXAMPLE will produce examples all
consistent with any such choice of g, is bounded by IF, I(1- e) m. We will make m
sufficiently large to bound this probability by 6. That is,

By Lemma 1,

Hence, we want

2(n+2)dim’(F")(1 8) 6.

Taking natural logarithms on both sides of the inequality, we get

(n+2) dimc (F)In (2) +ln (1- e)m =<ln (6).

Using the approximation In (1 + a) =< a and simplifying,

m>= (n + 2) dimc (F) In (2) + In
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Hence, if m examples are drawn, with probability at least (1-6), any concept
gn e Fn consistent with the examples will be such that p(f, Ag,) <= e. But then, since P
is a distribution on Z_-<n, p is nonzero only on strings of length n or less. Thus, all the

and g, is consistent with these examples ifexamples drawn involve strings from
and only if g is consistent with them. Also, P(fAg)= p(fnAg,). It follows that, with
probability at least (1- 6), any g F that is consistent with all the examples drawn
will be such that p(fAg) <_ e. If dimc(F) is polynomial in n, the number of examples
drawn is polynomial in l/e, 1/6, and n. Since this is the sample complexity of A, we
have shown that F is polynomial-sample learnable.

This completes the proof of the "if" direction. Next we prove the "only if"
direction.

Suppose F is of super-polynomial dimension and yet there exists a learning
algorithm A for it with sample complexity s(e, 6, n), for some s that is polynomial in
l/e, 1/6, and n. For e < z and 6 < , pick sufficiently large n such that dimc (Fn)
2s(e, 6, n). Let d dimc (F,) and let m s(e, 6, n). By definition, Fn shatters a set S
such that IS] d. Let x be an element of Sn.

Notation. Recall the notation that
For sets S other than Z, S" is the n-fold Cartesian product of S. Each x in S" is an
ordered list of n items. For instance, N is the set of ordered triples of natural numbers.

Let P be the probability distribution that is uniform on S and zero elsewhere and
let be the learning operator corresponding to A. For f F, let f(x") denote the
sequence of examples obtained from x m. That is, if x (xl, x2, , x), f(xm) is the
sequence of examples (xl,f(xl)), (x2,f(x2)),’’’, (X,,,f(Xm)). Let G___ F be such that
G shatters S and ]G 2 Isl.

In what follows, we remind the reader that the output of A is not completely
determined by its inputs and the examples provided to it. We only know that A is an
admissible algorithm and hence we can only measure the statistical properties of its
output. Let A(e, 6, n) denote the output of A when run on input e, , and n, with f
as the target concept. Since A is a probably approximate learning algorithm for F, for
each f G, the probability that P(fAA(e, , n))>-- e is at most 6. That is,

(1) P{P(fAA(e, 6, n)) > e} <- 6.

Notation. For any event E, P{E} denotes the probability of the event occurring.
Using the learning operator of A, we can write

(2) P{P(fAA(e, 6)) > e} 2 P{P(fA(e, 6, n,f(xm))) >- e}P{f(xm)}.
ES

In the above, P{f(xm)} is the probability that f(xm} is the sequence of examples
obtained by m calls of EXAMPLE.

Substituting (2) into (1) gives us,

P{P(fA(e, 6, n,f(xm))) > e}P{f(x’)} <= 6.
S

Summing both sides of the above over all f in G, we get,

P{P(fA(e, 6, n,f(x’)))> e}P{f(x’)}<- 6.
fG xrns fG

Flipping the order of the sums in the above, we get

(3) 2 P{P(fA.(e, 6, n,f(xm)))> e}P{f(x")} <- 2 ,.
XmS fEG fO
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We will estimate the inner sum in (3),

(4) Z P{P(fA(e, 6, n,f(x")))> e}.
f G

It is convenient to define a switch function 0" {true, false}- N as follows. For any
boolean-valued predicate Q,

1, if Q is true
O(Q)

0, otherwise.

Using the switch function, we can expand (4) as follows.

(5) Z 20(P(fAe)>e)P{Sf-le=S(e, 6, n,f(xm))}
fG eG

We claim that for each f G, there exists g G such that g(x’)=f(xm) and for
all h G, at least one of the following inequalities must hold,

P(fAh) > e, P(gAh) > e.

To see this, consider the set [xm].
Notation. We use [x’] to denote the set of distinct items occurring in a sequence

x Sm, i.e., [x"] {x Six occurs in x"}.
Pick g G such that g agrees with f on all of [xm] and disagrees with f on all

of S--[xm]. We denote such a choice of g by pair(f). Clearly, g(x") =f(xm). Now,
h must disagree on at least half the elements in S-[x"] with either f or g. Since P
is uniform on S, one of the following must hold:

p(fAh)>= IS- [x’][, p(gzh)>_ IS- [xm]l
2lsl 2lsl

But I[x]l<-m<-ISI/2 and hence IS-[x]I>-_ISl/2, Substituting this into the above
and noting that e < z by assumption, the claim follows.

Now, split G into disjoint sets G and G2 such that for eachf G, pair(f) G
and vice versa. Let st(f) denote the event Sf-]e=S(e, 6, n,f(xm)). We can now
write (5) as

(6) Y O(P(fAe)> e)P{’(f)}+ 2 Z O(P(gAe)> e)P{’(g)}.
fG eG gG eG

If g pair(f), then f(xm) --g(xm). Hence, st(f)= st(g) and we can write (6) as

(7) y y (O(P(fAe)> e)+O(P(pair(f)Ae)> e))P{’(f)}.
fG eG

Since at least one of P(fAe)> e, or P(pair(f)Ae)> e must hold, we have

O(P(ZAe) > e)+ O(P(pair(f)Ae) > e)>-- 1.

Substituting the above into (7) and noting that (7) was derived from (4), we get

2 P{P(fA.(e, 8, n,f(xm)))> e}_--> 2 2 P{sr(f)}
fG feG

(8) 2 2 P{Sf-le=Sf’l*(e, 6, n,f(xm))}
feG eeG

1121.=E
feG G
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The last equality follows from the fact that [GI[ =IG21 [G[/2. Substituting (8) into
the left-hand side of (3), we get

1 1
f_., 1.1__2 xme zeoE P{f(xm)} - fed x’s P{f(x")}(9)

Substituting (9) into (3), we get,

1

2fo fG

< 6, a contradiction since 6 < .which implies that =
Example 2. Consider the class F of all axis-parallel rectangles on NxN, i.e.,

rectangles with sides parallel to the axes. To be precise, we consider only those
axis-parallel rectangles whose vertices have finite coordinates. For technical con-
venience, we include the empty set in F. Let each string x of even length in Z* be the
binary encoding of a point (u, u) in N x N, where x= uu, ]u --]u]. Thus, F is a class
of concepts on E*. Now, each rectangle is uniquely identified by either of its diagonals.
Thus, the number of distinct concepts on E--< is at most the number of distinct pairs
of strings we can choose from E<--, which is at most 2+. Thus, ]F,[ =< 22n+2 and by
Lemma 1, dim (F)=< 2n + 2. By Theorem 1, F is polynomial-sample learnable.

As another example, consider the class of all regular sets on E*. Since every finite
set is regular, it is clear that every subset ore--<n is shattered by Fn. Thus, dim,c (F,) -> 2
and hence the regular sets are not of polynomial dimension. By Theorem 2, the regular
sets are not polynomial-sample learnable.

2.1. Learning sets with one-sided error. We now consider a learning framework in
which the learning algorithm is required to be conservative in its approximation--the
output concept must be a subset of the target concept. We call this learning with
one-sided error since the error in the approximation produced by the learner can only
be to the "safe side" of the target concept, i.e., the errors can only be errors of omission.
In some situations, such conservative behavior might be desirable.

DEFiNiTION 10. A class F is polynomial-sample learnable with one-sided error if
F is polynomial-sample learnable by an algorithm A, such that the concept output by
A is always a subset of the target concept.

Essentially, A learns with one-sided error if on any run of A, the concept g output
by A is a subset of the target concept f Thus, the errors in g are all errors of omission,
in that some elements of f are missing from g. We will now obtain the analog of
Theorem 1 in this setting. The following supporting definitions are required.

DEFINITION 11. Let F be a space of concepts and let S graph(e) for some e F.
The least g F consistent with S is such that

(1) g is consistent with S, and
(2) for all f F consistent with S, gf
DEFINITION 12. We say that F is minimally consistent if for every e 6 F and each

nonempty and finite S
_

graph(e), there exists a least f F consistent with S.
Example 3. The class of axis-parallel rectangles introduced in Example 2 is

minimally consistent. To see this, let S be a set of examples. Let Xmax and Xmi, be the
maximum and minimum value of the x-coordinates of the positive examples in S.
Similarly, let Ymax and Ymin be the maximum and minimum value of the y-coordinates
of the positive examples in S. The axis-parallel rectangle with diagonal points
(Xmin, Ymin), (Xmax, Ymax) is clearly the least such rectangle that is consistent with S.

THEOREM 2. A class F is polynomial-sample learnable with one-sided error if and
only if F is ofpolynomial dimension and is minimally consistent.
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Proof We first consider the "if" direction of the theorem. Suppose that F is of
polynomial dimension and is minimally consistent. Consider the following learning
algorithm for F.

Learning Algorithm A2
input: e, 6, n.
begin:

call EXAMPLE

1((n+2)dimce (Fn)In (2)+ln ())times.
let S be the set of examples seen.
let g be the least concept in F
consistent with S.
output g.

end

Let f be the target concept. Since g is the least concept consistent with S, surely,
g
_
f Using arguments identical to those used in the proof of Theorem 1, we can show

that with probability greater than (1-6), p(fAg)<_ e.

Now for the "only if" direction of the theorem: Assume that F is polynomial-
sample learnable with one-sided error by a learning algorithm A. We first show that
F is minimally consistent. Let S be a nonempty and finite subset of graph(e) for some
e F. Let P be the uniform distribution on S. Run the learning algorithm A for inputs
e < 1/]S] and 6 1/2. Since e < 1/IS], with probability , A must output a concept f such
that f is consistent with S. Suppose that f is not the least concept consistent with S,
i.e., there exists a concept g F consistent with S such that f is not a subset of g.
Then, A does not learn with one-sided error, as g could well have been the target
concept. This is a contradiction, hence f must be the least concept consistent with S.
Since S is arbitrary, F is minimally consistent.

By arguments identical to those of our proof of Theorem 1, we can show that F
must be of polynomial dimension. This completes the proof.

The following results are useful in determining whether a class is minimally
consistent.

We say F is closed under arbitrary intersection if for any G F, (g g) F. If
the above holds only for G of countable (finite) cardinality, then F is said to be closed
under countable (finite) intersection.

PROPOSITION 1. Let F be a class of concepts on Z*. If F is closed under countable
intersection, F is minimally consistent.

Proof Let S be a finite subset of graph(h) for some h F. Let S be the set
{x](x, 1) S}. Let {x, x2,..., xi’-’} be the elements of (E*-S1). For each xi let
be defined as follows: If there existsf F such that xiC:f and $1 _f, then f(i)=f. Else,
f(i) E*.

Consider

g =f()nf(2)n Ns(i)....
Since F is closed under countable intersection, g e F. Also, since S c__ f(i) for all i, $1 c__ g.
Suppose there exists e e F such that S e and yet g e. Then, there exists x e (g- S)
such that x e. Since g__ :*, x e (E*-S) and x e. But then, there must exist f()
such that x f. But this would require that x g, a contradiction. Therefore, for all
e e F such that S c_ e, g c__ e. It follows that for all e e F such that S c_ graph(e),
g ehence, the proposition. [3
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Example 4. Returning to the axis-parallel rectangles: We claim that this class F
is closed under arbitrary intersection. We begin with the observation that F is closed
under finite intersection. To see this, note that the intersection of a pair of axis-parallel
rectangles is also an axis-parallel rectangle. We will use this to show that F is closed
under arbitrary intersection. For any G_ F, we show that (VIg g) F. Picka particular
f G. Let G1 {SN gig G}. Surely, (ngeG g) (ngG1 g). But, f is finite, and so G1
is also finite. Since F is closed under finite intersection, (Ng, g)E F. It follows that
(ng g) F and hence F is closed under arbitrary intersection.

By Proposition 1, the axis-parallel rectangles are minimally consistent.
PROPOSrrION 2. There exists F that is closed under finite intersection, but that is

not minimally consistent.

Proof For p N, consider the set f(P) defined as follows.

f(P)= {0} U {lpil >= 1}.

Notation. lk is the string of k l’s.
Let F be the class {f(P)IP >= 1}. Now, for any p, q-> 1,

f(p)nf(q)=f(r),
where r is the least common multiple of p and q. Thus, F is closed under finite
intersection.

Now, consider the set S= {(0, 1)}. Surely, S
_
graph(f) for all f F. Yet we can

show that there is no least f F that is consistent with it. Suppose f(P) is claimed to
be the least f F consistent with S. Take f(2p). Surely, S
This is a contradictionwhence, the result.

PROPOSITION 3. There exists F that is minimally consistent but not closed under

finite intersection.

Proof Let G be the set of all finite subsets of Z*. Let f(i) be as defined in
Proposition 2, and let F be the class given by F {f(2)} U {f(3} U G. Since F contains
all finite subsets of Z*, surely F is minimally consistent. Butf(3) Vlf(2 =f(6) andf(6) F.
Hence F is not closed under intersection.

Let F be minimally consistent and let G be the set of all finite subsets of E*. For
S G, we say that f F is the least concept in F containing S, iff is the least concept
in F that is consistent with S x {1} {(x, 1)lx S}. Using this notion, we define the
operator M:G- F, such that M(S) is the least concept in F containing S. M(S) is
undefined if no concept in F contains S.

We now show an interesting property of the minimally consistent classes. Let F
be minimally consistent and let f F. Let S E* be a finite set of minimum cardinality
such that f= M(S). Then F shatters S. This property is proved in Proposition 7 and
can be quite useful. For instance, it is used in Natarajan [15] to prove Lemma 1 for
minimally consistent classes.

We need the following supporting results.
PROPOSITION 4. M is idempotent, i.e., for finite S, M(M(S))= M(S).
Proof Let f= M(S). Surely f is the least concept in F containing f Hence,

f=M(f)=M(M(S)).
PROPOSITION 5. Let F be minimally consistent, f F, and let S and T be two finite

sets such that S c_ T _f Then, M(S)_ M( T).
Proof Since F is minimally consistent and S c__ f and T_ f, M(S) and M(T) are

both defined. Let S+= S x {1} and T+= T x {1}. M(T) is consistent with T+ and since
S+

_
T+, M(T) is consistent with S+. But then, M(S) is the least concept in F consistent

with S+. Hence, M(S)c_ M(T).
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PROPOSITION 6. Let F be minimally consistent and let S and T be finite sets such
that M(S) and M(T) are both defined. Then M(S T) M(M(S) M(T)).

Proof. Now S M(S) and T
_
M(T) and hence S t.J T

_
M(S) t_J M(T). Applying

M to both sides and invoking Proposition 5, we get M(S T)
_
M(M(S) M(T)).

Now SS T. Applying M to both sides and invoking Proposition 5 we get
M(S)_ M(S T). Similarly, M(T)_ M(St.J T). Hence M(S) M(T)_ M(SLJ T).
Applying M to both sides and invoking Proposition 5, we get M(M(S)LJ M(T))
M(M(S LJ T)). By Proposition 4, M(M(S LJ T)) M(S T) and hence

M(M(S)t.J M(T))_ M(S T).
Hence the proposition.

PROPOSITION 7. Let F be minimally consistent and let f 6 F. Let S * be a finite
set of minimum cardinality such that f= M(S). Then, F shatters S.

Proof We show that for every Sic__ S, M(S1)fq S= St. This would immediately
imply that F shatters S. Suppose not, i.e., for some S c_G_ S, M(S1) S $2 S. Now,
S $2 t_J (S-$2). Apply M to both sides and invoke Proposition 6 to write:

M(S) M(M(S2) M(S- $2)).
Now, S2=(M(S)fqS)M(S). Applying M to both sides, we get M(S2)
M(M(S1)). By the idempotence of M, we can write the above as M(S2)c_G_ M(SI). Thus

M(S2) I,.J M(S- 52) M(S1) U M(S- 52).
Invoking Proposition 5, we get

M(M(S2) (3 M(S- $2)) c_ M(M(S,) U M(S- $2)).
Substituting this into the equation for M(S), we get

M(S)
_
M(M(S,) (_J M(S- $2)).

Invoking Proposition 6, we get
M(S) c_ M(S, U (S- S2) ).

But S (_J (S $2)
_
S and by Proposition 5, M(S1 U (S $2)) G M(S). Thus, we

have shown that M(S U (S- $2)) M(S). But then, S (M(S) (q S) $2, and hence
S
_

$2. By assumption, S # $2. Hence, IS1U (S- S2)1 < ISI, implying that S is not of
minimum cardinality. This is a contradictionmhence, the proposition.

3. Time complexity of concept learning. Thus far, we have concerned ourselves
with the information complexity of learning, i.e., the number of examples required to
learn. In this section, we consider the time-complexity of learning, i.e., the time required
to process the examples.

In the previous section, we used the term "algorithm" in a very broad sense,
subject only to the statistical restriction of admissibility. This was because we were
interested only in the sample complexity of learning, and desired our results to hold
over the broadest possible definition. In this section, we use the term "algorithm" in
the traditional sense, to mean a finitely representable program with respect to some
universal computing machine such as the Turing machine. Of course, this is in addition
to the restriction of admissibility.

In order to permit interesting measures of time-complexity, we must specify the
manner in which the learning algorithm identifies its approximation to the target
concept. In particular, we will require the learning algorithm to identify its output
concept using some predetermined naming scheme. To this end, we define the notion
of a representation for a class of concepts. In essence, a representation for a class F
is an assignment of names for each f in F. The names are simply strings in Z*, and
each concept in F may have more than one name, as long as two distinct concepts do
not share a name.
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DEFINITION 13. For a class of concepts F, a representation is a function I F-+ 2*.
For each fe F, I(f) is the set of names for f I must be such that

(a) each fe F has at least one name, i.e., for all fe F, I(f)# , and
(b) no two concepts share a name, i.e., for any two distinct f and g in F,

I(f Cl I(g) .
The length of a name I(f) is simply the string length ]i of i. Thus, the shortest

name for f is the shortest string in I(f). We denote the length of the shortest name
for f by Smi,(f), relying on the context to specify F and I.

As an aside, we note that if each concept in F were to have a name of finite
length, F would be at most countably infinite.

Example 5. As an example, suppose that F were the set of regular sets. One
possible representation for F is the mapping I from the regular sets to equivalent
regular expressions. (Actually, we should consider the binary encodings of the regular
expressions.) For instance, consider the set f of all strings that end in "1." It is well
known that f is regular. In fact, the regular expression rl (0 + 1)’1 generates f, and
hence is a name for it in I, i.e., rl e I(f). Similarly, r2 (0+ 1)’1"0"1 also generates f
and r2 I(f).

Another possible representation for the regular sets is the mapping from the regular
sets to the corresponding finite automata. [3

We can now specify the form of the output of a learning algorithm. Specifically,
we will say that a learning algorithm A learns F in representation I, if A
identifies its output concept using names in L Formally, we have the following
definition.

DEFINITION 14. Algorithm A is a probably approximate learning algorithm for
F in representation I, if

(1) A takes as input e, (0,1], nN.
(2) A may call EXAMPLE, which returns examples for somef F. The examples

are chosen randomly according to an arbitrary and unknown probability distribution
P on Z=.

(3) For all concepts f F and all probability distributions P on Z-<n, A outputs
iI(g) for some gF, so that with probability at least (1-6), P(fAg)<--e.

The aim of this section is to examine the time complexity of learning, and we
must construct a measure of the computational time expended by a learning algorithm.
In what follows, we will assume that each call of EXAMPLE costs unit time. Surely,
the time expended by the learning algorithm will depend on the length of its output.
To account for this dependence, we will include the length of the shortest name of
the target concept as a parameter in the time complexity measure.

DEFINITION 15. Let A be a learning algorithm for F in representation L The time

complexity ofA is the function R x R x N x N --> N such that t(e, 6, n, s) is the maximum
number of computational steps consumed by A, the maximum being taken over all
runs of A in which the inputs are , 6, and n, and the target concept f is such that
Smin(f) S.

Thus, the time complexity of A is the time required by A as a function of e, ,
Smin(f), and n. If this function is bounded by a polynomial in these parameters, we
consider the algorithm to be efficient. With this in mind, we give the following definition.

DEFINITION 16. F is polynomial-time learnable in representation I if there
exists a deterministic learning algorithm A for F with time complexity
O(p(1/e, 1/, Smin(f), r)) where p is a polynomial function of its arguments.

An important difference between the notion of polynomial-sample learnability
and that of polynomial-time learnability is that the latter permits the number of
examples drawn by the learning algorithm to vary with Sm.(f), the length of the output.
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Thus, polynomial-time learnability does not imply polymomial-sample learnability.
An example of a class that is polynomial-time learnable but not polynomial-sample
learnable appears later in this section.

We are interested in identifying the class of pairs F, I, such that F is polynomial-
time learnable in L To this end, we need the following definitions.

DEFINITION 17. Algorithm Q is said to be a fitting for a class F in index I if
(1) Q takes as input a set of examples S Z* {0, 1}.
(2) If there exists f F such that f is consistent with S, Q outputs I(g), such

that g F and g is consistent with S.
In the above, we say that g is the concept identified by Q in its output. Abusing

notation, we extend the notation Smin( to sets of examples as follows. For a set of
examples S, Smin(S) is the length of the shortest name of any concept in F consistent
with S, i.e., Smin(S min {Smin(f)]fE F, S graph(f)}. If no concept in F is consistent
with S, Smin(S) is infinity.

DEFINITION 18. Let Q be a deterministic program that is a fitting for F in /. If,
on input S, Q runs in time polynomial in the length of its input and Snin(S), we say
that Q is a polynomial-time fitting.

With these definitions in hand, we can state the following theorem.
THEOREM 3. Let F be a class of concepts ofpolynomial dimension and let I be a

representation for F. F is polynomial-time learnable in I if there exists a polynomial-time
fitting for F in I.

Proof Let Q be a polynomial-time fitting for F. The following is a polynomial-time
learning algorithm for F in I.

Learning Algorithm A3
input" e, 6, n.
begin"

Call EXAMPLE (n+2) dim (F) In (2)+ln times.
e

let S be the set of examples seen.
output Q(S)

We can prove that A is a probably approximate learning algorithm for F using
the methods of the proof of Theorem 1. It remains to bound the running time of the
algorithm. Since each call of EXAMPLE costs unit time, A runs in time polynomial
in l/e, 1/, and n, except for the time taken to simulate Q. Now Q runs in time
polynomial in the size of its input and in Smin(S ). By definition, Smin(S Smin(f). The
length of the description of S is the size of Q’s input. Surely, this is at most ]Sin and
hence is polynomial in n, l/e, and 1/6. It follows that A runs in time polynomial in
l/e, 1/, n, and Smin(f). [’-]

Example 6. Consider the class F of axis-parallel rectangles on N N again. As a
representation for the class, we will use the binary encoding of the lower left and
upper right vertices of each rectangle. We now show that F has a polynomial-time
fitting in the representation chosen.

Fitting Q
input S: set of examples.
begin

compute Xm and Xmi,, the maximum and minimum
values of the x-coordinates of the positive examples of S.
compute Ymax and Ymin, the maximum and minimum
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values of the y-coordinates of the positive examples of S.
output ((Xmin, Ymin), (Xma, Yma))

end

In Example 2, we showed that F was of polynomial dimension. From Theorem
3, it follows that F is polynomial-time learnable in the representation of diagonal
points.

Theorem 3 holds only when F is of polynomial dimension. When F is not of
polynomial dimension, sufficient conditions for polynomial-time learnability can be
established in terms of Occam fittings. See [6], [7]. For example, the class of concepts
comprised of finitely many intervals on N is not of polynomial dimension. However,
it is polynomial-time learnable. See [7].

We now prove a weak form of the converse of Theorem 3. We need the following
definitions.

DEFINITION 19. A coin-tossing algorithm Q is a randomized fitting for F in I if
(1) Q takes as input a set of examples S

_
E* x {0, 1}.

(2) If there exists f F such that f is consistent with S, then with probability
greater than 1/2, Q outputs I(g), such that g F and g is consistent with S. If Q fails
to output such a name i, Q outputs nothing.

If Q runs in time polynomial in the length of its input and in Stain(S), we say it
is a random-polynomial-time fitting.

The following definition concerns the complexity of testing for membership in a
concept f F, given a name I(f).

DEFINITION 20. I is polynomial-time verifiable if there exists a deterministic
algorithm V such that

(1) V takes as input strings i, x, y E*.
(2) If is such that l(f) for somef F, V accepts its input if and only ify =f(x).
(3) V runs in time polynomial in the length of its input.
THEOREM 4. Let F be a class of concepts and let I be a polynomial-time verifiable

representationfor F. F is polynomial-time learnable in I only ifFhas a random-polynomial-
time fitting in L

Proof Assume that F is polynomial-time learnable in representation I by an
algorithm A and that I is polynomial-time verifiable by a program V. We need to show
that there exists a randomized fitting for F that runs in polynomial time. The following
is such a fitting. In words, Q takes as input a set of examples S and then runs the
learning algorithm A as follows: at each call of EXAMPLE, Q gives A a randomly
chosen example from S. Since A is a probably approximate learning algorithm, the
name output by A is likely to be that of a concept g that is consistent with S. Using
the verifier V, Q checks to see if g is indeed consistent with S. If so, Q outputs i.

Fitting Q
input: S

_
* x {0, 1}.

begin
let e= 1/(IS[+ 1) and 6=1/4.
let n be the length of the longest example in S.
run A on inputs e, 6, and n.

on each call of EXAMPLE by A
give A a randomly chosen element of S.

let be the representation output by A.
if for each (x, y) S, V accepts (i, x, y) then output

else output nothing.
end
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In essence, the fitting Q runs A with S as examples. If e < 1/ISl and 6 =, the
name output by A must be that of a concept consistent with S with probability at least
(1-1/4) . By invoking the verifier V, Q checks to see if A’s output is consistent with
S. If so, Q halts successfully. If not, Q outputs nothing. Thus, with probability , Q
outputs the name of a concept in F that is consistent with S.

It remains to show that Q runs in polynomial time. Since A is a polynomial-time
learning algorithm, A runs in time polynomial in n, 1/e, 1/6, and in Smin(f) where f
is the target concept. But, f could be any concept in f consistent with S, and so A
must run in time polynomial in Smin(S). Thus, Q runs in time polynomial in the size
of its input and in Smin(S), and hence is a random-polynomial-time fitting.

At this point, it is important to point out that our definition of learnability is
perhaps a little too restrictive. We illustrate our point thus: A k-term-DNF formula is
a boolean formula with k terms, each term being the conjunction of literals. A k-CNF
formula is a conjunction of clauses, where each clause is a disjunction of at most k
literals. We can view strings on ;* as assignment vectors to the variables in a boolean
formula, and hence the set of satisfying assignments of the formula is a concept on
5;*. Let us call the class of concepts representable by k-term-DNF formulae k-term-
DNF concepts, and similarly, we have the k-CNF concepts. Clearly, the k-term-DNF
formulae form a representation for the k-term-DNF concepts. Pitt and Valiant [19]
show that the k-term-DNF concepts are not polynomial-time learnable in the rep-
resentation of k-term-DNF formulae, unless NP RP. Note that the dimension of the
k-term-DNF concepts is polynomial, and hence the class is polynomial-sample learn-
able, i.e., it is possible to infer a good approximation to the target concept from a
small number of examples. Yet, finding a k-term-DNF formula to represent the
approximation is computationally difficult. Suppose we allow the learning algorithm
to output a k-CNF formula as an approximation to the k-term-DNF target concept.
That is, the learning algorithm outputs a k-CNF formula which may not be equivalent
to any k-term-DNF formula, but is guaranteed to be a good approximation to the
target concept. [19] shows that such a learning algorithm can learn the k-term-DNF
concepts in polynomial time. In the more general setting, we can permit the learning
algorithm to output any program that is a good approximation to the target concept,
under the restriction that the run time of the output program be bounded by a
predetermined polynomial. This generalized notion of learning is called "prediction"
and is discussed in Pitt and Warmuth [21].

Example 7. Recall the class F of regular sets with the representation I of finite
automata. [20] shows that if P NP, there does not exist a polynomial-time fitting for
F in L Assuming the existence of trapdoor functions, Kearns and Valiant [12] show
that the regular sets are not predictable.

Analogous to Theorems 3 and 4, we can state results for learning with one-sided
error. Since these results are straightforward analogs of Theorems 3 and 4, we leave
their details to the reader.

4. Learning functions on discrete domains. In the foregoing, we were concerned
with learning approximations to concepts on Z*. In the more general setting, one may
consider learning functions from Z* to Z*. To do so, we must first modify our definitions
suitably and generalize our formulation of the problem.

We consider classes of total functions from Z* to Z*. An example for a function

f is a pair (x, y) such that y =f(x). A learning algorithm for a class of functions is an
algorithm that attempts to infer an approximation to a function in F from examples
for it. The learning algorithm has at its disposal a subroutine EXAMPLE, which at
each call produces a randomly chosen example for the function to be learned. The
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function f for which examples are provided is the target function. The examples are
chosen according to an arbitrary and unknown probability distribution P in that the
probability that a particular example (x,f(x)) will be produced at any call is P(x).

As in the case of concepts, we define the notion of a probably approximate learning
algorithm.

Algorithm A is a probably approximate learning algorithm for F if
(1) A takes as input reals e, 6 (0, 1], and n, r N.
(2) A may call EXAMPLE, which returns examples for some f F, where f is

such that for all x E--<n, f(x) E<=r. The examples are chosen randomly and indepen-
dently according to an arbitrary and unknown probability distribution P on E--<n.

(3) For all f F (such that for every X --n, f(x)E<-), and all probability
distributions P on Z-<n, with probability at least (1- 6), A outputs a function g F
such that p(fAg) <__ e.

Notation. For two functions f and g, fag {x[f(x) g(x)}.
DEFINITION 21. The sample complexity of a learning algorithm A is the function

s’RxRxNxN-+N such that s(e, 6, n,r) is the maximum number of calls of
EXAMPLE by A, the maximum being taken over all runs of A on input e, 6, n, and r.

DEFINITION 22. A class of functions is said to be polynomial-sample learnable
if there exists a learning algorithm for F with sample complexity O(p(1/e, 1/6, n, r)),
where p is a polynomial function of its arguments.

We can now generalize the notion of shattering as follows.
DEFINITION 23. Let F be a class of functions from a set X to Y. We say F shatters

a set S c__ X if there exist two functions f, g F such that
(1) for all x S,f(x) g(x);
(2) for all S c_c_ S, there exists e F such that e agrees with f on S and with g

on S- S, i.e., for all x S, e(x) =f(x); for all x S- S, e(x) g(x).
DZFNTION 24. Let F be a class of functions from a set X to a set Y. The

generalized dimension of F, denoted by dimg (F), is the least integer d such that every
set shattered by F is of cardinality at most d.

In the interest of simplicity, we drop the prefix "generalized" unless it is required
by the context. Note that if Y is of cardinality two, then F could well be the indicator
functions of a class of concepts on X. In this case, the generalized dimension is the
same as the Vapnik-Chervonenkis dimension.

We now define an asymptotic variant of the generalized dimension.
DEFINITION 25. Let f"* -+ *. For n, r e N, the projectionf,,r off on -<-" x E<-r is
(1) Undefined if there exists x e -<-" such that f(x)

_
<=.

(2) Else, it is the function fn," _-<n _+ _-< such that for all x e --<", fn,(x) =f(x).
The projection of a class of functions F is the class F,, given by Fn, {fn,]f F, fn,

is defined}.
DEFINITION 26. The asymptotic dimension of a class of functions F is the function

d’NxN->N such that for all n, r, dimg (F,,)= d(n, r). We denote the asymptotic
dimension of F by dim (F).

For simplicity, we drop the prefix asymptotic, relying on the context for clarity.
If dim (F) is O(p(n, r)) for some polynomial p, we say that F is of polynomial
dimension. We can now generalize our shattering lemma for functions as follows. The
lemma is a generalization of Lemma and is proved using similar techniques.

LeMMA 2 (Generalized Shattering Lemma). Let F,, be of dimension d. Then,
2d [F,,r[--< 2 d(n+2r+3).

Proof. The first inequality is immediate from the definition of shattering.
The second is proved through the following claim.
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CLAIM 2. Let X and Y be two finite sets and let H be a set of total functions from
X to Y. If d dimg (H) then,

Proof This is proved by induction on
Basis. This is clearly true for IX 1, for all r]. Also, we can assume d ->_ 1 as

the hypothesis holds trivially otherwise.
INDUCTION. Assume true for iX] k and lr l, and prove true for ]X] k +1

and Y I. Let X {x, x2," , Xk+} and y {y, y2,. , y}. Define the sets of func-
tions H

__
H as follows.

Hi {flf H,f(x) Yi}.
Also, define the sets of functions Hq and Ho as follows:

for C j, Hq {flf Hi, there exists g Hj such that f= g on X-{x}}.
Ho=H-[_J Ho.

Now,

ISl- [Hol + tJ j Inol + 2 ISql.
j j

We seek bounds on the quantities on the right-hand side of the last inequality.
By definition, the functions in Ho are all distinct on the k elements of X-{x}.
Furthermore, the largest set shattered in Ho must be of cardinality no greater than d.
By the inductive hypothesis, we have

IHol <_ kdlZd.
And then, every Hij shatters a set S of cardinality at most d- 1. Otherwise, H would
shatter S k) {Xl}, which would be of cardinality greater than d. Also, since the functions
in Hj are all distinct on X-{x}, we have by the inductive hypothesis,

for #j, ]Hij ka-ll2(a-l).
Combining the last three inequalities, we have

]H kdlzd + ka-l 2(a-)

#j

kdl2d + 12kd-ll2(d-1)

kalTM + ka-l TM k + 1)allTM,
which completes the proof of the claim.

Returning to the lemma, we have X E", Y Ea and hence k 2"+ and 2+.
Thus, Fn, r] 2 d(n+2r+3).

We can now state the main theorem of this section.
THEOREM 5. A class offunctions is polynomial-sample learnable if and only if it is

ofpolynomial dimension.

Proof This proof is similar to the proof of Theorem 1, except that we need to
use the generalized notion of shattering and the corresponding generalized shattering
lemma.

4.1. Time complexity of function learning. Analogous to our development of time-
complexity considerations for concept learning, we can obtain corresponding results
for learning functions. To this end, we present the following analogs of the definitions
given earlier in the context of concept learning.
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The notion of a representation for a class of functions is identical to that for a
class of concepts. Also, the notion of a graph set, and the definition of Smin carry over
without changes.

DEFINITION 27. Algorithm A is a probably approximate learning algorithm for
F in representation I, if

(1) A takes as input e, 6 (0, 1], n, r N.
(2) A may call EXAMPLE, which returns examples for some f F, where f is

such that, for all x Z--<n, f(x) z<=r. The examples are chosen randomly according to
an arbitrary and unknown probability distribution P on Z--<n.

(3) For all f F, (such that for every xZ<=n, f(x)Z<=r), and all probability
distributions P on Z-<-n, A outputs I(g) for some g F, so that with probability at
least (1-6), P(fAg)<=e.

DEFINITION 28. Let A be a learning algorithm for a class of functions F. The
time complexity of A is the function t:RxRxNxNxN-N such that
t(e, t, Smin(f), n, r) is the maximum number of computational timesteps consumed by
A, the maximum being taken over all runs of A in which the inputs are e, 6, n, and r,
and the target function f is such that Smin(f) S.

DEFINITION 29. F is polynomial-time learnable in representation I if there exists
a deterministic learning algorithm A for F with time complexity
O(p(1/e, 1/6, Smin(f) n, r)), where p is a polynomial function of its arguments.

We are interested in identifying the class of pairs F,/, such that F is polynomial-
time learnable in /. To this end, we carry over the definitions of a fitting, a random-
polynomial-time fitting, and polynomial-time verifiability to this setting. These
definitions require no changes and are not repeated below.

A class of functions from * to Z* is said to be of polynomial expansion if there
exists a polynomial p such that for all x Z*, If(x)l <-_

With these definitions in hand, we can state the following theorem.
THEOREM 6. Let F be a class offunctions and let I be a representation for F.
(1) F is polynomial-time learnable in I if (a) F is ofpolynomial dimension, (b) F

is ofpolynomial expansion, and (c) there exists a polynomial-time fitting for F in L
(2) If F is polynomial-time learnable in I, and I is polynomial-time verifiable, there

exists a random-polynomial-time fitting for F in L
Proof This proof is similar to the proofs of Theorems 3 and 4.
Example 8. Let p be a permutation on k items. The function f(P) from ,* to

is defined as follows. Let x *. If x is not of length k, f(P)(x)--X. Else, fP)(x)= y,
where y is the string obtained by applying the permutation p to the k bits of x. We
call f(P) a permutation function. Let F be the set of all permutation functions, for all
values of k.

As representation I for F, we use the following: Let fP)F, where p is a
permutation on k items. A name for f in I is a binary encoding of the map of p.
Specifically, the binary encoding of the bipartite graph G U, V, E), where the vertex
sets U and V each have k vertices and the edge set E has an edge from vertex in
U to vertex j V, if p maps item to item j.

We claim that F is of polynomial dimension. Note that for r => n, Fn, Fn, Thus,

IFn,rJJFn,,l E k!<=n
kn

n+l

By Lemma 2, dimg (Fn,r) (n + 1) log n, which is polynomial in n and r.
Next, we show that F has a polynomial-time fitting in L Suppose we are given a

set of examples S and are required to find a permutation function consistent with the
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examples. If, for all (x, y) S, x y, we can simply output the identity permutation
for some value of k. Otherwise, there must exist a value of k such that for every
(x, y) S for which x y, Ixl k. Delete all (x, y) S for which Ixl k. Construct a

bipartite graph G (U, V, E), where the vertex sets U and V each have k vertices
and the edge set E has an edge between every pair of vertices (u, v), u U, and , V.
Edges in G are denoted (i,j), i U, and j V.

We now delete each edge (i, j) from G, such that S contains an example (x, y)
where the ith bit of x and the jth bit of y do not agree. Note that any permutation
that maps to j cannot be consistent with such an example (x, y). This deletion process
can be carried in O(]Slk2) time.

It is easy to see that any perfect matching of the resulting graph G is the map of
a permutation that is consistent with S. Since perfect matchings of bipartite graphs
can be computed in time polynomial in the size of the graph (Tarjan [23]), we can
conclude that F has a polynomial-time fitting.

By Theorem 6, F is polynomial-time learnable. V]

5. Learning functions on continuous domains. Thus far, we have explored the
learnability of classes of sets and functions defined on discrete domains, such as the
strings of a finite alphabet. This permitted us to inquire into the number of examples
needed for learning as an asymptotic function of the length of the strings over which
the probability distribution was significant. We now consider the learnability of classes
defined on continuous domains such as the reals. Here, we are interested in identifying
classes of concepts and functions that are learnable from finitely many examples, a
notion that we call "learnability," as opposed to the notion of polynomial-sample
learnability.

For the case of classes of concepts, Blumer et al. [8] present conditions necessary
and sufficient for learnability. Their results use powerful tools in classical probability
theory developed in [25]. In the following, we review these results briefly and then go
on to present learnability results for classes of functions, relying in part on the results
of[S].

As is to be expected, a concept on R is a subset of R, and a class of concepts in
R is a subset of 2R. Similarly, a class of functions on R is a set of functions from R
to R.

DEFINITION 30. Let F be a class of concepts on R. We say F is learnable if there
exists an algorithm A such that

(1) A takes as input e, (0, 1].
(2) A may call EXAMPLE. EXAMPLE returns examples for some concept f in

F, where the examples are chosen randomly according to an arbitrary and unknown
probability distribution P on R. The number of calls of EXAMPLE must be finite,
although it may depend on e, 6, and P.

(3) For all probability distributions P and all f in F, with probability (1- 6), A
outputs g F such that P(fAg) <__ e.

Notation. Here, for S R, P(S) dP.
The following theorem is adapted from [8]. Actually, the authors obtain this

theorem for a slightly different definition of learnability. Their definition of learnability
can be shown to be equivalent to ours (see Haussler et al. [9]).

THEOREM 7 [8]. A class of concepts F on R is learnable if and only if dimc (F)
is finite.

There are some measurability assumptions necessary for Theorem 7. See [6], [8].
We now formalize the notion of learnability of classes of functions on the reals.
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DEFINITION 31. Let F be a class of functions from R to R. We say F is learnable
if there exists an algorithm A such that

(1) A takes as input e, (0,1].
(2) A may call EXAMPLE. EXAMPLE returns examples for some function f in

F, where the examples are chosen randomly according to an arbitrary and unknown
probability distribution P on R. The number of calls of EXAMPLE must be finite,
although it may depend on e, 6, and P.

(3) For all probability distributions P and all functions f in F, with probability
(1 6), A outputs g F such that P(fAg) <_ e.

We now state the main theorem of this section. The theorem is not tight in the
sense that the necessary and sufficient conditions do not match. (In [16], a tight version
of the theorem was incorrectly reported.) Indeed, we will identify a learnable class of
functions that sits in the gap between these conditions.

THEOREM 8. A class offunctions Ffrom R to R is learnable
(1) if dimc (graph(F)) is finite;
(2) only if dimg (F) is finite.
Proof The "if" direction of the proof follows from Theorem 7. Essentially, the

"if" condition implies that the class graph(F) is learnable, whence it follows that the
class F is learnable.

The "only if" direction of the proof is identical to that of Theorem 4, which in
turn follows the arguments of Theorem 1. [3

While Theorem 8 is not tight, it appears that tightening it is a rather difficult task.
We conjecture that the "if" condition should match the "only if" condition. To give
the reader a flavor of the difficulties involved in tightening Theorem 8, we give an
example of a class of functions F that lies in the gap between the necessary and
sufficient conditions of Theorem 8. Specifically,

(1) dimg (F) is finite,
(2) dimc (graph(F)) is infinite,
(3) F is learnable.
Example 9. For a N, the ith bit of alpha is the ith bit in the binary representation

of a, counting from the right. For instance, the second bit of 13 is 0 since the binary
representation of 13 is 1101. Define the function f):R- R as follows.

f)(x) =/ ifotherwise.XN and the xth bit of a is 1,

Thus, fo) is zero everywhere, and f(13)(x) 13 for x 1, 3, 4 and zero elsewhere.
Define the class F as follows.

F {f()] a e N}.

CLAIM 3. dimg (F)= 1.
Proof Suppose F shatters a set of size greater than one. Then F must shatter a

set of size 2. Let S={a, b} be such a set. It follows from the definition of F that
a, b N. By the definition of shattering, there exist three functions f(), f(), and f(v)
in F such that f()(a)#f()(a), f()(b)f()(b), and f(’/)(a)=f()(a), f(V)(b)=
f((b). Since f((a)f((a), at least one of them must be nonzero. Without loss of
generality, assume that f((a) is nonzero. Now, f((a) 0 implies that f((a)= oz.

Since f(V(a) =f((a), f(V(a) a. But then, f(’(a) 0 implies that f(’/(a) % and
hence a y. This contradicts the assumption that f(V(b)=f((b)f((b)hence,
the claim. [3

CLAI 4. dim,, (graph (F)) is infinite.
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Proof Let S be any arbitrarily large but finite subset of N. Consider S S {0}.
Now, graph(F) shatters S, since for any subset $2 of S, there exists a set f F such
that graph(f)f S $2. To see this, let $3 be such that S-$2 $3 {0}. We can pick
an integer c N, such that for all x $3, the xth bit of c is 1, with all other bits in c

being zero. Thus f()(x) 0 if and only if x S3--hence, the claim. [3

CLAIM 5. F is learnable.
Proof The following is a learning algorithm for F.

Learning Algorithm A4.

input e, (3 (0, 1 ].
begin

call EXAMPLE(e1-) ln()times.
if any of the examples seen is of the

form (x, y), y O,
then output f(Y.
else output f(o.

end

We now show that the probabilities work out for the above algorithm. Suppose
the function to be learned were f(), for some a 0. Then, if

P(f(")Af()) >= e,

with probability (1- (3), in (1/e)In (1/(3) examples there must be an example of the
form (x, c). In this case, the algorithm will output f("), implying that, with probability
(1- (3), the algorithm learns the unknown function exactly--hence, the claim.

In the foregoing, we considered functions on the reals, requiring that on a randomly
chosen point, with high probability, the learner’s approximation agrees exactly with
the target function. This requires infinite precision arithmetic and hence is largely of
technical interest. If all the computations are carried out only to some finite precision,
Theorem 5 would apply directly. Alternatively, we could require that the learned
function approximate the target function with respect to some norm. This is discussed
in [17], [18], and [10].

6. Appendix. We show that eliminating the length parameter n as input to the
learning algorithm leaves the results of the paper invariant.

Let us call the learning paradigm of 2 Framework 1. We define Framework 2
as follows.

DEFINITION 32. Algorithm A is a probably approximate learning algorithm for
F if:

(1) A takes as input reals e, (3 (0, 1].
(2) A may call EXAMPLE, which returns examples for somef F. The examples

are chosen randomly and independently according to an arbitrary and unknown
probability distribution P on E*.

(3) For all conceptsf F and all probability distributions P on E*, with probabil-
ity at least (1- (3), A outputs a concept g F such that p(fAg)<_ e.

DEFINITION 33. The sample complexity of a learning algorithm A is the function
s R x R x N- N such that s(e, (3, n) is the maximum number of calls of EXAMPLE
by A, the maximum being taken over all runs of A on input e and (3, during which n
is the length of the longest example seen by A.
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Suppose that A is a learning algorithm for a class of concepts F in Framework
2 with sample complexity s(e, 6, n). We show how to construct a learning algorithm

for F in Framework 1 with the same sample complexity. On input e, 6, n, A runs
A on inputs e, 6, and outputs A’s output. Since the distribution P is on Z-<_n, the length
of the longest example seen by A will be n and hence the number of calls of EXAMPLE
will not exceed s(e, 6, n). Also, the run time of is but an additive constant over the
run time of A.

Conversely, let A be a learning algorithm for F in Framework 1 with sample
complexity s(e, 6, n). The following is a learning algorithm for F in Framework 2.
In words, A first estimatesA a length n such that, with probability 1 (6/3), lxl__<n P(x) >=
1-(e/2). Then, A runs A with inputs e/2, 6/3, n. A has to make sure that A never
receives an example of length greater than n. To achieve this, draws a suitable
number of examples so that, with probability 1-(6/3), a sufficient number of the
examples obtained will be of length at most n. A then discards the examples longer
than n and uses the remainder in its simulation of A. A formal proof that A is indeed
a learning algorithm for F in Framework 2 is left to the reader.

Learning Algorithm A
begin

Call EXAMPLE ()
Let n be the length of the longest example so obtained.
Let rn s(e/2, 6/3, n).

m
Call EXAMPLE

In (2/e----- In times.

Let S be the sequence of examples so obtained.
Delete from S examples whose length exceed n.
if S has fewer than m examples left then halt.
else

run A on input (e/2, 6/3, n).
on the ith call of EXAMPLE by A
give A the ith example from S.
output the output of A.

end
end

Thus, F is polynomial-sample learnable in Framework 2 if and only if it is polynomial-
sample learnable in Framework 1. Also, F is polynomial-time learnable in Framework
2 if and only if it is polynomial-time learnable in Framework 1.
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EFFICIENT PARALLEL ALGORITHMS FOR TESTING k-CONNECTIVITY
AND FINDING DISJOINT s-t PATHS IN GRAPHS*

SAMIR KHULLER- AND BARUCH SCHIEBER$

Abstract. An efficient parallel algorithm for testing whether a graph G is k-vertex connected is presented.
The algorithm runs in O(k log n) time and uses (n+ kZ)kC(n, m) processors on a CRCW PRAM, where
n and m are the number of vertices and edges of G, and C(n, m) is the number of processors required to
compute the connected components of G in logarithmic time. For fixed k, the algorithm runs in logarithmic
time and uses nC(n, m) processors. To develop our algorithm, an efficient parallel algorithm is designed
for the following disjoint s-t paths problem. Given a graph G, and two specified vertices s and t, find k
vertex disjoint paths between s and t, if they exist. If no such paths exist, find a set of at most k- vertices
whose removal disconnects s and t. The parallel algorithm for this problem runs in O(k log n) time and
uses kC(n, m) processors. The way to modify the algorithm to find k-edge disjoint paths, if they exist, is
shown. This yields an efficient parallel algorithm for testing whether a graph G is k-edge connected. The
algorithm runs in o(kZlog n) time and uses nkC(n, kn) processors on a CRCW PRAM. Finally, more
applications of the disjoint s-t paths algorithm are described.

Key words, graph connectivity, parallel algorithms, disjoint paths

AMS(MOS) subject classifications. 05C38, 05C40, 68Q25, 68R10, 68Q10

1.1. Introduction. Graph connectivity is considered one of the classical subjects
in graph theory [Har69], [Ber76], [Eve79], and has many practical applications, e.g.,
in chip and circuit design, reliability of communication networks, and cluster analysis.
Designing efficient parallel algorithms for graph connectivity is clearly a basic problem
in parallel computation. Efficient parallel algorithms for testing connectivity [SV82],
[CV86], biconnectivity [TV85], triconnectivity [FT88], [FRT89], and four-connectivity
[KR87] of graphs have been developed. In this paper we present an efficient parallel
algorithm for testing whether a graph is /c-vertex connected, for any fixed /c. The
problem is formally stated as follows. Given an undirected graph G( V, E) and a fixed
integer/c, test whether G is/c-vertex connected. If the graph is not/c-vertex connected,
find a set of at most/c-1 vertices whose removal disconnects G.

In order to solve the connectivity problem, we solve the following disjoint s-t

paths problem. Given an undirected graph G, and two specified vertices s and t, find
/c-vertex disjoint paths between s and t. If no such paths exist, obtain a set of at most
/c-1 vertices whose removal disconnects s and t. Even [Eve85] proved that in order
to test for /c-vertex connectivity it is sufficient to check whether there are /c-vertex
disjoint paths between n +/c2 pairs of vertices.

The model of parallel computation used is the Concurrent-Read Concurrent-Write
(CRCW) Parallel Random Access Machine (PRAM) [Wy179]. A PRAM employs p
synchronous processors, all having access to a shared memory. A CRCW PRAM allows
simultaneous access by more than one processor to the same memory location for both
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read and write purposes. In case several processors attempt to write simultaneously
in the same memory location, an arbitrary one succeeds in doing the write. We remark
that our algoirthm can also be implemented in weaker PRAM models. The complexity
of our algorithm when implemented on such models is the same as the complexity of
finding connected components. However, to make the presentation simpler we concen-
trate on the CRCW PRAM model.

A parallel algorithm is said to have optimal speedup if its time-processor product
is the same as the time complexity of the best known sequential algorithm for the same
problem.

Our parallel algorithm for testing k-vertex connectivity runs in O(k2 log n) time
using (n+ kZ)kC(n, m) processors, where n =IV[, m ]El, and C(n, m) is the number
of processors required to compute the connected components of a graph with n vertices
and m edges in O(log n) time. For fixed k, our algorithm runs in logarithmic time
using nC(n, m) processors. From now on, throughout the paper we assume that k is
fixed, and all factors of k will be elided from the complexity bounds.

Using the logarithmic time parallel connectivity algorithm [CV86], the bound for
C(n, m) is (m+ n)a(m, n)/log n processors, where a(m, n) is the functional inverse
of Ackermann’s function, as defined in [Tar75]. Recall that the time complexity of the
best known deterministic sequential algorithm for testing k-vertex connectivity is
O(mn), for any fixed k> 4 [Eve75], [Galg0], [BDD/82]. Thus, the existence of an
optimal logarithmic time parallel algorithm for connectivity would make our k-vertex
connectivity algorithm achieve optimal speedup, for any fixed k > 4. The main com-
ponent of our parallel k-connectivity algorithm is an efficient parallel algorithm for
the disjoint s-t paths problem. This algorithm runs in O(log n) time using C(n, m)
processors. Again, the existence of an optimal logarithmic time parallel algorithm for
connectivity would make our parallel disjoint s-t paths algorithm achieve optimal
speedup.

The previous best deterministic parallel algorithm for testing k-vertex connectivity,
for k>4, required O(log2 n) time and nM(n) processors (where M(n)=12(n) is the
number of arithmetic operations required to multiply two n n matrices). Similar to
our algorithm, this algorithm tests k-vertex connectivity by finding k-vertex disjoint
paths between pairs of vertices. The disjoint paths are found using a straightforward
parallelization of the sequential algorithm [KMV89]. The parallelization suffers from
the problem of being inefficient, requiring O(log2 n) time and M(n) processors. A
randomized parallel algorithm for testing k-vertex connectivity is given in [LLW86].
It runs in O(log: n) time and uses n25 processors. Compared to our algorithm, this
algorithm uses fewer processors for dense graphs but has the disadvantage of using
randomization, and takes O(log n) time compared to our O(log n) time bound.

The sequential algorithm for testing connectivity reduces the problem to several
flow problems in appropriately defined networks. This reduction yields an efficient
sequential algorithm. However, the flow problem does not seem amenable to efficient
parallelism since it involves computing reachability in directed graphs. Thus, obtaining
an efficient parallel algorithm requires further insights into the problem. In our
algorithm we reduce the connectivity problem to a reachability problem in directed
graphs, called bridge graphs. We are able to exploit the structure of these bridge graphs
to obtain an efficient parallel reachability algorithm.

This is not the first time that the techniques used for efficient sequential algorithms
are not adequate for the respective parallel algorithms. For example, the sequential
depth first search (DFS) algorithm is very efficient, and can be used to obtain efficient
sequential algorithms for many other problems, such as connectivity, biconnectivity,
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and st-numbering. However, it seems that DFS is not amenable to efficient parallelism.
In order to obtain efficient parallel algorithms for each of these problems, new
techniques have to be developed. Examples of these techniques are the Euler tour
technique [TV85] and ear decomposition search [MSV86].

Our k-vertex disjoint paths algorithm can be extended to obtain k-edge disjoint
paths with the same complexity. The algorithm finds either k-edge disjoint paths, or
a set of at most k-1 edges whose removal disconnects s and t. This yields a parallel
algorithm to test a graph for k-edge connectivity that runs in O(log n) time using
nC(n, n) processors, improving on the previous parallel algorithms in both time and
number of processors. The best sequential algorithm for testing k-edge connectivity
runs in O(n2) time, for any fixed k> 2 [Mat87]. Thus, the existence of an optimal
logarithmic time parallel algorithm for connectivity would make our k-edge connectivity
algorithm achieve optimal speedup, for any fixed k > 2.

In addition to its application to connectivity algorithms, the disjoint s-t paths
algorithm has several other applications. It can be used in protocols forreliable
communication over networks as described in [IR84]. In [KMV89] it is used to obtain
efficient parallel algorithms for the two paths problem [Sey80], [Shi80]. We use it to
obtain efficient parallel algorithms for the subgraph homeomorphism problem for some
fixed pattern graphs.

We remark that for the case k 2, the disjoint s-t paths problem can be solved
by using an st-numbering of the graph. Unfortunately, the technique does not seem
to generalize to solving the problem for any k > 2. For completeness, we describe this
solution.

The paper is organized as follows. In 2 we give some preliminary definitions
and background. Before giving a description of the entire algorithm, we describe the
simpler case when k 2, in 3. We also describe how to solve the problem when k 2
using st-numbering. In 4, we describe the algorithm for finding k vertex disjoint s-t
paths. In 5, we show how to modify the algorithm to get k edge disjoint s-t paths.
Finally, 6 describes some more applications of the disjoint paths algorithm.

Remark. The algorithm for k 2, given in 3, is a special case of the algorithm
described in 4, and is included only to make the presentation clearer. Since 4 is
self-contained, some of the readers might find it useful to skip over 3.

2. Connectivity and disjoint paths. Let G( V, E) be a simple undirected graph.
Without loss of generality we will assume that G is connected. Let s and be distinct
vertices in V that are not connected by an edge. An (s, t) vertex separator is a set of
vertices Sv c V, such that every path from s to contains at least one vertex from Sv.
Define N(s, t) to be the minimum cardinality of an (s, t) vertex separator. By Menger’s
theorem [Eve79], IBM77] there are exactly N(s, t) vertex disjoint paths between s and
t. The vertex connectivity Av of G is defined as Av=min{N(s, t)[{s, t}c V, s t,
(s, t) E}. In other words, the vertex connectivity of G is the cardinality of the smallest
set of vertices whose removal disconnects G. Note that there are A v vertex disjoint
paths between any pair of vertices in G.

We define an articulation vertex to be a vertex whose removal from G (together
with its incident edges) disconnects G. A graph is said to be biconnected if its vertex
connectivity is at least two. The biconnected components of a graph are its maximally
biconnected subgraphs. A graph whose vertex connectivity is at least k, is called k-vertex
connected.

From the definition of vertex connectivity, it follows that testing whether G is
k-vertex connected can be done by checking if N(s, t)>: k, for all n 2 pairs of vertices.
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In [DF56] and [ET75] it was observed that N(s, t) can be computed using max-flow
techniques. Given the graph G(V, E), construct a network Ns,,(V, E), where each
vertex (excluding s and t) and edge has unit capacity. It is not difficult to see that
N(s, t) >- k, if and only if the value of the max-flow from s to in Ns,, is at least k.

In [Eve75] it was proven that to test whether G is k-vertex connected it is sufficient
to check whether N(s, t)>= k, for only (n+ k2) pairs. Here we prove a weaker claim.

Let Vk { vl, , vk} be a set of k vertices of G. (Without loss of generality assume
that VI > k.)

CLAIM. If N(vi, u)>=k for all i= 1,...,k and all u6 V, then G is k-vertex
connected.

Proof Suppose that the graph is not k-vertex connected. This implies that there
exists a set of at most k-1 vertices whose removal disconnects G into at least two
components C1 and C2. Since the size of the separating set is <k, at least one vertex

vi is in one of the components. Without loss of generality assume that vi is in C. Let
u be a vertex in C2 Clearly, N(vi, u)<k, yielding a contradiction to the
assumption.

We conclude that we can test whether G is k-vertex connected by running in
parallel (n + k2) copies of an algorithm for obtaining k-vertex disjoint paths. We will
describe an algorithm for obtaining k-vertex disjoint paths that takes O(log n) time
and C (n, rn) processors. This yields an O(log n) time algorithm that uses nC(n, m)
processors for testing whether a graph is k-vertex connected.

The edge connectivity of G is defined in a similar way. Let s and be distinct
vertices in V. An (s, t) edge separator is a set of edges SE c E, such that every path
from s to uses at least one edge from SE. Define M(s, t) to be the minimum cardinality
of an (s, t) edge separator. By Menger’s theorem [Eve79], [BM77], there are exactly
M(s, t) edge disjoint paths between s and t. The edge connectivity , of G is defined
as z =min {M(s, t)l{s t}= V, s t}. In other words, the edge connectivity of G is
the cardinality of the smallest set of edges whose removal disconnects G. Note that
there are Z edge disjoint paths between any pair of vertices in G.

To test whether a graph is k-edge connected we can check whether M(s, t)>= k,
for all n 2 pairs of vertices. As in the vertex case, M(s, t) can also be computed using
max-flow techniques [DF56], [ET75]. In the corresponding network Ms,, each edge
has unit capacity.

It is easy to see that it is sufficient to check whether M(s, t) -> k, for only n pairs.
CLAIM. Let v be a vertex in G. If M(v, u)>-k for all u V-{v}, then G is k-edge

connected.
Proof Suppose that the graph is not k-edge connected. This implies that there

exists a set of at most k-1 edges whose removal disconnects G into at least two
components C and C2. Without loss of generality assume that v is in C. Let u be a
vertex in C2. Clearly, M(v, u)< k, yielding a contradiction to the assumption.

Recently, Thurimella [Thu89] observed that to test whether G is k-edge connected
it is sufficient to consider a sparse spanning subgraph of G.

Let F be a maximal spanning forest (tree) of G. For i= 2,..., k, let F be a
maximal spanning forest of G-j=l Fj. Define H

_
Fi. Note that H has O(kn)

edges.
THEOREM 2.1 (Thurimella). The graph G is k-edge connected if and only if its

subgraph H is k-edge connected.
Proof The if direction is trivial. We prove the only if direction by contradiction.

Assume that G is k-edge connected and H is not. This implies that there exists a set
of at most k- 1 edges whose removal disconnects H into at least two components (say
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B3

\

FIG. 1. An example illustrating bridges.
edges of H; edges of B and B edge of trivial bridge B.

C1 and C2). On the other hand, there are at least k edges between C1 and C2 in G.
Since the edges of the spanning forests are pairwise disjoint, and there are k such
forests, at least one such forest, say Fi, does not contain any edge between C1 and C2.
Thus, in Fi, the components C and C2 are disconnected. However, in G-U i-lj=l F,
which is spanned by F, there is at least one edge between C and C2, a contra-
diction.

It follows that we can test whether G is /c-edge connected by running n copies
of an algorithm for obtaining k-edge disjoint paths in parallel on a sparse subgraph
H of G, that has O(/cn) edges. We construct H by /c applications of the parallel
connectivity algorithm. This takes O(log n) time and C(n, m) processors. We will
describe a parallel algorithm for obtaining /c-edge disjoint paths in a graph with n
vertices and m edges, that runs in O(log n) time and C(n, m) processors. This yields
an O(log n) time algorithm that uses nC(n, n) processors for testing whether a graph
is /c-edge connected.

We conclude the preliminaries with the following definition of bridges. Given a
graph G(V, E), let H be a subgraph of G, and let e and f be edges of G not in H.
Define the equivalence relation =H by e =/f, if and only if there is a path in G that
includes e and f and has no internal vertices in common with V(H). The subgraphs
induced by the edges of the equivalence classes of E(G)- E(H) under =H are called
the bridges of G relative to H. The attachment vertices of a bridge B relative to H are
the vertices in V(B)f3 V(H).

In Fig. 1, H is a simple cycle in G. The bridge B is a trivial bridge consisting of
only one edge, the two other bridges Bz and B3 are nontrivial.

3. Finding two vertex disjoint paths. Let G( V, E) be an undirected graph, with s
and vertices that are not connected by an edge. In this section, we develop a parallel
algorithm for finding either two vertex disjoint paths between s and t, or an articulation
vertex separating s and t. We will subsequently show how this algorithm can be
generalized to finding /c-vertex disjoint s-t paths, with the same complexity bounds.

High level description. The algorithm consists of five steps.
Step 1. Find a path P from s to t.

Step 2. Decompose G into its bridges relative to the path P1.
If there is a single bridge that has both s and as its attachment vertices, then a

path P2 between s and in this bridge is vertex disjoint from P1, yielding the two
disjoint paths. Suppose that there is no such bridge.

Define a linear order on the attachment vertices according to their position on

P. An attachment vertex a is said to be less than an attachment vertex b, if a is to
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the left of b on P1. (We assume that s is the leftmost vertex on P1 and is the rightmost.)
For each bridge Bi, define li to be leftmost attachment vertex, i.e., the attachment
vertex that is closest to s on P. Similarly, define r to be its rightmost attachment
vertex; i.e., the attachment vertex that is furthest from s on P.

Step 3. Construct a new directed graph GB(VB, En), called the bridge graph, as
follows:

VB {i Bi is a bridge} 1,3 {s, t}.

The set of edges E/ is defined as follows. The vertex s has an outgoing edge to a

vertex/3, if/---s, and r is furthest from s, among all bridges Bz, with lz --s. A vertex

/i has an outgoing edge to if ri- t. If r t, then we define an outgoing edge from
/3 as follows: each vertex/3 has an outgoing edge to a vertex/3 if r is the rightmost
vertex on P among the attachment vertices of bridges whose leftmost attachment
vertex is to the left of ri, and if r > ri.

Remark. When the maximum is achieved for more than one bridge, any one is
chosen arbitrarily. This implies that the outdegree of every vertex of G is at most one.

Step 4. Find a (directed) path from s to in GB, if one exists.
We prove below that such a path in Gn exists if and only if there are two vertex

disjoint paths between s and t. We also show how to construct these two paths, given
the path in G.

Step 5. If a path from s to in Gn was found, construct two vertex disjoint paths
between s and t. (The construction is given below.) Otherwise (there is no path from
s to in G), if there is no bridge with s as an attachment vertex, then the neighbor
of s on P1 separates s and t, else, consider all the vertices reachable from s in GB.
Recall that each such vertex corresponds to a bridge of G relative to P. Let w be the
attachment vertex of one of these bridges which is furthest from s. The vertex w
separates s from t.

Correctness. To prove the correctness of the algorithm we prove the following
theorem.

THEOREM 3.1. There are two vertex disjoint paths between s and in G if and only
if there is a directed path from s to in Gn.

Proof The if direction. Suppose that there is a directed path P s,/3 ,. ,/3o,
from s to in Gn. To prove that there are two vertex disjoint paths from s to in

G, we show that the value of the max-flow in the network N,t is at least two.
Observe that the path P1 corresponds to a path in N,t from s to t. Using P we

can push one unit of flow from s to t. Our goal is to show that P defines an augmenting
path in N,t given the flow corresponding to P1.

For each vertex /3x, on PB, let Rx be the path in B,i from 1 to rxi. (Note that
l, s and rx, t.)

Given a path P, let P[1; r] denote its segment from to r. We define P2 to be a

path from s to in G as follows:

P2= R,; P,[r,,; /]; Rx; Ro_,; P,[ro_,; /xo]; R..
Path Pe consists of two kinds of segments: segments belonging to bridges and segments
belonging to P that "reverse" on P (see Fig. 2). (We view P as directed from s to t.)

We claim that P corresponds to an augmenting path in N.,, yielding a flow of
two units (see Fig. 3). This follows from the following lemma.

LEMMA 3.2. After pushing one unit offlow along P, the outgoing flow from each
vertex (excluding s) and the incoming flow to each vertex (excluding t) is at most one.
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Rx

FG. 2. Path P.

FIG. 3. Obtaining two vertex disjoint s-t paths.

Proof Before pushing the flow along P2 we had a legal flow of value one. Clearly,
by pushing flow along P2 we change the flow only for the vertices of P2; thus we may
consider only these vertices. Consider an internal vertex v on P2. If v is not on P1
(that is, it is an internal vertex of some Rxi), then its incoming and outgoing flow is one.

Suppose that v is a vertex on Pl[rx, ;/+]. From the definition of GB it follows
that Ix,+, < r, for 1 _<- < a. Clearly, I,+2 ->- rxi, for 1 _-< _-< a 2, since otherwise fix, would
have an outgoing edge to fix,+2. We observe that the path P2 has the following
monotonieity property: l,2 < rx, <- lx3 < r2 <--" < ro_2 <= Ixo < rxo_,. This implies that if v
appears more that once on P2, then it appears twice, and v rxi-/x,+2, for some
1 _<- _-< a -2 (see Fig. 4). Also note that P2 is (edge) simple (i.e., it does not repeat any
edges).

We distinguish between three cases: (1) The vertex v is not an endpoint of any
path R,. (2) The vertex v is a right endpoint of R, and a left endpoint of Rx,+2 (i.e.,
v= rx, lx,+2). (3) The vertex v is an endpoint of one path R,, (i.e., either v= Ix, or
v ri). (The figures describing all the cases are given in Fig. 9.) The proofs for each

Rxi lxid.

Rxi+
FIG. 4. Vertex v occurs on P2 twice.
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of these cases are given in the proof of Lemma 4.2 in the next section. (Lemma 4.2 is
the version of this lemma for an arbitrary k.)

The only if direction (of Theorem 3.1). Assume that there is no path from s to
in GB. If there is no bridge with s as an attachment vertex, then the neighbor of s on

P1 separates s and t. Consider all the vertices reachable from s in GB. Recall that each
such vertex corresponds to a bridge of G relative to P1. Let w be the attachment vertex
of one of these bridges, say Bi, which is furthest from s. We claim that w separates s
and t. Remove w and all its incident edges from G, and assume that there exists a
path Q from s to in the remaining graph.

Consider the vertices of Q that are also on P1 in the order of their appearance
on Q. Observe that there must be two such successive vertices wl and w2 such that
w < w and w2> w. Clearly, the subpath of Q from w to w2 does not contain any
vertex of P. Hence, there exists a bridge B relative to P such that/ < w and r > w,
contradicting the definition of w.

Implementation and complexity. We show how to implement the algorithm in
O(log n) time and C(n, m) processors on a CRCW PRAM. In the following discussion
we will assume that G is represented by its adjacency list.

Step 1. We find the path P from s to t, by computing a spanning tree of G, and
following the unique path from s to in this tree. This is done in O(log n) time and
C(n, m) processors using a logarithmic time parallel graph connectivity algorithm
(e.g., [CV86]).

Steps 2, 3. The implementation of these steps is analogous to the implementation
of Steps 2 and 3 of the k disjoint paths algorithm given in the next section. The detailed
description of these steps is postponed to that section.

Step 4. Observe that the outdegree of each vertex in G is at most one. Observe
also that G is acyclic, since (fix fly) in G implies that rx < ry. We conclude that
Gn is a rooted forest (where the edges are directed towards the root). Since the
outdegree of is zero, is the root of some tree in the forest. Thus, there exists a path
from s to if and only if s is the tree rooted at t.

We can check if s is in the tree rooted at by applying the Euler tour technique
of [TV85]. However, to apply this technique we need the full adjacency list of the
forest, i.e., we need to compute the list of incoming edges to each vertex /3i. To do
this we use the following observation. Consider two edges (fix-* fl) and (y-’ i)
incoming to /3. Suppose that r < ry. Then, all the bridges with rightmost attachment
vertex between r and ry have an outgoing edge to/3.

For a bridge B, define the rightmost edge to be the edge of Bi whose endpoint is
the rightmost attachment of Bi. Consider the concatenation of the adjacency lists (in
G) of all the vertices on P1. Compact this list to include only the rightmost edges of
bridges. It follows from the above observation that the rightmost edges of all the
bridges whose corresponding outgoing edges in GR point to the same vertex in GB are
consecutive in this concatenated list. Thus, the list of incoming edges of all the vertices
in Gn can be computed using the algorithms for list ranking and prefix sums in O(log n)
time and (m+ n)/log n processors [CV86], [AM88], [LFS0].

Step 5. If there is no path from s to in G, the separating vertex w is the
rightmost attachment vertex of the bridge corresponding to the root of the tree
containing s. This rightmost attachment can be found in O(log n) time with n/log n
processors using the same technique used in Step. 4.

If there is a path from s to in Gn, the two vertex disjoint paths Q1 and Q2 can
be constructed by following the two flow paths from s to t. We define Q and Q
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recursively. First, we define the prefix of each of these paths and then for each edge
on these paths we define its successive edge. The prefix of Q1 is Pl[s; lx2]. The prefix
of Q2 is Rx,. The successor edge for an edge (u v), v t, is the edge along which
the unit flow leaves v. Updating the incoming and outgoing flow edges through each
vertex is easily accomplished after computing P2. Each vertex of P2 that is also on P1
independently adjusts its incoming and outgoing flow edges. For some vertices the
flow through them is completely canceled, and they are neither on Q nor Q2. In this
way, we obtain the two paths as linked lists that can be ranked in O(log n) time using
n/log n processors [CV86], [AM88], [CV88].

To conclude this section, we remark that two disjoint s-t paths can be obtained
from an st-numbering of the graph. This alternative algorithm has the advantage that
after computing this numbering once, we can find two vertex disjoint paths between
any pair of vertices. However, it seems that this algorithm cannot be generalized to
obtain k-vertex disjoint paths, for k > 2.

For completeness we describe this algorithm briefly. Recall the definition of an

st-numbering [LEC67], [ET76]. Let G(V, E) be an undirected graph and let (s*, t*)
be an edge in G. An st-numbering of G is a 1-1 function f: V->{1,..., n} with the
following properties: (1) f(s*) 1; (2) f(t*)= n; (3) any vertex v V-{s*, t*} has at
least one adjacent vertex u with f(u)<f(v) and at least one adjacent vertex w with
f(w) >f(v). It is not difficult to see that a graph is biconnected if and only if it has
an st-numbering starting from any edge (s*, t*) [LEC67].

The algorithm consists of two stages: a preprocessing stage, in which an st-

numbering is computed, and a processing stage which uses this numbering to obtain
two vertex disjoint paths.

In the preprocessing path we decompose G into its biconnected components, and
compute an st-numbering for each biconnected component.

We now show how to find two vertex disjoint paths between s and t. First, we
check to ensure that s and are in the same biconnected component.

We construct a simple cycle C, that contains both s and s* by concatenating two
vertex disjoint paths from s to s*. One path is computed by starting at s and following
a sequence of vertices with decreasing st numbers, until we reach s*. We are guaranteed
to reach s* since each vertex (excluding s*) has an adjacent vertex with a smaller
number. Similarly, we construct a second path by starting at s and following a sequence
of vertices with increasing st numbers until we reach t*, and we then use the edge
(s*, t*) to reach s*. If is on C then the two vertex disjoint paths from s to are
obtained from C,. Otherwise, we compute a simple cycle C, that contains both and
s* in a similar way. Note that both C, and C, contain the edge (s*, t*).

Let w be the first vertex on C to the left of s that is also on C,, and let w2 be
the first vertex on C, to the right of s that is also on C,. It is easy to see that the parts
of C and C, from w to w2 define a simple cycle that contains both s and t, yielding
two vertex disjoint paths between s and t. (See Fig. 5.)

The preprocessing stage ofthe algorithm can be done in O(log n) time and C(n, m)
processors on a CRCW PRAM, using the parallel algorithms for testing biconnectivity
[TV85] and computing an st-numbering [MSV86]. Given this preprocessing the rest
of the computation can be done in O(log n) time with n/log n processors, using the
optimal logarithmic time parallel algorithm for list ranking [CV86], JAM88].

4. Finding k vertex disjoint paths. Let G( V, E) be an undirected graph, with s
and two specified vertices not connected by an edge. In this section we describe a
parallel algorithm for finding either k-vertex disjoint paths between s and t, or a set
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8" t*

FG. 5. Obtaining, two vertex disjoint s-t paths.

of at most k-1 vertices whose removal separates s from t. This algorithm is a
generalization ofthe algorithm for obtaining two disjoint s-t paths given in the preceding
section. It runs in O(log n) time and uses C(n, m) processors.

High level description. The algorithm consists of five steps.
Step 1. If k= 1, find a path from s to using a spanning tree of the graph.

Otherwise, recursively find k-1 vertex disjoint paths from s to t, if they exist. If not,
output a separating set of size =<k-2.

Suppose that k-1 paths, P,..., Pk- were found.
Step 2. Decompose the graph into its bridges relative to the subgraph P1U P2 (3

"JPk-1.
If there is a bridge that has both s and as its attachment vertices, then a path

P between s and in this bridge is vertex disjoint from P,. ., P_, yielding the k
disjoint paths. Suppose that there is no such bridge.

For Step 3 we need the following definitions.
DEFINITION 1. Suppose that both attachment vertices a and b are on a path P.

The vertex a is said to be less than b, if a is to the left of b on P. (We assume that s

is the leftmost vertex on P, and the rightmost.)
This defines a linear order on the attachment vertices lying on a path P.
DEFINITION 2. For a bridge B and a path P, let l be the leftmost attachment

be the rightmost attachment vertex of Bi on P. If B has novertex of Bi on P, and ri
attachment vertices on P, l, and ri are undefined.

Step 3. Construct a new directed graph Gu(VB, EB), called the bridge graph,
defined as follows:

VB {ji ]Bi is a bridge} U {s, t}.
The edges in Eu are the union of k + 1 sets.

1. The set S--{el,..., e_} of edges outgoing from s:

s) s}.e {s -, rx max r s.t. l ^ r >

In words, the edge e is (s-*/3x) if r is the rightmost vertex on P, to the right
of s, among the attachment vertices of bridges whose leftmost attachment is s.
Note that if (s-/3x) is an edge then l s, for all 1 <=j <= k- 1.

2. The set T of edges incoming to t:

T {fix t] rJ t, for some 1 =<j _-< k }.
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In words, the set T consists of edges (fl - t), for all bridges B whose rightmost
attachment is t. Note that if (/3x t) T then r t, for all 1 <=j <-_ k- 1.
The edges between vertices corresponding to bridges. These edges are parti-
tioned into sets D, , Dk_. We add an edge (/3i-*/3x) to DJ, if it is possible
to "move" from bridge Bi to B by "reversing" along some path Py, and r is
the furthest we can move (from B) along path P (see Fig. 6). More formally,
the edge (/3i-/3) D if
(a) For some path P (1 =< y -<_ k 1), we have (s < l < r).
(b) We have (r> r). (This condition is considered satisfied in case B has no

attachment vertex on P.)
(c) There is no/3z, such that/3 satisfies the above two conditions, and r{ > r.
In other words, to determine the outgoing edge from/3 in the set D, consider
all bridges whose leftmost attachment vertex on some P is to the left of r
(and is not s). The edge (/3i-/3,) is added to D if Bx has the rightmost
attachment on , among all bridges in the set, and this attachment vertex r
is to the right of r,J.. Ties are broken lexicographically, i.e., if/3x and /3 are
both candidates for the outgoing edge from/3, we choose /3 if x < y. (Each
bridge can be uniquely, labeled by the index of the lowest numbered edge it
contains.)

The graph GB is illustrated by an example in Fig. 7.
Note that each vertex, except s and t, has at most one outgoing edge belonging

to each set D. Since there are k-1 such sets, the outdegree of each such vertex is at
most k 1. It is easy to see also that the outdegree of s is at most k 1 and the outdegree
of is zero.

FIG. 6. The edge (fli fix) is added to Dj.

Our algorithm is based on two ideas. First, we show that there exists a directed
path from s to in GB if and only if there are k vertex disjoint paths between s and
in G. Moreover, given the path in Gn, the k disjoint s-t paths in G can be constructed.

Second, by exploiting the structure of Gn, we show how to find a path from s to (if
one exists) efficiently.

Step 4. Find a (directed) path from s to in G, if one exists.
Step 5. If a path from s to in G was found, construct the k vertex disjoint

paths between s and t. Suppose that there is no path from s to in GB. Consider all
the vertices/3 reachable from s in Gn. Recall that each such vertex corresponds to a
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D1,D2, D3GB

FIG. 7. The path P, corresponding to PB s, [31, [32, [33, [35, [36, (in GB).

bridge Bi of G. Let wj be the attachment vertex of one of these bridges which is furthest
from s on P. In case there is no attachment vertex of any of these bridges on P, then

w is chosen to be the neighbor of s on P. The set {wl," ", Wk-1} separates s from t.

Correctness. Suppose that there are k-1 vertex disjoint paths between s and t.
By our induction hypothesis these paths are found in Step 1. The base case is when
k 1. In this case the path P1 from s to is found by computing a spanning tree of
G, and following the unique path from s to in this tree. To prove the inductive step
we prove the following theorem.

THEOREM 4.1. There are k vertex disjoint paths between s and in G if and only if
there is a directed path from s to in GB.
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Proof The if direction: Suppose that there is a directed path PB s, X ," ", Xa,
from s to in GB. Assume that P is (vertex) simple (i.e., no vertex appears twice

in P).
To prove that there are k vertex disjoint paths from s to in G, we show that the

value of the max-flow in the network Ns,, is at least k. Observe that the paths
P1," Pk-1 correspond to k-1 vertex disjoint paths in Ns,, from s to r Using these
paths we can push k- 1 flow units from s to r Our goal is to show that P defines an
augmenting path in N,,, given this flow.

For an edge (fli - fix) in G, define the type of (/3i- fix) to be y, if ry > l. For
example, in Fig. 6, the type of the outgoing edge from/3i is y (since the "reversal" is
done on path Py). Note that by the definition of GB, the type is always defined. In
case there are several such y’s any one may be chosen to be the type of the edge.
Given the path Pn s, flx,, , fix, t, let b be the type of the outgoing edge from fl,
for l <-_b<-a-1.

For each vertex fl, on Pn, define a path R in B as follows. For B,, Rx, is
from s to r’l, where il is the type of the outgoing edge from/31. For B, Ro is from
I to t, where i_ is the type of the outgoing edge from flxo_,. For B,I < b < a, Rx

i where ib_ is the type of the outgoing edge from fl_, and ib is theis from 1-’ to r,
type of the outgoing edge from fl in Pz. See Fig. 7 for an example. In this example
a 5, and the paths P,, P:, Pi, Pi are P1, P3, P, P, respectively. The values of Xl,

x, x3, x4, x are 1, 2, 3, 5, 6, respectively.
Define a path Pk from s to in G

"lixaa-’ RxPk- Rx, Pi,[r,, Rx2 "’, Rxo_," ra--lxa--1
Path Pk consists of the following two kinds of segments" segments belonging to bridges,
and segments belonging to paths Pi that "reverse" on Pi. (We view each Pi as directed
from s to t.)

The path Pk is not necessarily (edge) simple as shown in Fig. 7. (The figure
illustrates only the leftmost and rightmost attachment vertices of each bridge.) This
happens when some segments of Pk that "reverse" on some Pi overlap. We claim that,
given Pk, we can construct an (edge) simple path from s to that consists of two kinds
of segments" segments belonging to bridges, and segments that "reverse" on some P.
This is achieved by a "pruning" step on the path Pk. Moreover, we can obtain a
"pruned" path Pk with the following monotonicity property. If b<c, and both

"l’ ]P[r "lP[rxb ,.... xc+,] are segments of the edge simple path Pk then <r <--
Xb+l Xb

< r (In other words as we move on the "pruned" P from s to the segmentsXc+

of Pk that are "reverse" segments are ordered on P.)
i;li ].The ’pruning" step on Pk is done as follows. Consider the segment Pi[Gb x.,

Let d be the maximum index such that d > b, and I/a < r on Pi. (Note that d is
always defined, since d b + 1 is a possible candidate.) In this case we "prune" the
path Pk, and replace the subpath of Pk from r to l by the segment Pi[rx la] (see
Fig. 8). The simple path is constructed by following the chain from s to in the
resulting graph. Let

Pk Rx, Pil[r, I/X12]; Rx2;""" Rxo_, ;Pio_,[r_’, ;/}-’]; Ro
denote the resulting (edge) simple path.

We claim that Pk corresponds to an augmenting path in N,,. This follows from
the following lemma.

LEMMA 4.2. After pushing one unit offlow along Pk, the outgoing flow from each
vertex (excluding s) and the incoming flow to each vertex (excluding t) is at most one.
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FIG. 8. We prune the path so that Pk goes from B, to Bxd.

Proof Before pushing the flow along Pk we had a legal flow of value k- 1. Clearly,
by pushing flow along Pk we change the flow only for the vertices on Pk, thus we may
consider only these vertices. Consider an internal vertex v on Pk. If V is not on any
Pi, i< k (that is, it is an internal vertex on some Rx,), then its incoming and outgoing
flow is one.

Suppose that v is an internal vertex on some Pi. Let (u--> v) and (v-> w) be the
incoming and outgoing edges of v on Pi, respectively. We have three cases. (The figures
describing these cases are given in Fig. 9.)

Case 1. The vertex v is not an endpoint of any path Rxb. In this case v appears
only once on Pk. Observe that on Pk we have the edges (w-> v) and (v-> u) (that is,
the reverse of the corresponding edges on P). After pushing one unit of flow along
Pk, the incoming and outgoing flow of v is zero.

Case 2. The vertex v is a right endpoint of Rb and a left endpoint of R,,+, (i.e.,
rv r .+,), for some b < c. Both Pi[rxb," lb+,] and Pi[ x,. ;lx.+l] are segments of the

by the monotonicity property there is no d,edge simple path Pk. Since r,
(b < d < c) such that R, has an endpoint on P. It follows that the vertex v appears
exactly twice on Pk. In the first appearance, the incoming edge of Pk is the last edge
of Rx,, and the outgoing edge is (v--> u) (reverse of the edge on Pi). In the second
appearance on Pk, the incoming edge is (w-> v) and the outgoing edge is the first edge
on R.+,. After pushing one unit of flow along Pk, the incoming flow to v is one (from
R,), and the outgoing flow from v is one (towards R.+,).

Case 3. The vertex v is an endpoint of one path R, (i.e., either v l, or v rx,).
is analogous. TheWe prove it only for the case v l,, the proof for the case v rb

vertex v appears only once on Pk. Observe that on Pk we have the edges (w-* v) and
the outgoing edge from v on Rb. After pushing a unit flow along Pk the incoming
flow to v is one (from u) and the outgoing flow from v is one (towards R,).

This concludes the proof of the if direction of Theorem 4.1.
The only if direction: Assume that there is no path from s to in GB. Consider

all the vertices /3i reachable from s in GB. Recall that each such vertex corresponds
to a bridge Bi of G. Let wj be the attachment vertex of one of these bridges which is
furthest from s on Pj. In case there is no attachment vertex of any of these bridges on
Pj, then wj is chosen to be the neighbor of s on Pj. We claim that {wl,"’, Wk-}
separate s from t. To see that, remove the vertices {wl, , Wk-} and all their incident
edges from G, and assume that there exists a path Q from s to in the resulting subgraph.

Consider the vertices of Q that are also on one of the paths Pj, 1-<j_-< k-1, in
the order of their appearance on Q. Observe that there must be two successive vertices

x and x2 such that: (i) x is on some Pj and x < wj, (ii) x2 is on some Pj, and x2 > w,.
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Case 1.

Rx RXc+l

(b) Case 2.

Rxb

(c) Case 3.

FIG 9. Figures to illustrate all three cases.

Clearly, the subpath of Q from xl to x: does not contain any vertex of P1,. ., Pk-1.
Hence, there exists a bridge Bi such that l[ < wj and r(> wj,. This implies that fli is
reachable from s in GB, contradicting the definition of wj,.

Implementation and complexity. We show how to implement the algorithm in
O(log n) time using C(n, m) processors on a CRCW PRAM, for any fixed k. In the
following discussion we will assume that G is represented by its adjacency list.

Step 1. This is the recursive step.
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Step 2. The bridges of G relative to the subgraph P1 U P2 U’" U Pk-, and the
attachment vertices of each bridge are obtained by computing the spanning forest of
the subgraph of G induced by the vertices in V(G) V(P U P2 U. U Pk-). By adding
the edges incident to the vertices in V(P U P U U Pk-) (that are not in P1 U P U

U Pk-) we can obtain all the trivial bridges, as well as the edges that go from
vertices on the Pi paths to internal vertices of bridges. This is done in O(log n) time
and C(n, m) processors using a logarithmic time parallel graph connectivity algorithm
(e.g., [CV86]).

Step 3. We show how to compute the edges of GB. Recall that (/3x -/3y) Di, if ry
among the rightmost attachments ofis the rightmost vertex on P, to the right of r,

bridges whose leftmost attachment vertex on some Pz is to the left of r, (and is not s).
We do the computation in k-1 phases. Phase consists of three substeps, as follows:

1. Each vertex w on P U P2 U U Pk-, considers all the bridges that are attached
to it. Among them it selects the bridge whose rightmost attachment vertex on

P is furthest from s. Denote this bridge by Mi(w). This can be done, for all
the vertices on e U P2 J" U ek-1, in O(log n) time and (m + n)/log n pro-
cessors using the optimal logarithmic time algorithm for finding the maximum
[SV81].

2. Associate with each vertex w the rightmost attachment vertex of M(w) on P.
(For convenience we refer to this attachment vertex as Mi(w) as well.) For
each vertex v on a path P, compute the prefix maximum M*(v)=
maxw< Mi(w) (i.e., the maximum of Mi(w) over all vertices w to the left of v
on P). This can be done, for all the vertices in O(log n) time with m/log n
processors, using the optimal logarithmic time algorithm for computing prefix
maxima. This algorithm can be deduced from the general parallel algorithm
for prefix computations [LF80].

3. Given the prefix maxima, the outgoing edge from the set D of a bridge Bx can
be computed by taking the maximum over the set {M*(r), ’’’, M*i(rk-)}.
This can be done, for all the bridges in O(log n) time with mk/log n processors,
using the optimal logarithmic time algorithm for finding the maximum [SV81 ].

Step 4. We have to find a path from s to in the directed graph GB. In general,
it is not known if s-t paths in directed graphs can be obtained in O(log n) time and
C(n, m) processors. We show how to find such a path in O(k log n) time using
k(m + n)/log n processors, by exploiting the structure of Gn.

For 1 -<j <= k- 1, let F be the subgraph of Gn induced by the edges from the set
Dj U {ej}. (Recall that ej is an outgoing edge from s.) Observe that the outdegree of
each vertex in F is at most one. Observe also that F is acyclic, since (/3-->/3y) in F

(and also, there is no edge incoming to s). We conclude that F isimplies that rJ < ry
a rooted forest (where the edges are directed towards the root).

Define a "shortcutting" operation over the edges from Dj U {e}. In the "shortcut-
ting" the outgoing edges of all vertices with outgoing edges in Dj U {ej} are updated.
Consider such a vertex/3y. (We assume that this vertex is not s. Later we describe how
the updating is done for s.)

First, the outgoing edge from/3y from the set Dj is deleted. Let/3z be the root of
the tree in F containing/3y. Note that/3z has no outgoing edge from D. If/3z has no
outgoing edges in Gn, then this completes the "shortcutting." Suppose that /3z has
outgoing edges. If/3z has an outgoing edge to t, then we add an edge from/3y to (in
case such an edge does not exist). Suppose that /3z has no outgoing edge to t. For
a 1, , k- 1, a C j, define/3zo to be the vertex whose attachment point on Pa is the
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rightmost among the attachment points of all vertices with incoming edges from/3z.
That is, r azo > rz,a, for all/3z, such that (/3z-/3z,) EB. Observe that/3za is defined if/3z
has no outgoing edges, and that usually (/3z-*/3zo) is the outgoing edge from the set

Da. This is not the case only when razo < r. If/3y has an outgoing edge to t, then no
update is done. Otherwise, for a 1,. ., k- 1, a j, the outgoing edge from/3y, from
the set D, is updated as follows.

Case 1. The vertex/3y has no outgoing edge from the set D. If rzo > ry, then the
outgoing edge from jy from D, is taken to be (y "--> Za).

Case 2. The vertex jy has an outgoing edge (jy " ya) from the set Da. If rz. ryoa
then the outgoing edge from fly from D is updated to be (fly- ).

The "shortcutting" operation from s is defined similarly, where the sets {e} play
the role of the sets D.

The example in Fig. 10 shows a shortcutting step in F (the subgraph of GB
induced by D { el}).

FIG. 10. Shortcutting in F.
edges added in shortcutting.

LEMMA 4.3. Let G’ be the graph resulting from the "shortcutting" over the edges
ofD t_J { e}. Then, there exists a path from s to in G, if and only if there exists a path
from s to in G’.

Proof The if direction. If we suppose that there is a path P in G, then it is
ewsy to reconstruct a path P in G. If P uses an edge (fly-/3z,) in G (that is not
an edge in GB), then we replace it by the path from fly to/3z and the edge (/3z-/3,).

The only if direction. For this direction we first prove the following claim.
CLAIM. If there exists a path from s to in Gn then there exists a path PB s,

fix, ," ",xa, t, with the following property. The edge incoming to fix1 is e, andfor each
1 < e < a, the edge incoming to x is from the set D, where i is the type of the outgoing
edge from x.

Proof Suppose that there exists a path s, fly,,...,/3y, t, from s to in G, that
does not satisfy the property above. We show how to construct a path P s,
/3x,,"’,/3xo, t, with the property. This is done by replacing the edges of the original
path, one by one. The edge (s- y,) is replaced by the edge ei, (S---> x), where i is
the type of the outgoing edge from /3y. If/3x has an outgoing edge to then this
completes the construction. Otherwise, we add the outgoing edge from/3x, from the
set D (if such exists). Note that/3x, can reach/3y: by "reversing" on P,. Thus, if/3x,
has no outgoing edge from D:, then it must be the case that r > r) > l. In this case
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fix2 is taken to be flXl (That is, for the proof, we allow the repetition of vertices in PB;
the actual path is given by omitting these repetitions.) We continue in the same manner.
Observe that we are guaranteed to get a path from s to since we consistently move
to a vertex whose attachment point on the path on which the next "reversal" is done
is further to the right.

We now return to the proof of Lemma 4.3. Suppose that there is a path PB s,
flXl,’’’, fl,‘o, t, in GB with the above property. If Pt consists only of edges from G
then the same path is also in G. Suppose that Pn contains some edges that are not
in G. Let (fix, -+/3,,,+,) be the first such edge. We show how to construct a path P s,
fix,," ", fix,, fi,‘;,+l," ", in G. The prefix of the path up to 13Xb is the same as the
prefix of Ps up to fix,. If/3,, has an outgoing edge to t, then we add it to P to
complete the path. Otherwise, we distinguish between two cases.

Case 1. The edge (fix, -->/3,‘b+,) is not from the set D. The outgoing edge from/3,,,
in P is taken to be its outgoing edge (fix, -+/3z) from the set Di,+,, where ib+l is the
type of the outgoing edge from fix,+, in Pn. From the definition of the "shortcutting"
operation and the property of Pn it follows that such an outgoing edge exists and that
ri=.+, > li,+l

Xb

Case 2. The edge (/3x, /3,‘+,) is from the set D. Let (/3Xc -/3x.+,) be the first edge
in Pt following (fix, /3,‘+,) that is not from the set D. Note that the type of this edge
is j. In this case the vertices/3X+l ," ",/3,‘; are defined to be/3,‘,. (That is, for the proof,
we allow the repetition of vertices in P; the actual path is given by omitting these
repetitions.) There are two subcases for the outgoing edge from/3xc.

Case 2.1. The vertex/3,‘,, is the root of the tree (in Fj) containing/3,‘,. In this case
the outgoing edge from/3,‘;. =/3,‘ is taken to be its outgoing edge (/3,‘->/3z) from the
set Di,.+, if such exists, where ic+ is the type of the outgoing edge from /3,‘,.+, in Pt.
From the definition of the "shortcutting" operation it follows that if such an outgoing
edge exists then r}.+l >/i,-+, Otherwise, i.e., if there is no such edge, it must be the caseXc+

that r,,bic+l > li+’’,‘+2 In this case,/3,,;+, is also defined to be/3,‘,.
Case 2.2. The vertex/3,‘,, is not the root of the tree (in Fj) containing/3b. In this

case, the next vertex is determined as follows. Let /3y be the root of the tree in
containing/3,‘,. We have three possibilities:

(1) If +, > l.+l then the next vertex is also taken to be/3,,,Xc+
i+ +, then let d > c be the minimum index such that(2) If not (1) and ry ,>

r+’ < -,‘+21+’ (Notice that d is always defined. The only case in which it may be undefined
is when /3y has an outgoing edge to in Gn. However, in this case /3,‘ would have
also an outgoing edge to in G; a contradiction.) The vertices /3,‘;+,,...,/3a are
defined to be /3,‘,. The outgoing edge from/3,‘a=/3,‘ is taken to be its outgoing edge
(/3,‘, -+/3z) from the set D+ if such an edge exists. From the definition of the "shortcut-
ting" operation it follows that if such an outgoing edge exists then r/z+’ > i+’ Other-Xd+

wise, i.e., if there is no such edge it must be the case that r+, > i+, In this case,Xd

/3,‘a+, is also defined to be
(3) Consider the remaining possibility. Note that fly can reach fli,.+, by "reversal"

on Pj. Since r+, < +, and r,+, > i+’ fly must have an outgoing edge (/3y ->/3z) from,‘c+2 Xc+2 Xc+2

the set D,.+,, and clearly, ric+’z >/+’,‘+:. After the "shortcutting" operation/3,‘, must also
have an outgoing edge (fly-+ 13) from the set Di+,, where r/z > i‘+’,‘,.+. This outgoing
edge is taken to be the next edge in P.

On obtaining the outgoing edge from /3,‘, we continue the above process of
modifying path Pn to obtain an s-t path in G. Observe that we may actually replace
a vertex/3,‘ in Pt by a vertex/3,‘:, in P, for some c > b. However, we always have the
property that r,g; > ri,‘‘., for all e > b. In other words, we consistently move to a vertex



370 S. KHULLER AND 13. SCHIEBER

whose attachment point on the path on which the next "reversal" is done is further
to the right. We continue modifying PB in this manner until we reach t.

The path from s to in GB is computed in k-1 phases. In phase j we perform
the "shortcutting" operation over the edges of Dj t0 {ej}. From the lemma above it
follows that there exists a path from s to in GB, if and only if s is connected to by
an edge in the graph resulting after these k- 1 phases. If such a path exists, it can be
reconstructed by adding the edges deleted in the "shortcutting," starting from phase
k-1 down to phase 1.

Next, we describe how to implement each phase in O(log n) time using km/log n
processors. The implementation consists of two stages: (1) For each vertex fly identify
the root of the tree of F containing it. (2) Given the root, update the outgoing edges
of jy.

It is not difficult to see that Stage (2) can be implemented in constant time using
km processors and hence in O(log n) time using km/log n processors. The computation
of Stage (1) can be done by applying the Euler tour technique of [TV85]. However,
to apply this technique we need the full adjacency list of the forest F, i.e., we need
to compute the list of edges from the set Dj incoming to each vertex fix. For this we
use the following observation. Consider two edges of type i: (fly---) [3x) and (/3z /3x)
from the set Dr. (Since both edges are of type we can reach/3 from both jy and

< rz. Then, all the bridges whose outgoing/3z, by a "reversal over P.) Suppose that ry
edge from D is of type and whose rightmost attachment vertex on P is between ry
and r have an outgoing edge to/3.

For a bridge B and 1 <_-i=< k-1, define the rightmost edge on P to be the edge
of B, whose endpoint is the rightmost attachment of Bx on P. Consider the concatena-
tion of the adjacency lists (in G) of all the vertices on P. Compact this list to include
only rightmost edges of bridges whose outgoing edge from D is of type i. It follows
from the above observation that the rightmost edges of all the bridges such that (i)
their outgoing edge from D is of type i, and (ii) these edges point to the same vertex
in Gn, are consecutive in this concatenated list. Thus, the list of incoming edges
of all the vertices in GB can be computed using the algorithms for list ranking
and prefix sums in O(log n) time and (m+n)/log n processors [CV86], [AM88],
[LF80].

Step 5. If there is no path from s to in G, the separating set (w,...,
can be found from the construction of Step 4 in O(k log n) time and m/log n processors.
After doing the "shortcutting," assume that there is no edge from s to in G. We
add the deleted vertices (that are "shortcutted" over) to G, in the reverse order of
deletion. At each stage of adding the vertices, we consider the set of edges which were
deleted when the vertices were "shortcutted" over. For each deleted vertex, we test
whether it was reachable from s when the deleted edges are added. In this way we
are able to obtain the set of vertices reachable from s, and taking their rightmost
attachment vertices on each of the paths yields the separating set.

If a path P was found, then following the proof of Theorem 4.1 we construct
Pk. Recall that to make the path Pk (edge) simple we have to perform a "pruning"
step. This is implemented by constructing a linked list. For each rightmost attachment
vertex r on Pi, define its successor succ (rb) to be l, if (i) d--max {zlliz < rx},
and (ii) there is no c < b such that l < rixc" We add condition (ii) to avoid the situation
where one attachment vertex is the successor of more than one vertex. For each leftmost

i. Since each attachment vertex has at most oneattachment vertex l/xbb-1 SUCC (l/xb-) r
successor and is a successor of at most one vertex, the resulting graph is a set of chains.
A list ranking step from s yields the "pruned" path. The "pruning" is implemented
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optimally in logarithmic time using the parallel prefix computations algorithm of
[LF80] and the parallel list ranking algorithm of [CV86] and [AM88].

Finally, the k vertex disjoint paths can be constructed following the resulting k
flow units from s to t, in O(log n) time and n/log n processors using the optimal list
ranking algorithm [CV86], [AM88]. We conclude with Theorem 4.4.

THEOREM 4.4. The described algorithmfinds k vertex disjoint s-tpaths in O( k2 log n)
time using kC n, tn processors.

5. Fintling edge tlis]oint paths. In this section we describe a parallel algorithm for
finding k-edge disjoint s-t paths. The algorithms uses the same techniques as the
algorithm for finding vertex disjoint paths and has the same complexity; that is, the
algorithm either finds k-edge disjoint paths or a set of at most k-1 edges whose
removal separates s and t, in O(log n) time and C(n, m) processors.

The parallel algorithm is similar to the algorithm of 4. The only difference is in
the definition of the bridge graph GB. Recall that edge disjoint s-t paths can be
computed using a max-flow computation in the network Ms, in which each edge has
unit capacity, i.e., we relax the restriction of unit vertex capacities and impose only
the edge capacity constraints. Because of this relaxation the flow augmenting path Pk
in Ms, is permitted to transfer itself from one bridge to another by using zero or more
reverse edges of Pi, unlike the condition imposed earlier that required that at least one
edge of Pi be transversed in the reverse direction. To capture this, the definition of
the sets D in the bridge graph GB is modified. Specifically, the edge (fli-* fix) is added
to the set D if r is to the right of r,J-, and is the rightmost vertex on P among the
rightmost attachments of all bridges whose leftmost attachment on some path Py is to
the left of or the same as r/y. More formally, the edge sets D1,"" ", Dk-1 are defined
as follows. For 1 -<_j _-< k- 1, the edge (fli -* fix) D if

(1) For some path Py (1 _-< y -<_ k 1), we have (s < lY <_- rY).
(2) We have (r> r). (This condition is considered satisfied in case B has no

attachment vertex on P.)
(3) There is no fiT, such that fl satisfies the above two conditions, and r > r

Note that the strict inequality in (1) was replaced by an inequality.
The correctness of the algorithm is implied by the following theorem.
THEOREM 5.1. There are k edge disjoint paths between s and in G if and only if

there is a directed path from s to in (the modified) G.
The proof of the theorem is similar to the proof of Theorem 4.1. We show that a

path in GB corresponds to a flow augmenting path Pk in the network Ms, t. Using the
flow of value k we can construct k-edge disjoint paths. If there is no path from s to
in GB, then the edges on the paths Pi outgoing from the furthest attachment vertices

of the bridges reachable from s in G, separate s from t.

6. Applications. In this section we describe some more applications of our parallel
algorithm for finding disjoint s-t paths.

Constructing a cycle through three specified vertices.
PROBLEM. Given an undirected graph G, and three specified vertices a, b, c of G,

determine whether the three vertices lie on a common simple cycle and construct such
a cycle if one exists.

Below, we show how to derive an efficient logarithmic time parallel algorithm for
this problem.

The parallel algorithm is a parallelization of the sequential algorithm of [LRS0].
We assume that G is biconnected since a, b, and c must be in the same biconnected
component if the cycle exists. The main idea of the sequential algorithm of [LRS0] is
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to decompose G into pieces and to look for paths which must exist in these pieces if
the cycle is to exist in G. All the steps in this algorithm are easy to parallelize efficiently,
except for the step that involves computing three vertex disjoint s-t paths. Using the
k-disjoint paths algorithm we can compute the three paths (if such exist) and either
construct the desired cycle from these paths, or conclude that such a cycle does not
exist.

The algorithm can be implemented in logarithmic time using the algorithm of 4,
together with parallel logarithmic time connectivity (e.g., [CV86]), biconnectivity
(e.g., [TV85]), and triconnectivity (e.g., [FRT89]) algorithms. The number of pro-
cessors used in the algorithm is the same as the number of processors needed by the
parallel triconnectivity algorithm. (The algorithm of [FRT89] appears to use
(n + m) log log n/log n processors.)

The two paths problem.
PROBLEM. Given an undirected graph G, and two pairs of vertices al, a2, and

bl, b2 find two disjoint paths, one from al to a2 and one from b to b2.
Our algorithm for finding three disjoint s-t paths is used as a subroutine in the

parallel algorithms of [KMV89] for the two paths problem to yield an O(log n) time,
n processors algorithm for solving the two paths problem on general graphs, and a
logarithmic time parallel algorithm for solving the problem on planar graphs that uses
the same number of processors as required for the triconnectivity algorithm.

Testing and finding subgraph homeomorphism for some fixed pattern graphs.
PROBLEM. Given a graph G, test if G has a subgraph homeomorphic to some

fixed pattern graph H. If G has such a subgraph, find it.
We show how to solve this problem for the pattern graphs: K4 and K2,3. As a

corollary, this gives an efficient algorithm to test whether a graph is outer-planar.
First, we consider the testing problem. The following lemmas are from [Asa85].
LEMMA 6.1. For a triconnected graph H, a graph G has a subgraph homeomorphic

to H ifand only ifthere is a triconnected component ofG that has a subgraph homeomorphic
to H.

LEMMA 6.2. Ifa simple graph G with two or more vertices has no subgraph homeomor-
phic to K4, then m <-2n-3.

LEMMA 6.3. A graph G has a subgraph homeomorphic to K4 if and only if there is
a triconnected component of G with four or more vertices.

LEMMA 6.4. Ifa simple graph G with two or more vertices has no subgraph homeomor-
phic to Ke,3, then m <= 2n 2.

LEMMA 6.5. A simple graph G has a subgraph homeomorphic to Ke,3, if and only
if there is a triconnected component of G satisfying one of the following:

(i) It has five or more vertices.
(ii) It is the graph K4 with at least one virtual edge.
(iii) It is a triple bond of three virtual edges.
Lemmas 6.2 and 6.3 imply a simple algorithm for testing whether a given graph

G has a subgraph homeomorphic to K4. Similarly, Lemmas 6.4 and 6.5 imply a simple
algorithm for solving the same problem for K2,3. Implementing both algorithms using
a logarithmic time triconnectivity algorithm (e.g., [FRT89]) yields logarithmic time
algorithms that use the same number of processors as required for the triconnectivity
algorithm.

A planar graph is outer-planar if it can be embedded in the plane so that all its
vertices lie on the same face. The following theorem is an easy corollary of Kuratowski’s
theorem.
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THEOREM 6.6. A graph is outer-planar ifand only ifit has no subgraph homeomorphic
to g4 or K:2,3.

We conclude that we can test whether a graph is outer-planar in O(log n) time
using the same number of processors as required for the triconnectivity algorithm. Our
algorithm is simpler and more efficient than the algorithm given in [RR89]. However,
it does not yield the (outer-)planar embedding of the graph in case it is outer-planar.
To obtain an outer-planar embedding we add one artificial vertex v to G, and an edge
from v to every original vertex in the graph. The new graph is planar if and only if G
is outer-planar, since the addition of v ensures that all the original vertices are on the
same face in the obtained embedding. Using the logarithmic time algorithm in [RR89]
we can obtain an outer-planar embedding for G.

Finally, we note that in a similar way we can test subgraph homeomorphism for
the pattern graphs: C4, C5, and K2,p, for any fixed p.

We use the k-vertex disjoint paths algorithm to obtain homeomorphs of K4
and K2,3.

Finding K4 homeomorphs. Our algorthm is based on the proof of Lemma 6.3 of
[Asa85]. Without loss of generality assume G has 2n edges (if not, choose any subgraph
of G with 2n edges), and that G has a triconnected component G1 with four or more
vertices. Choose any vertex v of G1 and consider the subgraph G-{v} (which is
biconnected). In G-{v}, find a cycle C of length greater than or equal to three, by
obtaining a spanning tree of G-{v} and adding one nontree edge. Find three vertex
disjoint paths from v to three distinct vertices on the cycle C; such paths exist since
G is triconnected. The three paths are found as follows. First, introduce a new vertex
t, and add edges from to all vertices on C. Then, find three vertex disjoint v-t paths.
The required paths are the segments of these v-t paths up to their first point of
intersection with C. It is easy to see that the graph obtained from these three disjoint
paths from v to C, together with C, is homeomorphic to K4. To get the K4 homeomorph
in G, we may need to replace virtual edges by paths in G. It follows that using our
algorithm, together with parallel logarithmic time connectivity and triconnectivity
algorithms, a K4 homeomorph can be found in O(log n) time using the same number
of processors as required for the triconnectivity algorithm.

Finding K2,3 homeomorphs. Our algorithm is based on the proof of Lemma 6.5 of
[Asa85]. Again, we assume that G has 2n edges and a triconnected component G
satisfying one of the conditions in Lemma 6.5. We consider all the three cases which

G may satisfy.
Case 1. G has five or more vertices: Find G’, a subgraph homeomorphic to K4.

Let the vertices in G’ of degree three be called v, v2, v3, v4. If G’ is exactly the graph
K4 then G must have another vertex u G’. Find three disjoint paths from u to any
three vertices of the K4. It is easy to see that a subgraph homeomorphic to K2, can
be extracted from these three paths and the K4.

If G’ is a subdivision of K4, then consider a vertex u on the path P[v; v2]. Since

G1 is triconnected, there must be a path from u to some other vertex w of G’ in
G-{vl, v2}. Using this path and the K4 it becomes easy to extract the subgraph
homeomorphic to K2,3.

Case 2. G is K4 with a virtual edge: Replace the virtual edge by a path of length
greater than or equal to two and obtain a subgraph homeomorphic to K,3.

Case 3. G is a triple bond of virtual edges: Replace all three virtual edges by
paths of length greater than or equal to two and obtain a subgraph homeomorphic to

K2,3
Again, the implementation of this algorithm can be done in O(log n) time using

the same number of processors as required for the triconnectivity algorithm.



374 s. KHULLER AND B. SCHIEBER

Acknowledgments. We are grateful to Steve Mitchell and Vijay Vazirani for useful
discussions and encouragement. We are also grateful to the referees for many useful
suggestions.

REFERENCES

[AM88]

[Asa85]

[BDD+82]

[Ber76]
IBM77]

[CV86]

[cv88]

[DF56]

[ET75]

[ET76]
[Eve75]

[Eve79]
[FRT89]

[FT88]

[Gal80]
[Har69]
[IR84]

[KMV89]

[KR87]

[LEC67]

[LF80]

[LLW86]

R. J. ANDERSON AND G. L. MILLER, Deterministic parallel list ranking, in Proc. Aegean
Workshop on Computing 88, Lecture Notes in Computer Science 319, Springer-Verlag,
Berlin, New York, 1988, pp. 81-90.

T. ASANO, An approach to the subgraph homeomorphism problem, Theoret. Comput. Sci., 38
(1985), pp. 249-267.

M. BECKER, W. DEGENHARDT, J. DOENHARDT, S. HERTEL, G. KANINKE, W. KEBER, K.
MEHLHORN, S. NAHER, H. ROHNERT, AND T. WINTER, A probabilistic algorithm for
vertex connectivity of graphs, Inform. Process. Lett., 15 (1982), pp. 135-136.

C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1976.
J. A. BONDY AND U.S.R. MURTY, Graph Theory with Applications, American Elsevier, New

York, 1977.
R. COLE AND U. VISHKIN, Approximate and exact parallel scheduling with applications to list,

tree and graph problems, in Proc. 27th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society, 1986, pp. 478-491.
, Optimal parallel algorithms for expression tree evaluation and list ranking, in Proc.

AWOC 88, Lecture Notes in Computer Science 319, Springer-Verlag, Berlin, New York,
1988, pp. 91-100.

G. B. DANTZIG AND D. R. FULKERSON, On the max-flow rain-cut theorem of networks, in
Linear Inequalities and Related Systems, Annals of Math. Study, Vol. 38, Princeton
University Press, Princeton, NJ, 1956, pp. 215-221.

S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, SIAM J. Comput.,
4 (1975), pp. 507-518.
, Computing st-numbering, Theoret. Comput. Sci., 2 (1976), pp. 339-344.
S. EVEN, An algorithm for determining whether the connectivity of a graph is at least k, SIAM

J. Comput., 4 (1975), pp. 393-396.
, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.
D. FUSSEL, V. RAMACHANDRAN, AND R. THURIMELLA, Finding triconnected components

by local replacements, in Proc. 16th International Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science 372, Springer-Verlag, Berlin, New
York, 1989, pp. 379-393.

D. FUSSELL AND R. THURIMELLA, Separation pair detection, in Proc. AWOC 88, Lecture
Notes in Computer Science 319, Springer-Verlag, Berlin, New York, 1988, pp. 149-159.

Z. GALIL, Finding the vertex connectivity of graphs, SIAM J. Comput., 9 (1980), pp. 197-200.
F. HARARY, Graph Theory, Addison Wesley, Reading, MA, 1969.
A. ITAI AND M. RODEH, The multi-tree approach to reliability in distributed networks, in Proc.

25th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, 1984, pp. 137-147.

S. KHULLER, S. G. MITCHELL, AND V. V. VAZIRANI, Processor efficient parallel algorithms

for the two disjoint paths problem and for finding a Kuratowski homeomorph, in Proc.
30th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, October 1989, pp. 300-305.

A. KANEVSKY AND V. RAMACHANDRAN, Improved algorithms for graph four-connectivity,
in Proc. 28th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, October 1987, pp. 252-259.

A. LEMPEL, S. EVEN, AND I. CEDERBAUM, An algorithm for planarity testing of graphs, in
Proc. Internat. Symposium on Theory of Graphs, P. Rosenstiehl, ed., Gordon and
Breach, New York, 1967, pp. 215-232.

R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Comput. Mach., 27
(1980), pp. 831-838.

N. LINIAL, L. Lov.sz, AND A. WIGDERSON, A physical interpretation ofgraph connectivity,
and its algorithmic applications, in Proc. 27th Annual IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society, October 1986, pp. 39-48.



PARALLEL ALGORITHMS FOR TESTING CONNECTIVITY 375

[LR80]

[Mat87]

[MSV86]

[RR89]

[SeyS0]
[Shi80]

[SV81]

[sv82]
[Tar75]

[Thu89]

[TV85]

[Wy179]

A. S. LAPAUGH AND R. L. RIVEST, The subgraph homeomorphism problem, J. Comput. System
Sci., 27 (1980), pp. 133-149.

D. MATULA, Determining edge connectivity in O(mn), in Proc. 28th Annual IEEE Symposium
on Foundations of Computer Science, IEEE Computer Society, October 1987, pp. 249-
251.

Y. MAON, B. SCHIEBER, AND U. VISHKIN, Parallel Ear Decomposition Search (EDS) and
st-numbering in graphs, Theoret. Comput. Sci., 47 (1986), pp. 277-298.

V. RAMACHANDRAN AND J. H. REIF, An optimal parallel algorithm for graph planarity, in
Proc. 30th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, October 1989, pp. 282-287.

P. D. SEYMOUR, Disjoint paths in graphs, Discrete Math., 29 (1980), pp. 293-309.
Y. SHILOACH, A polynomial solution to the undirected two path problem, J. Assoc. Comput.

Mach., 27 (1980), pp. 445-456.
Y. SHILOACH AND U. VISHKIN, Finding the maximum, merging and sorting in a parallel

computation model, J. Algorithms, 2 (1981), pp. 88-102.
An O(log n) parallel connectivity algorithm, J. Algorithms, 3 (1982), pp. 57-63.

R. E. TARJAN, Efficiency ofa good but not linear set union algorithm, J. Assoc. Comput. Mach.,
22 (1975), pp. 215-225.

R. THURIMELLA, Techniques for the design ofparallel graph algorithms, Ph.D. thesis, Depart-
ment of Computer Science, University of Texas, Austin, TX, 1989.

R. E. TARJAN AND U. VISHKIN, An efficient parallel biconnectivity algorithm, SIAM J. Comput.,
14 (1985), pp. 862-874.

J. C. WYLLIE, The complexity ofparallel computations, Ph.D. thesis, Department of Computer
Science, Cornell University, Ithaca, NY, 1979.



SIAM J. COMPUT.
Vol. 20, No. 2, pp. 376-394, April 1991

() 1991 Society for Industrial and Applied Mathematics
012

TIME AND MESSAGE BOUNDS FOR ELECTION IN
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Abstract. This paper addresses the problem of distributively electing a leader in both syn-
chronous and asynchronous complete networks. O(n log n) messages synchronous and asynchronous
algorithms are presented. The time complexity of the synchronous algorithm is O(log n), while that
of the asynchronous algorithm is O(n). In the synchronous case, a lower bound of 12(nlogn) on

the message complexity is proven. It is also proven that any message-optimal synchronous algo-
rithm requires 12(log n) time. In proving these bounds, the type of operations performed by nodes
are not restricted. The bounds thus apply to general algorithms and not just to comparison-based
algorithms.

Key words, distributed algorithms, leader election algorithms, complete networks, time-

message complexities trade-off
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1. Introduction. In the election problem, a single node, called the leader, is
to be selected from a set of nodes which initially differ only in their identifiers (ids),
with no node being aware of any other id. An arbitrary subset of nodes wakes up
spontaneously at arbitrary times and starts the algorithm by sending messages over
the network. When the message exchange terminates, a leader is distinguished from
all other nodes.

This paper specializes in the problem of electing a leader in a complete network.
In such a network, each pair of nodes is connected by a bidirectional communication
link. Before the algorithm starts, no node has any information on any of the other
nodes. Hence, the incident links of a node, on which no message was sent or received,
are indistinguishable. We consider both synchronous and asynchronous modes of
communication.

When designing an algorithm, one has to take into consideration the class of inputs
for the algorithm. The smaller the class, the more efficient an algorithm might be
found since special features of the class may be exploited. Thus, for electing a leader in
an arbitrary topology asynchronous network, a O(m + n log n) bound on the message
complexity was proved, [Sur80], [FL87], [GHS83], [Ga177], [PKR82] where n and m
are the total number of nodes and links in the network. (m) is clearly a lower bound
for an arbitrary network, since no algorithm may terminate before sending at least one
message over each link, as an untraversed link could be the only link connecting two
parts of the network, each holding a separate election. While the (n log n) part of the
lower bound holds for networks as sparse as a ring [Bur80], [FL87], [FL85], gorach,

Received by the editors November 11, 1987; accepted for publication (in revised form) June 4,
1990. A preliminary version of 3 was presented at the Twenty-Second Annual Allerton Conference
on Communication, Control, and Computing, Allerton, Illinois, October 3-5, 1984. A preliminary
version of 4 was presented at the Fourth Annual Association of Computing Machinery Symposium
on Principles of Distributed Computing, Minaki, Ontario, Canada, August 1985.

Computer Science Department, Tel-Aviv University, Tel-Aviv, Israel; and AT&T Bell Labora-
tories, Murray Hill, New Jersey 07974. The research of this author was supported in part by the
Defense Advanced Research Projects Agency of the Department of Defense under contract MDA
903-82-C-0064.

Computer Science Department, Tel-Aviv University, Tel-Aviv, Israel; and University of Califor-
nia, Los Angeles, California 90024. The research of this author was supported by National Science
Foundation Presidential Young Investigator Award under grant DCR84-51396 and matching funds
from the XEROX Corporation under grant W881111.

376



COMPLEXITY OF COMPLETE NETWORK ELECTION ALGORITHMS 377

Moran, and Zaks [KMZ84] noted that the t(m) lower bound does not hold for the
smaller class of complete networks, where an election algorithm may terminate after
one node has communicated with all its neighbors. Subsequently, they proved a lower
bound of gt(n log n) messages for asynchronous complete networks, and presented an
algorithm that requires 5n log n + O(n) messages and O(n log n) time.

For synchronous networks, it was shown by Frederickson and Lynch [FL87], [FL85]
that one should distinguish between two types of algorithms: general, in which nodes
may perform any computation on the values of their ids, and comparison, in which
the values of ids can only be used for comparison with each other. They addressed the
problem of election in a synchronous ring, for which they presented a general algorithm
with O(n) messages, and proved a lower bound of t(n log n) messages for comparison
algorithms, thus showing that general algorithms are strictly more powerful than
comparison algorithms in a ring. This difference stems from the capability of general
algorithms in synchronous networks to delay messages and processors as a function
of the value of their id’s.

In this paper we prove that the message complexity of any election algorithm., com-
parison or general, in a complete synchronous or asynchronous network is O(n log n),
thus proving that general algorithms are not more powerful than comparison algo-
rithms for the problem of election in complete networks. The difference between
synchronous rings and synchronous complete networks stems from the fact that in
a ring all nodes can be distributively awakened with n messages, whereas in the
complete network the awakening problem is as hard as the election problem, hence
requiring gt(n log n) messages. Moreover, we prove that (n log n) is a lower bound
on the message complexity of any algorithm whose execution requires the sending of
messages, at least over the links of a connected spanning subnetwork. If all the nodes
of a complete network could be awakened with n messages, then a general algorithm
could take advantage of the synchronous mode of communication to elect a leader
in a linear number of messages by using the principles suggested in [FL87], [Gaf85],
[Vit84].

Consider the following, straightforward synchronous election algorithm in com-
plete networks. Every initiator starts the algorithm by sending messages, containing
its id, to all its neighbors. All the nodes then elect the highest id initiator as the
leader. The time complexity of this algorithm is two time units, and its worst-case
message complexity is O(n2). In 3.1 we slow down this simple algorithm and design
an O(log n) time, message-optimal synchronous algorithm. This is done by carefully
selecting a dynamic rate at which initiators send messages to their neighbors. Further-
more, by varying the dynamic rate at which initiators send messages to their neigh-
bors, we are able to trade message complexity for a better time complexity. Hence, we
present a continuum of 2 logc n-time, 2c. n. logc n-messages, 2 _< c _< n, synchronous
algorithms, closing the gap between the trivial O(1)-time, O(n2)-messages algorithm
and the O(log n)-time, O(n log n)-messages algorithm.

When applying the dynamic rate technique in the asynchronous model, we obtain
a 5 .n log n-messages but still linear time algorithm. The asynchronous algorithm is an
improvement over the algorithm of [KMZ84], which takes O(n log n) time and 5n log n
messages.

In an effort to reduce the message complexity of the asynchronous algorithm to
2n log n, we present a sequence of three asynchronous algorithms (A, B, and C). The
first two algorithms present a trade-off between time and message complexities. Algo-
rithm A has O(n.log n)-time complexity and 2.n.log n-message complexity. Algorithm
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B (which was also derived independently in [Hum84]) has O(n)-time complexity but
2.773. n. log n-message complexity. Analyzing the communication and time complex-
ities of the two algorithms, we derive a third algorithm, Algorithm C, whose time
complexity is O(n) and communication complexity is 2n log n, an improvement on
the O(n log n)-time and 2n log n-message algorithm of Peterson [Pet84].

Following the (nlogn) lower bound on the message complexity and the con-
tinuum of synchronous algorithms, we prove an gt(logn) lower bound on the time
complexity of any message-optimal election algorithm in synchronous complete net-
works.

Finally, we prove a tight lower bound on the continuum of trade-off between the
message and time complexities of the synchronous algorithm. Specifically, we show
that if an algorithm, whether comparison or general, elects a leader in at most 1/2. logc n
rounds, then its message complexity is at least ((c-1)/2)n.logc n. Thus showing that
on the one hand, any message-optimal algorithm has an gt(log n)-time lower bound,
and on the other hand, any O(1)-time algorithm has an t(n2)-message lower bound.

The models used in this paper are described in 2. In 3 we present the various
algorithms. In 4 we present the lower bounds for the synchronous case, thus proving
the optimality of our algorithms. Throughout the paper, unless otherwise specified,
we use log to denote log2.

2. Models and assumptions. In this section we present the synchronous and
asynchronous complete network models which follow the traditional message-passing
model [Sur80], [LF81].

In a complete network of n nodes (processors), every node is connected by n 1
bidirectional communication links to all the other nodes. Nodes have unique ids, but
no node knows the id of any other node. Each link incident to a node has a unique
representation in that node. All messages received at a node are stamped with the
identification of the link through which they arrived. By the number of its outgoing
links every node knows n before the algorithm starts. However, all the links incident
to a given node on which no message was sent or received are indistinguishable to this
node.

The nodes of the network are initially asleep, but an arbitrary subset wakes up at
arbitrary times and starts the distributed election algorithm. Each node in this subset
is called initiator. Sleeping nodes may be awakened by receiving a message from the
algorithm. When the message exchange terminates, exactly one node emerges as the
network leader.

Considered here are two modes of communication, synchronous and asynchronous.
In the synchronous mode of communication, a global clock is connected to all the nodes
in the network. The time interval between two consecutive pulses of the clock is a
round. At .the beginning of each round, each node decides, according to its state,
what messages to send and on which links to send them. Each node then receives
any messages sent to it in this round and uses all the received messages and its state
to decide on its next state. Initiators start the distributed algorithm by entering an
initial state and then waiting for the beginning of the next round.

In the asynchronous mode of communication, there is no global clock and messages
incur arbitrary but finite delay. Messages from all input links are transferred into a
central queue. The processor receiving the messages processes them one at a time in
the order that they arrive at the central queue. The processing time of a message is
negligible in comparison to its communication delay.

Throughout the paper, the message complexity (communication cost) of an algo-
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rithm is the worst-case total number of messages sent during the algorithm, where a
message contains at most O(log n) bits. The time complexity is the worst-case total
number of time units from the first to the last message transmission due to the algo-
rithm, where a time unit in the synchronous case is one round. In the asynchronous
case, and only for the purpose of time complexity analysis, one time unit is an as-
sumed upper bound on message transmission delay. In arguing the time complexity,
we shall allow a message to traverse a link in any fraction of the time unit.

3. Complete networks election algorithms. In this section we derive a dis-
tributed algorithm for election in synchronous complete networks and three algorithms
for election in asynchronous complete networks. The message complexity of all the
algorithms is O(n log n).

The underlying mechanism for all the algorithms is similar. Each algorithm is
initiated by any subset of nodes, each of which is a candidate for leadership. Each
candidate tries to capture all other nodes by sending messages on all the links incident
to it. The algorithm terminates when a candidate has succeeded in capturing all its
neighbors. This candidate becomes the leader. To guarantee that only one node is
elected, all candidates but one are killed.

All candidates use a variable called level to estimate the number of nodes they
have already captured. The level variable is used by candidates to contest each other.
Captured nodes also have a level variable, which tracks the highest level candidate
they have observed. That candidate is their owner. All level variables are initialized
to 0.

A candidate that sees a node with a larger level than its own is eliminated from
candidacy. However, if the candidate’s level is larger or equal, the node’s level is
replaced by the candidate’s level. The candidate may then claim the node and try to
eliminate the previous owner of the node.

The algorithms differ mainly in three parts: (1) The way candidates determine
their level, (2) The way candidates capture their neighbors, and (3) The rule can-
didates use to eliminate each other. In the synchronous algorithm, the level of a
candidate is the number of rounds since it started the algorithm, and a candidate at
level 2i tries to capture 2 new nodes simultaneously (in one round). Unlike the syn-
chronous algorithm, in the asynchronous algorithms ,candidates capture one neighbor
at a time. In the first asynchronous algorithm, Algorithm A, the level of a candidate
is the number of other candidates it has killed. In Algorithm B, the level of a candi-
date is the number of nodes it has already captured (following [Gal77].) Algorithm
A achieves a better message complexity while Algorithm B achieves a better time
complexity. In Algorithm C, candidates use a combination of the above two level
functions to attain the time complexity of B and the message complexity of A.

To simplify the algorithms, every initiator node spawns two processes, the candi-
date process and the ordinary process. The two processes are connected to each other
by a bidirectional logical link which behaves like a physical link. A node awakened
by receiving a message from the algorithm spawns only an ordinary process. Candi-
date processes communicate only with ordinary processes and vice versa. Thus, the
communication topology can be viewed as a complete bipartite graph, on one side
the candidate processes and on the other side n ordinary processes. Henceforth, the
term candidate will be applied interchangeably to both the process and its initiat-
ing node. All messages received by a node are tagged according to the type of their
sending process. Messages received from candidate processes are forwarded to the
ordinary process. Messages received from ordinary processes are forwarded to the
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candidate process.

3.1. The synchronous algorithm. In this section we present a 2. log n-rounds,
3n log n-messages synchronous algorithm. In the next section we will show that this
algorithm is message optimal and is as fast as a message-optimal algorithm can be.

The algorithm is given in Fig. 1. At every candidate the algorithm proceeds
in levels. Every live candidate at level 2i, >_ 0, tries to capture 2 new ordinary
processes by sending them messages containing its level and id. If in level 2i + 1 the
candidate receives acknowledgments from all the ordinary processes it tries to capture,
then it proceeds as a candidate to the next level. Otherwise, the process (and hence
the node owning it) is eliminated from candidacy.

The level of a candidate is incremented by one every round. Every ordinary
process has level and owner_id variables that contain the level and id of the highest-
level candidate the process has received a message from (level ties are resolved by
selecting the highest id). In every round, every ordinary process first increases its
level by one, to reflect the owner’s actual level, and then inspects the newly received
messages to update its level and ownerAd if necessary. If an update occurs, the
ordinary process acknowledges its new owner.

In the algorithm description, E is the set of edges incident to a candidate process.
Every candidate maintains a list of edges, called untraversed, which it has not yet
traversed in any direction.

3.1.1. Time and message complexities. Let p be the largest id of a candidate
from the set of oldest candidates (i.e., whose level is the largest). We observe the
following three facts.

FACT 1. The level of every ordinary node strictly increases from one round to the
next.

FACT 2. At most n/2-1 candidates reach level 2i, 1

_
<_ log n.

FACT 3. 2 log n rounds after it has started the algorithm, candidate p has captured
all the nodes and is elected as the network leader.

Fact 1 follows immediately from the algorithm for ordinary node processes. Fact
3 holds because all the messages of p get acknowledged, and once a node has acknowl-
edged p, it will not acknowledge any other message. Fact 2 follows from Fact 1 and
the observation that every ordinary node acknowledges at most one message in which
the level is i, 0 _<

_
log n, i.e., the sets of 2-1 nodes that are captured by each

candidate that has reached level 2i are disjoint.
Following Fact 3, the time complexity of the algorithm is 2 log n. Since every node

sends at most one acknowledgment to a candidate in level 2i, the total number of
acknowledgments is n log n, each of length O(1) bits. Due to Fact 2, the total number

-log n 2_)2of candidate messages is z.,= (n/ 2n log n, each message containing log n+
log log n bits. The total communication complexity is thus 3. n log n messages.

A continuum of algorithms can be devised to close the gap between the trivial
O(1)-time, O(n2)-messages algorithm and the O(log n)-time, 3n log n-messages algo-
rithm. Each algorithm in the continuum is the same as the above, except that a
candidate in level tries to capture c neighbors, 2 _< c _< n. The time complexity
of the algorithm is 2 logc n, and its message complexity is 2c. n. logc n, thus proving
that the lower bounds that will be presented in 4.3 (Theorem 4.5) are tight.

3.1.2. Asynchronizing the synchronous algorithm. To maintain the
O(nlogn) message complexity in the asynchronous communication mode, we are
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Candidate program:
untraversed - E
level #-- -1
Each round do:

level - level / 1
if level is even
then

if untraversed is empty
then

Elected, Stop
else

K - Minimum 2e/2,]untraversedl);
Send (level, id) over K links from untraversed, and
remove these links from untraversed;

else
Receive all acknowledgment type messages
if received less than K acknowledgments
then

Stop
End each round.

/* level is odd */

/* Not a candidate anymore */

Ordinary program:
l* -- nil;
level -- -1
owner_id -- id
Each round do:

Send an acknowledgment over l*
level -- level + 1
Receive all candidate messages (level,id) over link 1;
Let (level*, id*) be the lexicographically largest
(level, id) candidate message, and
l* the link over which it arrived
if (level*, id*) > (level, owner_id)
then

(level, owner_id -- (level*, id*);
else

l* - nil;
End each round.

FIG. 1. The Synchronous Algorithm.
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forced to increase the time complexity to O(n). The increase in the time complex-
ity seems unavoidable and it remains an open question whether a sublinear-time,
message-optimal asynchronous algorithm exists.

There are two basic differences between the asynchronous and synchronous modes
of communication. First, in the asynchronous mode there is no global clock, and
second, messages incur an arbitrary but finite delay. The arbitrary delay of messages
(and not the absence of the clock) is the source of the increase in the time complexity of
the algorithm. Essentially, the synchronous algorithm would perform as well without
a global clock, if all messages sent by a single node incur exactly the same delay.

To see that a straightforward application of the synchronous algorithm in the
asynchronous model will not work consider the following situation: There are two
competing candidates, C and C; each has already successfully captured one node,
and both proceed to capture the nodes v and u at the same time. A message of
C ws the first to arrive t v which is then captured by C, while a message of
C was first to arrive at u. Following the rules of the synchronous algorithm, v
positively acknowledges only C and u positively acknowledges only C2. Thus, both
candidates are killed, since none had all of its messages positively acknowledged,
and the algorithm deadlocks. In the following sections we present algorithms which
overcome this and similar problems in the asynchronous case.

3.2. Three asynchronous algorithms. Our aim in this subsection is to derive
a 2. n logn + O(n)-messages, linear-time asynchronous algorithm. To this end we
present a sequence of three asynchronous algorithms (A, B, and C), each devised to
circumvent the problems of the previous one, so that Algorithm C achieves the desired
complexity.

Unlike the synchronous algorithm, a candidate process in the asynchronous algo-
rithms tries to capture all the other nodes by successfully traversing its incident links
one at a time.

3.2.1. Algorithm A. Level: In this algorithm, the level of a candidate is the
total number of other candidates that it has killed.

Capturing and elimination rule: To capture node v, the level of a candidate
must be strictly larger than that of v, in which case the candidate captures v without
killing the previous owner of v. When two live candidates in the same level encounter
each other, the higher id candidate kills the other and increases its level by one.

When candidate P arrives at node v which is currently owned by candidate Q,
the following rule is used:

If Level(P) < Level(v), P is killed.
If Level(P) > Level(v), v is captured by P, and v gets P’s level.
If Level(P) Level(v), P is sent to Q.
Upon arriving at Q"
If (Level(P), id(P)) < (Level(Q), id(Q)), P is killed.
If Q has already been killed, P is killed too.
If (nevel(P),id(P)) > (Level(Q),id(Q)), then (1) Q is killed, (2) P increases

its level by one, and (3) P captures v.
Details: To keep track of its owning candidate, every captured node has two link

pointers, father and potential_father. The father pointer points to the link through
which the node was most recently captured, and the potential_father pointer points
to the link through which a candidate which tries to claim the node from its father,
has arrived.
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As in the synchronous algorithm every initiator spawns two independent pro-
cesses, candidate and ordinary. The two processes are connected by a bidirectional
logical link that behaves like a physical link.

A formal description of Algorithm A is given in Fig. 2. When a candidate arrives
at node v whose level is the same as its own, and the id of v’s father, Q, is smaller,
it becomes v’s potential_father. The potential_father is then sent to Q in an attempt
to kill it. If another candidate at the same level with even higher id arrives at v
before the potential_father returns from Q, then this other candidate is killed. If
the potential_father survives at Q it first increments its level by one, then returns
to v and captures it, and only then, returns to its initiating node. However, if the
potential_father finds that Q is already killed, it eliminates itself as well (since Q is
killed, there must exist a higher level candidate in the network).

Analysis: Since at most half of the candidates at level k go up to level k + 1, the
maximum level achievable during the algorithm is log n. Clearly, every time a node is
recaptured its level is increased by at least one. Hence, the total number of capture
messages possible is at most n. log n. Each capture uses 2 messages, which sums up to
a total of 2. n. log n messages. The extra messages sent by candidates which go over
father links to other candidates is at most 2.n, since each such traversal results in
the elimination of one live candidate. Thus, the message complexity of the algorithm
is 2. n. log n + 2. n messages, each of length log n + log log n bits.

The time complexity of the algorithm is O(n. log n) by the following scenario, in
which n/2 of the nodes are captured serially log (n/2) times. The algorithm is started
by node vo, which captures n/2 nodes in level 0. Then, a new node, vl, spontaneously
starts the algorithm, kills v0, increases its level to 1, and recaptures the same n/2
nodes. After vl has captured the n/2 nodes, two new nodes spontaneously start the
algorithm, try to kill each other, and the one which survives, v2, reaches level 1. Node
v2 then kills v and recaptures the n/2 nodes at level 2. The scenario continues until
the entire network has been captured by Vlogn/2, which is elected as a leader.

The basic reason for the high time complexity of the algorithm is that the level
of a candidate is not a function of the number of nodes it has already captured. A
candidate which spent a lot of work (and time) accumulating nodes might be killed
by a candidate which did not spend nearly as much. In the next algorithm we will
employ a linear level function, suggested by Gallager in a similar context [Ga177], thus
reducing the time complexity to O(n).

3.2.2. Algorithm B. Level: In this algorithm, the level of a candidate is the
number of nodes it has already captured.

Capturing and elimination rule: To capture node v, (1) the (level, id) of a
candidate must be lexicographically larger than the (level, id) of the previous owner
of v, and (2) the previous owner must be killed.

When candidate P arrives at node v, which is currently owned by candidate Q,
the following rule is used:

If (Level(P), id(P)) < (Level(v), id(Q)), P is killed.
If (Level(P), id(P)) > (Level(v), id(Q)), (1) v gets P’s level, and (2) P is sent

to Q.
When P arrives at Q:
If (Level(P), id(P)) < (Level(Q), id(Q)), P is killed.
If Q has been killed already then P returns to v and retries to capture it.
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Initially
level .-- size -- 0 owner_id - potential_id - 0 ;/* size used in Algorithm C only*/
untraversed - E father - potential_father +-- nil killed - false

Candidate (id)
while (untraversed ) do;-- any(untraversed) ;send(level, id) on l;
R: receive(level’,id’) over

if (id’ id)AND not killed then
level -- level untraversed -- untraversed-

else-if (level’, id’ < level, id) OR killed
then Discard the message, goto R;
else send(level, id’) over l; killed -- true goto R

end while;
if not killed then announce(Elected);

/*successful capturing.*

/* lexicographically*/

Ordinary:
level --1;
while (not terminated) do;

receive(level’, id’) over l’
case level’ of:
(1) level’ < level Discard message
(2) level’ > level: /* Replace the father */

father -- l’ ;level - level’ owner_id - id’
potential_id -- 0; potential_father -- nil
send(level’, id’) over the father link;

(3) level’ level
if (id’ < owner_id) then Discard message;
else-if (id’ potential_id) then

father .- potential_father;
level’ -- level’ + 1
ownerAd -- id’ potential_id - 0
potential_father - nil;
send(level’,id’) over the father link;

else-if there is already a potential_father then Discard message
else /* there is no potential_father */

potential_id -- id’ ;potential_father - l’
send(level’, id’) over the father link;

end case;
end while;

FIG. 2. Algorithm A.
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If (Level(P), id(P)) > (Level(Q), id(Q)), then (1) Q is killed, and (2) P returns
to v and retries to capture it.

Upon returning to its initiating node from a successful capturing, P increases its
level by one.

Details: A candidate C that arrives at an already captured node v whose level is
smaller than its own, replaces v’s level with its own and becomes v’s potential_father.
C is then sent to the father candidate of v. If C survives at v’s father, and meanwhile
no other candidate replaced C as the potential_father of v, then C becomes v’s father.
If v has not yet been captured, the potential_father automatically becomes the father
of v. A formal description of Algorithm B is given in Fig. 3.

Analysis: The algorithm is deadlock-free since candidates never wait for each
other, and the (level, id) pair is lexicographically increasing along any chain of can-
didates that kill each other.

The time complexity of the algorithm is O(n) since candidates never wait for each
other and a candidate that has done more work is never killed by a candidate that
has done less work. Thus, each killed candidate spent, in the worst case, less time
than the one killing it.

To prove that the communication complexity of the algorithm is O(n log n) we
use a Lemma which was introduced in [Gal77].

LEMMA 3.1. For any given k, the number of candidates that own n/k or more
nodes is at most k.

Proof. Let C1 and C2 be any two candidates which owned n/k nodes at some
point in time. We shall show that each of C1 and C2 must have owned disjoint sets of
at least n/k nodes each. If they never tried to claim a node from each other, we are
done. The first time that C (without loss of generality) tries to claim a node, say v,
from C2, either one of them dies, or C2 has already been killed. If C, without loss
of generality, caused the death of C2, then clearly it must have owned at least n/k
nodes disjoint from C2, at the time of killing. If C2 is already dead, C must still own
at least n/k nodes in order to claim v to itself. D

COROLLARY 3.2. The largest candidate to be killed by another candidate owns at
most n/2 nodes; the next largest owns at most n/3 nodes, etc.

LEMMA 3.3. The message complexity of Algorithm B is 4. n. In n 2.773.
n. log2 n) messages.

Proof. Since in capturing one node a candidate makes at most 4 hops, a candidate
which owned k nodes incurs at most 4. k messages. By Corollary 3.2, the total cost is
then bounded by 4.n. n__ (1/i) messages. Note that each message of the algorithm
contains at most 2. log n bits. [:]

The number of candidates at a particular level was constrained by the disjointness
property. Hence, a candidate which captures many nodes from another candidate tries
to eliminate that other candidate as many times as the number of nodes it captures
from it. This gives rise to the factor 4 in the message complexity.

In Algorithm A the amount of work a candidate spent was not factorized into the
level function and thus the time complexity was O(n log n). Although in Algorithm
B the time complexity was reduced to O(n), it has the problem that candidates
could be re-eliminated many times, thus increasing the message complexity. In the
next algorithm we eliminate both problems by employing a level function which is a
combination of the two.

3.2.3. Algorithm C. Here we make two modifications to Algorithm A in order
to achieve a linear-time complexity with no increase in the communication cost. First,
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Initially
level - owner_id -- 0
untraversed -- E father ,-- nil killed -- false

Candidate id
while untraversed = do;- any( untraversed );

send(level, id) on
R: receive(level’, id’) over l’

if (id’ id)AND not killed then
level -- level / 1;

/* successful capturing.*/

untraversed ,-- untraversed-
else /*another candidate tries to eliminate candidate id */

if (level’, id’ < level, id) /* lexicographically*/
then Discard the message, goto R
else /* Candidate id is eliminated */

send(level’, id’) over l’;
killed ,-- true
goto R;

end while;
if not killed announce(Elected);

Ordinary:
for_ever do;

receive(level’, id’) over l’;
case level’, id’ of:
(1) level’ id’ < level, owner_id:

Discard message
(2) level’, id’ > level, owner_id

potential_father - l’
level -- level’
owner_id - id’
if father nil then father - potential_father
send(level’,id’) over the father link;

(3) level’, id’ level, owner_id:
father -- potential_father
send(level’, id’) over the father link;

end case;
end for_ever

FiG. 3. Algorithm B.
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we incorporate an estimate of the amount of work spent by each candidate into the
level function of Algorithm A. Second, we enable candidates with a high level (> log n)
to capture many nodes in parallel (in one time unit). We start describing the algorithm
with the first modification. The second modification will be introduced during the
performance analysis.

Level: In this algorithm the level of a candidate is increased according to two
rules. 1) The rule of Algorithm A, and 2) After each capture the candidate increases
its level to be at least log (total number of nodes captured), i.e., after returning from
a successful capture the level is set to max (log (# nodes captured), present level).

Capturing and Elimination Rule: This rule is the same as in Algorithm A.
Details: The formal description of the algorithm is similar to that of Algorithm

A. A variable, called "size," is used to count the number of nodes captured by a
candidate. The only change is to replace the first "then" clause, within the "while"
loop of a candidate program to:

then
size -- size + 1
level max(level, log size);
untraversed - untraversed- 1;

Analysis: To analyze its performances we will first show the following lemma.
LEMMA 3.4. The maximum level reachable during any execution of Algorithm C

is logn + log logn + 1.

Proof. Let N be the total number of candidates that reach level during the
execution of the algorithm. Consider the maximum number of candidates which could
possibly pass from level i- 1 to level i. There are two ways in which a candidate
can go from level i- 1 to level i. First, by capturing 2-1 nodes at level i- 1 for

_< log n, and second, by killing another candidate which is at level i- 1. We note
that N is maximized if as many candidates as possible pass from level i- 1 to level
by capturing other nodes (i.e., n/2- candidates) and the rest of the candidates (i.e.,
N_- (n/2-)) kill each other in pairs. Hence,

(1) N < (N--(n/2-)) + n

2 2-1"

Solving (1) for N we get:

n. (i+ 1)(e) _<

Substituting N 1 in (2) and solving for gives us the maximum level, which is
log n + log log n + 1. [1

Using the same argument as in Algorithm A we find that the message complexity
of Algorithm C is 2. n. (log n+ log log n+ 2) messages, each of length log n+ log(log n+
log log n) bits.

With the above modification the time complexity of Algorithm A is reduced to
O(n. log log n). This is due to the fact that if the highest level in the network is i, it
must increase within time min(2, n). In order to further reduce the time complexity
to O(n), processes at levels higher than log n will try to capture n/logn nodes in
parallel. Thus a candidate which has reached level log n will send messages over
n/log n untraversed links incident to it. Each of these messages carries the (level, id)
of the candidate. When a message arrives at an adjacent node the node compares
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its level to that of the message. If the message level is higher, the node replaces its
(level, id) with the message, thus making the candidate the new father of the node.
The node then sends the candidate an acknowledgment of successful capture. If the
message level is smaller, it returns no message. Finally, if the message level is the
same as that of the node but the message id is higher, a notification to that effect is
sent back to the candidate.

The candidate waits for all the n/logn acknowledgments. If all the acknowl-
edgments indicate a successful capture, the candidate proceeds to the next n/log n
untraversed incident links. If, on the other hand, some of the acknowledgments indi-
cate that they have encountered the same level, one of the links is arbitrarily chosen
and a process that behaves as in Algorithm A is sent along that link. If the process
returns, the candidate increases its level and proceeds to the next n/log n untraversed
links (links on which no successful capture was reported are not considered traversed).

To analyze the algorithm with this modification we make two observations: First,
the maximum attainable level in the algorithm is still bounded by log n + log log n +
1. Second, by substituting log n in (2), we find that the maximum number of
candidates which reach level log n is log n.

The last modification has increased the communication complexity of the algo-
rithm by at most O(n) messages. Each node is still captured at most log n+log log n+l
times; however, the death of a candidate at level greater than log n might be associ-
ated with at most 2. n/log n messages. Since there are at most log n such candidates
the increase due to killings is bounded by O(n).

To show that the time complexity of the algorithm is O(n) we arrange the candi-
dates in a rooted tree. Each level of the tree corresponds to the candidates that have
reached that level in the algorithm, i.e., the vertices at level in the tree correspond
to the candidates that have reached level in the algorithm. The parent of a candi-
date at level in the tree is either the candidate that caused the death of the given
candidate or the same candidate at the next level. The time delay of the algorithm
is the sum of the delays incurred by candidates along the path from the first initiator
(candidate) to wake up, at level 0, to the root.

To evaluate this time delay we note that no candidate that either survives or is
killed at level spends more than 2-1 time units in level i, _< log n. In level i,
log n < _< log n + log log n, no candidate spends more than log n time units, since it
captures nodes at a rate of n/log n per time unit. Hence, the total time delay of the

-log n 2ialgorithm is bounded by z_,=l / log n. log log n n / log n. log log n. Note that
we scale a time unit to be the maximum delay it takes to capture one node, which is
a constant.

In the above calculation we did not include the actual time it takes candidates to
kill each other. Since there are at most n candidates and no candidate tries to kill a
dead one (unlike Algorithm B), this delay is also bounded by O(n).

4. Lower bounds for election in complete networks. Two algorithms for
election in synchronous complete networks were discussed in the previous sections.
The first is an O(n2)-message O(1)-time algorithm and the second is an O(n log n)-
messages O(logn)-time algorithm. The two algorithms raise two questions: (1) Is
(n log n) also the lower bound on the message complexity of election in synchronous
complete networks, and (2) If (n log n) is the message complexity lower bound, then
how fast can a message-optimal algorithm be, i.e., is there an O(n log n)-messages-
O(1)-time algorithm, or is 2(logn) the lower bound on the time complexity of any
message-optimal synchronous algorithm.
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In this section we answer these questions by proving first, that (n log n) is a lower
bound on the worst-case message complexity of a synchronous algorithm, and second,
by proving that (logn) is a lower bound on the time complexity of any message-
optimal synchronous algorithm. In proving these bounds we do not restrict the type of
operations performed by the nodes. The bounds thus apply to general algorithms and
not just to comparison-based algorithms. This proves that the synchronous algorithm
of 2 is optimal.

Furthermore, in 2 we have presented a continuum of (2c/log c). n log n-messages
2. logcn-time synchronous algorithms where c 2,...,n. In Theorem 4.5 each
algorithm in the continuum is shown to be optimal by proving that if an algorithm
(whether comparison or general) elects a leader in at most 1/2 logc n rounds, then its
message complexity is at least (c- 1)/(2. log c).n log n.

To show the lower bounds, a scenario in which any synchronous (and hence also
asynchronous) algorithIn transmits at least n/2. log n messages, is constructed using
an adversary argument. A similar argument is then used to show that the delay of
any message-optimal algorithm is at least (log n) rounds.

4.1. Definitions and assumptions. Consider an arbitrary election algorithm
on the synchronous model defined above. An event is the sending of a message over
a previously unused link (two messages sent in the same round in opposite directions
over a previously unused link are considered two separate events). With each event
we associate a link (s, d), where s is the source node and d is the destination node of
the corresponding message. With each round of the algorithm we associate a set of
events, Ri. A sequence E (R0, R1,.. ") is called an execution. An execution-prefix
Ej is a prefix, (R0, R1,... ,Rj), of an execution E. With each run of the algorithm we
associate an execution, called a legal-execution, that includes all events which occurred
in the run, arranged in order of the corresponding rounds. Henceforth, any mention
of a message refers to an event.

With each execution-prefix Ej we associate a graph Gj, whose nodes are the
nodes of the network and whose links are the links associated with the events in
Ej. A cluster in an execution-prefix Ej is any maximally connected component of
Gj. The "degree" of node v in an execution-prefix Ej is the degree of v in Gj. The
potential-degree of node v in an execution-prefix Ej is the degree of v in Ej plus the
number of times that v is a source node of an event in Rj+. The potential-degree of
a set of nodes is the maximum potential-degree among its nodes.

For the purpose of proving the lower bounds we introduce a slightly different
model than the standard synchronous model, called the stopping-model. The stopping-
model allows us to withhold the clock pulse, at the beginning of round j, from any
set of clusters, C, in Ej_, given that no node in C is expected to receive a message
in round j from a node not in C. The nodes in C are then said to be frozen in round
j. Therefore, a frozen node in a round neither sends nor receives any message in that
round; nor does it change its state. The stopping-model will be used to prevent large
differences in the clusters’ growth rates.

The stopping-model essentially allows us to select any cluster in an execution-
prefix Ej and send it back in time, i.e., the nodes of the cluster are awakened some
number of rounds later than they were in Ej.

A stopping-execution is an execution which corresponds to a run of the algorithm
in the stopping-model. A stopping-execution is called a k stopping-execution if the
cumulative number of pulses withheld over all frozen sets of clusters throughout the
run is k. Obviously, a 0-stopping-execution is a legal-execution.
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LEMMA 4.1. For any k stopping-execution E, there exists a k- 1 stopping-
execution E which.contains exactly the same events as E does.

Proof. Let be the minimum index of a round in which any set of clusters is frozen,
and let C be a set of clusters which is frozen in 1. An execution-prefix E which satisfies
the lemma can be obtained from E by shifting all events which occurred before round
and involve nodes in C, one round forward. This affects neither any event in later

rounds nor any event which involves nodes not in C. This is because neither E nor
E contains an event connecting a node in C with a node not in C in any round
Rj, j <_ l, and because Rl+l in E is identical to Rl+l in E. Notice that in E the
nodes in C are awakened one round later than in E. ]

COROLLARY 4.2. For any stopping-execution there exists a legal-execution which
contains the same events.

In the next two sections we will prove the lower bounds on the stopping model.
Using Corollary 4.2, these bounds apply also to the nonstopping model. In our proofs
we do not restrict the type of operations performed by the nodes, hence proving the
bounds for general algorithms.

4.2. A lower bound on message complexity. At the end of any election
algorithm all nodes know who the leader is, hence any such algorithm has to send
messages along the links of a spanning subnetwork. In other words, by the end of
the algorithm the whole network is contained in one cluster. Thus, no cluster in the
algorithm can defer indefinitely the sending of messages to nodes not in the cluster,
as the rest of the network might not wake up spontaneously.

In the following proof of the lower bound we will use an adversary argument to
construct a stopping-execution (and thus a legal-execution) which contains at least

n log n events. In the beginning of each round, the adversary determines first which
clusters to freeze, and then which links to use for the new events generated by the
unfrozen nodes. The first feature is used to delay the formation of larger clusters until
later rounds in the run, thus avoiding large differences in the clusters’ growth rates;
the second feature is used to send as many messages as possible within one cluster,
and thus again minimizing the cluster’s growth rate. The second feature is possible
since links incident to a given node on which no message was sent or received are
indistinguishable to this node.

In the proof of Theorem 4.3 an (n/2). log n event execution-prefix is constructed
formally. We will first demonstrate the construction through an example.

EXAMPLE 1. Assume n is a power of 2. A stopping execution-prefix with at least
(n/2). logn events is constructed in log n phases, each lasting few rounds. In phase
j, j 0,...,logn, the nodes are partitioned into sets of size 2J, such that every
subset contains two subsets of phase j- 1. The adversary continues the execution of
(does not freeze) any subset in phase j, whose potential-degree is less than 2 1, all
other subsets are frozen. The destination of events generated by nodes whose potential-
degree is less than 2 is chosen by the adversary to be within the same subset. Thus,
no cluster with more than 2 nodes is created in phase j and every cluster is contained
in one subset. Each phase is ended when all the nodes are frozen, i.e., when in every
subset there is a node which tries to send a message to a node not in the subset.

Table 1 gives the potential degrees of the subsets by the end of each phase. In
phase 0 of the example all nodes are awakened. Nodes 1, 2, 3, 5, 7,..., 13, 15, 16
have potential-degree 1, node 4 2, node 6 5, and node 14 9. If any of these nodes
started with potential-degree O, all the nodes with potential-degree greater than 0 are

frozen until eventually all will have potential-degree at least 1. Thus in phase 0 no
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TABLE 1
Potential-degrees of nodes in the example.

Phase IOlOlOlOlOlOlOlOlOl O lO IO IOlOlOlOlo 1 1111  15 | 1112, 112, 11111411991 21
2 4 4 9
3 8 9

event was generated. In phase 1, node 3 is frozen because node 4 has potential-degree
2. Similarly node 5 is frozen because of node 6, and 13 because of 14. By the end
of the first phase the constructed execution-prefix, Eil, contains the following events:
((1,2)(2;1)(7,8)(8, 7)(9,10) (10,9)(11, 12)(12,11)(15,16)(16, 15)}. By the end of the
second phase, Ei contains, at least, the following additional events: ((3, 4) (4, 3)(4, 2)
(2, 3)}. Ei3, by the end of the third phase, contains, at least, the following additional
events: {(4, 1)(4, 5)(6, 5)(6, 7)(6, 8)(6, 4)(6, 3)(8, 5)}. In the first round of the fourth
phase the following events will be added: {(6, 2)(6, 1)(6, 9)(11, 10)(11, 9)(11, 13)(13, 14)
(14, 9)(14, 10)(14, 11) (14, 12)(14, 13)(14, 15) (14, 16)(14, 8)(14, 7)(15, 14)}. After these
events the whole network is contained in one cluster and a good election algorithm
could terminate without generating any more events.

Clearly, by the end of phase j there are at least n/2J nodes with potential-degree
2. Thus every phase eventually contributes at least n/2 new events, summing up to
(n/2).logn events. Ifn is not a power of 2, then n/2 < 2m < n < 2m+l and the
scenario will be constructed over 2m nodes; the rest of the nodes will be awakened only
by the end of the last phase. In the next theorem we prove the lower bound formally.

THEOREM 4.3. A stopping-execution of an election algorithm in a synchronous
complete network of n nodes contains at least (n/2). log n events, in the worst case.

COROLLARY 4.4. The message complexity of any election algorithm in a syn-
chronous complete network of n nodes is at least (n/2). log n.

Proof of Theorem 4.3. Assume without loss of generality that n 2q. We define
a sequence of partitions (P0,""", Pq) of the nodes such that each subset in partition Po
contains one node, and each subset in Pj contains two subsets from Pj_I, 1 _< j < q.
Hence, each subset in Pj contains 2 nodes.

We construct, in q phases, a sequence of stopping-execution-prefixes (Ei ,..., Eiq ),
io 0, each being a prefix of the next. Ei is an empty execution-prefix in which all
nodes have been awakened and the potential-degree of each node is at least 1. This is
done by withholding the clock pulse from any node whose potential-degree is at least
1 until there is no node with potential-degree 0. Inductively we assume that: (1) Any
cluster in Ei is contained within one subset in Pj and (2) The potential-degree in

Ei of every subset in Pj is at least 2J. Obviously, Ei satisfies these assumptions.
Assuming that Ei_l has been constructed, we describe how the adversary con-

structs Ei, j 1,..., q- 1. In each round of phase j, we freeze all the subsets in
Pj whose potential-degree greater than or equal to 2J. When all subsets are frozen,
phase j is completed. The source and destination nodes of any message sent in this
phase are both in the same subset in Pj. This is always possible, since every node
that has a potential-degree greater than or equal to 2J is frozen. Clearly, Ei satisfies
the inductive assumptions. In the qth phase no freezing takes place. After that phase,
the network is contained in one cluster and the algorithm is assumed to produce no
more events.
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Clearly, there are at least n/2J nodes whose degree at the end of the algorithm
is at least 2J, for j 0,...,q- 1. Thus, the total number of events is at least
(n/2) log n.

Given that the message complexity of any election algorithm on a synchronous
complete network is t(nlogn), the question arises of how fast a message-optimal
algorithm can be. In the next section we prove that the time complexity of any
message-optimal algorithm is gt(log n).

4.3. A lower bound on time complexity. In this section we will extend the
techniques of the previous section to prove that the shorter the length of the execution,
the larger the lower bound on the number of events it must contain.

THEOREM 4.5. Any stopping-execution of an election algorithm in a synchronous
complete network of n nodes which terminates in less than 1/2. logc n rounds, contains
at least (c 1)/(2. log c). n log n events.

COROLLARY 4.6. The time complexity of any message-optimal election algorithm
in a synchronous complete network of n nodes is t(log n) rounds.

Proof of Theorem 4.5. Consider an election algorithm whose time complexity is
at most 1/2. logc n. Assume without loss of generality that n ca. A construction
similar to the proof of Theorem 4.3 will be used here. We construct, in q phases,
a sequence of stopping-execution-prefixes (Eo,... E), i0 0, each being a prefix
of the next, and a sequence of partitions (Po,..., Pq), the subset of each partition
containing c subsets of the previous partition. Each subset of P0 contains one node,
thus each subset of Pj contains cJ nodes. E is an empty execution-prefix in which
all nodes are awakened spontaneously. Inductively we assume that: (1) Any cluster
in E is contained within one subset of Pj, and (2) The potential-degree in E of
every subset in Pj is at least cJ. Obviously, E and P0 satisfy these assumptions.

Assuming that E_ has been constructed, the adversary constructs E by first
constructing partition Pj, and then E. Let (S,..., Sk), k n/cj- be the subsets
of Pj_ indexed in nondecreasing order of their potential-degrees in E_. Then the
ith subset of Pj is defined as the union of S(-)c+,’", Sc, 1,..., n/cJ. This
implies that with the exception of at most one subset in Pj, called the boundary
subset, each of the subsets in Pj consists of subsets in Pj_, all of which either have
potential-degree above or equal to cJ or below it.

In each round of phase j, j 1,..., q- 1, we freeze all the subsets in Pj whose
potential-degree is greater than or equal to cJ. When all subsets are frozen phase j
is complete. The destinations for messages to be sent by node v are selected from
the subsets which included v in partitions P0,’", Pj, in that order of priority. This
is always possible since every node that has a potential-degree greater than or equal
to cJ is frozen. Clearly, E and Pj satisfy the inductive assumptions. After the
qth phase, the network is contained in one cluster and the algorithm is assumed to
produce no more events.

(c- 1) logc n eventsWe now show that every node is the destination of at least
in E, hence Theorem 4.3.

As the time complexity is at most q/2, every node must have been frozen in all
the rounds of at least q/2 phases. Otherwise, the legal-execution corresponding to

E would contain more than q/2 rounds, contradicting the assumption on the time
complexity. If node v is frozen in all the rounds of phase j, and it is not in a bound-
ary subset, it will later receive one message from every subset of Pj_ which does not
contain v and is with v in a subset of Pj. Thus, for each phase in which v is frozen in
all its rounds, v is the destination of c- 1 events. The total number of events in E
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TABLE 2
Potential degrees in the time lower bound proof.

Phase 1 23 456 789

5 9 5

Phase 1011 12 13 14 15 192021
OO0

2 4 4 4
ACTIVE

I0 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
OO0

4 4 20 4 10 4

25 26 27 "23 789 456 222324 1617 18

O0, ,q|o0 OO0

4 5 5 9 10 20
ACTIVE FROZEN

19 18 20

is thus at least (c- 1). (q/2). n U, where U is the number of events that should
be discounted due to the boundary subsets. Due to the boundary subset in phase j, at
most cj-1 (c- 1) events should be discounted. Hence, U equals at
most n.c and the total number of events is thus at least (c- 1)/(2. logc), nlogn-
n.c. D

EXAMPLE 2. In Table 2 we show how E. is constructed from E assuming
n 27 and c 3. Subsets {4,5,6}, {22,23,24}, and {16,17,18} are frozen during
phase 2, because node 5 has potential-degree 9, node 23 10, and node 17 20. These
subsets will become active again in phase 3, and then each node in them will be the
destination of at least two new events, e.g., nodes 4, 5, and 6 each will receive a
message from node 23 and 17. Nodes 22, 23, and 24 each will receive a message from
nodes 5 and 17, and nodes 16, 17, and 18 will receive a message from nodes 5 and
23.

5. Conclusions. The effect of synchronous and asynchronous communication on
the problem of distributively electing a leader in a complete network was examined.
On the one hand, it was proved that the message complexity is not affected by the
choice of the communication mode. In both modes of communication, the message
complexity was shown to be (n log n). With synchronous communication, the time
complexity of message-optimal algorithms was proved to be $(logn), whereas with
asynchronous communication, only an O(n) upper bound on the time complexity was
obtained. The lower bound on the time complexity in asynchronous communication
remains an open question and is the subject of the following conjecture.

CONJECTURE. The time complexity of any message-optimal asynchronous election
algorithm on a complete network is (n).

The implication of the conjecture is that synchronous communication is faster
by a factor of n/log n than asynchronous communication. An analogous result was
obtained in [AFL83], where a particular synchronous system of parallel processors was
proved to be faster by a factor of log n than the corresponding asynchronous system.

Three asynchronous election algorithms (A, B, and C) were presented. The sim-
plicity of the complete network topology, and hence, of termination detection, enabled
us to concentrate on the synchronization among contending candidates. With each of
the three algorithms we can associate an analogous algorithm for arbitrary topology
networks, which uses the corresponding method to synchronize different initiations of
the algorithm but a different method to traverse the network (i.e., to detect termina-
tion). The analogy to Algorithm B was given in [Ga177]. In [GHS83] the same level
function as in Algorithm A was used, however, in [GHS83] candidates merge their
"territories" (rather than kill each other) when they meet. In [Gaf85] the time com-
plexity of [GHS83] is improved by replacing its level function with that of Algorithm
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C. Awerbuch [Awe87] used the ideas of Algorithm C and [Gaf85] to further improve
the time complexity of [GHS83] to O(n). Each of the methods can be applied to
other classes of networks. For example, applications of method A in different classes
of topologies are discussed in [KKM85]. As in Algorithm A, the time complexity of
the algorithms in [KKM85] is O(n log n), whereas similar applications, but of meth-
ods B or C, improve the time complexity of [KKM85] while maintaining the message
optimality.
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GOOD AND BAD RADII OF CONVEX POLYGONS*

PETER GRITZMANNt, LAURENT HABSIEGER:, AND VICTOR KLEE

Abstract. The "radii" considered here are the inradius p, the circumradius R,the diameter
6, and the width A. The convex polygons in question have their vertices at points of the integer
lattice in R2, and their radii are measured with respect to an gP norm. Computation of these
radii for convex polygons (and of their higher-dimensional analogues for convex polytopes) is of
interest in connection with a number of applications, and may be regarded as a basic problem in
computational geometry. The terms good radius and bad radius refer to the existence or nonexistence
of a rationalizing polynomial--a nonconstant rational polynomial q such that q((C)) is rational
whenever C is a convex lattice polygon and is the radius function in question. When a radius
is good, the polynomial is a tool for implicit computation of the radius in the binary model of
computation; otherwise it seems to be necessary to resort to approximation. It is proved here that
all four radii are good when p E (1,x, while 6 is good when p is an integer and A is good when
p/(p- 1) is an integer. Thus 5 and A are both good when p 2, and it turns out that R is also good
in this case. However, the main results are that r is bad when p 2 and R is bad for each integer
p>3.

Key words, convex lattice polygon, polarity, width, diameter, inradius, circumradius, alge-
braic number, rationalizing polynomial, implicit computation

AMS(MOS) subject classifications. 52A10, 52A25, 52A40, 90C05, 12D05, 68A20, 68U05,
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Introduction. Throughout this paper, /p denotes the Minkowski plane formed
by equipping; the Cartesian plane R2 with the norm II lip. This norm is defined fo
1 _< p < by setting I1(, )llp (11p + IrllP) 1/p and for p c by setting I1(, r/)ll
max{ll It/I}. For each p e [1,c] the number is defined by the condition that
lip / 1/- 1, so that M may be identified with the conjugate space of Ap.

We are interested in the problem of computing four important measures of a
convex polygon C whose vertices lie in the integer lattice L in p.

With respect to a given norm the inradius p(C) is the radius of a largest disk
contained in C and the circumradius R(C) is the radius of a smallest disk containing
C. (The disk of radius r andcenter x is {y" llx- Yll < r}.) The diameter 5(C) is the
maximum of the distances between points of C, and the width A(C) is the minimum
of the distances between pairs of parallel lines that support C. It is obvious that
2p <_ A <_ 6 <_ 2R.

To set the stage, we note that the computation of 6 seems to be trivial, for 6(C)
is the maximum of ]lv- vgl over all pairs (v, vg) of vertices of C. However, if we are
concerned with the binary (Turing machine) model of computation, then irrational
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numbers are not directly accessible and hence it is usually impossible to compute
5(C) explicitly even when p is an integer _> 2. We must instead be content to compute
5(C)P, or in other words to determine q(5(C)), where q is the rationalizing polynomial
given by q() p. The situation is similar with the number A(C), which may be
irrational and hence not directly accessible; but when is an integer the number
A(C) is rational (see 1). In each of these cases, an irrational number is "computed"
implicitly by explicit evaluation of an appropriate rationalizing polynomial. And since
the polynomial is monotone in these two cases, comparing the diameters or the widths
of two polygons is an easy task. A principal purpose of this paper is to show (by means
of the results stated in the abstract) that rationalizing polynomials do not always
exist, even for such simple functions as the inradius and the circumradius, even when
attention is restricted to very simple polygons, and even when monotonicity of the
polynomial is not required. In fact, 2 exhibits a family {T a E N} of isosceles
triangles with vertices in L and a family {Wa a E h} of right triangles with vertices
in L such that each nonconstant rational polynomial q has the following two properties:
(i) for each fixed integer p _> 3, the number q(R(Ta)) is irrational for infinitely many a;
(ii) for p 2, the number q(p(Wa)) is irrational for all but finitely many a. Thus in a
sense these circumradii and inradii are computationally intractable. The intractability
persists in higher dimensions.

When there is no rationalizing polynomial, one is naturally led to wonder how
efficiently the radii in question can be approximated. That question is considered (in n
dimensions) in another paper [5], which also discusses applications of radii and studies
the complexity of radius computations in the cases where rationalizing polynomials
are known to exist. The present paper focuses mainly on the case of two dimensions.

As general references, we mention [2] for convex bodies, [3] and [6] for computa-
tional geometry.

1. Some good radii. For convex lattice polygons in /p, the good radii that we
know about are those mentioned in the following theorem.

THEOREM 1.1 (GOOD RADII OF CONVEX LATTICE POLYGONS). The following
numbers are rational for each convex lattice polygon C in Mp:

(C)p when
A(C) when
R(C) 
p(C) when

(In these statements, # is defined to mean #. And of course, p {1, ec} if and only

Proof. The assertion is obvious for the diameter function 5. For the width func-
tion A, recall that A(C) is the minimum of the distances between pairs of parallel
supporting lines of C. Each line of a minimizing pair includes at least a vertex of C,
and it will be proved that there is a minimizing pair (S, S) for which S n C is an edge
of C. When C is a lattice polygon, the line S is determined by two lattice points and
hence has an equation of the form a + U "),, where a, , and y are integers. Let

I1(a,/)11, the norm of the linear functional on Mp given by (, r) a + r,
and let v be a vertex of C that lies in S. Then is an integer and the distance A(C)
between S and S’ is equal to the fraction I(v)- ")’1/. Since the numerator of this
fraction is an integer, the number A(C) is rational.

When the unit disk D is smooth, every minimizing pair (S, S) is of the described
sort. However, the preceding paragraph requires only the existence of such a mini-
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mizing pair, and that is assured in an arbitrary Minkowski plane. Indeed, consider an
arbitrary minimizing pair (J, J) and suppose that each of the lines intersects C in a
single point say J N C {v} and J’ C {v’}. If the distance between J and J’
is A, then there is a translate G of the disk 1/2AD such that J C {v} and G is
supported by both J and J. Since C is a polygon, the parallel lines J and J can be
rotated (about v and vp, respectively) through an angle 0 in either direction to new
positions J0 and J so as to retain (for a while) the property of being supporting lines
of C. The line J0 intersects G. If the direction of rotation is properly chosen, then J
also intersects G and hence the distance between Jo and J is at most A. Thus the
rotation can be continued until one of the lines hits a vertex of C in addition to the
one about which it is being rotated. That completes the discussion of A.

The circumradius R(C) is the radius of a smallest disk containing C. For each
choice of three vertices u, v, and w of C, let Ruw denote the circumradius of the
triangle determined by these three vertices. By a routine application of Helly’s theorem
on the intersection of convex sets, R(C) is the minimum of the numbers Ruw. From
this observation it follows when p 2 that C’s circumcenter is equidistant from some
three vertices of C or is the midpoint of a segment joining two vertices of C. When
C is a lattice polygon, this implies readily that both coordinates of the circumcenter
are rational and hence R(C)2 is rational.

Now suppose that p E {1, c}, and for each point (, ) in the plane, let

(,)= and (,)= whenp=c,

(,)=+? and (,)=- whenp=l.

Then in each case, and are linear functionals of norm 1 and

Using this fact, it is not hard to see that for each polygon C and for p E {1, c},

R(C) max { max (C) min(C)2 max (C) min (C)}2
This number is of course rational when C is a lattice polygon.

We turn finally to the inradius p(C), with p 1 or p c. Let ((1, rl), ((2, 2),
(3, 73), (4, 4) be the vertices of the unit disk, and let Hi,..., Hk be closed halfplanes
whose intersection is the convex polygon C. Then the following conditions are satisfied
whenever p is the radius of a disk that is contained in C and has center (a,/)

(a,/) + p(i,rli) Hj (1 <_ _< 4,1 _< j _< k).
Each of these conditions expresses a linear inequality constraint in the three real
variables p, a, and , and the inradius p(C) is the maximum of p subject to these 4k
constraints. When C is a lattice polygon, all of the coefficients in the constraints are
rational and from this it follows that p(C) is rational.

The "goodness" results of Theorem 1.1 should be compared with our later "bad-
ness" results Theorems 2.3 and 2.5, and with Problem 3.1.

Theorem 1.1 is a special case of a theorem proved in the paper [4] for arbitrary
finite-dimensional p spaces. The proof of Theorem 1.1 is included here because it
is simpler and more instructive than the general proof, and because we want the
present paper to be self-contained for the two-dimensional case. The four "radii"
p, R, 5, and A are special instances of functions studied in higher-dimensional spaces
in [4], [5]. For each convex body C in an n-dimensional Minkowski space M, and
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each integer j with 1

_
j

_
n, the inner j-radius rj(C) is the radius of a largest

j-dimensional ball contained in C and the outer j-radius Rj(C) measures how well
C can be approximated, in a minimax sense, by a j-flat in . If B denotes the unit
ball of M, then rj(C) is the maximum of the numbers r such that (c / rB)N F C C
for some point c of C and j-fiat F containing c, and Rj(C) is the minimum of the
numbers s such that C C G+sB for some (n-j)-flat G inM. Whenn 2, our
p,R, , and A are, respectively r2,R2, 2rl, and 2R1.

Let denote the n-dimensional Minkowski space that results from n by ap-
plying the norm lip. (Thus Rp2 is the Mp of the Introduction.) The purpose of [5]
is to study the complexity of computing the various radii of an n-dimensional convex
lattice polytope P in , and in that connection it is important to know about the
algebraic tractability of these radii. It is proved in [4] that if P is an n-dimensional
convex lattice polytope in Rn, then the following numbers must be rational: r(P)p
whenp e Nt2 {x};R(P) when e (2 {(x)};Rn(P)P when p e {1,2,x};rn(P)
when

2. Some bad radii. The present section contains our main results, which
establish the algebraic intractability of the circumradii or inradii of certain lattice
triangles. (See [1] for a similar study of some other geometric quantities.)

We begin with two lemmas, assuming henceforth that p is an integer >_ 2.
LEMMA 2.1 (AN EQUATION SATISFIED BY CERTAIN CIRCUMRADII). For each

a N, let Ta denote the triangle in the plane /p whose vertices are (-1, 0), (0, a),
and (1, 0), and let Ra and ca denote the circumradius and circumcenter of Ta. Then
the first coordinate of ca is O, and

Proof. With ca (’h, "2), the fact that -), 0 follows readily from the axial
symmetry common to Ta and the unit disk of the space. It is also clear that

1+’)’2p RPa and (a-:)p RP.
Since Ra > 0, it follows from the second equation that ’)/2 a- R(, and then
substitution into the first equation yields the stated conclusion. D

LEMMA 2.2 (ON IRREDUCIBILITY). Suppose that p is odd and a is even, or that
p is even and a is a prime that does not divide p. Then the polynomial

qo() P (a )P 1

is irreducible over the rational field Q (and hence the Ra of (2.1) is an algebraic
number of degree p).

Proof. Expanding the polynomial in terms of powers of , we get

2P -paP-1 +... +pap-- aP 1
qo

pap-1 + paP-1 aP 1

for p odd;
for p even.

Now we apply Eisenstein’s criterion for irreducibility, which says that the polynomial
q() an +... + a + a0 is irreducible over Q if there exists a prime number
such that r divides ao,...,a,- but not an, and r2 does not divide ao. Observe
that the polynomial q(-) is reducible if and only if q() is reducible. Thus the
criterion also applies with the order of coefficients reversed.

The lemma’s assertion follows from an application of Eisenstein’s criterion with
r 2 in the first case and r a in the second case.
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For an easy example of the situation in Lemma 2.2, note that when p 3 the
real root of qo is

(_ i 1/2)
1/3

( 1(O/6+4)1/2)
1/3

+

THEOREM 2.3 (COMPUTATIONAL INTRACTABILITY OF CIRCUMRADII). Let p be
a fixed integer greater than 2, let the numbers Ra be as in Lemma 2.1, and suppose that
q is a nonconstant rational polynomial. Then q(Ra) is irrational for all but finitely
many even 0/E N when p is odd, and for all but finitely many prime 0/when p is even.

Proof. For the case in which p is odd (and _> 3) and 0/is even, we begin with the
division of q by the polynomial q0 of Lemma 2.2. Let s s(, 0/) and t t(, 0/) be
rational polynomials such that

q() s(, 0/)qo(, 0/) + t(, 0/),
where the degree degt of t with respect to is at most p- 1. Then we may write

where the ?i are rational polynomials. For the particular choice of Ra, this yields

q(R) t(R, 0/) o(0/) / 1(0/)R /... + p-l(0/)RPa-1,
and since Ra is an algebraic number of degree p, this implies that

0

for each even 0/such that q(R) is rational. If this happens for infinitely many even
0/, then the polynomials i are all identically zero and the polynomial t(, 0/) is inde-
pendent of --that is, t t(0/).

Since qo is irreducible we have

degq() ko _> p.

Let us now consider the remainders of the monomials (for k _> p) after division by
q0--

=_ A) (0/)+ Ak) (0/) +... + A(pk)_ (0/)p-1 (mod q0)
We want to determine the degrees of the coefficients regarded as polynomials in 0/.

With the aid of the recursions

A(ok+l)(0/) 1 + 0/P)(p
(k+l) 1 )i() /\(pk__) (0/ __pi (0/) /\}k--)l(0/) + (--1 O/P--’ (1 < < 1),

an easy inductive argument shows that

_<

Now set #k) 2k-p+l[(k), where ,v/(k) denotes the coefficient of 0/- in the polynomial

A) (0/). Then we have the recursions

(k+l) (k)
#0 #p-
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from which it follows that the #k) are integers. Also,

/p-1 - 1 (mod 2)
(k) k + 1. Since t t(a) it follows, in particular,and this implies that degaAp_ -p

that
-(0)0 degp_(a) ko -p + 1 degq() -p + 1,

and since ko p, that is a contradiction. Hence q is constant, and the contradiction
yields the desired conclusion for the case of odd p.

For even p, the basic idea of the proof is unchanged, but this time the leading
coefficient of p in q0 depends on a. rthermore, the argument concerning the degree
of the coefficient polynomials is different. Let a be prime and let a not divide p.

Let us again divide the monomials k (for k p- 1) by q0, obtaining

+ +... + (mo q0).

Observe that the degree of the remainder as a polynomial in is now p- 2 and that
the coefficient functionals also contain powers of a-. We have the recursions

(k+) 1 + aP
o pa

and setting

we obtain

An easy inductive argument now shows that

degk) () N 2k p + 2.

Now let k) denote the coecient of -i-p+ in the polynomial )(). Then
we have the recursions

0

k+l) (k) )i()2 (1 p )Pi-1 + (--1

which imply that the k) are integers.
Now consider the polynomial s(() (1- ()- (. The roots of s are

(1 + e(/pl)- for j 0,... ,p- 1. Let be aW one of these roots. After some
calculation we obtain

p--2 p--2 p--2
(k+)

i=0 i=0 i=0

and an inductive argument shows that
p--2

i=0
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Setting al 1/2,a2 (1 + e2/p)-1, we obtain

Thus for each k at least one of the/ is different from 0--say,/ok) # 0. Then

degai!k) (a) 2k i0 p + 2.
0

Since t t(a), it follows in particular that for k0 _> p- 1,

(ko)0 dega/ko (a) (2k0-i0-p+2)-(ko-p+2) k0-i0 degq()-i0,

which is a contradiction. Thus q is constant, completing the proof of Theorem
2.3. D

Now consider an arbitrary dimension n _> 3 and let u1,... Un denote the standard
basis for Rn. For each a E , let Sa denote the n-simplex whose vertices are -u,
u, an2, u3,..., Un. If [n is equipped with a p-norm, then for all a it is true that
Rn(Sa) R(Ta), where Ta is as in Lemma 2.1. It follows from Theorem 2.3 that
when p is an integer _> 3, there is no rationalizing polynomial for Rn.

We next establish the algebraic intractability of the inradii of certain triangles.
We begin with some calculations for a general p E N (with p _> 2), for they may
be useful in extending the result on the badness of inradii to values of p other than
2. However, final considerations are restricted to the case p 2. The triangles
W cony {(0,0), (1,0), (0, a)} in the following discussion are different from the
triangles T used in discussing the circumradius, and in fact W would not work for
the circumradius because for the p-norm the circumcenter of W is (1/2, a/2) and
Rp(Wa) is the rational number (1 + ap)/2. Also, the triangles % do not work for the
following proof of p’s badness when p 2, but perhaps they could be made to work
by means of a different argument. (It turns out that

p(Ta)
1 + (1 + aP/(P-Z))(P-1)/P

so that

1 + x/1 + a2

when p 2.)
LEMMA 2.4 (AN EQUATION SATISFIED BY CERTAIN INRADII). For a fixed inte-

ger p ]1, oo[, and for each positive integer a, let pa denote the inradius of the triangle
Wa in whose vertices are (0, 0), (1, 0), and (0, a). Then

Pa
-1

and when p 2,
1 (l+a-v/l+a2)p

Proof. The incircle ofW is unique and its center is (p, p). The edge conv { (1, 0),
(0, a)} of Wa lies on the line given by a + r a. The distance of a point (p, p) from
this line is the minimum (over e ) of the function

II(p, p) (, (1 ))11.
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Since the pth power of lip is a strictly convex functional, the only stationary point
of the function II(P,P) (,a(1 ))11 is its global minimum, and we obtain the
relevant value of by solving the equation,

p( p)P- ap(a(1 ) p)P- O.

Thus, we can compute pa from the fact that

1 + oI,P/(P--1) Pa + a 1
1 --[.- oP/(p-l) Pa

After some simplification we obtain

(a pa(1 + a))p (1 + ap/(p-1))P- PPa,

p

which yields the stated conclusion. El
THEOREM 2.5 (COMPUTATIONAL INTRACTABLITY OF INRADII). Ifp- 2 and q

is a nonconstant rational polynomial, then q(pa) is rational for at most finitely many

Proof. For each p Ell, oo[ it is true that

1
Pa "-’--+ as o

2

From this it follows that if u is any polynomial for which u(p,) is infinitely often an

integer, then u- u(1/2) has infinitely many roots and thus u is constant. To complete
the proof, it suffices to show that if p 2 and q is a rational polynomial such that

q(pa) is infinitely often rational, then there is a nonzero multiple u -#q of q such

that u(pa) is infinitely often an integer.
k ThenLet the rational numbers be such that q() =0

x/’i + a i-J.

Let the integer # be such that #i/2 is an integer for all i, and set u #q. Then

there are two polynomials s(a) and t(a) with integer coefficients such that

+ t( )v’t +
Since u(pa) is infinitely often rational, t(a) =_ 0 and hence u(pa) is infinitely often an

integer. That completes the proof. El

Now consider an arbitrary dimension n >_ 3 and let Ul,." Un denote the standard
basis for Rn. Let V denote the set of all 2n-2 points of the form in=3 eiui with

e3,"", en E {-1, 1}. For each a N, let Pa denote the n-dimensional prism whose

vertex-set is
v u + v) u + v).

IfRn is equipped with a p-norm then for each a it is true that rn(Pa) p(W), where

W is as in Lemma 2.4. It follows from Theorem 2.5 that when p 2 there is no

rationalizing polynomial for r,.

3. Two questions. We have seen in the preceding sections that the circumradius
R is algebraically tractable in Mp for p 6 {1,2, oo} but intractable for other p 6 N,
while the inradius p is tractable in M1 and Moo but intractable in bl2. An answer
to the following question is needed to complete the picture. (We conjecture that the
answer is negative.)
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PROBLEM 3.1 (ALGEBRAIC TRACTABILITY OF INRADII). Let p be a fixed integer
greater than 2. Does there exist a nonconstant rational polynomial q such that q(p(C))
is rational whenever C is a convex lattice polygon in p ?

The following problem rephrases, in a purely algebraic fashion, some of the prob-
lems that are sugges.ted by the arguments of 2.

PROBLEM 3.2 (EXISTENCE OF RATIONALIZING POLYNOMIALS). For each s E
7/[, 7], define

N(s) = { e [0, c[: there exists an 7 e N such that s(, 7) 0}.
For which s does there exist a rationalizing polynomial, i.e., a polynomial q
such that q(w) Q for all w e N(s) ?

In terms of this notation, some of the conclusions of 2 may be restated as follows:
Let Sp(, 7) P (7 )P 1. Then Sp admits a rationalizing polynomial for p 1
and p 2 but not for any other p
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ERRATUM:
The Polynomial Time Hierarchy Collapses If The

Boolean Hierarchy Collapses*

JIM KADINt

Mahaney has pointed out that the proof of Lemma 4.8 on page 1275 of the original
article [1] is incorrect and that the lemma is probably not true [3]. The lemma was
used to establish how far the PH collapses under the assumption that the BH collapses.

Without Lemma 4.8, we had established that the collapse of the BH implies the
existence of a sparse set S such that co-NP_ NPs which, by the results of Yap [6],
implies that PH

_
Z.

Lemma 4.8 was then used to argue further that the sparse set S is itself in
which would imply that the PH collapses still lower, down to PNPNP[(lg n)]. It is not
at all clear that the set S is in E2P, and hence the argument presented that the collapse
of the BH implies PH PNPNP[(lg n)] is invalid. Lemma 4.9 and Theorem 4.10 are the
intermediate steps in this argument that depended on Lemma 4.8, hence their proofs
are also invalid.

However, the overall result that the collapse of the BH implies PH
__
PNPyp[(lg

does follow from the results of Wagner [4]. Therefore all of the results stated in the
paper, with the exception of Lemmas 4.8 and 4.9 and Theorem 4.10, are correct.

Wagner has since improved his results by showing that if the BH collapses to
level k, then the PH is contained in PNPPI)] [5]. Chang and Kadin more recently
obtain the stronger conclusion that the collapse of the BH to level k implies PH
PNPNP[k] [2].
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FAST MATCHING ALGORITHMS FOR POINTS ON A POLYGON*

ODILE MARCOTTE" AND SUBHASH SURI$

Abstract. Given a set P of 2n points on the boundary of a polygon, consider the complete graph whose
vertex set is P, and whose edges are assigned weights equal to the Euclidean distance between their endpoints
if the endpoints see each other in the polygon and + otherwise. The problem of finding a minimum-weight
perfect matching is investigated in this graph, and an O(n log (n)) time algorithm is obtained if the polygon
is convex; an O(n log (n)) time algorithm is obtained if the polygon is simple but not convex. Similar
results are obtained for the assignment problem and the maximum-weight problem.

Key words, geometric matching, nearest neighbors, divide and conquer, matrix searching, shortest paths,
computational geometry

AMS(MOS) subject classifications. 68Q20, 68Q25, 68u05

1. Introduction. Given an undirected graph G (V, E), a matching is a collection
of vertex-disjoint edges of G. A matching is said to be perfect if it is a spanning
subgraph of G. Not all graphs admit a perfect matching, however, and the problem
of finding a matching of maximum cardinality is a classical problem of combinatorial
optimization. Edmonds gave a polynomial-time algorithm for solving this problem in
[4]. In a more general problem, we assign real-valued weights to the edges of G, and
define the weight of a matching M to be the cumulative weight of all the edges of M.
The problem of finding a minimum-weight maximum-cardinality matching was also
solved by Edmonds [4], and his algorithm can be implemented in O(1V[3) time (see
Lawler [7]).

The edge-weights of the graph induced by a set of points in the plane have a
special structure. Indeed, several well-known problems can be solved more efficiently
for graphs induced by such sets than for arbitrary graphs. For instance, a minimum
spanning tree of n points of the plane can be computed in time O(n log (n)), while
the best algorithm known for arbitrary graphs takes O(IEI log* (IVI)) time. On the
other hand, there are equally well-known problems for which the geometric nature of
the problem does not help; for instance, both the combinatorial and geometric versions
of the traveling salesman problem are NP-complete. It is natural, therefore, to ask
whether the O(I V[3) time bound of Edmonds’s algorithm can be substantially improved
for the geometric version of the matching problem. (In this case, vI is the cardinality
of the set of points under consideration.)

Let P be a collection of 2n points of the plane. Since the complete graph induced
by P always contains a perfect matching, we will use the term "matching" instead of
"perfect matching" in the following discussion. Thus a matching of P is a partition
of its points into n pairs, each pair consisting of two distinct points. The weight of a
pair is the Euclidean distance between its elements, and the weight of a matching is
the sum of the weights of all the pairs in the matching. We consider the problem of
finding a matching ofminimum weight. Applications ofthis geometric matching problem

* Received by the editors November 28, 1988; accepted for publication (in revised form) April 11, 1990.
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Engineering Research Council of Canada grant A9126. Part of this work was done while she was visiting
Bellcore.
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are found in applied areas such as operations research, pattern recognition, statistics,
and VLSI design (see, for example, Christofides [3], Koppe [6], and Werman et al. 10]).

Despite its apparent simplicity, very little of a qualitative nature is known about
the geometric matching problem. Various conjectures relating minimum-weight match-
ings to minimum-weight triangulations, and other geometric structures, were made by
Shamos [8], but counterexamples to all of them were found by Akl [2]. The best
algorithm currently known for the geometric matching problem runs in O(n5/2 log4 (n))
time (Vaidya [9]), while the best lower bound known is only l)(n log (n)).

In this paper, we consider the geometric matching problem for sets of points that
lie on the boundary of a convex polygon. We remark that Akl’s counterexamples hold
even in this restricted setting. We present an O(n log (n)) time and O(n) space
algorithm for finding a minimum-weight matching in this case, where the number of
points in the set is 2n. It turns out that the key property required by our algorithm is
"polygonization" and not convexity, and hence we can adapt our algorithm to the
case of a simple nonconvex polygon. In the latter case, the weight of an edge is equal
to the Euclidean distance between its endpoints if the endpoints see each other in
the polygon, and +o otherwise. The time complexity of our algorithm becomes
O(n log2 (n)) in this case.

Next we consider the bipartite version of the matching problem: given n red points
and n blue points on the boundary of a convex polygon, find a minimum-weight
matching in which each edge joins a red point to a blue point. Our algorithm for this
problem (also called the assignment problem) also runs in time O(n log (n)).

Last, we consider maximum-weight matchings. Finding a maximum-weight match-
ing of points that lie on the boundary of a convex polygon is significantly easier than
finding a minimum-weight matching. We give a linear-time algorithm for this problem.
The same algorithm can be applied to the nonconvex case if we define the distance
between two points to be the length of a shortest path between them in the polygon.
Computing the weight of a maximum-weight matching in the nonconvex case takes
O(n log (n)) time.

The organization of the paper is as follows. The first four sections are devoted to
the geometric matching problem for points on the boundary of a convex polygon.
Sections 2 and 3 provide the theoretical foundation of our algorithm; in 2 we prove
the key geometric lemma of our paper, namely, the extensibility lemma, and in 3 we
introduce the notions of weighted-nearest-neighbor graph and critical edge. In 4 we
give an overview of the algorithm and explain how to update the weighted-nearest-
neighbor graph as the algorithm removes vertices from the graph. At the end of 4,
we give a precise description of the algorithm, prove its correctness, and analyze its
running time. In 5 we show how our algorithm can be adapted to the case of a simple
polygon that is not convex. In 6 we consider the assignment problem. Section 7 is
devoted to the maximum-weight matching problem. The paper concludes with 8
where we discuss some open problems.

2. The extensibility lemma. Given a set of points P {Zo, zl,’" ", z2n-}, where
Zo, Zl," ", z2n_l are ordered counterclockwise on the boundary of a convex polygon,
we wish to compute a minimum-weight matching of P. For two points a and b of P,
the edge (i.e., the line segment) between them is denoted ab. The weight of ab, denoted
d(a, b), is the Euclidean distance between a and b. The weight of a matching M,
denoted b(M), is the sum of the weights of all the edges in M, that is, b(M)=
.abM d (a, b). We often will use the term optimal matching instead of minimum-weight
matching, and the term vertex instead of point.
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The triangle inequality implies that the edges of an optimal matching do not
intersectmfor if edges ab and cd did intersect, we could replace them by ac and bd
and thereby reduce the weight of the matching. We let {zi, Zi+l,’’ ", zj} denote the
portion of the boundary (in the counterclockwise sense) between z and zj. The main
result of this section is the following fact. If there exists an optimal matching of
{Zl, Zl+l,’’’, Zm}, say, N such that ZlZ,, N, then there exists an optimal matching of
P containing all the edges of N except perhaps ZlZm. TO formalize this statement, we
introduce the following definition. A set N of vertex-disjoint edges is called extensible
for P if there exists an optimal matching M of P such that M

_
N.

LEMMA 1 (extensibility lemma). Let {z, Zl/l, Zm} be a contiguous subset ofP
containing an even number ofpoints. If N is an optimal matching of {Zl, Zl/l," ", Zm}
containing ZlZm then N\{ZlZ,,, } is extensible.

Proof We first prove the following claim, from which the lemma readily follows.
CLAIM. Let M be a matching of P whose edges do not intersect. IfM contains an

edge ziz that intersects ZlZm, then M is not an optimal matching of P.
Proof of the Claim. Let {wlw, w2w.,..., WkW’k} be the set of edges of M having

one endpoint in {Zl, Zl/l,’’’, z,,} and the other in {z,,/,..., Zl_}. By assumption,
this set is not empty. Without loss of generality, we assume that the w belong to
{ZI, Zl/l, Zrn}, the w belong to {z,,+l,’’’, ZI--1}, and Wl, W2, Wk are ordered
counterclockwise on the boundary ofthe polygon. Since the edges ofM do not intersect,
the points w, w,..., w, are ordered clockwise on the boundary. Finally, since
{Zl, Zl/l," ", z,,} contains an even number of points, a simple parity argument shows
that k is even.

Let a pseudomatching of P be a collection of edges such that all points of P except
Zl and z,, are incident to exactly one edge, while z and Zm are incident to exactly two
edges. We focus our attention on the pseudomatching M M t.J {ZlZ,,,}. Clearly,

(1) th(M1) th(M) + d(Zl, z,,).

An alternating cycle with respect to a matching is an even cycle whose even-numbered
edges belong to the matching and odd-numbered edges do not belong to it. We will
show that there exists an alternating cycle C with respect to M1 such that the symmetric
difference of M and C has smaller weight than M1.

The choice of C depends on the values of the predicates "Zl W" and "z,, W,"
where W= {wl, W2," ", Wk}. There are four possibilities: (1) Zl W and Zm W; (2)
Zl W and Zm W; (3) Zl : W and z,, W; and (4) Zl - W and Zm W. The alternating
cycle C for each of these cases is given below as an ordered list of vertices. (Case 2
is shown in Fig. 1; the other three cases are similar.)

(1) C
(2) C =-(Zl 1421, w2, w, wt3, w3," Wk, W, Zm, Zl)
(3) C =-(Zl, w, w1, w2, w," ", Wtk_l, Wk_l, Wk--Zm, Zl)
(4) C =-(Zl, w, Wl, w2, w’2, w;," ", Wk, W’k, Z,,,,
Since C is an alternating cycle with respect to M, the symmetric difference of

M1 and C (denoted M2) is also a pseudomatching of P. We can express M2 as the
union of MI\C and C2, where C-= C f3 M and C2= C\C1. By using the triangle
inequality and the fact that at least one edge of M intersects ZlZm, we easily verify that
oh(C2) < b(C1) and hence

(2) b (M2) < b(M1).

By construction, every edge of M2 is contained in either {ZI, Zl+l, ",Zm} or
{z,,, z,,/l," ", Zl}. Furthermore, of the two edges incident upon Zl (respectively, z,,),
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W

W = Z

FIG. 1. Alternating cycle of the extensibility lemma (Case 2). Matching edges are shown in heavy lines.

one has an endpoint in {Z/+I, ", Zm_l} and the other an endpoint in {Zm+l, ", Zl_l}.
It follows that M2 is the union of a matching of {Zl, Zl+l," ", Zm} and a matching of
{Zm, Z,+I,’’’, Zl}. We obtain the following relations:

4(M2) 4)(N1) + (N2) where N is a matching of{z,, ZI+I,’’" Zm} and N2

(3)
>= (N)+ qb(N2)

a matching of {z., Zm+l," ", Zl}

since N is an optimal matching of {Zl, Zl+l, Zm}

cb(N\{zlzm})+ 4(N2) + d(z,, z,,,).

By combining (1)-(3), we conclude that the weight of M is greater than the weight of
(N\{ZlZ}) N2. Since (N\{ZlZ}) N2 is a matching of P, M cannot be an optimal
matching of P. This completes the proof of the claim.

Let us now consider an optimal matching M of P. The edges ofM do not intersect,
and the preceding claim thus implies that no edge of M intersects ZlZ,. Hence for any
edge zizj M, either zi and zj both belong to {ZI, ZI+I," ", Zm} or they both belong to
{z.,, z.,+l, , z}. Therefore M is either the union of a matching of {z, z+, , z.}
and a matching of {z.,+,..., Zl-1}, or the union of a matching of {Zl+l,’’ ",

and a matching of {z.,, z.,+l, ", Zl}. In the former case we may assume, without loss
of generality, that M

_
N, since N is an optimal matching of {Zl, Zl+l," , z,,,}. In the

latter case, we may assume that M
_

N\{ZlZ,,,}, since N\{ZlZ,,,} is an optimal matching
of {Zl+,’’’, z,,,_}. In both cases, we conclude that the set N\{ZlZ,,,} is extensible.
This completes the proof of the lemma.

We use the extensibility lemma to replace a set P by a smaller set P’. The following
remark states that the procedure applied to P can also be applied to P’.

Remark 1. Let N be an extensible set of edges for P, and P’ the set of points
that remain after deleting the endpoints of the edges of N. If N’ is an extensible set

for P’, then N U N’ is extensible for P.
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3. Vertex weights and boundary matchings. We now introduce the notion of"vertex
weights," which are real numbers assigned to the points of P. Let us label the points
of P as Xo, Yo, Xl,’’ ", xn-1, Yn-1 in a counterclockwise traversal of the boundary of
the polygon. Since the edges of an optimal matching are pairwise disjoint, only the
edges of the form xiys are candidates for inclusion in an optimal matching. We assign
weights ui to x and v to Ys as follows:

(4) vi d (xi, Yi)- ui fori=0,1,...,n-1, and

U d (Yi-1, Xi) Vi--1 for 1, n 1.

Thus the weights of any two adjacent points on the boundary of the polygon sum up
to their distance, with the possible exception of the pair {Xo, Yn-1}. In Lemma 2 below
we prove a useful equality relating this pair to the weights of the two "boundary"
matchings of P. Let M1 and M2 denote these matchings: M1 {XoYo, xlyl, , x,-ly,-l}
and M2 {yoxl, ylx2, ", Yn-lXo}.

LEMMA 2. If the points of P are assigned weights as in (4), then q(M1)-b(M2)
is equal to Uo + v,-i- d (Y,-1, Xo).

Proof The lemma is a simple consequence of the following equalities:

n--1 n--1

1"10 " Vn --1 E lXi "Jl- D E Vi-1 "q- Ui
i=0 i=1

n-1 n-1

Z d (xi, y,) L d (Yi-1, xi)
i=0 i=1

n--1 n--1

’ d (xi, Yi) ’ d (Yi-1, xi -Jr" d (y,,_l, Xo)
=o i=o

(M1)- (M)+ d(y_, Xo).

This completes the proof of the lemma.
We use the weights defined above to introduce the notion of weighted distance.

The weighted distance between x and Ys is defined as D(x, Ys) d (xi, Ys) ui vs. Then
we have the following lemma.

LEMMA 3 (difference lemma). Let Xk and Yl be two nonadjacent points on the
boundary of the polygon. Let

N1 {XkYl, ykXk+l, ", Yl-lXl}

and N {XkYk, Xk+lYk+l, ", XlYl} if k < l, and let N1 {XkYl, Xl+lYI+I, ", Xk-lYk-1}
and N= {yXl+l, Yl+lXl+2, , Yk-Xk} otherwise. Then oh(N1) b(N2) D(Xk, Yl).

Proof We only prove the lemma for k < l; the other case is similar.

l--1

b(N1)-q(N2) E d(yi, xi+l)+d(Xk, Yl)-E d(xi, Yi)
i=k i=k

l-1

i=k i=k

d (Xk, Yl) ttk Vl

D(Xk, Yl).

This completes the proof.
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We now introduce the notion of weighted-nearest neighbor. A weighted-nearest
neighbor of xi is a point Yj(i){Yo, Yl," ",Yn-1} such that D(xi, yj(i))=
min {D(x,yk)lk=O, 1,..., n-l}. A weighted-nearest neighbor of y among x’s is
defined in a similar fashion. The following lemma ties the notion of weighted-nearest
neighbor to that of optimal matching.

LEMMA 4 (optimality lemma).
M1 {xoY0, xlYl, ", Xn-lYn-1} is an optimal matching ofP ifD(x, y() >-0 for

all i{0, 1,..., n-l}.
M2 {yox, ylx:,’’’, yn-lXo} is an optimal matching of P if yn-1 is a weighted-

nearest neighbor ofxo with D(xo, Yn-1) <= O, and D(xi, y(i) >- Ofor all {1, 2, , n 1}.
Proof. We only prove the first part of the lemma, since the second part is similar.

Let us first assume that M is not optimal. If M is optimal, then b(M1)-t(M2)> 0,
and by Lemma 2, D(y-I, Xo)= d(yn-1, Xo)-Uo-V_l<O. If neither M nor M is
optimal, we let M denote an optimal matching of P containing the maximum number
of "boundary edges," i.e., edges joining two adjacent points of P. We observe that M
contains a "diagonal edge," i.e., an edge whose endpoints are nonadjacent on the
boundary of the polygon.

Among all diagonal edges, we choose one, say, Xkyt that is "shallow," and assume,
without loss of generality, that k < 1. Then the restriction of M to {Xk, Yk,’’’, X, Yl}
is N1 {XkYl, ykXk+l, Yl-lXl}. Since M is an optimal maching of P, it follows that
N1 is an optimal matching of {Xk, Yk,’’’, Xl, Yl}. If we let N2 denote the matching
{XkYk, Xk+Yk+I," ", XlYl}, then bythe difference lemma D(Xk, Yl) b(N1) h (N2) _-<0.

If O(Xk, Yt) were equal to zero, the matching (M\N1)U N would be optimal for P
but have fewer diagonals (and hence more boundary edges) than M. But that is
impossible by our choice of M, and so we must have D(Xk, Yl) O. This completes the
proof in the forward direction. [3

Next we explore the case where neither M1 nor M2 is optimal. We begin by
defining the notion of weighted-nearest-neighbor graph. The weighted-nearest-neighbor
graph of P, denoted Gw(P), is the (bipartite) graph whose nodes are the points of P
and whose edges are of the form xiyj(i) for 0, 1, , n 1. A simple argument based
on the triangle inequality shows that the straight-line embedding of Gw(P) is outer-
planar.

We call an edge XkYl of Gw(P) (where xky Xoyn_l) a critical edge if the following
conditions hold"

D(Xk, Yl) < 0, and
if k < l, then D(x, y()_-> 0 for all {k+ 1,. ., l}, and otherwise D(x, yj()>=O

for all i{/+1,...,k-1}.
(Note that if Xky is a critical edge, then either k < or k > + 1. This follows from the
choice of the weights: D(x, y) 0 whenever x and y are adjacent and xy xoy-l.)

We observe that since Gw(P) is outerplanar, either D(x, y(i)>-_0 for all i, i 0,
or Gw(P) contains at least one critical edge. Thus whenever the optimality lemma
cannot be applied to conclude that M1 or M2 is optimal, the following lemma may be
used to find an extensible set of edges.

LEMMA 5. Let XkYl be a critical edge of Gw(P). If k<l, then the set
{ykXk+l, y-lx} is extensible for P. Otherwise, the set {Xl+lYl+l,’’’ Xk_lYk_l} is
extensible for P.

Proof. We give the proof for k < l; the other case is similar. Let N1 denote
{XkYl, ykXk+l,’’’, Yl-lXt} and N denote {xkyk, Xk+lYk+,’’’, xy}. We prove that N
is an optimal matching of {Xk, Yk,’’’, Xl, Yl}. The lemma then follows from the
extensibility lemma.
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Let N be an optimal matching of {xk, yk,"’", Xl, Yl}. Without loss of generality,
we may assume that N contains the maximum number of boundary edges. If the
number of boundary edges is less than l- k + 1, then N contains at least one diagonal
edge. Let Xpyq be a shallow diagonal, i.e., a diagonal such that each point of
{yp, xp+l, , Xq} (if p < q) or {xq+l, Yq+l," Yp-1} (if q < p 1) is matched to an
adjacent point on the boundary. There are two cases to consider: either p k or p k.
We claim that in both cases, N can be replaced by a matching containing fewer
diagonals (and hence more boundary edges) than N.

Suppose first that p k. If p < q, let N3 {Xpyq, ypXp+l," , Yq_lXq} and N4---
{xpyp, Xp+lYp+l," ", xqyq}. Otherwise (i.e., if q <p- 1), let

N {Xpyq, xq+lYq+l,. ., xp_lyp_l}

and N4 {yqxq+l, yq+lXq+2,’’’, yp_lXp}. Since xy is critical, D(xe, yq)O and the
difference lemma implies that 4(N3)-d(N4)_->0. The weight of the matching
(N\N3) U N4 is therefore no greater than that of N, and it contains fewer diagonal
edges than N. This contradicts the choice of N, and hence there cannot be a diagonal
of the form Xpyq for p k.

Let us now suppose that p=k. Clearly, N must be of the form
{xtyq, y,x,+l,’’’, yq-lXq, Xq+lYq+l,’’’, xtYl}. By a calculation similar to the one in
the difference lemma, we show that b (N1) b(N) <- 0:

l--1 q--1

b(N1)-b(N)= E d(yi, xi+l)+d(xk, yl)-E d(yi, x+l)-d(xk, yq)- E
i=k i=k i=q+l

d (xi, yi)

!--1

d(yi, Xi+l)"l-d(xk, Yl)--d(xk, yq)-- Z d(xi, Yi)
i=q i=q+l

1--1

Z (t)i-t" tli+l) + D(Xk, Yl)-I- tlk-t- Vl D(Xk, Yq) tlk t’)q Z
i=q i=q+l

(Hi + )i)

=D(x,yl)-D(x,yq)
-<_ 0 since y is a weighted-nearest neighbor of xk.

This shows that if N contained any diagonal, it could be replaced by an optimal
matching with fewer diagonals, contradicting the choice of N. Therefore N must be
a boundary matching, and since the difference lemma implies that 4(N1)< 4(N2), N
must equal N1. This completes the proof of the lemma.

A naive application of Lemmas 4 and 5 is likely to be inefficient, since each
invocation of Lemma 5 adds some edges to the final matching and deletes their
endpoints from P. In general, deletion of points invalidates the vertex-weights and
requires updating the nearest-neighbor graph. These updates may be expensive and
since the number of edges found each time may be small, the time complexity of a
naive algorithm will be quadratic or worse. In the following section, we show how the
divide-and-conquer approach yields an O(n log (n)) algorithm for the geometric match-
ing problem.

4. An O(n log (n)) algorithm for the geometric matching problem.
4.1. Divide and conquer. Our algorithm uses the divide-and-conquer paradigm.

We divide the set P into two nearly equal halves: P1 {x0, Yo, ", X[n/2], Y[n/2]} and

P2 {xt,/2l+l, Ytn/2+l, ",xn_l, Y,,-1}. We then recursively find optimal matchings of

P1 and P2, say, N1 and N2, respectively. Let E1 (respectively, E2) be the set of edges
removed by applications of Lemma 5 in the course of solving the problem for P1
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(respectively, P2). Consider the outerplanar graph whose vertex set is PIU P2 and
whose edge set is E] U E2 LJ {boundary edges of P}. Let N12 be the set of matching
edges in this graph that do not lie on the same face as xoy,,-1. Then by the extensibility
lemma, N12 is extensible for P. Therefore it remains to find an optimal matching for
the set of points that belong to the same face as xoy,_]. In other words, let R
(respectively, L) denote the subset of P1 (respectively, P2) that remains after deleting
the endpoints of edges of N2. Then the conquer step of our algorithm consists of
computing an optimal matching for L U R.

An instance of this situation is illustrated in Fig. 2, where the algorithm has been
applied to sets {Zo, Zl,’" ", z7} and {z8, z9,’’ ", z5}. The edges of the two optimal
matchings are shown in heavy lines, and N12 {z1z2, z5z6, ZllZl2, z13z14} is an extensible
set of edges.

8
Z 6

z 9

Zlo

z z 5

z 2

z 4

Z 3

z14 zZ15 Z o

FIG. 2. Illustration of the divide step in the algorithm.

We relabel the points so that R ={Xo, Yo, ",x,,_, Ym-1}
{Xm, Ym,’’’, Xr-1, Yr-}" Next we assign weights to the points of L U R"

and L

Uo--O
vi d (xi, Yi) Ui for 0, 1, r 1, and

ui= d(yi-, xi)-vi-] fori=l,...,r-1.

Recalling the definition of weighted distance (see 3), we say that the edge xiy. is

negative if D(xi, yj)< 0. We observe that, by construction, {XoYo, xy,..., X,,-lYm-}
and {x,,ym, Xm+lY,,+l,""", Xr--yr-]} are optimal matchings of R and L, respectively.
Furthermore, D(x, yj) -> 0 whenever xi and y both belong to R or L. Thus any negative
edge must have one endpoint in L and the other in R. This observation allows us to
capture all the negative edges by computing weighted-nearest neighbors of points of
R (respectively, L) among points of L (respectively, R).

During the conquer phase we use the following restricted definition of a weighted-
nearest neighbor: for x R (respectively, x L), the weighted-nearest neighbor of x
is a point y(i) of L (respectively, R) whose weighted distance from xi is as small as
possible. Let G (respectively, G2) be the graph whose vertex set is LU R and whose
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edges are of the form xiyj(i) for 0, 1,. , m- 1 (respectively, for m, rn + 1,. ,
r-1). We use G1 U G2 to denote the union of G1 and G2. The following lemma
formalizes the observation that G1U G2 includes all the negative edges.

LEMMA 6. Let Gw(LU R) be the weighted-nearest-neighbor graph of L t3 R, as

defined in 3. The edges of Gw(LU R) are of the form xiyj(i) where D(xi, Yj(i))
min {D(xi, Yk)lk=O, 1,..., r-l}. Let GIU G2 be defined as above. Then Gw(LU R)
and G1 U G2 have the same set of negative edges.

Proof We first prove that D(xi, yj)>= 0 whenever xi and yj both belong to R or
L. As far as R is concerned, D(xi, y)>=O for all xi, yeR by construction of
{XoYo, xayl, , Xm-Ym-}. TO prove the claim for L, let us assign weights to its points
as follows:

0Um-’-

vi d(xi, y)- u’i fori=m,m+l,...,r-1, and

u’ d (Yi-1, Xi) l)’i--1 for m + 1,. , r- 1.

Then we easily verify that u u- Um and v’i=Vi+Um fori=m,m+l,...,r-l. For
a pair Xi, ye L, the new weighted distance is d(xi, yj)-u’-i 1)j’=d(xi, yj)--U --1)j
D(x, y). Again, we have D(xi, yj)>-O.

Let us now consider a negative edge XkYl of Gw(LU R). Since D(Xk, Yl)< 0, it
follows from the above discussion that Xk and Yl must be in different sets. Thus XkYl
is also an edge of G1 U G2. Conversely, let XkYl be a negative edge of GIU G2. We
have either

(i) Xk R, Yl e L, and D(Xk, Yl)--minm=<j__<r-1 D(Xk, y), or
(ii) xk L, yl R, and D(xk, y)= mino__<_<_m_ D(xk, y).

In both cases, it easily follows that xyl also belongs to Gw(LU R). This completes
the proof.

The above lemma, in conjunction with the optimality lemma, says that
{XoYo, Xlyl,""", Xr-lYr-} is optimal for LU R if no edge of G U G2 is negative, and
that {yox, yx2,"’, yr-lXo} is optimal for LU R if xoyr_ is the only negative edge
of G U

We observe that the negative edges of G U G2 form an outerplanar graph (recall
that Gw(LU R) is outerplanar). This allows us to define a total order on these edges
in the following way. Suppose we place the polygon such that the line separating L
and R is vertical, L is on the left, R is on the right, and Ym-Xm is at the top. Then
we say that xky precedes xy if xy, is above xyj. Let xyl be the negative edge that
is closest to ym-Xm, i.e., the smallest edge in the total order. Then it is clear that xy
is a critical edge (cf. 3) and, by Lemma 5, the set of edges {yx+,..., y_Xl} (if
x R) or {x1+y+l,... ,xk_y_} (if x L) is extensible. Thus we can add these
edges to the optimal matching, and remove their endpoints from further consideration.
Deleting the endpoints reduces the size of the problem, but may invalidate vertex-
weights and nearest-neighbor relations. The following discussion addresses these
problems.

4.2. Updating weighted-nearest-neighbor graphs. Let xky be the smallest negative
edge of Ga U G2 in the total order of negative edges. We define the breakthrough
at xyl as the process of recognizing xkyl, adding the corresponding set of edges
to the optimal matching and deleting their endpoints from L U R. Recall that the
extensible matching associated with xy is {yex+,...,y_x} if xeR, and
{x1+y+,..., xk_y-l} if xk e L. Let L’ (respectively, R’) be the set of points of L
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(respectively, R) that remain after we delete the endpoints of these edges. That is,
L’ {Yl, Xl+l, , Yr-1} if Xk R, and L’= {Xk, Yk, Yr-1} if Xk L. We need to update
the vertex-weights of points of L’U R’ in order to satisfy the constraints of (4); note
in particular that although Xk and Yt are adjacent on the boundary of L’ R’, the sum
of their weights may not be equal to d (Xk, Yl).

In the following discussion, we will consistently use primed symbols to denote
entities modified by a breakthrough, and unprimed symbols to denote the corresponding
entities before the breakthrough. For instance, ul and v denote the respective weights
of x and y after a breakthrough, where x and y are points of L’U R’. The following
lemma describes how to update the vertex-weights.

LEMMA 7 (update lemma). Let xgyt be the smallest negative edge in the total order

defined above, and L’ and R’ the subsets ofL and R that remain after the breakthrough
’= ’= for allat XkYl. The weights are unchanged for vertices of R, that is, u u and v v

x, y R’. If 6 denotes Uk + Vl d (Xk, y), then the new weights of vertices ofL’ are given
by

=ui+ and v=v- ifxkR, and

u and v v + ifxk L.

Proof. In the counterclockwise traversal of the boundary starting at Xo, the points
of R’ precede the first point removed during the breakthrough at XkYl. Hence the
weights of the points of R’ are not modified by the breakthrough, i.e., u’ uiforxiR’
and v v for y R. We now consider the points of L, and assume that Xk R. (The
other case is similar.) Since Xk also belongs to R’, u is equal to Uk. On the other hand,
since Yl is adjacent to Xk on the boundary of L’t3 R’, the new weight of Yl is v
d(Xk, Yl) U’k d(Xk, Yl) Uk. From this we deduce that Vl- v Uk + Vl- d(Xk, Yl), that
is, the weight ofyl decreases by during the breakthrough at XkYl. Since u + v d (x, y)
for every edge of the boundary between Yl and Yr-1, we have v v for y L’ and

u + 6 for x L’. This completes the proof of the lemma.
We now examine the effect of these weight modifications on nearest-neighbor

relations. Let D’(x, yj)= d(x, y)-u’- v’, and let G and G denote the weighted-
nearest-neighbor graphs after the breakthrough at XkYl. (Note that both of these graphs
are defined on the vertex set L’U R’, and that their edges are computed by using the
new vertex-weights.) Given a point x of L’U R’, there are two cases to consider: either
the weighted-nearest neighbor of x belongs to L’U R’, or it does not. Lemmas 8 and
9 deal with these two cases.

LEMMA 8 (retaining lemma). Let xy be an edge ofG1U G2 both ofwhose endpoints
belong to L’U R’. Then xy is also an edge ofG G’2.

Proof We shall only consider the case where Xk belongs to R, since the other case
is similar. Let us assume first that x R. Then xy is an edge of G and D(xi, y)=
min {D(x, yq)[q m, m + 1, , r- 1 }. For any yq L’, the update lemma implies that

D(xi, yq) + 6 d (x, yq) Ui Vq + d (xi, yq) U’--i "Oq’ D’(x, yq).

Thus the weighted distances from x to points of L’ all change by the same amount,
and y remains a nearest neighbor of x, implying that xy e G. A similar argument
applies if x L.

We now turn to the important case, namely, the one where xi belongs to R’ and

yj() to L\L’ or xi belongs to L’ and y( to R\R’. (Recall that y() denotes the
weighted-nearest neighbor of xi.) In this case, we might think that a new weighted-
nearest neighbor of x must be computed. If this computation were necessary, the
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divide-and-conquer algorithm could take time proportional to n 2. Fortunately, we can
show that xi will not be the endpoint of a negative edge during any of the subsequent
breakthroughs, which allows the algorithm to overlook the "dangling" vertices such
as Xio

LEMMA 9 (discarding lemma). Let G1 and G2 (respectively, G and G’) denote
the weighted-nearest-neighbor graphs before (respectively, after) the breakthrough at Xkyl.

Let xiy be an edge of G1 tO G such that xi belongs to R’ and y to L\L’, or xi belongs
to L’ and y to R\R’. Then after each of the subsequent breakthroughs the weighted
distance between Xg and its weighted-nearest neighbor is nonnegative.

Proof. We shall assume that xkyl belongs to G1. (The other case is similar.) We
first observe that xi R, since that would imply that xiy and xgyl intersect, contradicting
the planarity of G1. So xi L and the indices satisfy <i and k_-<j. (See Fig. 3 for an
illustration of this proof.) Consider an arbitrary series of breakthroughs that does not
result in the deletion of xi. Since the breakthrough edges induce a planar graph, we
may label them Xk(1)Yl(1) Xk(2)Yl(2), Xk(p)Yl(p) (where Xk(1)Yl(1) XkYl), in such a way
that the labeling is consistent with the total order of negative edges. There are two
types of breakthrough edges: those in which Xk(t R, and those in which Xk(t L. Let
s denote the largest index such that Xk(s R. (Observe that such an index always exists.)

Yl( (s)

FIG. 3. Illustration of the discarding lemma.

We now prepare to set up inequalities that yield the desired result. Let U denote
the weight of xi before the breakthrough at Xkyl, U’i the weight of xi after the break-
through at Xk(s)Yl(), and u/* the weight of xi after the breakthrough at Xk(p)Yl(p. We
use similar notation for the other points. If Xk(Yl() Xk(pYl(p then obviously u/* u’io
If s < p, then edges Xk(,)yl(,) for s < <-- p are such that Xk(,) L (see Fig. 3). We observe
that

(5) U/< Ui

This is implied by the update lemma, since the breakthrough at Xk(t)Yl(t) (for every
such that s < < p) will decrease the value of u’

Next, since Xk(R and YI(sL, we have u,()= Uk() and v(=
d(Xk(), Yl(s)- Uk(s. Hence the weight of yl( has decreased by

(6) 6’= Dl(s) Dl(s) lk(s) -1- Vl(s) d (X(s, Yl(s)).
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Accordingly, the weight of xi has increased by 6’ after the breakthrough at Xk(s)Yl(s)
and we obtain

(7) Ui

Let y, be any point of R that remains after completion of all the breakthroughs,
including the one at Xk(vY(p). Since yj is a weighted-nearest neighbor of xi before the
breakthrough at Xky, we have the following inequality:

(8) d (x,, Y:i) ui v2 <= d (xi, yq) u,- Vq.

Let us now consider the convex quadrilateral whose vertices are x, Y(s, Y2, and Xk(s
(in clockwise order). The triangle inequality implies that D(xk(,, y,,)+ D(x, y)>=
D(Xk(, y2)+ D(x, y(). By Lemma 6, the right-hand side of this inequality is nonnega-
tive. Thus we obtain the following sequence of inequalities:

d (Xk(s, Yt(s) Uk(s V(s + d (x. yj) ui v >-- 0,

-6’+d(x,y)-u-v>=O by (6),

-6’ + d (x, yq) u- v, >- 0 by (8),

d (xi, yq)- ul- Vq >-_ 0 by (7),

d(x, yq)- U* -v*q >-O by(5) andthefactthat V*q V,.

The last inequality shows that the weighted distance between x and any remaining
point of R is nonnegative. This completes the proof.

The algorithm that we outlined at the beginning ofthis section can now be described
in detail. Since the algorithm is recursive, it is presented under the guise of a recursive
procedure. In the body of the procedure Find_Matching (Fig. 4), we use the same
notation as in 3 and 4.

Observe that the structure of this algorithm is similar to that of an algorithm for
merging two sorted lists. This is not surprising, since the algorithm must "process"
the set of negative edges of Gw(P) in its total order, and by Lemma 6, the latter set
is the union of the sets of negative edges of G and G. While merging the two lists
(one for G and one for G2), the algorithm discards the nonnegative edges and updates
matching M when it discovers a negative one. The Boolean variable found_type1 is
assigned the value "true" if the current edge of G1 is a critical edge, and the value
"false" otherwise. The variable found_type2 plays a similar role for G. Note that the
value "true" cannot be assigned to both found_type1 and found_type2. If either one
has the value "true," the instructions of lines 16-18 or 20-22 update M, Q, 6, and
List or List.

Note that in the algorithm, the meaning of 6 is slightly different from the meaning
ascribed to it at the beginning of this section. Here 6 is positive when the previous
critical edge belongs to G, and negative when it belongs to G. Thus the revised
distance associated with xy (where xyj belongs to G1) is D(xi, y)+6, while the
revised distance associated with Xpyq (where Xpyq belongs to G2) is D(xp, yq)- 6 (see
the update lemma).

Finally, we treat the edge XoYr_ in the same fashion as any other edge of G. We
observe that if xoy_ belongs to G1, then it is the last edge scanned by the procedure.
If it is also a negative edge, the edges of {yox, ylx2," , Yr-2Xr-1} are added to M at
line 16 and all the points of Q (with the exception of Xo and Yr-1) are removed from
Q. Since xoy-i itself is added to M at line 24, we have added the edges yoxl,

ylX, Yr_2Xr_l, Yr_lXO to M. The correctness of this step follows from the optimality



FAST MATCHING ALGORITHMS FOR POINTS ON A POLYGON 417

procedure Find_Matching (P: set of points; var M: matching);
begin
1. partition P into P {Xo, Yo, ", X[n/2J, Ytn/21} and Pz {x[n/2j+l, Ytn/2J+, Xn-, Y-};
2. Find_Matching (P, N); Find_Matching (P2, N2);
3. M -{the matching edges that belong to the extensible sets found at Step 2};
4. Q P\{the endpoints of the edges of M};
5. compute G and G for Q;
6. let Lisq (respectively, Listz) be the list of all edges of G (respectively, Gz) in their total order;
7. 60;

repeat {Loop Invariant: the union of M and an optimal matching of Q is an optimal matching of P.}
8. let xiy (respectively, Xpyq) be the first edge of Lisq (respectively, List2) if it exists;
9. if (Lisq is not empty) and (List2 is not empty) and (xy and Xpyq intersect)

10. then found_typel := (D(x, y) + 3 < 0); found_type2 := (D(xp, yq) 6 < 0);
11. remove xy from Lisq remove Xpyq from List

12. eiseif (List2 is empty) or ((Lisq is not empty) and (xy precedes Xpyq in the total order))
13. then found_typel := (D(x, y)+ 6 <0); found_type2 := false; remove xy from Lisq
14. else found_type2 := (D(xp, yq)-6 < 0); found_typel := false; remove Xpyq from List

end;
15. if found_type

then {xiy is the critical edge.}
16. M M U {yixi+ Yi+xi+2, ", yi-x}; Q- Q\{yi, X,+l, y+l ," ", y-l, x};
17. remove from List all the edges of the form Xrys, where <_--j or s _--> i;
18. 6 ui + vj d xi y

end;
19. if found_type2

then {Xpyq is the critical edge.}
20. M M {Xq+lyq+, Xp_yp_}; Q Q\{xq+, yq+, ., Xp_, yp_};
21. remove from Lisq all the edges of the form Xrys, where r > q or s < p;
22. t --blp --1)q d- d(xp, yq)

end
23. until (Lisq is empty) and (List is empty);
24. M M t_J {XoYo, xy, , Xr-Yr-} (where {Xo, Yo, x, y, , Xr-1, Yr-I} is the current value of Q.)
end Find_Matching;

FIG. 4. Algorithm Find_Matching.

lemma. On the other hand, if the last edge scanned by the procedure is not a negative
edge, the assignment of line 24 will assign a correct value to M (again by the optimality
lemma).

THEOREM 1. Let P be a set of 2n points lying on the boundary ofa convex polygon.
Algorithm Find_Matching computes a minimum-weight matching ofPin time 0( n log n ))
and space O( n).

Proof To prove the correctness of the algorithm, we show that the loop invariant
is correct. The invariant obviously holds before the execution of the first iteration,
since the set of matching edges assigned to M at line 3 is extensible. By Lemma 6,
the first negative edge scanned by the algorithm is a critical edge, and by Lemma 5,
M is an extensible matching after the execution of line 16 or line 20. On the other
hand, lines 11, 17, and 21 update the weighted-nearest neighbor graphs correctly (cf.
the retaining lemma and the discarding lemma). Finally, lines 18 and 22 update 6
correctly as shown by the update lemma. Hence the loop invariant is correct. As we
have observed in the paragraph preceding Theorem 1, the assignment of line 24 will
assign to M the value of an optimal matching of P. This completes the proof of
correctness.

It is obvious that the execution time of the repeat loop is proportional to the
lengths of LiStl and List2, which contain at most n edges. It remains to show that G1
and G2 can be computed in linear time. Consider a matrix A such that Aij is the
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weighted distance between xi and yj for x E R and yj E L. Note that the entry Ai can
be evaluated in a constant time. This matrix is easily proved to be totally monotone,
as defined in Aggarwal et al. 1 ]. (The matrix A is totally monotone if for all i, j, k,
such that < k and j < l, A(i, j) -> A(i, l) implies that A(k, j) >= A(k, 1).) We observe
that to compute G1, we need only find a minimum entry in each of the rows of A.
Aggarwal et al. [1] give a linear algorithm for finding the row-minima of a totally
monotone matrix, which allows us to compute G1, and also G2, in time O(ILI + IRI).

Thus the conquer phase of our algorithm takes O(n) time, and we obtain a familiar
recurrence relation for T(n), the time complexity of our algorithm:

T(n)<=2T(n/2)+cn.

Thus, T(n) is O(n log (n)). The space requirement of our algorithm is easily seen to
be O(n). This completes the proof of the theorem. [3

5. The matching problem for simple nonconvex polygons. In this section we general-
ize the result of 4 by considering simple nonconvex polygons. Suppose that P is a
set of 2n points lying on the boundary of a simple nonconvex polygon; we assume
that the vertices of the polygon are included in P. We use P to denote the polygon as
well. We assign weights to edges as follows: the weight of an edge equals the Euclidean
distance between its endpoints if the endpoints see each other in the polygon, and +co
otherwise. As before, the weight of a matching is the sum of the weights of all the
pairs (edges) in the matching.

We obtain an equivalent but more useful formulation of the minimum-weight
matching problem by using the (non-Euclidean) shortest-path metric. Given two points
x and y, let g(x, y) denote a shortest path that joins x and y without leaving the
polygon. We define the shortest-path distance between x and y to be the length of
g(x,y) and denote it by ]g(x,y)l. The generalized weight of a pair {x,y} is the
shortest-path distance between x and y, and the generalized weight of a matching is
the sum of the generalized weights of all the pairs in it. Then we have the following
lemma.

LEMMA 10. Let M be a matching whose generalized weight is minimum, and let a
and b be two points such that { a, b} M. Then a and b can see each other in the polygon.

Proof Let us assume that a and b cannot see each other in the polygon. Then
the shortest path g(a, b) contains at least a vertex of P in its interior. Let x P be
such a vertex, and let y be the point of P such that {x, y} belongs to M. If x

_
g(a, y),

then a straightforward calculation shows that ]g(a, b)l+]g(x y)]>]g(a, y)l+]g(x, b)[.
Otherwise xC:g(b,y), and a similar calculation shows that ]g(a,b)[+]g(x,y)l>
Ig(a,x)l+]g(y,b)l. In the former case the matching (M\{ab, xy})J{ay, xb} has a
smaller weight than M (in the generalized sense), and in the latter case, (M\{ab, xy})
{ax, yb} has a smaller weight than M. In either case we have a contradiction and the
proof is completed. 0

Lemma 10 allows us to use the algorithm of the preceding section to find a
minimum-weight matching of P, where we use the shortest-path metric instead of the
Euclidean metric. The correctness of the algorithm is easily established, but the time
complexity grows by a factor of log n because of the shortest-path distance computa-
tions. While the Euclidean distance between two points is easily calculated in O(1)
time, finding the shortest-path distance between two points of a nonconvex polygon
is far from trivial. We use a data structure due to Guibas and Hershberger [5], which
after O(n log (n)) time preprocessing allows the shortest-path distance between two
points to be computed in O(log (n)) time. This leads to the following theorem.
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THEOREM 2. Let P be a set of 2n points on the boundary of a simple nonconvex
polygon, where we assume that the vertices of the polygon are included in P. Let the weight
of an edge equal the Euclidean distance between its endpoints if the endpoints see each
other in the polygon, and +oo otherwise. Then the algorithm Find_Matching computes a
minimum-weight matching of P in time O(n log2 (n)) and space O(n). 71

6. The assignment problem. In this section we consider the bipartite version of
the matching problem. Let R and B be two sets of n points lying on the boundary of
a convex polygon. We let P denote the set R U B. A bipartite matching (or assignment)
is a partition of the points of P into n pairs of the form rb, where r R and b B.
The weight (or cost) of an assignment is the sum of the weights of all the edges
contained in it. (As before, the weight of edge rb is the Euclidean distance d(r, b).)
In the rest of this section, we describe an O(n log (n)) time algorithm for computing
a minimum-weight assignment of R U B.

Let Zo, z, , z2n- be a labeling of the points of P in counterclockwise order. We
first consider a special case of the assignment problem, namely, the case where
belongs to R and z2i/l to ,B for -0, 1, , n- 1. In other words, the even points are
"red" and the odd points ’blue." Call this special case the basic problem. We observe
that the basic problem is almost identical to the "monochromatic" matching problem
solved in 4. This is so because an assignment of P is also a matching of P, and an
optimal matching of P consists of edges of the form zz, where is even and j odd.
Hence to solve the basic problem, we can ignore the color classes and apply Algorithm
Find_Matching to compute a minimum-weight assignment.

Next we demonstrate that an arbitrary assignment problem can be reduced to a
collection of basic problems. Let Zp and Zq be two points of P such that p < q. We let
NR(zp, zq) (respectively, NB(zp, Zq)) denote the number of red (respectively, blue)
points lying between Zp and Zq, but not including Zp and Zq, in a counterclockwise
traversal of the boundary. Since the edges of a minimum-weight assignment do not
cross, the following lemma is straightforward.

LEMMA 11. Let R and B be two sets of points lying on the boundary of a convex
polygon, where IR[ IBI n. Then any optimal assignment ofR (_J B consists of edges of
the form ziz, where <j, such that NR (zi, Zj NB(zi, zj) O.

Without loss of generality, assume that Zo is a red point. By Lemma 11, if ZoZ
belongs to an optimal assignment of P, then NR(Zo, z)- NB(zo, z) 0. This motivates
the following definition. A blue point zj is said to be of discrepancy k (i.e., disc (zj) k)
if NR(zo, z)-NB(zo, z)= k. Similarly, a red point z, for z Zo, is said to be of
discrepancy k if NR(zo, zi)- NB(zo, zi) k- 1; Zo itself is of discrepancy zero. The
following lemma shows that zz may belong to an optimal assignment of P only if zi
and zj have the same discrepancy.

LEMMA 12. Let R and B be defined as in Lemma 11. Let z and zj be two points
such that <j and zi and z have different colors. Then NR(z, z)- NB(z, z)= 0 if and
only if disc (zi) disc (z).

Proof Let us first assume that disc (zi)=disc (z)--k. There are two cases to
consider: the case where zi is red, and the case where zi is blue. We shall treat the first
case only, since the other one is similar. If zi Zo, then the lemma follows from the
definition of discrepancy. Otherwise, z lies between Zo and z in a counterclockwise
traversal of the boundary. We have the following equalities:

NR(zi, zj)-- NR(zo, zj)- NR(zo, zi)- 1,

NB(zi, zj)-- NB(zo, zj)- NB(zo, z),
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NR(z, zj)- NB(z, zj) {NR(zo, zj)- NR(zo, zi)- 1}-{NB(zo, zj)- NB(zo, zi) }

{NR(zo, zj)- NB(zo, zj)}-{NR(zo, z,)- NB(zo, zi)}- 1

=k-(k-1)-I

0 by the definition of discrepancy.

Conversely, assume that NR(zi, zj)-NB(z, z2)=0 and disc (z)= k. We only treat
the case where z is red, since the other case is similar. We have

NR(zo, z2)- NB(zo, z2)= {NR(zo, z,)+ NR(zi, zj)+ 1}-{NB(zo, z,)+ NB(zi, z2)}

NR(zo, z)+ 1 NB(zo, zi) by assumption

=(k-1)+l

k by the definition of discrepancy.

Thus disc (zj) k. This completes the proof of the lemma.
We are now ready to show that our assignment problem can be decomposed into

a collection of basic problems. Let Pk (for k =-n + 1,-n + 2,..., n-1) denote the
set of points of discrepancy k, and let Mk be an optimal assignment of P. Then
Lemmas 11 and 12 imply that LJ =_,+ M is an optimal assignment of P. The following
lemma shows that the assignment problem on P (for k -n + 1, -n + 2, , n 1)
is a basic problem.

LEMMA 13. Let Pk (for k =-n + 1,-n + 2,..., n- 1) be the subset of P defined
above. Then the problem offinding an optimal assignment ofP is a basic problem.

Proof Observe that there cannot be two consecutive red or two consecutive blue
points on the boundary of P, since that would contradict the assumption that any
two points of P have the same discrepancy. Therefore red and blue points alternate
on the boundary of Pk.

THEOREM 3. Let R and B be two sets ofpoints lying on the boundary of a convex
polygon, where IRI IB] n. Then an optimal assignment of R U B can be computed in
time O( n log n and space O( n ).

Proof We note that it is possible to partition the points of P into discrepancy
classes in O(n) time; a single counterclockwise traversal of the boundary suffices. Once
the Pk (for k=-n+ 1,-n+2,..., n-1) have been computed, we apply Theorem 1
to each of the subproblems. (Of course, some discrepancy classes may be empty.)
Algorithm Find_Matching takes time O(rlk log (rig)) and space O(rlk) to solve problem
Pk, where nk=lPkl. Thus the algorithm sketched above takes O(n log (n)) time and
O(n) space to solve the assignment problem.

To conclude this section, we note that the algorithm for solving the assignment
problem can be easily adapted to the case of a simple nonconvex polygon, where we
define the weight of a pair {a, b} to be the length of a shortest path between a and b.

THEOREM 4. Let R and B be two sets ofpoints lying on the boundary of a simple
nonconvex polygon, where ]g]- IB] n. Then an optimal assignment ofR U B with respect
to the shortest-path metric can be computed in time O( n log2 (n)) and space O( n ).

7. Maximum-weight matching. We now turn to the problem of computing a
maximum-weight matching, where the weight of a matching is the generalized weight
defined in 5. Given a set P of 2n points on the boundary of a simple polygon, the
weight of a pair {x, y} is the shortest-path distance between x and y, and a maximum-
weight matching of P is a partition of P into pairs such that the total weight of the
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pairs is maximum. Surprisingly, computing a maximum-weight matching turns out to
be much easier than computing a minimum-weight matching. Let a, b, c, and d be
four points lying on the boundary of P. We say that the pairs {a, b} and {c, d} cross

if the ordering of these points on the boundary is either a, c, b, d or a, d, b, c.
LEMMA 14 (crossing lemma). In a maximum-weight matching of P, every two pairs

cross.

Proof. Let M be a matching that contains two noncrossing pairs, say, {a, b} and
{ c, d}. Assume, without loss of generality, that the order ofthese points on the boundary
is a, b, c, d. Elementary calculations show that

Ig(a, c)[+lg(b, d)l> Ig(a, b)l+lg(c, d)l.

Hence the matching (M\{ab, cd}) [_J {ac, bd} has greater weight than M, and M is not
a maximum-weight matching of P. [3

The matching in which every two pairs cross is unique: if Zo, zl," ", z2n-1 is an

ordering of the points on the boundary, then the maximum-weight matching consists
of the pairs zizi+n for 0, 1, , n 1. Computing the weight of the matching takes
O(n) time if the polygon is convex and O(n log (n)) time otherwise. This proves the
following theorem.

THEOREM 5. Given a set of 2n points on the boundary of a simple polygon, we can

compute its maximum-weight matching in O(n) time if the polygon is convex and
O(n log (n)) time otherwise.

8. Final remarks and open problems. The minimum-weight matching algorithm of
Edmonds [4] is one of the classical results of combinatorial optimization. The com-
plexity of Edmonds’s algorithm stems in part from the fact that it can be applied to
arbitrary graphs and edge-weights. In many practical situations, the graphs or the
edge-weights have a special structure, and thus it is worthwhile to study special cases
where more efficient algorithms can be designed. The geometric version of the matching
problem is an obvious candidate for this study, but in spite of its apparent simplicity,
the best algorithm known for this problem takes O(n5/2 log4 (n)) time (cf. Vaidya [10]).

The results of this paper show that a natural restriction of the geometric matching
problem leads to simple and efficient algorithms for this problem. A number of open
problems are suggested by our work. The first one consists of improving the time
bounds of our algorithms or showing that they are optimal.

It may also be possible to use the results of this paper to design a heuristic for
the "general" version of the geometric matching problem. If Mo is the weight of an
optimal matching of S, P a simple polygon that spans the set S, and Mp the weight
of an optimal matching of S where all the matching edges are constrained to remain
in the polygon, then Mp/Mo is the performance ratio of the heuristic for polygon P.
What is the best ratio over all polygons P? How quickly can we find the polygon that
minimizes this ratio?

Given a set of n points on a convex polygon, the traveling salesman cycle of this
set of points coincides with their convex hull. A traveling salesman path through these
points, however, is more difficult to compute. Using dynamic programming, we can
obtain an O(n2) algorithm. Can the ideas of this paper be extended in order to improve
this bound?

Finally, we might consider the matching problem for the vertices of a convex
polytope in three dimensions. Can we solve this problem in, say, O(n2) time?
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Abstract. The problem of atomic commitment of a transaction in a distributed database is considered.
This is a variant of the famous gossiping problem. Given a set of communication costs between pairs of
participant sites, it is established that the necessary communication cost for any atomic commitment algorithm
is twice the cost of a certain minimum spanning tree. This paper establishes the necessary communication
time for any atomic commitment algorithm, given a set of communication delays between pairs of participant
sites, and the time at which each participant completes its subtransaction. Then, it is determined that both
lower bounds are also upper bounds in the following sense. There is an efficient (i.e., polynomial-time)
algorithm that, in the absence of failures, has a minimum communication cost. There is another efficient
algorithm that, in the absence of failures, has a minimum communication time. However, unless P NP,
there is no efficient algorithm which has a minimum communication complexity, namely, one for which the
product of communication cost and communication time is minimum. Next, a simple, linear time, distributed
algorithm, called TREE-COMMIT, whose communication complexity is not worse than p times the minimum
complexity, where p is the number of participants, is presented. Finally, it is demonstrated that TREE-
COMMIT is superior to the existing variants of the two-phase commit protocol.

Key words, commit protocols, database consistency, distributed databases, optimal protocols, transaction
management, gossiping

AMS(MOS) subject classifications. 68P15, 68P20, 68M10, 68Q25

1. Introduction.
1.1. The problem. In a distributed database, a transaction consists of several

subtransactions, each running at a different site that has a local database. When the
subtransaction at a site completes, i.e., the corresponding process finishes, the local
database manager knows whether it completed successfully or unsuccessfully. The
atomic commitment problem (see [G]) for the set of local database managers is to
determine the decision of each manager concerning the changes made by the transaction
to the local database. The manager may either validate these changes (commit the
subtransaction) or invalidate them (abort the subtransaction). The generally accepted
solution to the atomic commitment problem is the following: if all the completions
are successful, then commit all the subtransactions (yielding a committed transaction),
otherwise abort all the subtransactions (yielding an aborted transaction). To achieve
atomic commitment, the local database managers execute a distributed algorithm,
exchanging "yes" and "no" votes. A "yes" vote indicates the successful completion
of a subtransaction, and a "no" vote indicates an unsuccessful completion.2

In this paper, we first consider the load that atomic commitment algorithms place
on the communication network, in the following sense. Each subtransaction of a given
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For example, a subtransaction may complete unsuccessfully as a result of deadlock.
Transactions are used in distributed systems other than databases, such as Argus ([LHJLSW]) and

Camelot ([Sp]). The atomic commitment problem, as described, arises in such systems as well.

423



424 O. WOLFSON AND A. SEGALL

transaction runs at some node, called a participant site for that transaction. Additionally,
with each pair of participants, and j, is associated the cost, cis, of sending a message
between and j (in either direction). The costs may differ from one pair of participants
to another. For example, the communication cost for a pair ofparticipants may represent
the distance in the communication network between the participants. The communica-
tion load that an execution of an algorithm places on the communication network is
quantified in terms of its communication cost, i.e., the total cost of messages that the
algorithm sends among the participants.

Traditionally, the communication load has been quantified in terms of the number
of logical messages among participant sites, namely, intersite messages. (Implicitly, c0
was taken to be one for every pair of participants, and j.) However, this may be too
coarse a measure for comparing the load that different atomic commitment algorithms
place on the network. To demonstrate this, next we shall present three commitment
executions, or instances, for a transaction. All of them use the same number of intersite
messages but put different loads on the communication network, since they use different
numbers of network messages, i.e., messages between neighbors in the communication
network (regardless of whether they are participants or nonparticipants).

FIG. 1.1

For example, assume that the transaction executes in the computer-communication
network given in Fig. 1.1. Squares represent participant sites, circles represent nonpar-
ticipant sites, and edges represent two-way communication links. A possible commit-
ment instance, based on the "central site" algorithm of Lampson ([La]), is illustrated
in Fig. 1.2(a): each one of the participants 2, 3, and 4 sends its "yes" vote directly to
participant 1, which also votes "yes," commits, and sends the commit decision separ-

(a) (b) (c)

FIG. 1.2
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ately to each of participants 2, 3, and 4 (each of which commits when it receives the
message). This instance uses six intersite messages. Another possible instance, based
on the "linear" algorithm of Gray ([G]), is illustrated in Fig. 1.2(b): 4 sends its "yes"
vote to 1, which then sends its and 4’s "yes" votes to 3, which then sends its and l’s
and 4’s "yes" votes to 2; 2 then votes "yes," commits, and sends the commit decision
to 3, which sends it to 1, which sends it to 4. This instance also uses six intersite
messages. In fact, from the lower bound result of Dwork and Skeen [DS1] for atomic
commitment, we know that any four-participant atomic commitment execution requires
at least six intersite messages. Finally, consider the following instance that also uses
six messages (see Fig. 1.2(c)): 4 sends a "yes" vote to 3, which sends its and 4’s "yes"
votes to 2; meanwhile, 1 also sends a "yes" vote to 2, which, after receiving the two
messages, also votes "yes" and commits, after which the commit messages travel from
2 to 3 to 4 and from 2 to 1. If we assume that the intersite messages travel through
the shortest path in the network, then the first instance takes 18 network messages, the
second takes 20, and the latter takes only 14. Since the actual communication load on
the network is reflected by the number of network messages, the third instance above
imposes the least load on the network.

The other measure that we consider in comparing the performance of commit
protocols is the communication time. Communication time of an instance is defined as
the interval of time starting when the first subtransaction completes, and ending when
the last participant commits its subtransaction. In this respect, we also depart from
traditional models (e.g., [DS1], [R]), which for the purpose of analysis, assume a
synchronous communication network and simultaneous completion of all subtransac-
tions. The synchronous communication implies, in particular, a unit-time intersite
message delay, independent of the network location of the sender and receiver.

In our model we allow, more realistically, arbitrary subtransaction completion
times as well as different intersite delays. Particularly, different participants may
complete their subtransaction at different times, and intersite message delays may differ
from one sender-receiver pair to another. Therefore, we dispose of unrealistic assump-
tions regarding synchronous operation of geographically dispersed processors.

Finally, let us mention a different formulation of the problem addressed. There
is a large body of research on "gossiping," and many variants of this problem were
studied in the literature (see [HHL] for a survey). Our model and our results apply
to the following variant of the gossiping problem; it has not been solved before, and
actually, our necessary and sufficient cost results solve an open problem discussed by
Cot ([C]). There is a set, A, of individuals, each of which knows a unique piece of a
gossip. Additionally, for each pair of individuals and j, there is a cost, ci, and a
travel-time (corresponding to the intersite delay in atomic commitment terminology),
tij, associated with a letter (or a message) from to j. Also, individual learns its own
piece of the gossip at time ’ (corresponding to the subtransaction completion time).
A solution consists of a partially ordered set of pairs of individuals. Each pair represents
a letter sent from the first to the second, and the partial order represents the relative
times at which the letters are sent. By assumption, each letter contains all the pieces
of the gossip known to the sender when sending the letter. At the end, each individual
must know the whole gossip. In 8.2, we discuss another unsolved variant of gossiping,
and the implications of the results in this paper to that variant.

The atomic commitment problem is a variant of gossiping, in which the unique
pieces of the gossip are the votes, and after collecting all the votes, each individual
computes their conjunction. Although throughout the paper we use the atomic commit-
ment terminology, it is clear that the issues addressed are independent of the function
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computed by each processor after the vote collection. In particular, a commitment
instance is also a gossiping instance. So, for example, assume that each one of the
individuals 1, 2, 3, and 4, knows a unique piece of a gossip. Then the instance in
Fig. 1.2(a) represents the sending of all the pieces to 1, which then transmits the whole
gossip to the other individuals. Therefore, all our results carry over to the general
"gossiping" case, with one exception. On some occasions, we briefly discuss the abort
case of a distributed transaction. In this case a participant does not necessarily have
to collect all the votes; when receiving a "no" vote it already knows the result of the
conjunction. Thus, the abort case of atomic commitment does not have a gossiping
counterpart, making atomic commitment a variant, rather than a special case, of
gossiping.

1.2. Our results. First we establish the necessary communication cost of atomic
commitment, namely the lower bound on the communication cost of any atomic
commitment algorithm, for a given a set of participants, and an associated set of
communication costs between every pair of participants. The necessary communication
cost is twice the weight of a minimum spanning tree in a complete graph, called the
cost graph. It has the participants as nodes, and the costs as the weights of the edges.
For example, in Fig. 1.3 we show the cost graph of the participant sites and network
of Fig. 1.1, assuming that the communication cost between every pair of participants
is the distance between them in the network. We shall explain at the beginning of 3
that this result would have been trivial had we known that there is an atomic commitment
execution of minimum communication cost which has a single coordinator (a par-
ticipant to which all other participants send their votes). However, we do not know
this a priori, and, in fact, the most difficult part of the lower bound proof is showing
that there always exists a minimum communication cost instance with one coordinator.

Then, we show that the necessary cost is also sufficient for atomic commitment
by presenting an algorithm that achieves the lower bound. Subsequently, we establish
the necessary communication time for atomic commitment. Then we demonstrate that
it is also sufficient, by demonstrating that the decentralized algorithm (introduced
previously by Skeen ([Ski), and explained briefly in the next subsection) achieves the

FIG. 1.3
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communication time lower bound. We define the communication complexity of an
instance as the product of its communication time and its communication cost, and
we point out that it is NP-complete to find the instance of minimum communication
complexity. However, we propose the algorithm TREE-COMMIT, in which messages
propagate along the edges of a tree spanning the participants. For a minimum spanning
tree of the cost graph, TREE-COMMIT has minimum communication cost. Its com-
munication complexity (communication time) can be worse than the minimum com-
munication complexity (minimum communication time) by a factor that is bounded
by the number of participants, p. The computation time (as opposed to the communica-
tion time) of each one of the p participants executing TREE-COMMIT is linear in
the size of the input. This implies that TREE-COMMIT is a distributed variant of a
polynomial-time approximation algorithm, for the NP-complete problem of finding
the minimum communication complexity instance, and that the approximation has a

bound, p, on the error. Moreover, TREE-COMMIT achieves the bound on the com-
munication complexity, without the participants knowing the subtransaction comple-
tion times, or the communication delays. Then we analyze the decentralized algorithm,
which is communication time optimal. We show that its communication complexity
(cost) can be worse than the minimum communication complexity (cost) by a factor
of order p2.

The decentralized algorithm is a variant of the two-phase-commit paradigm. Two
other well-known variants are the ones mentioned above, namely the central-site and
the linear algorithms (they are briefly explained in the next subsection). The algorithm
introduced in this paper, TREE-COMMIT, is superior to these two variants in a very
strong sense. It can be adapted, by varying its communication tree, to have exactly
the same communication cost as the central-site algorithm (alternatively, it can be
adapted to have the same communication cost as the linear algorithm). Then, for any
set of subtransaction completion times and intersite communication delays, its com-
munication time cannot be higher than that of the central-site algorithm (the linear
algorithm). Furthermore, there are cases, i.e., completion times and delays, for which
it is half the communication time of the central-site algorithm (the linear algorithm).

In this paper we introduce a novel model of an atomic commitment instance.
Although other models, such as finite state automata ([Sk]) and knowledge theoretic
([H2]), exist in the literature, we chose to represent the instance by a directed acyclic
graph, representing the time-order of events and messages. It enables us to establish
the communication cost and communication time lower bounds, and to analyze the
cost and time of algorithms, all in the same formalism. The communication cost is the
total length of the arcs, and the communication time is the length of the longest path.

Our results are restricted to the case in which no failures occur while the commit-
ment protocol is executed, although the lower bounds obviously also hold in models
that allow failures. We mainly analyze the case in which each participant votes to
commit the transaction (and thus the transaction commits), for the following reasons.
Successful commitment represents the more likely outcome for transactions in most
database systems, and it also represents a worst-case scenario from the communication
cost viewpoint (see Theorem 3).

1.3. Other related work. Atomic commitment is a variant of a fundamental problem
in distributed systems, namely distributed consensus. Fischer presents a survey of the
subject ([F]), and Dwork and Skeen devise an interesting taxonomy of consensus
problems ([DS2]). Hadzilacos presents an illuminating discussion on the applicability
ofthe consensus problem results to the atomic commitment problem ([H1]), particularly
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the types of failures that are meaningful for each problem. In short, almost all existing
research concentrates on the effects of failures on achieving consensus in general, and
sometimes atomic commitment, in particular.

In contrast, in this paper we concentrate on performance issues. Mohan, Lindsay,
and Obermack also discussed performance issues of commitment protocols ([MLO]);
however, our work differs from theirs in two respects. First, their atomic commitment
algorithms are more complicated, mainly because of a more complicated transaction
model. The model allows for the fact that there may not be any participant that knows
the identity of all the other participants in the transaction. Second, [MLO] has assumed
a one-unit cost for each message, as have the other previous works.

Informal discussions of the performance of atomic commitment algorithms in the
absence of failures also appear in [BHG], [CP], [G], and [Ski, mainly in the context
of different two-phase-commit variants. One of the most popular is the central-site
algorithm (see Fig. 1.2(a)); a participant is designated as the "protocol coordinator"
and each other participant sends its vote to the coordinator. The coordinator makes
the decision and Sends the "commit" or "abort" message to all the other participants.
Another two-phase-commit variant is the decentralized algorithm, in which each par-
ticipant sends its vote to all the other participants. Based on the received messages
each participant makes the "commit" or "abort" decision. We shall show that this
algorithm minimizes the communication time. Finally, in the linear algorithm
(Fig. 1.2(b)), all the participants are sequentially ordered. Each participant sends its
vote to the next one in the sequence. The last participant is the protocol coordinator,
which reverses the flow direction, by sending the decision message to its predecessor
in the sequence. The linear and central-site algorithms require 2(p-l) intersite
messages, where p is the number of participants. Dwork and Skeen have formally
proven that the number of intersite messages required by any atomic commitment
protocol, in the absence of failures, is 2(p-1) ([DS1]). By contrast, note again that
in the present work we consider the total communication cost of intersite messages,
rather than their number. In the special case in which the communication cost of every
intersite message is one, our cost lower bound result matches the 2(p- 1) result.

1.4. Paper organization. The rest of this paper is organized as follows. In 2 we
introduce our model of a commit instance. In 3 we establish the necessary communica-
tion cost for the atomic commitment problem, and in 4 we provide a complete
characterization of the minimum communication cost commit instances. In 5 we
establish the minimum communication time of an instance, and in 6 we present the
TREE-COMMIT algorithm. In 7 we analyze TREE-COMMIT and compare it with
the other algorithms discussed in this paper. In 8 we conclude, and discuss future work.

2. Commit instances. In this section we provide some key definitions. In particular,
we formally introduce our novel model of a commit instance. Intuitively, the instance
executed by an atomic commitment algorithm is represented by the temporal, and thus
partial, order of events occurring at the participants. Let P be a set of participants.
Formally, an instance on P is a directed acyclic graph, ! =(E, A) (see Fig. 2.1(a)). E
is a set of nodes, called events, and A is a set of arcs (i.e., directed edges). Every event
occurs at some participant, and all the events occurring at a participant are totally
ordered in L Each event represents zero or more consecutive receives (each of an
intersite message) at the participant, without an intervening send, followed by zero or
more consecutive sends, without an intervening receive. The first event occurring at a
participant also represents the completion of the cgrresponding subtransaction. Every
pair of consecutive events occurring at a participant are connected by an arc called
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an order arc (since it represents the order in which the two events occur at the
participant). The other arcs of A are called messages. A message is an arc from an
event called the send of the message, to an event called the receive of the message,
which occurs at a different participant from the send. Only the last event occurring at
a participant may send zero messages, and only the first event occurring at a participant
may receive zero messages. Thus, into every event, except possibly the first one occurring
at each participant, enters at least one message, and from every event, except possibly
the last one occurring at each participant, exits at least one message. If there is a path
in I between events a and b, then we say that a happens before b (in the sense of
Lamport ILl), and b happens after a. We assume that a message sent at an event a
contains all votes that happened before a. Three possible instances at a set of three
participants are illustrated in Fig. 2.1.

(a) (b)

(c)

FIG. 2.1

Next, we comment on the representation of several message-receives and -sends
by one event. For the purpose of this paper, the order of consecutive message-sends
is irrelevant, as is the order of consecutive message-receives. For example, we do not
distinguish between two "instances" in which the only difference is that at some
participant the order of two consecutive receives is reversed. Only the relative order
of blocks of receives and sends is relevant, since we assume that each message sent
includes all, and only, the votes received before sending the message, and also includes
the vote of the sender.

We assume that a participant may send messages only after its subtransaction
completes. Consequently, the first event at each participant represents zero or more
message-receives, followed by the corresponding subtransaction completion, followed
by zero or more additional message-receives, followed by one or more message-sends.

A commit instance, I, is an instance that satisfies the following commit requirement"
At each participant occurs at least one event, e, which happens after the first event
occurring at every other participant. Any event such as e, that happens after some,
and particularly the first, event at each other participant, is called a C-event; informally,
when it occurs, its participant, say j, already knows the commit decision. The reason
for this is that j has received all the "yes" votes from the other participants, and it
knows that its own vote is "yes." The vote of some participant, say i, propagates to j
along the path from the first event at i, to the C-event of j. The first C-event occurring
at a participant, in addition to message sents and receives, also represents the validation
of the changes made by the subtransaction, and the recording in stable storage of the
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fact that the transaction is committed. A message sent by a C-event is called a commit
message. Each message that is not a commit message is a "yes" vote message. An
event which is not a C-event is called a V-event.

The motivation for the commit requirement is that each participant must receive
the "yes" vote of every other participant, and vote "yes" itself, before knowing that
it can commit ([DS1],[H2]). For example, the instances illustrated in Fig. 2.1 are
commit instances. In our figures, the V-events (C-events) are denoted by a subscripted
V (C). The label V, (Ci,.j) of a node indicates that this is the jth V-event (C-event)
occurring at participant i.

Notice that the commit requirement ensures that every commit instance is con-
nected. Notice also that any event which happens after a C-event, must also be a
C-event. Another observation is that a C-event may represent the receive of a "yes"
vote message (for example, C1,1 in Fig. 2.1(a)).

The variants of the two-phase commit protocol mentioned in the introduction are
illustrated in terms of our model in Fig. 2.1. In order to prevent cluttering the figures
we omit the order arcs; however, remember that any two consecutive events at a
participant are connected by an order arc. An instance executed by the central-site
algorithm, with participant 1 as the coordinator, is illustrated in Fig. 2.1(a). Instances
of the decentralized and linear algorithms are illustrated in Figs. 2.1(b) and 2.1(c),
respectively.

3. Minimum communication cost of commit instances. In this section we establish
the minimum communication cost of a commit instance. This would have been quite
straightforward, had we known that there exists a minimum communication cost commit
instance in which all the votes are sent directly to one participant, the coordinator,
which, after receiving all the votes, broadcasts the commit decision. This would have
meant that the problem of atomic commitment at minimum communication cost can
be decomposed into two problems, collect-at-minimum-cost and broadcast-at-
minimum-cost, and these two problems can be solved independently. In Lemma 2 we
show that there always exists a minimum communication cost commit instance that
consists of a collect-to-one, followed by a broadcast, but we do not know this yet.
Also, we do not know yet that there exists a minimum cost instance that has a minimum
number of intersite messages, and therefore we cannot use this fact for the lower bound
proof. At the end of the section we will present the FIXED-COORDINATOR
algorithm, which achieves minimum communication cost, and consists of a collect-to-
one, followed by a broadcast.

We start with some formal definitions. Let P be a set of participants. We suppose
that P is associated with a set, c, of communication costs, consisting of a positive real
number, ci, for each pair of different participants, and j, in P. For each such pair,
cq is the communication cost of a message from to j, and we assume that it is equal
to the cost of a message from j to i, namely, ci ci. Given P and c, in every instance
on P the communication cost of a message arc from (an event occurring at participant)
to (an event occurring at participant) j is cq; the communication cost of an order

arc is taken to be zero. The communication cost of an instance I, denoted cost(l), is
the total communication cost of all the arcs in I. For example, if c12 c13 1, then the
cost of the instance on Fig. 2.1(a) is 4.

In this section we assume a fixed set of participants, P, and a fixed set of associated
communication costs, c, and we establish the minimum communication cost of a commit
instance on P. A commit instance of such cost will be referred to as a minimum
communication cost instance. We denote by the set of commit instances on P. Given
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a commit instance I, its C-subgraph, denoted CI, is defined as the subgraph of I
induced by its C-events.

LEMMA 1. If I is a minimum communication cost instance of q, then I has only
one C-event at every participant. Furthermore, its C-subgraph is a forest of rooted trees.

Proof Assume that there are two or more C-events at some participant. Then,
there must be at least one incoming message into the second C-event, by definition of
a commit instance (in particular, that only the first event at a participant may represent
zero receives). By omitting such a message, i.e., removing the arc corresponding to
some message into the second C-event, a commit instance of strictly lower communica-
tion cost can be obtained. The reason that the message can be omitted, is that the
commit requirement is satisfied for the participant by the first C-event occurring at the
participant. Consequently, there is only one C-event at every participant.

In order to show that CI is a forest, it is now sufficient to show that there is no
C-event having two incoming commit messages. But this fact is obvious; if there were
such an event, then all but one of the incoming commit messages could be omitted to
obtain an instance of lower communication cost.

The single C-event at every participant, i, will be denoted by Ci. Assume that Cj
is one of the roots in CI, for some minimum communication cost instance,/. In such
a case, we say that participant j is a coordinator of the instance /, and that C is a
boundary C-event of L Informally, this means that, in the execution I, participant j
knows all the votes without receiving a commit message (that is, j knows all the votes
without receiving a message from another participant that knew all the votes). Suppose
now that I has two or more coordinators. Consider a V-event, V, which satisfies the
following condition. It precedes at least two boundary C-events, say Ci and C, and,
if V has any V-event successors, then each one of them precedes only one boundary
C-event (for example, V is W in Fig. 3.1, and the V-event successors are the W’s
1 <_-i < n). Such an event is called a boundary V-event. It is easy to see that every
commit instance with two or more coordinators has a boundary V-event. Simply start
at the first event at some participant, which by the commit requirement precedes every
boundary C-event. Verify whether that event satisfies the above condition. If not, it
means that one of its V-event successors precedes two or more boundary C-events.
Repeat the verification at that successor, until a V-event with the following property
is found: either it has no V-event successors, or each one of its V-event successors
precedes only one boundary C-event.

Suppose that boundary V-event V occurs at participant Po. By Lemma 1 we know
the structure of the C-subgraph of I, particularly that there is only one C-event that
occurs at Po, Cpo. Let Ci be a boundary C-event that succeeds V, such that Cpo is not
in the tree of CI rooted at the Ci. Since V precedes more than one boundary C-event,
there must be such a C-event. Then Ci is referred to as associated with boundary
V-event V.

LEMMA 2. There exists a minimum communication cost instance in , which has
exactly one coordinator.

Proof Let I be a minimum communication cost instance, and suppose that it has
two or more coordinators. We shall show that we can transform it into another commit

If the omitted message was the only one exiting its send event, say e, and e is not the last event at its
participant, then after the omission the instance has to be adjusted. Adjustment is by collapsing e and its
consecutively following event at the participant. Two events e and f are collapsed by omitting the event f,
and substituting e for f in the arcs of the instance (the arc (e, e) is omitted). A similar adjustment has to
occur if the omitted message is the only one entering its receive event.
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FIG. 3.1

instance, I’, of equal communication cost, but with one less coordinator. The transfor-
mation replaces a vote message from some participant, i, to some participant, j, by a
commit message from j to i. Since the costs of the two messages are equal, the costs
of I and I’ are equal. The effect of the transformation is to change the way in which
one of the coordinators learns the votes of the other participants; that coordinator
becomes a noncoordinator and learns the votes of the others via a chain of messages
from one of the remaining coordinators. We now describe the selection of the vote
message which will be replaced.

Suppose that V is a boundary V-event that occurs at participant Po, and let Ci
be a boundary C-event associated with V. Denote a path from V to Ci, by V--W, W1, , W", W"+1 Ci, where n >_- 0. Note that all events on the path, except the
last one, are V-events. Let Wr, for 0 <-r <-n, be the last event on this path for which
the following condition is true" W occurs at a participant, Pr, for which Cpr is in a
tree different than the one rooted at C. Since W satisfies the condition, there must
be such a Wr. Denote by Pr+ the participant at which Wr+ occurs. By the definition
of W, the event C,r+ is the tree rooted at C. Now, to obtain a commit instance of
minimum communication cost with one less coordinator, perform the following
transformation:

(i) the arc Wr- Wr+ is replaced by a message from Cpr tO Cpr+l
(ii) the direction of the arcs on the path from C to Cpr+ is reversed, and
(iii) if transformations (i) and (ii) result in any event that consists of message-

receives only, then that event and the one immediately following it at the same
participant are collapsed into one event.
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Figs. 3.1 and 3.2 provide two examples of the transformation. Fig. 3.1 illustrates
the modifications performed on/, assuming that W does have some V-event successors.
Figs. 3.2(a) and 3.2(b) illustrate an instance, /, before and after the transformation,
respectively; W is V2, and it has no V-event successors.

It is easy to see that the transformation results in a commit instance; denote it I’.
The commit requirement is satisfied by I’ because, by definition of W, the removal
of the arc Wr Wr+l can only disconnect paths to the C-events in the C-subgraph
tree rooted at Ci. However, all those C-events are now preceded by Cpr+,, which is in
a different C-subgraph tree. Therefore, I’ is a commit instance and has the same
coordinators as I, except participant i, which is a coordinator in /, but is not a
coordinator in I’. Moreover, the transformation performed on I does not alter the
communication cost, hence I’ has minimum communication cost.

To summarize, starting with a minimum communication cost instance, I, with two
or more coordinators, we obtained a minimum communication cost instance, I’, with
one less coordinator. We can continue this procedure until a minimum communication
cost instance with exactly one coordinator is obtained. [3

Next, we will obtain an additional lemma; it will be used in 4. In a minimum
communication cost instance, I, having two or more coordinators, let V, Po, and Ci,
be as in the proof of Lemma 2. Namely, V is a boundary V-event that occurs at
participant Po, and Ci is a boundary C-event that is associated with V. The fact that
I is a minimum communication cost instance, implies that the path in I, denoted p,
from V to Ci, is unique, and consists of a single message arc, V C. The reason
for this is as follows. If this is not the case, then there are more messages on p, or
there are additional paths from V to Ci. As established in the proof of Lemma 2, one
of the messages on p is from Pr to Pr+l. Then, the transformation in the proof of
Lemma 2 can be augmented by the elimination of all messages on p, and on the other
paths from V to Ci. The resulting graph is a commit instance that has a cost strictly
lower than L This contradicts the fact that I has a minimum communication cost.
Therefore, V=- W, Wr+l=- Ci, Po=-P, i=-Pr+, and the transformation in the proof
of Lemma 2 simply replaces a message Vpo,l- C by a message Cpo C. We have
therefore proved the following.

LEMMA 3. In any minimum communication cost instance of , with two or more
coordinators, there is a unique path from any boundary V-event, V, to any associated
boundary C-event, C, and it consists only of the message V- Ci. [3

Now, let us define the cost graph, D, as the complete graph having the set of
participants /9 as its nodes. The weight of each edge (i, j) equals cj. The cost of a
minimum spanning tree in D is denoted by CMST( c, /9).

V1 V3 V5

C Ca C5 C C Cn

FIG. 3.2
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Given T1 and T2, two not necessarily different spanning trees of D, we define a
commit instance on TI and T2 coordinated at some participant k P. It is denoted by
I(k, T, T2), and specified as follows. Denote by T the directed graph obtained from

T by directing its edges such that from every node there is a path to k (the graph
obtained is called an oriented tree with sink k). Also, denote by T the directed graph
obtained from T2 directing its edges to form a rooted tree, with root k.

One obtains the instance I(k, T, T2) as a result of the following modifications:
(1) relabel the nodes from T; node is relabeled V/;
(2) relabel the nodes from T; node is relabeled Ci;
(3) node Vk is omitted, and the arcs entering it are modified to enter Ck instead;
(4) add the order arcs V/- Ci for each i, except the coordinator.
Intuitively, l(k, T, T2) is a commit instance that has vote messages which corre-

spond to the arcs of T, and commit messages which correspond to the arcs of T.
The definition of I(k, T1, T2) is illustrated in Fig. 3.3. Given minimum spanning trees

T (a) and T2 (b), the instance 1(4, T, T2) is illustrated in (c). Clearly, if T and T
are minimum spanning trees, then the communication cost of I(k, T1, T2) is
2. CMST( c, P).

1 3 4 Va V3

2 5 2 3 5 V2 Vs

(a) (b)

FIG. 3.3

(c)

THEOREM 1. Let P be a set ofparticipants, and c a set of associated communication
costs. Then minl, Cost(I) 2. CMST(c, P).

Proof Since the cost of an instance I(k, T, T1) for some minimum spanning tree

T1 is 2. CMST(c, P), then clearly 2. CMST(c, P) _-> min,,I, Cost(I). To obtain the
inequality in the other direction, observe that, by Lemma 2, there exists a minimum
communication cost instance, I*, with one coordinator, say k. Based on I*, construct
an undirected graph, H, defined as follows. The nodes of H are the participants in P,
and the edges of H are {(i, j)] there is a vote message from participant to participant
j in I*}. Since in I* there is a path from the first event at every participant to Ck, H
must be connected. Therefore its cost is at least CMST(c, P), which in turn implies
that the communication cost of vote messages in I* is at least CMST(c, P). Similarly,
we can show that the cost of the commit messages of I* is at least CMST(c, P). Thus,
2. CMST(c, P) _-<min. Cost(I).

The result of Dwork and Skeen ([DS1, Thm. 1]) obtained for synchronous networks
is extended to asynchronous networks by the following corollary of Theorem 1.
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COROLLARY 1. Assume that the number ofparticipants in a transaction is p. If the
communication cost of a message between each pair ofparticipants is one, then it holds
true that min,v Cost(l) 2(p- 1).

Hadzilacos obtained a similar extension of the result in the context of process
failures and/or communication failures ([H2, Thm. 6]).

Now we shall present an algorithm that achieves minimum communication cost.
In discussing commitment algorithms we assume, as in other works (e.g., [DS2]), that
each participant knows, the identity of all the participants, and we also assume that it
knows the associated set of communication costs. The analysis of this section suggests
a very simple minimum communication cost commitment algorithm, which we will
call FIXED-COORDINATOR. It proceeds as follows. Each participant constructs
some minimum spanning tree, T, of the cost graph, and selects a participant, k,
designated as the coordinator. T and k are assumed to be identical at all the participants.
This will be the case if the procedure which constructs T and selects k is identical at
all the participants. The algorithm executes an instance with the vote messages corre-
sponding to T’ (which is the oriented tree with sink k, obtained by directing the edges
of T towards k); the commit messages correspond to T" (which is the rooted tree
obtained from T by directing its edges away from k). Specifically, a participant iS k
waits until subtransaction completion and until the receipt of all vote messages
represented by the arcs incoming into in T’. Then it will send a "yes" vote message
corresponding to the arc exiting i. Participant k, after completing its subtransaction,
waits until receiving the votes from all its neighbors in T, and then commits. The
propagation of the commit decision is similar, in the opposite direction.

Observe that the linear and central-site algorithms discussed in the introduction
are special cases of the FIXED-COORDINATOR algorithm, in which the requirement
that T is a minimum spanning tree is relaxed. In the central-site case, the tree consists
of the coordinator connected by an edge to each other participant. In the linear case,
the tree is simply a string, in which the coordinator is one of the leaves.

4. Characterization of commit instances with minimum communication cost. In this
section we provide a complete characterization of all possible commit instances of
minimum communication cost (Theorem 2). We determine that if a commit instance
has a minimum communication cost, then each participant sends at most one vote
message, and receives at most one commit message (a coordinator does not receive a
commit message). Also, in a minimum communication cost instance there are either
one or two coordinators. If there are two coordinators, then each participant sends
exactly one vote message. If there is only one coordinator, then each participant except
the coordinator sends one vote message and receives one commit message; the coor-
dinator does not send a vote message. In either case, the messages of a minimum
communication cost instance propagate "along edges" of minimum spanning trees of
the cost graph. Specifically, there are two (not necessarily different) minimum spanning
trees of the cost graph, such that the vote messages are only sent from a participant
to its neighbor in one tree, and commit messages are only sent from a participant to
its neighbor in the other. Furthermore, if the instance has two coordinators, then they
must be neighbors in both trees; each one of them must send its vote message to the
other, and no commit messages are sent between them.

A commit instance on spanning trees T1 and T2, coordinated at a participant k,
was defined in 3, and denoted I(k, T1, T2). Similarly, we define next a commit instance
on two spanning trees, coordinated at two participants. Assume that T1 and T2 are
two spanning trees of the cost graph, such that participants m and n are neighbors in
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both trees. A commit instance on T1 and T2 coordinated at m and n, denoted
I(m, n, T1, T2), is defined as follows. Denote by T the graph obtained from T1 by
directing its edges to obtain an oriented tree with sink m, then omitting from it the
arc n m. Denote by T the graph obtained from T2 by directing its edges to obtain
a rooted tree with m as a root, then omitting from it the arc m- n.

One obtains the instance I(m, n, T1, T2) as a result of the following modifications:
(1) relabel the nodes from T; node is relabeled V;
(2) relabel the nodes from T; node is relabeled Ci;
(3) add the message arcs V,, Cn and Vn C,,, and the order arcs V- Ci for

each i.

Intuitively, I(m, n, T1, T2) is a commit instance having vote messages that corre-
spond to the arcs of T, plus the arcs m n and n m, and commit messages that
correspond to the arcs of T. In other words, in I(m, n, T1, T2) each participant,
including the coordinators, sends exactly one vote message. The vote of n is received
by m, and vice versa. Each participant, except the coordinators, receives exactly one
commit message. Fig. 4.1 demonstrates the definition. It illustrates a minimum com-
munication cost instance on T1 and T2 of Fig. 3.3, coordinated at participants 2 and
4. Note that I(m, n, T1, T) is the same graph as I(n, m, T1, T2).

V3 V5

/
V2V4

C2 C4

C C3 Cs
FIG. 4.1

THEOREM 2. Let P be a set of participants, and let c be a set of associated
communication costs. Any minimum communication cost instance I must be of the
form I(k, T1, T) or I(m, n, T1, T2), for some participants k, m, n, and minimum spanning
trees T1 and T2 of the cost graph.

In order to prove Theorem 2 we shall show that: (a) any one-coordinator, minimum
communication cost instance must be of the form I(k, T1, T2); (b) any two-coordinator,
minimum communication cost instance, must be of the form I(i,j, T1, T2); and (c) a
commit instance with three or more coordinators cannot have minimum communication
cost. Fix the set of participants, P, and its associated set of communication costs, c,
for the rest of this section.

LEMMA 4. A one-coordinator minimum communication cost commit instance must
be of the form I(k, T1, T2) for some minimum spanning trees T1 and T2.

Proof Consider a minimum communication cost instance, I, with one coordinator,
k. Following a line of reasoning similar to that used in the proof of Theorem 1, it can
easily be seen that the total cost of vote messages is exactly CMST(c, P), and the total
cost of commit messages is exactly CMST(c, P). Consider the undirected graph, H,
having as nodes the participants and edges {(i,J)l there is a vote message from
participant to participant j in I}. H must be connected, its cost is CMST(c, P), and
therefore it is a minimum spanning tree of the cost graph, T1. Clearly, the vote messages
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of I correspond to the oriented tree with sink k, obtained by directing the edges of
T1. Similarly we can show that the commit messages of I correspond to the rooted
tree obtained by directing the edges of a minimum spanning tree, T_.

In Lemma 2 we presented a procedure to modify any minimum communication
cost instance, I, with two or more coordinators, into another commit instance I’ with
one less coordinator, such that the communication costs of I and I’ are identical. A
similar procedure will be used here to characterize minimum communication cost
instances with two or more coordinators.

LEMMA 5. A two-coordinator minimum communication cost commit instance, I, must
be of the form I (i, h TI, T2), for some participants and j, and some minimum spanning
trees, T1 and T2, both having the edge i,j).

Proof Let Ci and C be the boundary C-events in L By replacing one vote message
by a commit message, as in Lemma 2, we obtain a one-coordinator instance ofminimum
communication cost. We then use the characteristics of such an instance given in
Lemma 4 to show that I is indeed of the form I(i,j, T1, T2).

Let V denote a boundary V-event, as defined before the proof of Lemma 2. Since
and j are the only coordinators, V precedes both Ci and Cj. Let Ci be the boundary

C-event associated with V, and P0 the participant at which V occurs. Since there are
only two boundary C-events, by definition of an "associated boundary C-event," Cpo
is in the tree of the C-subgraph which is rooted at C.

We first show that, in fact, Po is the coordinator j. By Lemma 3, observe that the
path from V to C is the message arc V C. Consider the commit instance I’ obtained
from I by replacing V Ci by Cpo- Ci (as in the proof of Lemma 2). I’ has only one
coordinator, j, and has the same cost as I, i.e., minimum communication cost. Therefore,
by Lemma 4, the instance I’ must be of the form I(j, TI, T2) for some minimum
spanning trees T1, T2. In particular, in the instance I’, the coordinator j does not send
a vote message, whereas in /, participant j must send a vote message, because there
must be a path from the first event at j to C. However, the only vote message deleted
in I to obtain I’ is V C; hence V occurs at participant j, or, in other words, Po-= j.

Because of the new arc, Cpo- Ci, j and are neighbors in T2. We shall show that
is a neighbor of j in T as well, or, in other words, that sends its vote to j in /.

Denote the single V-event at each participant r in I by Vr. We have already shown
that if V has C as an associated C-event, then V is actually V. If there is no other
boundary V-event in/, then all V-events must precede V, and therefore V should be
a C- rather than a V-event. Consequently V cannot be the only boundary V-event in
L Denote by V another boundary V-event, i.e., V1 V. The associated C-event of
V cannot be C, since otherwise, as above, we can show that V= V, which in turn
implies that V= V. Thus, the associated C-event of V must be C, and, as above,
V occurs at participant i; that is, V is actually V, so participant sends its vote to
participant j.

Now, recall that I’ is obtained from I simply by replacing Vo- C by Cj C, and
that I’ has the form I(j, T, T2). Therefore, in the instance/, exactly one vote message
is sent by each participant, and is of the form I(i, j, T, T2) (by definition of such an
instance).

LEMMA 6. There are no minimum communication cost commit instances with three
or more coordinators.

Proof From the proof of Lemma 2, we know that from every minimum communi-
cation cost instance with two or more coordinators, it is possible to obtain a minimum
communication cost instance with one less coordinator. Consequently, it is sufficient
to show that there is no minimum communication cost instance with three coordinators.
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Suppose that there exists a minimum communication cost instance, I, with three
coordinators i, j, m. Let V be a boundary V-event, and Ci an associated boundary
C-event. Assume that V occurs at participant Po. By replacing V-, Ci with Cpo-> Ci,
we obtain, as in Lemma 2, an instance I’ of minimum communication cost with two
coordinators, j and m. By Lemma 5, instance I’ must have the form I(j, m, T1, T2),
for some minimum spanning trees T1 and T2. Event V occurs at exactly one participant,
therefore it cannot occur at both coordinators. Assume without loss of generality that
it does not occur at coordinator j, i.e., Po j. Then the vote messages exiting V-events
occurring at participant j are the same in I(j, m, T1, T2) and I. However, by definition,
the only such vote message in I(j, m, T1, T2) is C,. Therefore, in I, the only
V-event occurring at participant j does not precede boundary C-event Ci. Thus I does
not satisfy the commit requirement, contradicting that fact that I is a commit
instance. [3

We have completed the proof ofTheorem 2; as an immediate corollary we conclude
the following.

COROLLARY 2. Ifthe communication cost ofsome commit instance with pparticipants
is minimum, then it has a minimum number of intersite messages, i.e., 2(p- 1). [3

Obviously, as demonstrated in the introduction, the converse of Corollary 2 is not
true, i.e., a minimum number of intersite messages does not imply minimum communi-
cation cost.

The characterization in Theorem 2 helps us demonstrate that, in general, minimum
communication cost cannot be achieved with limited knowledge of the participants’
identity. For example, consider the network and the participants of Fig. 1.1. Suppose
that each one of the participants 2, 3, and 4 knows only that 1 is a participant, but
does not know of the existence of other participants. Suppose also that 1 knows that
4 is a participant, and that there are two other participants, but 4 does not know their
identity. A possible commitment scenario is that participant 4 waits for the votes of
all the other participants, and then propagates the commit decision. Another scenario
is that 1 only waits until receiving the votes of the two anonymous participants, and
then transmits their vote, along with its own, to 4; the latter then propagates the commit
decision. In the two scenarios above, as well as in any other possible scenario, a
message must be sent between 1 and 4. Since the edge 4-1 in the cost graph does not
belong to any minimum spanning tree, minimum communication cost cannot be
achieved.

5. Communication time of commit instances. In this section we first define the
communication time of an instance, and then we establish the minimum communication
time of a commit instance.

Generally, time comparison of instances in a totally asynchronous network is
impossible, because each message can have an arbitrarily long delay. Therefore some
restrictions on the network behavior must be imposed. The only restriction we impose
here is that the delay of a message between every pair of participants is fixed for the
duration of any commitment-algorithm execution. Thus, any message from to j, sent
by any algorithm, takes a fixed and finite amount of time to arrive, say tij.

The communication time of an instance on a set of participants, P, is defined with
respect to a set " {’l’i[i E P} of subtransaction completion times, and with respect to a
set {tijli, j P} of intersite communication delays (or intersite delays for short). For
# j, the intersite delay, ti, is a positive real number, and each "/’i is a nonnegative real

number. The smallest ’/’i is zero, and so is every tii. Each ti is the interval of time from
the send of any message at until its receive at j in any instance on P. We observe
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that tij may be different than tji. (In the cost model, cij cji, but our time results hold
for the more general case.) The set satisfies the triangle inequality, namely, for each
i,j, k, tij <- tik+ tkj. (Our communication cost results hold even if the triangle inequality
is not satisfied.) Let I be an instance on P. The sending of each message exiting an
event, say e, happens at the execution time of e, defined as follows.

Let e be an event at participant i. The execution time of e, denoted time(e), is the
maximum of:

(1) The last (highest) receive of a message entering e, if there is any. The receive
of a message exiting event e’ at participant j occurs at time(e’)+ tji;

(2) The execution time of the event immediately preceding e at participant i, if
there is any; and

(3) The subtransaction completion time,
Observe that the execution times of events on any directed path in I are nondecreasing.

The communication time of the instance /, denoted time(I), is defined as the
maximum execution time of an event in I (i.e., the execution time of the last event).
Intuitively, the communication time of I is the interval from the time that the first
participant completes its subtransaction (taken to be zero), until the execution time
of the last event, assuming the following. A participant does not send its first message
before time r, and internal processing after subtransaction completion takes zero time
at each participant. Clearly, for given sets of subtransaction completion times and
intersite communication delays, the communication time may differ from one instance
to another. For example, assume that all the subtransaction completion times are zero,
and all the intersite delays are one. Then the communication time of the instance in
Fig. 2.1(a) is two, whereas the communication time of the instance in Fig. 2.1(b) is
one. (To contrast time with cost, if all pairwise costs are one, then the costs of the
instances in Figs. 1.2(a) and 1.2(b) are four and six, respectively.) Given an instance
I and sets - and t, time(l) can be computed in linear time by PERT techniques (see
[E]).

PROPOSITION 1. Let P be a set of participants, let - be a set of subtransaction
completion times, and let be a set of intersite delays. Then the minimum communication
time of an instance in (the set of commit instances for P) with respect to " and is:
max {r + tijli and j are participants}.

Proof Consider some participant, i. In any instance I of , the execution time
of the first event, say e, at participant cannot be smaller than r. Also, there must be
a path from e to some event at every other participant. Since satisfies the triangle
inequality, max {ri + tlj is a participant} is a lower bound on time(I), is an arbitrary
participant, thus max {r + tli and j are participants} is a lower bound on time(I).
The lower bound is also an upper bound, since it is the communication time of the
commit instance in which every participant, i, has one V event, and one C event, and
there is a message from every V to every other C (e.g., the instance in Fig. 2.1(b)).
(Observe that if some ’/’k is bigger than -i + tik for each k, then the execution time
of both Vk and Ck is 7"k. ["]

If all the participants vote "yes," then clearly the decentralized algorithm executes
a minimum communication time commit instance for any sets " and t.

6. The TREE-COMMIT algorithm. TREE-COMMIT is a distributed, minimum
communication cost algorithm, adapted from the PIF (Propagation of Information
with Feedback) algorithm of [Se]. Each participant constructs the same minimum
spanning tree, T, of the cost graph. In contrast to the fixed-coordinator algorithm, in
TREE-COMMIT, a coordinator is not selected when the tree is constructed. The
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procedure performed by each participant, i, in a committing execution is as follows.
After subtransaction completion, it waits until receiving the votes from all its neighbors
in T except one, say j, before voting; then it sends its vote to j. If receives votes from
all neighbors in T before it completes its subtransaction, then commits and becomes
the single coordinator. If receives a vote message from j after having sent its vote to
j, then it commits, becoming one of two coordinators (j is the other one). If receives
a commit message from j, then it sends commit messages to all its neighbors in T,
except j. Therefore, the votes travel from the leaves of T inwards, where one or two
coordinators are established. In the commit stage, the commit message is simply
propagated along the tree edges, away from the coordinator(s).

A possible situation in the voting stage, i.e., before the coordinators are determined,
is illustrated in Fig. 5.1(a). In the scenario illustrated, we suppose that participants 1,
2, and 5 have completed their subtransactions, and participants 3 and 4 have not.
Participant 2 has not voted yet because it has not received the votes of two of its
neighbors. Figs. 5.1(b) and 5.1(c) illustrate two possible instances executed by TREE-
COMMIT at the completion of the voting stage situation described above. In the first
case, 3 completed its subtransaction, and its vote had reached 2 before the vote of 4
did; furthermore, the votes of 2 and 4 crossed, so they both became coordinators. In
the second case, 3 completed its subtransaction after having received the vote of all
participants, so 3 became the sole coordinator.

3 5 V Vs

2 4 V2 V

(a) C2 C,

C C C

V5

C, C

C5

FG. 5.1

(c)

We will denote by TREE-COMMIT (T) the algorithm which uses the tree T. The
reader should be convinced that TREE-COMMIT (T) generates an instance ofthe form
I(k, T, T) or I(m, n, T, T), for some coordinators rn, n, k.

The transaction-abort case is handled by TREE-COMMIT as follows" Participant
sends "abort" messages when the first of the following two cases occurs: (i)

unsuccessfully completed its subtransaction, in which case sends an "abort" (or a
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"no" vote) message to each neighbor in T; (ii) receives the first "abort" message
from a participant, say k, in which case sends an "abort" message to each neighbor
except k.

The complete TREE-COMMIT algorithm for each participant, i, is given in Fig. 5.2.
Note that TREE-COMMIT uses only "yes, commit," and "abort" messages, there-
fore the message length can be restricted to two bits.

TREE-COMMIT (c, P)/* procedure executed by participant i, given a set of communication costs, c,
between participants in P*!

1. Construct a minimum spanning tree, T, of the cost graph.
2. Wait until subtransaction completion, or receipt of an "abort" message./* vote-messages received are

saved, but they do not wake up this process; such messages are being considered in
steps 5, 6*/

3. if subtransaction completion then do;
4. if successful completion then do;
5. if received "yes" votes from all neighbors in T, then send

"commit" messages to all neighbors, and quit./* is a single coordinator */
6. otherwise wait until receiving the first "abort" message, or until

receiving a "yes" vote from all neighbors, except one.
7. if "abort" message from a neighbor, say k, then send "abort" messages to all

neighbors, except k, and quit.
8. if "yes" votes from all neighbors, except one, say j, then send a "yes" vote to j.
9. end.

10. otherwise (unsuccessful completion) send "abort" messages to all neighbors, and quit.
11. end.
12. otherwise ("abort" message from a neighbor, say k) send "abort" messages to all neighbors,

except k, and quit.
13. Wait until receiving a message. /* the only way to get here is from step 8,

and the message must have been received from j*!
14. if "abort" message, then send "abort" messages to all neighbors, except j, and quit.
15. otherwise ("commit" or "yes"-vote) send "commit" messages to all neighbors, except j,

and quit./* in the "yes"-vote case, and j are coordinators */

FIG. 5.2

We have not formally defined an "abort" instance, but the next theorem indicates
that the lower bound on its communication cost is lower than the commit instance
lower bound.

THEOREM 3. Ifsome participant sends an "abort" message, then the communication
cost of the instance executed by TREE-COMMIT (T) is at least the cost of T, and at
most twice the cost of T.

Proof Clearly, commit messages are sent only if all the subtransactions completed
successfully, and therefore, if some participant sends an "abort" message, then no
commit messages are sent. Each message in the instance executed by TREE-
COMMIT (T) is sent between two neighbors in T, therefore let us consider the edges
of T. For each edge (i, j) there is either exactly one abort message from to j, or
exactly one "yes" vote message from to j, but not both. The situation is similar from
j to i. Hence the total cost of messages is at most twice the cost of T. Additionally,
note that for each edge (i,j) of T there is an "abort" message from to j, or from j
to i. Hence the total communication cost of the instance is at least the cost of T. [3

It is easy to see that the bounds of Theorem 3 are tight. If all the subtransactions
complete unsuccessfully at exactly the same time, then two "abort" messages are sent
along each edge of T, one in each direction, and the communication cost is twice the
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cost of T. If, on the other hand, some participant completes its subtransaction unsuccess-
fully, and after this, the "abort" messages reach each participant before it completed
its subtransaction, then one "abort" message is sent along each edge of T, and the
communication cost is the cost of T.

The algorithm TREE-COMMIT assumes that each participant also knows the
identities of all the other participants. It is possible that for some transactions this
assumption does not hold true, and then TREE-COMMIT cannot be used. However,
let us mention two frequent cases in which the assumption does hold true. First, it
holds true in a fully replicated database, since then each participant knows that all
the other local database managers are participants. Second, for simple update transac-
tions that access only one data item (e.g., add $10,000 to an account which is replicated
at four participants), the assumption holds true, since each participant usually stores
a directory indicating where each data-item is replicated.

7. Analysis of TREE-COMMIT. In this section we first establish the communica-
tion time of TREE-COMMIT, and then we show that it is at most p. [minimum
communication time of a commit instance] ( 7.1). Then we define the communication
complexity of an instance, we discuss the communication complexity of TREE-
COMMIT, and we point out that it constitutes a polynomial-time approximation for
an NP-complete problem ( 7.2). Then we consider the other atomic commitment
algorithms discussed in this paper, and compare their performance with TREE-
COMMIT ( 7.3).

7.1. The communication time. Given a set of participants and a spanning tree, T,
namely a tree in which the nodes are the participants, a commit instance on T is a
commit instance in which every message is from a processor to one of its neighbors
in T. A commit instance on T will be called a T-instance for short. TREE-COMMIT
obviously can propagate messages along any spanning tree (simply do not insist on
"minimum" in step 1 of Fig. 5.2) and in this section we will speak in this broader
context. We will show that for a spanning tree, T, TREE-COMMIT T) executes the
instance with the minimum communication time among all T-instances, given any sets
of subtransaction completion times and intersite delays.

In this section, the edge (i,j) of an undirected tree often represents the two arcs
-->j and j -> i; whether it does so or not will be clear from the context. Also, whenever
we speak of the length of a path from one node to another in a tree, we assume that
the length of each arc, i->j, is the intersite communication delay tij. Given a set of
int6rsite communication delays, t, a tree T in which the nodes are the participants,
and a participant r, denote by dr the longest simple path in T, from r to another node.

LEMMA 7. Let P be a set ofp participants, let T be a tree in which the nodes are
the participants, let r {rl, , rp} be a set of subtransaction completion times, and let

{tijli, j P} be a set of intersite communication delays. Then the communication time

of a T-instance, I, with respect to r and t, is at least maxip {ri + di}.
Proof Let k be an arbitrary participant. There must be a path in I, from Vk,1 (or

Ck, I, if k is a single coordinator in I) to every other Ci, (see 2 for the definitions of
V/o and Cio). Since the messages of I are transmitted only between neighbors in T,
the communication time of I cannot be lower than time(Vk,1) + dk (or time(Ck,) / dk).
Additionally, time(Vk,1) and time(Ck,1) cannot be lower than "/’k" ["]

LEMMA 8. Let P, T, r, and be as in Lemma 7. Then the communication time of
(the instance generated by) TREE-COMMIT(T) for r and t, is not higher than
maxip {ri + di}.
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Proof The instance generated by TREE-COMMIT, denoted /, is of the form
I(k, T, T) or I(m, n, T, T), and I in particular has one or two coordinators. If it has
one coordinator, k, then the communication time of I is clearly {Zk+ dk}, and the
theorem follows. Assume now that I has two coordinators, rn and n. We shall show
that in this case there also exists some participant, k, such that the communication
time of I is {,1"k - dk}.

First, note that the communication time of I equals the execution time of some
C-event, say Cq. The C-subgraph of I consists of two rooted trees, one at C,, and the
other at C,,. Suppose that Cq is the tree rooted at C,. Then, clearly time(Cq)-
time(C,)+[distance in T from n to q]. Suppose now that the edge (m, n) is removed
from T. Denote by T,, and T, the resulting subtrees that contain rn and n, respectively.
Obviously, q is in T,. A simple but important observation lies at the heart of this
proof: Since, in TREE-COMMIT, participant n voted before receiving the vote message
from m, then time(C,)= time(V)+ t,,,. In other words, time(C,) is the time of the
receive of the message V,, -* C,. This observation is crucial because, as we shall point
out, there is a participant, k, in T,,, such that time(V,,) =Zk + [distance in T from k
to m]. Since q and k are in T, and T,,, respectively, and particularly since they are
not in the same subtree, then time(Cq)=Zk +[distance in T from k to q].

Therefore, all that remains to prove is that there is a participant, k, in T,,, such
that time(V,,)=Zk+[distance in T from k to m]. For this, consider time(V,.). By
definition, it is either equal to z,, in which case the proof is complete, or, there is a
message, say V- V,,, such that time(V) + t,, time(V,,). In the latter case, consider

V. It is either equal to ’, in which case, again, the proof is complete, or, there is a
message, say V, V, such that time(V,) + t, time(V). Proceeding in this fashion,
we must eventually encounter an event, Vk, such that time(Vk) Zk. Then, clearly, time
Vm) 7"k -- [distance in T from k to m].

From Lemmas 7 and 8 we immediately obtain the following theorem.
THEOREM 4. Let P, T, , and be as in Lemma 7. Then the communication time

of (the instance generated by) TREE-COMMIT (T) for and t, is maxip {z + d}.
Furthermore, this communication time is minimum among the communication times of
all the T-instances for the same sets z and t.

Next we shall show that the communication time of TREE-COMMIT is at most
p times bigger than the minimum communication time of an instance in

THEOREM 5. Let P, T, z, and be as in Lemma 7. Denote by/rain some instance in
that has minimum communication time with respect to and t, and denote by Irc the

instance executed by TREE-COMMIT (T) for and t. Them time(Irc )/time(Imin) --< P.
Proof Denote by the participant for which + d time(Irc). By Lemmas 7

and 8, we know that there is such a participant. By Proposition 1 we know that
time(Imin) maxk.jep (’k + tgj). Denote by q - r the longest arc in some longest simple
path from on T (i.e., some path of length d). Denote by A the ratio z+
d/maxk,jp (’k / tkj). Remember that there are at most p-1 arcs on a simple path
from i, and consequently, d <- (p-1)’tq. Therefore, if z >-tqr then the following
holds true. A <-p z/maxk,jp (Zk + tk); Obviously, maxk.p (Zk+ tkj) >- Zi; and con-
sequently, A<-_p. On the other hand, if z < tq, then the following holds true. AN
p tqr/maxk,jep (’rk + tkj)’, obviously, maxk,jep (,rk + tkj) = tqr and again, A <-_p.

Next we demonstrate that the bound on the ratio between the communication
time of TREE-COMMIT and the minimum communication time is tight. Assume that
all the subtransaction completion times are zero, all the intersite delays are one, and
the tree, To, along which TREE-COMMIT propagates messages, is a string from 1 to
p, namely, 123,...,p (note that p is the number of participants, as well as
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the identification of the last processor). Then the time of TREE-COMMIT is p-1,
whereas the minimum communication time is one.

7.2. The communication complexity. Let P be a set of participants, let c be a set
of communication costs, let " be a set of subtransaction completion times, and let
be a set of intersite communication delays. We define the communication complexity
of an instance 1 on P, denoted corn(l), to be the product cost(l) time(l). Note that
it is possible for the minimum communication complexity commit instance not to be
a minimum communication cost commit instance, nor a minimum communication time
commit instance.

Since TREE-COMMIT on a minimum spanning tree has a minimum communica-
tion cost, we obtain the following corollary as an immediate consequence of Theorem
5.

COIOLLAR 3. Let P, % and be as in Lemma 7. Let c be a set of costs associated
with P, let I7-c be the instance generated by TREE-COMMIT on a minimum spanning
tree of the cost graph, and denoted by /man some instance in that has a minimum
communication complexity with respect to c, ’, and t. Then com(I.c)/ com(Imin)<: p.

It is easy to see that O(p) is a tight bound on the ratio between the complexity
of TREE-COMMIT and the optimal complexity. To realize this, simply consider again
the tree To (namely, 1--2--3m,... ,--p), and assume that all the communication
costs and intersite delays are one, and all the subtransaction completion times are
zero. Then the complexity of TREE-COMMIT (To) is 2(p 1)2, whereas the following
instance has a complexity of 4(p-1). All the participants send their vote to 1, and 1
sends the commit message to all the other participants (see Fig. 2.1(a)). In other words,
since the costs of the two instances are equal, but the time of TREE-COMMIT is O(p)
times higher, the complexity of TREE-COMMIT is O(p) times higher than the
minimum complexity.

Given P, % and as in Lemma 7, and an integer, K, it is NP-complete to determine
whether there exists an instance I in , for which corn(I)<-K. In other words, the
problem of finding the minimum complexity instance (MCI) is NP-complete.

For proof, observe first that the MCI problem is obviously in NP. A nondeterminis-
tic algorithm needs to guess an instance, and check whether its communication com-
plexity is -<K. The MCI problem reduces to the MINIMUM RADIUS MINIMUM
SPANNING TREE (MRMST)4 problem defined as follows.

Input: A connected graph H V, E), a vertex r V (the root), a (weight) function
w, which maps each edge of E to an integer and which satisfies the triangle inequality,
and an integer k.

Question: Does H have a minimum spanning tree, T, such that the distance from
r to any node is less than, or equal to, k.

Given an MRMST instance we construct an MCI instance as follows. Assume
that m is the total weight of a minimum spanning tree of H. Let z be a node that is
not in H. Define P V {z}. The set of communication costs, c, is defined as follows.
For any pair of nodes and j that are both in V, such that (i, j is in E, cij cji W( i, j).
If is z and j is r, or vice versa, then co cji 1. Each one of the remaining costs, ci,
is simply the length of the shortest path between and j in the incomplete graph
created thus far. The set of intersite delays, t, is defined as follows. For any pair of

4 The MRMST problem was shown to be NP-complete by Itai ([I]). Note that the problem closely
resembles the BOUNDED DIAMETER SPANNING TREE problem (ND4 in [GJ]).
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nodes and j that are both in V, ti cir. Additionally, tzr trz k. For each one of the
remaining intersite delays, ti t length of the shortest path between and j, where
the length of each edge (r, q) is trq. The set of subtransaction completion times, z, is
defined as follows. If ir then -=0; otherwise, %=(2m)4. Finally, K=
2(m+l)[(2m)4+k].

Using Theorem 2, it is not hard to see that the MCI instance has a solution if and
only if the MRMST instance has a solution. Actually, the same transformation can be
used to show that the following two problems are also NP-complete: Finding, among
all the instances that have minimum communication cost, one that has a minimum
communication time; and, finding among all the instances that have minimum com-
munication time, one that has a minimum communication cost.

Now let us consider the computation time complexity of TREE-COMMIT, i.e.,
its time-complexity assuming that the communication time is zero (in contrast, remem-
ber that the communication-time is defined assuming that the computation- or internal
processing time was zero). The computation time is dominated by the complexity of
finding a minimum spanning tree, T, and consequently is O(p2) (see [E]). Corollary
3 means that TREE-COMMIT (T) is a polynomial-time, bounded error approximation
algorithm for the MCI (minimum complexity instance) problem.

7.3. Comparison with other algorithms. First, consider the communication com-
plexity and the communication cost of the decentralized algorithm (see 5) that has
minimum communication time. We shall demonstrate that the complexity (cost) can
be O(p2) times the minimum communication complexity (cost). Assume that To
lm2m3m,"" ", mp is a minimum spanning tree of the cost graph, and the cost of
each edge in To is one. For every pair of participants, and j, let the communication
cost c/be the distance in To between andj. Then it is easy to see that the communication
cost of the instance executed by the decentralized algorithm is O(p3), whereas the
minimum communication cost is 2(p- 1).

For demonstrating the complexity of the decentralized algorithm, let us continue
this example, and suppose that for every pair of participants, and j, tij-- Cij, and all
subtransaction completion times are zero, except for the completion time of participant
p, which is a very large number, say pS. Then the communication complexity of the
decentralized algorithm is O(p) times the minimum communication complexity. An
easy way to see this is to observe that TREE-COMMIT (T0), in addition to having
minimum communication cost, also has a minimum communication time.

Actually, it is easy to see that O(p) is an upper bound on the ratio of the
communication complexity (cost) of the decentralized algorithm to the minimum
communication complexity (cost), assuming that the costs satisfy the triangle inequality.
The reason for this is that the cost of each message is bounded by the cost of a minimum
spanning tree of the cost graph, and the number of messages sent by the algorithm is
p(p- 1).

Consider now the other two atomic commitment algorithms mentioned in the
introduction, namely the central-site and the linear algorithms. As explained in 3,
they are both special cases of the FIXED-COORDINATOR algorithm. The communi-
cation cost of the FIXED-COORDINATOR algorithm, propagating messages along
the edges of some tree, is equal to the communication cost of TREE-COMMIT,
propagating messages along the edges of the same tree. Based on Theorem 4, the
communication time of TREE-COMMIT (T) is never higher than the communication
time of an arbitrary algorithm, particularly FIXED-COORDINATOR, in which
messages are sent only between neighbors in T. Next, we shall establish the communica-
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tion time of the FIXED-COORDINATOR algorithm. For this we need to define, for
a given set of intersite communication delays t, a tree T in which the nodes are the
participants, and two participants r and k, the tree-distance from k to r, denoted dkr:
it is the length of the path along the tree edges from k to r (remember, the length of
->j is tij ).

THEOREM 6. Let P be a set ofparticipants, let r be a participant, and let T be a tree
in which the nodes are the participants. Denote by I the instance generated by the
FIXED-COORDINATOR algorithm that has the coordinator r, andpropagates messages
along the edges of the tree T. For any set of subtransaction completion times, ’, and any
set of intersite delays, t, time(I) is maxip {’i + dir}/ dr.

Proof. By definition, time(I) is time(Cr)+ dr. Additionally, we will show that
time(Cr) maxip {’i / dir}. The proof for this is as follows. Obviously, time(Cr) cannot
be lower than maxip {’i / dir}, since the vote of every participant must reach r along
a path in the tree, and a participant, i, cannot send its vote message before time ’i.
However, time(Cr) is not higher than maxip {’ri / dir} for the following reason. By
definition, time(Cr) is either equal to ’r, in which case the proof is complete, or, there
is a message, say V Cr, such that time(V) + tjr time(Cr). In the latter case, consider

V. It is either equal to , in which case again the proof is complete, or, there is a
message, say Vu- V, such that time(Vu) + t,j time(V). Proceeding in this fashion,
we must eventually encounter an event, Vk, such that time(Vk)-- ’k. Then, time(Cr)=
"/’k -at- [distance in T from k to r].

Therefore, the communication complexity (time) of FIXED-COORDINATOR
on some tree, T, can be twice the communication complexity (time) of TREE-
COMMIT (T). This happens if rr =0, and maxiep {-i/ di} dr, and there is some
participant k, such that {’k + dkr}--dr. For example, consider the linear algorithm on
some string, T, and assume that the set is such that tij t 1 for each edge (i,j) of
T, and the subtransaction completion time of each participant is zero. Then, assuming
that there are p participants, the communication time of TREE-COMMIT is p-1,
whereas the communication time ofthe linear algorithm is 2(p 1 ). The communication
time of the central site algorithm cannot be exactly twice the communication time of
TREE-COMMIT (since the requirement {’k + dkr} dr necessitates that the coordinator
is a leaf), but it can be arbitrarily close to twice the communication time of TREE-
COMMIT. This happens, for example, ifthere is some participant, i, such that tir tr 1
for each other participant, j, tr tr e, and such that all subtransaction completion
times are zero. Then the communication time of the central-site algorithm is two,
whereas in TREE-COMMIT, r sends its vote to at time e, and it receives i’s vote at
time 1; and r become coordinators, and the communication time of TREE-COMMIT
is l+e.

Finally, we shall point out that the communication time of the FIXED-COOR-
DINATOR algorithm cannot be more than twice the communication time of TREE-
COMMIT. To realize this, observe that maxiep {-i/ dir}<:maxiep {-i/ di}, and also
dr <- maxip {7" / di}.

8. Discussion.
8.1. Conclusion. In this paper we discussed the communication cost, the communi-

cation time, the communication complexity, and the computation time complexity of
atomic commitment algorithms. We established that the lower bound on the communi-
cation cost for solving the atomic commitment problem is twice the weight of a minimum
spanning tree of the cost graph. Given a set of intersite delays, t, and a set of
subtransaction completion times, -, the lower bound on the communication time is
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max {7-i-[-tq[i and j are participants}. TREE-COMMIT, a new atomic commitment
algorithm introduced in this paper, achieves, in the absence of failures, minimum
communication cost. The decentralized algorithm achieves, in the absence of failures,
minimum communication time. We also characterized the minimum communication
cost commit instances, and showed that each such instance must propagate messages
along two (not necessarily different) minimum spanning trees of the cost graph, and
that it must have one or two coordinators.

Then we analyzed TREE-COMMIT, and we compared it with existing variants
of the two-phase commit paradigm, namely, the decentralized, the linear, and the
central-site algorithms. The communication time ofTREE-COMMIT is at most p times
the minimum communication time, where p is the number of participants. Con-
sequently, its communication complexity, the product of its communication cost and
its communication time, is also at most p times the minimum communication complexity
(an NP-complete concept). Furthermore, the computation time of TREE-COMMIT
is polynomial in the size of the input. The minimum communication time algorithm,
namely the decentralized one, is also an approximation ofthe minimum communication
complexity, but its error can be of order p2.

When compared with the linear and the central-site algorithms, which are special
cases of the FIXED-COORDINATOR algorithm, TREE-COMMIT is not only better
in the worst case, but it is better in any case, in the following sense. Its communication
cost can be made equal to the communication cost of FIXED-COORDINATOR, by
parameterizing TREE-COMMIT to propagate its messages along the same spanning
tree as FIXED-COORDINATOR. Then, the communication time of TREE-COMMIT
cannot be worse than the communication time of FIXED-COORDINATOR for any
sets of the intersite delays and subtransaction completion times. Furthermore, for some
sets of the intersite delays and subtransaction completion times, the communication
time ofTREE-COMMIT is half the communication time of FIXED-COORDINATOR.

8.2. Future work. Society as a whole becomes increasingly dependent on com-
munication and information dissemination. Also, in business, government, and the
military, transaction processing gains ground, often at the expense of other types of
processing. Therefore, we feel that the issues of gossiping, atomic commitment, and
similar problems, will become increasingly important, and we intend to continue the
study initiated in this paper.

First, it is important to extend our results to handle failures. Some related questions
are the following: What is the necessary communication cost and communication time
of atomic commitment algorithms under different failure assumptions? Are they
sufficient? How do existing algorithms (e.g., three phase commit) approximate the
optimal communication complexity?

Second, it is interesting to determine the bounds on performance of algorithms
having different levels of knowledge. For example, it is easy to extend our model to
define abort instances. Intuitively, it is clear that if there is exactly one "no"-voter,
then a communication cost of one minimum spanning tree is necessary for abort.
However, it is also intuitively clear that unless the participants know that there is one
"no"-voter, in which case, executing an atomic commitment algorithm is obviously
superfluous, this necessary cost is not sufficient. We do not know how to prove this
yet. Alternatively, consider the example at the end of 4. How do we determine the
performance lower bounds, given limited knowledge of participants’ identities? We
feel that the interesting approach taken by Hadzilacos in [H2] provides a solid
foundation for solving these problems.
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Finally, on a more technical note, we will point out that the results in this paper
suggest the solution to another variant of the "gossiping" problem (see 1.3) that is
unsolved in the literature (see [HHL]). In this variant, the pairs of individuals communi-
cate by telephone calls or two-way sessions, as opposed to messages, or one-way
sessions; in one call the two individuals exchange the pieces of the gossip known to
them, rather than one transmitting to the other. The problem is, again, to find a solution
that has minimum total cost (now ci is the cost of a telephone call between and j).
Notice that modelling an instance by a directed acyclic graph may be inappropriate
for communication by two-way sessions. When the cost of each call is one (or when
counting the number of calls), then the following algorithm achieves the minimum
(necessary) cost, i.e., 2p-4 calls (see [BK]).

MINIMUM-NUMBER-OF-CALLS:
1. Partition the individuals into four groups, A, B, C, and D, and appoint a leader in

each group. Denote the leaders by a, b, c, and d, respectively.
2. Each leader calls every member in its group, collecting the information-piece from

each one (p-4 calls).
3. a and b exchange information in one phone call, and so do c and d (2 calls).
4. a and c exchange information in one phone call, and so do b and d. At this point

a, b, c, and d know the whole gossip.
5. Each leader calls every member in its group, telling each one the whole gossip

(p 4 calls).

When the telephone-call costs differ from one pair to another, we conjecture that
determining the minimum cost of a solution is NP-complete, and the reason will
become clear in the discussion below. (Remember, for one-way communication the
minimum cost can be determined in linear time.) Furthermore, we conjecture that
there are two possible structures for the pattern of telephone calls that achieves
minimum cost. The first is a pattern that resembles the one that has a minimum number
of calls. Specifically, the individuals are partitioned into four groups, as in the algorithm
MINIMUM-NUMBER-OF-CALLS. However, the information-piece (corresponding
to the vote) of each member of a group, rather than being communicated directly to
the group leader, flows to it along the edges of a minimum spanning tree. Then the
leaders exchange information as in steps 3 and 4 of MINIMUM-NUMBER-OF-
CALLS, and afterwards, the whole gossip flows back to all the individuals along the
edges of the same four minimum spanning trees. We conjecture that finding a partition
as above, for which the total cost of the telephone calls is minimum, is NP-complete.

The second possible structure for the pattern of minimum cost is one that corre-
sponds to the edges of a spanni.ng tree, T, of the cost graph. The gossip pieces flow
inwards, towards the coordinators, which are the neighbors on both sides ofthe costliest
edge in T. After a coordinator receives the pieces of the gossip from all its neighbors
in the tree, except from the other coordinator, it calls the other coordinator, and they
exchange information. At this point, the coordinators (and only them) know the whole
gossip, the total cost is equal to the cost of T, and the number of calls is p-1.
Subsequently, the gossip flows to the rest of the participants along the edges of T,
requiring p 2 additional calls. Tbe cost of these additional calls is" (the cost of T)-(the
cost of the edge between the coordinators).

Next we will make a few remarks about the second pattern of minimum cost
mentioned above. First, note that the total cost of the pattern above is"

(8.2.1) (twice the cost of T)-(the cost of the edge between the coordinators),
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and this is the reason for choosing the coordinators as the endpoints of the costliest
edge in T. Second, observe intuitively that there are cases in which the pattern above
indeed achieves minimum communication cost. For example, it does so if there is a
unique minimum spanning tree of the cost graph, and when any telephone call between
participants that are not neighbors in the tree is prohibitively expensive. Third, the
pattern above achieves minimum cost with p-3 calls, and this is higher than the
minimum number of calls, that is p-4. This corroborates the argument made in 3,
that the communication pattern having a minimum number of messages (or calls) does
not necessarily have a minimum cost. Fourth, we conjecture that, in general, finding
the spanning tree for which formula (8.2.1) is minimum, is NP-complete.

In conclusion, we feel that much remains to be done in order to prove the
conjectures above, and to then incorporate communication time considerations into
the solutions. We believe that TREE-COMMIT will provide a handle on an approach
for this incorporation.
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SOME LOWER AND UPPER COMPLEXITY BOUNDS FOR
GENERALIZED FOURIER TRANSFORMS AND THEIR INVERSES*
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Abstract. For 2- c-<_c, the c-linear complexity L(A) of a complex matrix A is defined as the minimal
number of additions, subtractions, and multiplications by complex constants of absolute value =< c, sufficient
to evaluate A at a generic input vector. It is shown that if A is a Fourier transform on the finite group G,
then IL(A)-Lo(A-1)I<-IGI Lc(G):=min{Lc(A)lA a Fourier transform for G} is called the c-linear
complexity of the finite group G. It is proved that L2(G)> GI log [GI for any finite group G, and two

infinite classes of non-abelian groups G with L2(G) <= 0.61GI log IGI and La(G) <= 0.81GI log IGI, respectively,
are presented. Thus there are non-abelian groups with even faster Fourier transforms than elementary abelian

2-groups (for which L2(G)<-_IGI log IGI)!

Key words, fast Fourier transforms, fast inverse Fourier transforms, group algebras, Frobenius groups,
extra-special 2-groups, linear complexity
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1. Introduction. The design and analysis of efficient algorithms for Fourier trans-
forms on finite groups has been the subject of several recent investigations [1]-[4],
[6]-[8], [11], [12], [14], [17], [19], [21], [22]. The present paper continues the studies
in [6]. Although we assume familiarity with [6] and its notation, we briefly recall the
mathematical background 10]-[13].

By Wedderburn’s theorem, the group algebra CG of a finite group G is isomorphic
to an algebra ofblock diagonal matrices: CG )h_ 1t aidi, where the blocks correspond
to the equivalence classes ofirreducible representations ofC G. Every algebra isomorph-
ism A’CG)/h=I C d,d’ is called a (generalized) Fourier transform for CG. With
respect to natural bases, A can be viewed as a Gl-square complex matrix. (For example,
if G= Cn is the cyclic group of order n, then A=(toab)o<_a,b<n with to =exp (27ri/n).)

Thus a fast Fourier transform amounts to an efficient algorithm for evaluating a
fixed matrix A at a generic input vector x. The linear computational model is a suitable
algebraic framework for the analysis of this linear problem as follows. For 2-< c-<_ ,
the c-linear complexity Lc(A) of a matrix A C rt is defined as the minimal number
of linear operations (complex additions, subtractions, and scalar multiplications)
sufficient to compute Ax from a generic input vector x C’, where scalar multiplications
are restricted to complex constants of absolute value _-<c. (Note that L corresponds
to Ls in earlier papers. The condition c-> 2 is needed for consistency as z + z 2z is
always computable in one step.)

Since a non-abelian group G has infinitely many Fourier transforms, we define
the c-linear complexity of G by Lc(G) := min L(A), where the minimum is taken over
all possible Fourier transforms A for C G.

Obviously, L(G) >= Ld (G) for 2 _-< c <- d <_- o. Thus when looking for upper bounds,
the L2-model should be preferred. A closer look at [2] and [6] (which are based on
the classical papers [5], [9], [16], [20], [23], [24]) shows that

Lz(G) --< 81 G[ log GI
for all finite metabelian groups G, i.e., groups G whose commutator subgroup G’ is
abelian. (Throughout this paper, log= loga.) If (3 is an abelian 2-group, then the
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classical FFT-algorithms show that

L2(G) <_- l GI log

For the class of elementary abelian 2-groups, i.e., G-C2x... x C2, the fast
Hadamard-Walsh transforms prove the even better bound

L2(G) --<IGI log GI.
What about lower bounds? As Lc( G) >- Lo( G) for any c>=2, we would be par-

ticularly interested in general nonlinear lower bounds for L(G). Unfortunately, no
such bounds are known. Yet for c < o, there is a result by Morgenstern [18] stating
that Lc(A) >= logo det A for any invertible matrix A. The logarithm to the base c reflects
a trade-off between the lower bound and the power of the computational model. In
this paper, we will restrict ourselves to the L2-model. This not only gives high lower
bounds, but also allows us to compare lower and upper bounds.

In order to get a lower bound for the 2-linear complexity of a finite nonabelian
group G, we are faced with the problem of estimating L2(A) for infinitely many Fourier
transforms A on G. Nevertheless, combining Morgenstern’s theorem and the Schur
relations we can prove in 3 that

L(a) >_- + al log al > lal log

for any finite group G.
How tight is this general lower bound ? Up to now, the elementary abelian 2-groups

satisfying L(G)<-_ al log GI seemed to have the fastest Fourier transforms. But, in
fact, this is not true: In 4 and 5 we present two infinite classes of non-abelian groups
G with L2(G) < 0.61Gl log ]GI and L2(G) < 0.81Gl log Ial, respectively.

For many applications, e.g., fast convolution and digital filtering, the inverse of
a Fourier transform is equally important. We show in 2 that the linear complexities
of any Fourier transform A and its inverse differ at most .by the order of the group.

2. Schur relations and linear complexity. In this section we will use the classical
Schur relations to prove a close connection between a Fourier transform and its inverse,
which leads to some new lower and upper complexity bounds. To begin with, we recall
the Schur relations.

SCHUR RELATIONS [13, V, Satz 5.7]. Let D1," ", Dh be a full set of inequivalent
irreducible matrix representations of CG ofdegrees dl, ", dh, respectively. Then for all
1 <= a, b <- h and 1 <- i, j <-_ da and 1 <-_ k, <- db, the following holds:

E Da(g)ij" Db(g-1)k,-- abtiljk
gG da

Note that the right-hand sides ofthe Schur relations only depend on the equivalence
classes of the irreducible representations of C G.

If A is a Fourier transform matrix for the finite group G, then the inverse of A
is very similar to the transpose A. More precisely, we have the following theorem.

THEOREM 1. If A is a Fourier transform matrix for the finite group G, C G--
hi= C a‘a’, then there exist permutation matrices P and Q such that

A.P.a-.O= IGI

where Ee denotes the d-square unit matrix.

Proof. Let G be a finite group of order n, and DI, , Dh a full set of inequivalent
irreducible representations of CG, d := degree (D). If A C is a Fourier transform
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matrix of CG with respect to D,,..., Dh, then the columns of A are parametrized
by the elements of G whereas the rows of A correspond to

{(a, i,j)ll <- i,j<- d,},

i.e., (a, i,j) describes the position (i,j) in Da. Now let B:= P. A-. QC be the
matrix obtained from A by first transposing A and then performing in A- the permuta-
tion P of the rows corresponding to the inversion (G g__>g-1) and the permutation
Q of the columns corresponding to (a, i, j)->(a, j, i). According to the Schur relations,
A. B is a diagonal matrix with d occurrences of [G[/d, for 1 _-< a _<-h.

The following example will illustrate (the proof of) Theorem 1.
Example. The symmetric group $3 has (up to equivalence) three irreducible

C-representations" the trivial representation
"($3 Try>l),

the alternating representation
e" ($3 r->sgn (r)),

and a two-dimensional representation A realizing $3 as the symmetry group of a regular
triangle. If we take its center of gravity as the origin in 2-space and denote its vertices
by el, ee, e3, then {e,, ee} is a basis and e ----e,- e2. The natural S3-action rei :=
yields the following realization of A:

A(1)=(10 )’ A(123)=(01-1)1 A(132)=( -11 10)’

Thus

1
1
0

-1
1

-1

1
1

-1
1

-1
0

1
1

1
-1

1
-1
0

-1

1
-1
-1
0

-1
1

/11
A12
A21
A22

is a Fourier transform on S The corresponding matrix B reads as follows:

1
1
1
1

1

1 1

1 0
-1 0
-1 1
-1 -1

0
-1

1
1
0

-1

0
1

-1
1

-1
0

1

-I
0

-I
1

(132)
( 2a)
(12)
(2a)
(13)

and A. B equals the diagonal matrix diag (6, 6, 3, 3, 3, 3).
We will apply Theorem 1 to obtain bounds on the linear complexity of inverse

Fourier transforms. To this end, we need a result due to Kaminski, Kirkpatrick, and

Bshouty [15], which in our terminology reads as follows.
THEOREM 2. Let A C Pq and c >- 2. Then

L(A-r) L(A) q +p z(A) + z(A-),
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where z(A) denotes the number of all-zero rows of A. In particular, Lc(A)= Lc(A-) for
any invertible matrix A.

Combining Theorems 1 and 2, we get Theorem 3.
THEOREM 3. Let A be a Fourier transform matrix for the finite group G. Then
(1) L(A-)<=L(A)+lOl for any c>-2.
(2) IL(A)- L(A-)I-< IGI.
Proof. By Theorem 1,

-= e" a" )"
--1 -["

As A is invertible, we have L(A-r) L(A) according to Theorem 2. Since Lc(P)=0
for permutation matrices P and Lc(M" M) <- L(M)+ L(M) for arbitrary n-square
matrices M and M2, our claims follow easily.

3. Lower bounds in the L2-model. In this section we will prove a general lower
bound for the 2-linear complexity of any Fourier transform on a finite group G.

THEOREM 4. If G is a finite group, CG’)/h_I (-- dixdi, then
IOl/2

Proof. Let A be a Fourier transform matrix for G. Then, according to
Morgenstern’s theorem [18], L(A) log det AI. Define B P. Ar. Q as in the proof
of Theorem 1. By Theorem 1, A. B is a diagonal matrix with d occurrences of IGI/d
for 1 a h. As det B det Av= det A, we get

detAI=ldetA. BI i=lk di/

By Morgenstern’s theorem, our claim follows.
This result has several interesting consequences.
COROLLARY 1. For any finite group G,

g(a) + al log al > lal log

Proo CG@)_ e’ implies Ial =2h

= d. As the number of one-dimensional
irreducible representations of G equals [G" G’] (see, e.g., [13, V, 6.5]), we get

d 2

di>

Hence, by Theorem 4,

d,
L2(G) _-> log IGI- E -- log d

di>

d(
=> I/log I1- log I12 di>- 1 al log

_-! + al log
4

This proves Corollary 1. [3
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COROLLARY 2. If G is abelian, then

Le(G) >_- 1/21GI log l.

Proof Use Theorem 4 and the fact that all di 1 for an abelian group G.
As a special case of Corollary 1 we mention Corollary 3.
COROLLARY 3. If [G’[ 2 then

Le(G) >_- -l GI log l.

In the following two sections, we will present two classes of finite groups with
very fast Fourier transforms. In order to prove the upper bounds, we will use some
classical representation theory. For a short review of the tools and notation needed,
the reader is referred to [6, pp. 588-590].

4. FFT for a class of Frobenius groups. We are going to consider a special class
of Frobenius groups Gn constructed as follows. For n >_- 2, let Fn be the additive group
of the finite field GF(2) and let H, denote the multiplicative group of that field. It
is well known that F, is an elementary abelian group of order 2" and H, is cyclic of
order 2 1. H acts faithfully on F, by automorphisms via H. h-(F, f--hf). As
hf f for every h H,\{1} and f F,\{0}, H, can be viewed as a fixed-point-free
automorphism group of F,. Hence the semidirect product G, := FH, is a Frobenius
group of order 2"(2"-1) (see, e.g., [13, V, 8]). The ordinary representation theory
of Frobenius groups is well understood (see, e.g., [13, V, Satz 16.13]). In our case, G,
has (up to equivalence) exactly the following irreducible representations:

(1) 2" 1 one-dimensional representations Xi (1 -<_ < 2") obtained by composing
each linear character rh X(Hn) of the cyclic group H with the natural projection
G. H. G,,/ F, i.e.,

xi(fh) :’- hi(h)

for all f F, and all h H,.
(2) One (2" 1)-dimensional representation y which is induced by any nontrivial

linear character 4 of F,:

Note that the restriction y , Fn of 3’ to F. equals the direct sum of all nontrivial linear
characters of F,:

Now we can state the main result of this section.
THEOREM 5. For the groups G, defined above,

L2( G,,) < (+2 5--) [G,[ lg lG[

In particular, L2(G.)<O.6IG.I log IG.I for all n >-- 7.
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Proof Given a=gGnaggCGn, we have to compute xl(a),’" ",Xz--l(a)
and 3’(a).

In order to compute y(a), write a hH. Cehh with Ceh := ,yF. ayhf CFn. Then

y(a)= E (,1, F,,)(Oh)" y(h)
hH

hH IbX(Fn)
i[l Ogh ) " G,, h

According to the last formula we first compute for each h H. all O(ah), d/ X(Fn),
by IH.I evaluations of a DFT(F.). This can be done by fast Hadamard-Walsh trans-
forms in at most

IHl’lF,,lloglF.I

arithmetic operations. The matrices (4 ’ Gn)(h) are monomial with nonzero entries
equal to +1. (Observe that b(F,) {+1} because F, is an elementary abelian 2-group.)
The multiplication of the diagonal matrices (@1+ O(ceh)) by (b ]’ G,)(h) is therefore
free in our computational model. Moreover, the concluding summation is also free
since all the summands have their nonzero entries at pairwise disjoint positions: as 3’
is irreducible we have dim y(C G) IH, 2. On the other hand, the summand correspond-
ingto h has its _-<lHnl nonzero entries atthe support ofthe monomial matrix (b ]’ G,)(h).

To evaluate all xi(a) simultaneously we use the coefficients

bh := afh 1Fn(Ceh),

already computed in the first step. According to (1),

and we obtain all xi(a) by a single DFT(H,). Thus we get Xl(a),..., X2--l(a) with
at most Lz(Hn) operations. Altogether we have

L=(G.) IHI IFI log IFI +
--< IG,,I log IFI + 81Hnl log IHnl

As log G.[ 2n 2-" for n 2, we get

L2( On) < + G. log

Comparing upper and lower bounds for the groups Gn"

1
1+ IG, IlogIG, I<L2(G,)<- 1+ IG, Ilog[G,[

4
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we see that they asymptotically differ by a factor of two. This is quite similar to the
situation for elementary abelian 2-groups G, where we have

1/2l GI log I1 L=() ll log I1.
In the next section, we will present an infinite class of groups G satisfying

IGlloglGI<=L2(G)<= l+log[G GllglGl"

Again, lower and upper bounds asymptotically differ by a factor of two.

5. FFF for extra-special 2-groups. In this section, we are going to present another
class of finite groups with faster Fourier transforms than those of elementary abelian
2-groups.

Let G be an extra-special 2-group of order 22re+l, i.e., the center of G is of order
two and equals the Frattini subgroup of G. Up to equivalence, G has exactly the
following irreducible representations (see, e.g., [13, V, 16.14]):

(1) 2" one-dimensional representations X1, ",X

(2) One 2m-dimensional representation 3’ which is induced by a linear character
bl of a maximal abelian normal subgroup A<_G. Note that IAI 2"+1 and either
A C4 X C2

-1 or A C2 (see, e.g., [13, III, 13.8]). Moreover,
where the are distinct linear characters of A.

Thus like the groups G, in the previous section, extra-special 2-groups have only
one irreducible representation of large degree ([G[); all other irreducible representa-
tions are one-dimensional. Again, this situation leads to very fast Fourier transforms
as follows.

THEOREM 6. For an extra-special 2-group G,

[ GI log GI L(G) < [ GI log [G[ + [
Proof We have to evaluate X(a), , X2(a) and y(a) for a given a C G. As

before, write a h6G/a hh with ffh CA and evaluate the (unique) Fourier transform
WA of the abelian group A at all ah. This takes at most G:A]L2(A) linear operations.

Now we can compute (a) according to the equation

(a)= 2 ( A)(h)(h)= (h) (l G)(h).
hG/A hG/A

The multiplication of the diagonal matrix (@2 ()) by the monomial matrix
( G)(h) takes at most 2 arithmetic operations. As we can assume that one of the
coset representatives h G/A equals one, and as the concluding summation is free
(see the proof of Theorem 2), (a) can be computed with at most 2m(2 1) operations.

It remains to compute (a),..., 2m(a). To this end, we observe that any linear
character 0 of G/A can be viewed as a linear character of G by composing it with
the natural projection G G/A. It is well known that the linear characters of a finite
group G form an abelian group X(G) under pointwise multiplication, the so-called
character group of G. Thus, if is a linear character of G and ,..., 0 are all
linear characters of G/A, then 0,’" ",OX(G) are pairwise distinct and

0 A= A. By Frobenius reciprocity, the are all linear characters of G whose
restriction to A equals A. As

x(a= 2 X(h’X(h= 2 (hl((X;l(l.
hG/A hG/A
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Xqq(a)," , Xq2m(a) can be computed from the (X $ A)(ah) by a DFT of the elemen-
tary abelian 2-group G/A and [G:A]-I additional multiplications. To evaluate all
linear characters of G, we repeat this process 2" times. This takes at most 2m(L2(G/A) +
G A]- 1) operations. Altogether, we have

L2(G) G:A]L2(A) + 2"(2’" 1) + 2" (Lz(G/A) + G:A] 1).

For A C4 X Cn-1 L2(A) < 9 2 "-1 + 4(m 1)2 "-1 and

L2(G) <__ 2"(9.

< 22"+1 -’F m
6m+9

(2m+ 1)22m+l
4(2m+ 1)

log I 1+ 1 1.
For A C+1, we obtain the slightly better bound

Z=(G) < GI log GI +
The lower bound on L2(G) follows directly from Corollary 3.
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ON VERTICAL VISIBILITY IN ARRANGEMENTS OF SEGMENTS AND
THE QUEUE SIZE IN THE BENTLEY-OTTMANN LINE SWEEPING
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Abstract. Let S {e,. , en} be a collection of n (intersecting) line segments in the plane. Suppose
that all segments have their right endpoints lying on the same vertical line, and that one wishes to bound
the number of pairs of nonintersecting vertically visible segments that will intersect when extended to the
right (ei, ej are vertically visible if there exists a vertical line segment connecting a point on ei to a point on

e. and not meeting any other segment). It is shown that there are at most O(n log n) such pairs, and only
O(n log n) in the case of full rays, where the latter bound can be attained in the worst case. These results
are applied to obtain similar upper and lower bounds on the maximum size of the queue in the original
implementation of the Bentley-Ottmann algorithm for reporting all intersections between the segments in
S, i.e., the implementation where future events are not deleted from the queue. It is also shown that, without
the extra conditions on the segments in S and on the pairs of segments to be counted, the number of
nonintersecting vertically visible pairs of segments is O(n4/3(log n)2/3), and can be (n4/3) in the worst case.

Key words, computational geometry, discrete geometry, line sweeping, line segments, arrangements,
vertical visibility, extremal 0-1 matrices

AMS(MOS) subject classifications. 05C99, 51M99, 68Q25, 68R05

1. Introduction. Let S= {el,... en} be a collection of n line segments in the
plane. The classical line-sweeping algorithm of Bentley and Ottmann 1] for reporting
all k intersections of the segments in S runs in time O((n+ k)log n), as follows. It
maintains a priority queue Q of future events, ordered by their x coordinates, each
being either an endpoint of some ei or a detected intersection between a pair of
segments in S, which occurs to the right of the (vertical) sweepline I. Each intersection
event between a pair ei, ej S is added to Q when ei and ej become adjacent along 1.

(We refer to this situation by calling ei and e a pair of vertically visible segments.
Formally this means that there exists a vertical line cutting both ei and e so that the
vertical segment connecting these intersections is not crossed by any other segment
of S.)

In the initially proposed implementation of the algorithm, events are added to Q
when the combinatorial pattern of intersections of the segments in S with changes,
which occurs when sweeps either through an endpoint of some ei or through an
intersection of a pair ei, ej (in other words, when sweeps through the currently leftmost
event in Q). In each such case, only a constant number of new vertically visible pairs
occur along l, and for each such pair that actually intersects to the right of l, the
corresponding intersection event is added to Q. Events are removed from Q only when
sweeps through them; that is, only events at the top of Q are removed.
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This strategy results in an algorithm whose running time is O((n + k) log n), where
k is the total number of intersections between segments in S. The working storage of
the algorithm is dominated by the maximum size of Q, which is certainly bounded by
2n + k. Since k can be anything up to quadratic in n, this naive bound suggests the
possibility that the worst-case working storage size might be as high as f(n2). This
has become a "folk-belief" among experts in the field, although no quadratic lower
bound has ever been obtained.

To overcome this difficulty, a simple fix has been subsequently proposed by Brown
[3]. In the modified algorithm, Q contains at all times only endpoints of the segments
in S, plus intersection events that correspond to pairs that are currently adjacent along
(as a matter of fact, the fix in [3] is slightly different but achieves the same effect);

this guarantees that the size of Q is always O(n). This is achieved by deleting from
Q every intersection event whose corresponding pair of segments are no longer vertically
visible (i.e., adjacent) along/. Again, at every event swept through by only a constant
number of events have to be removed from Q, so the running time of the algorithm
remains asymptotically the same. However, the number of update operations on Q is
essentially doubled, and the implementation of Q becomes somewhat more compli-
cated, as we now have to provide a DE operation that removes elements from
anywhere in the queue.

In this paper we return to the original version of the Bentley-Ottmann algorithm
(which does not employ the queue-deletion trick) and analyze the maximum possible
size of the queue. We show that, contrary to the currently prevailing presumption, this
size never exceeds O(n log2 n). Furthermore, we show that when the algorithm is
applied to a collection of lines, rather than segments, then the maximum queue size
is at most O(n log n), and that this bound can be attained in the worst case. Thus,
even though the size of Q can become slightly superlinear, it always remains near-linear,
thus opening up the possibility of returning to the original version of the algorithm in
practical applications, where the saving in the number of queue updating operations,
as well as the simplicity of the data structure (which no longer requires DE
operations to be performed for elements not in the top of the queue) may be significant.

We obtain these bounds by reducing our problem to another related one, which
appears to be of independent interest, following an idea of Schorn [9]. Specifically,
considerJ any fixed position of the sweepline /. What events are in the queue when
reaches that position? Each such event must correspond to a pair of segments that are
vertically visible somewhere to the left of and intersect to the right of/. Let us clip
all segments at l, and retain only their portions to the left of l, and also discard any
segment that does not reach/. Then the above observation implies that the current size
of Q is bounded from above by the number of vertically visible pairs of clipped
segments of S that do not intersect one another (to the left of l, that is), but whose
extensions to the right do intersect. We denote this quantity for a given collection S
by/x(S). Note that in this definition all segments in S are supposed to have their right
endpoints on the same vertical line (the sweepline). It is easily seen that this re-
formulation of the problem involves no loss of information, in the sense that any lower
bound M on/x (S) for some "vertically clipped" collection S, can be transformed into
an instance of an execution of the Bentley-Ottmann algorithm in which the size of Q
becomes greater than or equal to M.

We also consider a weaker variant of the problem (which has nothing to do with
the Bentley-Ottmann algorithm), in which we are given an arbitrary collection of n
segments and wish to estimate the number of pairs of nonintersecting vertically visible
segments, dropping the condition that these pairs intersect when extended to the right
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(and that the segments all have to end on the same vertical line). We show that the
number of these pairs in this general case is o(na/3(log tl)2/3), and can be -(r/4/3) in
the worst case. (Thus the innocent-looking extra conditions that are assumed in the
Bentley-Ottmann case appear to be crucial for the resulting low storage bound.) This
latter result is based on a random sampling technique, and its proof somewhat resembles
the analysis given in [4].

The paper is organized as follows. Section 2 analyzes the case of lines, or, more
generally, of a collection of segments all having the same x-projections (we refer to
such configurations as hammocks). Section 3 analyzes the general case that arises in
the Bentley-Ottmann algorithm when applied to any collection of segments, and 4
studies the weaker variant of vertical visibility as mentioned above. Section 5 concludes
with a discussion of our results and some open problems.

2. The case of a hammock. Let S {el," ", en} be a collection of n segments all
having the same x projection Isc, r/]. Thus their left endpoints all lie on the vertical
line L: x :, and their right endpoints lie on the line R: x 7. Suppose the segments
are sorted in increasing vertical order of their left endpoints.

(Before continuing, we note that in this case we can drop the requirement that
the pairs that we wish to count intersect when extended to the right. This is because
any such pair will intersect when extended either to the right or to the left (assuming
no pairs of parallel segments). Thus, since the case of a hammock is symmetric with
respect to the left and right directions, we can assume, without loss of generality, that
at least half of the pairs we count do intersect when extended to the right.)

Define an n n 0-1 matrix M by putting M 1 if ei, e are a pair of non-
intersecting vertically visible segments with ei lying below e, and M =0 otherwise
(in particular, M is an upper triangular matrix).

LEMMA 1. M does not contain a submatrix of the form
r 1 1

1 -k 1

(where r denotes any value). In other words, there do not exist two rows a < b and three
columns x < y < z such that

May Maz Mbx Mbz-- 1.

Proof. Suppose to the contrary that M does contain such a submatrix. With a

slight abuse of notation, let a, b, x, y, z also denote the corresponding segments in S.
Thus (a, y), (a, z), (b, x), (b, z) are all pairs of nonintersecting vertically visible seg-
ments, with a lying below y and z, and with b lying below x and z. Furthermore,
denote by aL, bL, XL, YL, ZL the y coordinates of the left endpoints of these segments,
and let an, bR, xn, YR, ZR denote the y coordinates of their right endpoints. Then by
definition we must have aL < bL < XL < YL < ZI. We next claim that a and x cannot
intersect. Indeed, if they did intersect, then we would have xn < an < ZR (because a
lies completely below z). Thus z would have to lie completely above x, which lies
completely above b, so that b would not be able to see z at all, a contradiction which
establishes the claim. A completely symmetric argument implies that b and y do not
intersect.

Thus the upper envelope Sa,b of a and b must lie completely below the lower
envelope bx,y,z of x, y, and z, and any vertical visibility between a, b and x, y, z must
occur between a pair of co-vertical points lying on these two respective envelopes.
Consequently, each of these segments must appear along its corresponding envelope,
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and the vertical order of their left endpoints imply that Ia,b is attained from left to
right first by b and then by a, and chx,y,z is attained first by x, then by y, and then by
z. Let Ia, Ib, Ix, Iy, Iz denote the x-intervals where these segments appear along the
corresponding envelope. Since b is assumed to see vertically both x and z, we must
have L, f"l Ib (,, Iz f"l Ib , which implies that Iy c7. Ib, which in turn contradicts the
assumption that a sees y vertically, thus completing the proof of the lemma. [3

It has recently been shown by Fiiredi [7] and independently by Bienstock and
Gy6ri [2] that 0-1 matrices that do not contain this pattern as a submatrix have at
most O(n log n) l’s. Applying this result, we obtain Theorem 2.

THEOREM 2. The maximum number of pairs of nonintersecting vertically visible
segments in any collection S of n segments with the same x-projection is 19(n log n).

Proof. The upper bound follows immediately from the combinatorial bounds just
cited [2], [7]. For the lower bound we use the following recursive construction. We
construct collections {Sr}r>_ SO that Sr has 2 segments (all having [0, 1] as their
x-projection), with Kr >- r. 2r-1 pairs of nonintersecting vertically visible segments. S1
is just a pair of nonintersecting, nearly parallel segments (with the same x-projection
[0, 1]), so K1 1, as required. Suppose Sr has already been constructed. To obtain
Sr+l we construct two copies of Sr. One of them, Sr, is exactly Sr. The second copy
Sr is obtained by first rigidly translating Sr slightly upwards, and then by "shearing"
it further upwards by leaving the left endpoints undisturbed and by moving each right
endpoint upwards by the same very large distance c. c is chosen sufficiently large so
that all intersections between segments of Sr and segments of S2r OCCUr to the left of
the leftmost intersection of any pair of segments in St. We take Sr+ to be Sr [_J Sr. See
Fig. 1 for an illustration.

FIG. 1. Constructing St+ from Sr.

in SlrIt is easily checked that for any x [0, 1] and any pair of segments ei, ej
intersects e) then the(respectively, lies below ejif at x the segment e lies above e

same is true for the corresponding pair e2i, e2 in SEr It follows that the number of pairs
of nonintersecting vertically visible segments in Sr+l is at least 2Kr + 2r, because each

2 2
ei Sr and the corresponding segment ei Sr form a pair of nonintersecting vertically
visible segments in Sr+l. Thus

Kr+l>=2Kr+2r>-(r+ 1) 2r,
as asserted.
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Remarks. (1) In particular, Theorem 2 implies that the queue size in the original
implementation of the Bentley-Ottmann algorithm, when applied to any collection of
n lines, or of n segments with the same x-projection, never exceeds O(n log n).

(2) Moreover, the lower bound construction and the observation made at the
beginning of this section yield an instance of the execution of the original Bentley-
Ottmann algorithm on a collection of n lines at which the queue size is 19(n log n).

3. The general case arising in the Bentley-Ottmann algorithm. To handle the
general situation that can arise during execution of the Bentley-Ottmann algorithm
on an arbitrary collection of segments, we begin by considering the following special
case. Suppose S and T are two collections of n segments each, such that all segments
in S have a common x-projection Isc, 7], while each segment in T has an x-projection
of the form [’, 7], for some : < " < 7. We refer to segments in S as "long," and to
segments in T as "short." We wish to estimate the number ,(S, T) of pairs of
nonintersecting vertically visible segments (e, e’) with e S, e’ T, with the additional
requirement that e and e’ would intersect when extended to the right.

LEMMA 3. In the above terminology, we have ,(S, T)= 19(n log n).
Proof The lower bound follows immediately from Theorem 2. For the upper

bound, define an n n 0-1 matrix M as follows. Sort the segments in S in increasing
vertical order of their left endpoints; let the resulting sequence be sl, , sn. Sort the
segments in T in increasing vertical order of the intersections of the lines containing
them with the line x--sc, and let the resulting sequence be tl,. , tn. We now put, as
before, Mo-- 1 if and sj are a pair of nonintersecting vertically visible segments,
whose extensions intersect to the right of x--7, and ti lies below sj (a symmetric
analysis will handle pairs for which lies above s). As before, we have the following
claim.

CLAIM. M does not contain a submatrix of the form

r 1 1

1 r 1

Indeed, suppose to the contrary, that there exist segments a, b T and x, y,. z S
such that (a, y), (a, z), (b, x), (b, z) are all pairs of nonintersecting vertically visible
segments whose extensions intersect to the right of x-- r/, such that a lies below y and
z, and such that b lies below x and z. Moreover, let an, bR, xR, YR, zn denote the y
coordinates of the right endpoints of these segments, let xL, YL, zL denote the y
coordinates of the left endpoints of these segments, and let a, b denote the y
coordinates of the intersections of the lines containing a and b with x sc. Then in the
assumed configuration we have x<yL< zc and aL< b. Moreover since b and x
intersect when extended to the right and b lies below x, we must also have bc < xL.
Let a*, b* denote the extensions of a and b to the left until the line x sc (i.e., the
intersections of the lines containing a, b with the strip sc_-< x-< 7). By assumption, a*
lies completely below y and z, and b* lies completely below x and z (see Fig. 2).

As before, we claim that a* does not intersect x, for that would make x lie
completely below z, hiding it from b*; similarly b* does not intersect y. Thus any
vertical visibility between a, b and x, y, z must be attained between their respective
upper envelope Oa,b and lower envelope t)x,y,z. Now )x,y,z behaves as before--it is
attained by x, y, and z in this order from left to right along three respective intervals
Ix, Iy, I. On the other hand, qa,b can now be attained by a, then b, and then a again
(see Fig. 2), along three intervals I, Ib, Ia2 (where Ia can be empty). But since b can
see both x and z vertically, we must have Iy c Ib, SO again it is impossible for a to see
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b

FIG. 2

y, a contradiction which completes the proof of the claim, and thus, by [7], also
completes the proof of the lemma.

THEOREM 4. Let S be any collection ofn line segments all having their right endpoints
on the same vertical line. Then the number of pairs of nonintersecting vertically visible
segments in S whose rightward extensions do intersect is O( n log2 n).

Proof Let/x(S) denote the number of pairs of segments in S as in the theorem
statement, and let/xn denote the maximum number of such pairs for any collection S
of n segments with these properties. Assume without loss of generality that the left
endpoints of the segments in S have distinct x coordinates, and let Xm denote their
median value. Let S1 be the subset of roughly n/2 segments whose left endpoints lie
to the left of x,, and let $2 be the complementary subset. Then we clearly have

[d,( S) [d,( Sl) -- [d,( S2) q- /( S1, S2),
where v(S1, $2) is the number of pairs (el, e2) with el S, and e2 S2 having the
desired properties. By Lemma 3, this latter quantity is O(n log n), which leads to the
recurrence

/zn -< 2/z,/2+ O(n log n),
which solves to/x O(n log
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COROLLARY 5. The maximum queue size in the original implementation of the
Bentley-Ottmann algorithm, applied to any collection of n line segments, is O(n log- n).

Remark. We do not know whether this bound is tight in the worst case.

4. A more general case. Although it may not be apparent from the proof of Lemma
3, it has made crucial use of the condition that the desired pairs of segments intersect
when extended to the right. If we drop this condition, the number of nonintersecting
vertically visible pairs can increase significantly (although still not as high as quadratic),
as will be shown below.

We begin with a lower bound construction. Take an arrangement of n lines which
has n faces whose total complexity is O(n4/3). Such arrangements are constructed, e.g.,
in [6]. The main idea in the construction is to construct a /-x v/ lattice and to
consider its n vertices. It is shown in [6] that one can draw n/2 lines, having rational
slopes pq where both p and q are small (relatively prime) integers, so that these lines
have a total of O(n4/3) incidences with the lattice points. Next we modify this construc-
tion by replacing each line by a pair of parallel lines shifted by the same, arbitrarily
small, distance e. If we use the same e for all n/2 lines, we obtain an arrangement of
n lines, and each lattice point z becomes the "center" of a small face, whose number
of bounding edges is twice the number of incidences of z with the original lines. Hence
the resulting arrangement has the desired property.

For each of the n special faces f, let A (f), p(f) denote, respectively, the left and
right portions of its boundary, delimited by the topmost and the bottommost vertices
of f (see Fig. 3).

FIG. 3

Without loss of generality we can assume that the total number of edges bounding
all the left portions A(f) of these faces is O(n4/3). Moreover, the construction in [6]
also allows us to assume that the n faces in question are very small in size, so that
they have pairwise disjoint y-projections. Next, for each of these faces f draw a
horizontal ray rf extending to the right from (a point slightly to the right of) the leftmost
vertex of fi Let S denote the resulting collection of 2n lines and rays, appropriately
clipped at some vertical line sufficiently distant to the right. It is clear that for each of
the special faces f and for each line appearing along A (f), rf and are nonintersecting
and vertically visible in S (the former property following from the fact that no segment
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ry penetrates into another special face f’), which shows that the number of such pairs
can be 12(n4/3). (Note by the way that none of these pairs intersect when extended to
the right.)

We next prove a closely matching upper bound, using a random sampling technique
akin to that in [4]. To start the analysis we need the following variant of Lemma 3.

LEMMA 6. Let S be a collection ofn line segments, all having x-projections contained
in some interval , q ], and let m <- n be the number of "short" segments whose x-projection
is not the entire [, q]. Then the number of pairs of nonintersecting vertically visible
segments in S is O(mn 1/2 + n log n + m3/2(log m)1/2).

Proof Let S be the subset of the m short segments and $2 the complementary
subset of "long" segments. The number of desired pairs within $2 is O(n log n) by
Lemma 1. The number of such pairs (el, e2), with el S1, e2 $2, is analyzed as follows.
Define a directed bipartite graph G between the sets $1, $2, which contains an edge
(el, e) for every pair of nonintersecting vertically visible segments el $1, e2 $2,
such that el lies below e. We claim that G does not contain a copy of the complete
(directed) bipartite graph K,4 as a subgraph. Indeed, if this were the case, there would
exist two short segments a, b, and four long segments el,... e4 such that all pairs
(a, ei), (b, ei), i= 1,. ., 4, have the desired properties and such that both a and b lie
below all four segments e. Let b denote the lower envelope of the four e’s and let $
denote the upper envelope of a and b. b has four intervals on the x axis so that over
each of them it is attained by a fixed e, and $ also has at most four such intervals so
that it is attained over each of them by one of the segments a, b (see, e.g., Fig. 4).

FIG. 4
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By overlapping the intervals of h with those of q and by considering all possible
forms of 0, it is easily checked that it is impossible to obtain all eight pairs of vertical
visibility between a, b, and the ei’s. We can thus apply the extremal graph-theoretic
lemma of KSvri, S6s, and Turin [8], which shows that a bipartite graph, whose edges
connect between a set of rn vertices and another set of n vertices, which does not
contain K2,4 as a subgraph, can have at most O(mnl/2+ n) edges. Hence the number
of desired pairs (el, e2), with el Sl, e26 S2, is O(mnl/2+ n).

Finally we estimate the number of desired pairs within S1. Assume without loss
of generality that all the endpoints of the segments in $1 lying strictly between x
and x have distinct x coordinates. Partition the plane into k (m/log m) 1/2 vertical
slabs or1,’’’, crk so that each of them contains at most 2(rn log m) 1/2 endpoints.
Consider a fixed slab o-i, and let Pi =<2(m log m) 1/2 denote the number of segments
having an endpoint in oi and let qi <= rn denote the number of segments that cross
all the way from left to right. The number of nonintersecting vertically visible pairs
among the pi short segments in cri is at most O(p i) O(rn log m). The number of such
pairs (e, e’), with e being short and e’ being long in ri, is, by the preceding arguments,

1/2O(piqi +qi)=O(m(log re)l/Z), and the number of such pairs among the qi long
segments is, by Lemma 1, O(qi log qi)= O(rn log m). Summing these bounds over all
k slabs, we obtain that the total number of desired pairs within S1 is O(m3/Z(log m)1/2).
This completes the proof of the lemma.

THEOREM 7. The maximum number of pairs of nonintersecting vertically visible
segments in any collection of n segments in the plane is O(n4/a(log n)2/3).

Proof We follow the basic approach of [4], but include here, for the sake of
completeness, some details of the arguments given there. Choose a random subset R
of size r=(n/log n) 1/3 of the given segments. Extend each of these segments to a full
line, form the arrangement A(R) of these lines, and partition its faces into O(r)
vertical trapezoidal cells, by drawing vertical segments through each intersection point
until they meet another line, as in [4]. Suppose the interior of the ith cell ci is cut by
ni original segments and contains mi endpoints. If we clip these segments to within
ci, and apply Lemma 6, we deduce that the number of nonintersecting vertically visible
pairs among these ni clipped segments is

O(minil/2 _[_ ni log n q- m/2(log mi) 1/2).
(Note that here we may have overestimated the global count, because we may have
counted pairs of nonintersecting clipped segments, for which the full segments actually
intersect.) The only pairs of nonintersecting vertically visible segments that we may
have missed are those with at least one of the segments in the pair belonging to R.
The contribution of each cell ci to this extra count is easily seen to be at most 2hi + 1,
so that, summing over all cells, the number of these additional pairs is at most
O(E ni + r2).

Hence the total number of desired pairs is

O(r2)
1/2O(mini +nilogni+m/Z(logrni)l/Z)+O(r).

i=1

Arguing as in [4], it is easy to show that Yi ni O(nr). Indeed, Yi ni Y.j--1 lj, where
/ is the number of cells crossed by the jth segment ej. The horizon theorem for
arrangements of lines (see, e.g., [5]) states that the overall complexity of all faces of
A(R) crossed by a line is O(r). Since the number of trapezoids within a face of A(R)
is proportional to the complexity of the face, it easily follows that the number of
trapezoids crossed by a line (or a segment) is O(r); thus each/ O(r). This establishes
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the claim, which implies that

ni log ni O(nr log n).

The probabilistic arguments in [4] imply that there exist subsets R for which

min/2= O(m(n/r)l/2),

where m i rni =< 2n, and

m,3./2(log mi)i/e<(i min/2) )1/2 1/2( 1/2)(log n O(m(n/r) log n)

Thus the total count is

O(rn(n/r)/Z(log n)/2+ nr log n + r) O(n4/3(log n)2/3)

by our choice of r. [3

5. Conclusions. In this paper we have analyzed the maximum possible size of the
queue in the original version of the Bentley-Ottmann line sweeping algorithm, showing
that this size never exceeds O(n loge n) for arbitrary segments and can be at most
O(n log n) in the case of lines; moreover, this latter bound can be attained in the worst
case. Our solution was based on reducing the problem to a static problem analyzing
the maximum number of nonintersecting vertically visible pairs of segments that do
intersect when extended to the right. We have also considered a variant of this latter
problem in which the "extended intersection" condition is dropped, and have shown
that in this case the number of nonintersecting vertically visible pairs never exceeds
O(n4/3(log n)2/3) and can become -(n4/3) in the worst case.

The results obtained in this paper raise several open problems. One problem is
whether the bound O(n log2 n) in Theorem 4 and Corollary 5 is actually tight in the
worst case, or is just an artifact of our divide-and-conquer analysis. Another problem
is whether the upper bound obtained in Theorem 7 can be improved to O(n4/3), which
would then be worst-case optimal. Yet another issue is to extend our results to
arrangements of more general curves. This is a natural problem since the Bentley-
Ottmann algorithm also applies to such curves, and it would be nice to know that the
queue size cannot become too large in these more general cases as well. Concerning
this problem, we note that our results (Theorems 2 and 4) apply to collections of
pseudl!aes or pseudosegments (namely, when the given curves are all x-monotone,
and any pair of them intersects at most once).

Finally, what are the consequences of our results to pragmatic applications of the
Bentley-Ottmann algorithm? Specifically, our results suggest a trade-off between the
number of queue updating operations and the maximum size of the queue, and show
that it is possible to save roughly half the number of updates at the cost of potentially
increasing the storage for the queue by at most an O(log n) factor (moreover, the
implementation of the queue will be simpler, since only INSER2" and DELER’I-IqIIN

operations are now required). Do these advantages justify the potentially larger storage
requirements in practical executions of the algorithm?

Acknowledgment. The authors thank Peter Schorn for suggesting the problem to
us and for offering the basic idea of reducing the queue analysis problem to a static
one involving vertical visibility (though not quite the reduction that we have used).
See [9] for more details.



470 J. PACH AND M. SHARIR

REFERENCES

[1] J. BENTLEY AND T. OTTMANN, Algorithms for reporting and counting geometric intersections, IEEE
Trans. Comput., 28 (1979), pp. 643-647.

[2] D. BIENSTOCK AND E. GYtRI, An extremalproblem on O- matrices, SIAM J. Discrete Math., 4 (1991),
pp. 17-27.

[3] K. Q. BROWN, Comments on algorithms for reporting and counting geometric intersections, IEEE Trans.
Comput., 30 (1981), pp. 147-148.

[4] K. CLARKSON, H. EDELSBRUNNER, L. GUIBAS, M. SHARIR, AND E. WELZL, Combinatorial complexity
bounds for arrangements of curves and surfaces, Discrete Comput. Geom., 5 (1990), pp. 99-160.

[5] H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[6] H. EDELSBRUNNER AND E. WELZL, On the maximal number of edges of many faces in arrangements,

J. Combin. Theory, Ser. A, 41 (1986), pp. 159-166.
[7] Z. FOREDI, The maximum number of unit distances in a convex n-gon, J. Combin. Theory, Ser. A, 55

(1990), pp. 316-320.
[8] T. K(SVARI, V. T. SOs, AND P. TUR,N, On a problem ofK. Zarankiewicz, Colloquium Math., 3 (1954),

pp. 50-57.
[9] J. NIEVERGELT AND P. SCHORN, Geradenprobleme mit superlinearen Wachstum, Informatik-Spektrum,

11 (4) (1988), pp. 214-217.



SIAM J. COMPUT.
Vol. 20, No. 3, pp. 471-483, June 1991

(C) 1991 Society for Industrial and Applied Mathematics

0O5

ON POLYNOMIAL-TIME BOUNDED TRUTH-TABLE REDUCIBILITY OF
NP SETS TO SPARSE SETS*

MITSUNORI OGIWARA? AND OSAMU WATANABE:

Abstract. It is proved that if P NP, then there exists a set in NP that is not polynomial-time bounded
truth-table reducible (in short, <=tt-reducible) to any sparse set. In other words, it is proved that no sparse
<_-tt-hard set exists for NP unless P NP. By using the technique proving this result, the intractability of
several number-theoretic decision problems, i.e., decision problems defined naturally from number-theoretic
problems is investigated. It is shown that for these number-theoretic decision problems, if it is not in P,
then it is not =<bPtt-reducible to any sparse set.

Key words, bounded truth-table reduction, Berman-Hartmanis conjecture, sparse sets, polynomial-time
hard sets, cryptography

AMS(MOS) subject classification. 68C25

1. Introduction. A set S is called sparse if for some polynomial p and all n-> 0,
the number of elements in S of length n is less than p(n). In this paper, we study the
intractability of NP sets by investigating their polynomial-time reducibility to a sparse
set. In particular, we consider polynomial-time bounded truth-table reducibility (in
short, _-<tt-reducibility) to sparse sets.

It has been shown that we can use "polynomial-time reducibility to a sparse set"
to measure intractability of a given set [3], [9], [16]. Note that we have many kinds of
polynomial-time reducibilities [8]. For each reduction type r, the concept of
"<= rP-reducibility to sparse sets" indicates a certain tractability notion. For example, a
set has polynomial size circuits [10] if and only if it is _-<xP-reducible (i.e., polynomial
time Turing reducible) to a sparse set. A set has no p-close approximation [13], [18]
unless it is -< 1P_tt-reducible (i.e., polynomial-time 1-truth-table reducible) to a sparse set.

Polynomial-time reducibility of NP sets to sparse sets has been studied by many
researchers. In particular, several interesting observations have been made by consider-
ing polynomial-time many-one reducibility (in short, <_-Pro-reducibility), which is the
most restrictive reducibility among polynomial-time reducibilities. Berman and Hart-
manis [2] conjectured that every NP-complete set is not <_-Pm-reducible to any sparse
set (here, by an NP-complete set we mean a _-< Pro-complete set in NP). This is equivalent
to conjecturing that some NP set is not <_-Pm-reducible to any sparse set. Fortune [5]
observed that if P NP, then there exists a set in NP that is not -< Pm-reducible to any
co-sparse set (a co-sparse set is a set whose complement is sparse). Mahaney, improving
Fortune’s technique, finally obtained the following answer to the above conjecture: if
P NP, then no NP-complete set is _<-Pm-reducible to any sparse set.

On the other hand, for more general types of polynomial-time reducibility, a
theorem corresponding to that of Mahaney has been left unproven. Karp and Lipton
[7] showed that no NP-complete set is -<TP-reducible to any sparse set from an
assumption that the polynomial-time hierarchy 14] does not collapse. However, it has
been left open to show the same result from a weaker assumption that P NP. Also,
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oracle evidence suggests that regarding Karp and Lipton, a weaker assumption will
not work [6]. For =<tt-reducibility, we have the following observations. Yesha [18]
proved that if P NP, then no NP-complete set is positive =<tt-reducible to any
co-sparse set. Ukkonen [15] showed that if P NP, then no NP-complete set is

=<tt-reducible to any tally set (a tally set is a subset of 0"). More recently, Watanabe
[16] proved that if R NP, then no NP-complete set is -<_ _tt-reducible to any sparse
set. However, the following question has been left open.

QUESTION. Suppose that P NP. Does NP have a set that is not =<tt-reducible
to any sparse set?

In this paper, we solve this question affirmatively.
Since NP-complete sets are typical sets in NP, NP-complete sets have been

investigated to obtain an NP set that is not _-< -reducible to any sparse set. However,
it is not necessary at all to consider NP-complete sets. For example, Watanabe [16]
used a "partial complement of a prefix set" to obtain his result. Here we introduce a
"set of strings that are below some witness under the lexicographic order" (in short,
a left set).

Let A be any set in NP. Then there exists a set C in P and a polynomial p such
that for every x e *,

xeACwe{O, 1}P(IXl)[X We C].

Now for such C and p, a left set is the following set:

Left(C,p)={x # w" we{0, 1}p(Ixl) ^(:lye{0, 1}PIxl))[w<=yAX # ye C]},

where the order =< is a standard lexicographic order. Note that Left (C, p) also belongs
to NP and that Left (C, p) e P implies A e P.

What follows is a brief outline of our proof. It is easy to show that every left set
Left (C, p) satisfies the following: for every x, and every w and w’ in {0, 1}p<II,

x # weLeft(C,p)^ w’< wx # w’eLeft(C,p).

By using this property, we first prove the following main theorem. If Left (C, p) is

-<tt-reducible to a sparse set, then Left (C, p) is in P. Now suppose that P NP. Then
there exists a set A in NP-P. Thus, a left set Left (C, p) defined from A is not in P;
hence it follows from our main theorem that Left (C, p) is not <=tt-reducible to any
sparse set. Since Left (C, p) itself is in NP, we obtain an NP set, i.e., Left (C, p), that
is not =<tt-reducible to any sparse set.

The notion of "left set" is often used when we formally study computational
complexity of number-theoretic problems. For example, consider the prime factoriza-
tion problem FACT.

PROBIEM FACT. For a given natural number n, compute the prime factorization
of n.

Note that this is not a decision problem but an evaluation problem (i.e., a problem
of computing function values). We often convert such an evaluation problem to a
decision problem of similar complexity, and discuss the complexity of the converted
problem. For example, instead of FACT, we often investigate the complexity of the
following set:

LF= {(a, n): (:lm" a =< m < n)[m divides n]}.
Note that FACT is polynomial-time solvable if and only if LF is in P; thus, we may
consider that LF characterizes the complexity of the problea FACT. For many
number-theoretic evaluation problems, sets similar to LF are regarded as natural
decision problems that characterize the complexity of the evaluation problems.
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Note the similarity between LF and left sets. Following an argument similar to
the one that proves our main theorem, we can prove that if LF is =<tt-reducible to a
sparse set, then LF is in P (thus, FACT is polynomial-time solvable). In other words,
LF is not <_-tt-reducible to any sparse set unless FACT is polynomial-time solvable.
We prove similar results for several number-theoretic problems.

2. Preliminaries. Throughout this paper, we fix our alphabet as 2; {0, 1}. By
"string" we mean an element of 5;*. For a string x E*, Ix[ denotes the length of x.
We use A to denote the null string. For any string x and y, let x # y denote a string
that encodes the pair of x and y naturally; we assume that Ix # Yl 2(Ixl + lyl / 1).

Let IIAII denote the number of elements in A. For any set A c__ * and any n-> 0,
A--<" denote the set {x e A: Ixl_<_ n}. A set S.c__ 2;* is called sparse if there exists a
polynomial p such that s --< p(n) for every n => 1.

We define a standard lexicographic order on 2;* in the following way. For any
string x and y, x is lexicographically smaller than y (write x < y) if either (1) Ixl < lyl,
or (2) Ix[ [y[ and there exists some k, 1 <- k <_-Ixl, such that (for all i: 1 < k)[x, Yi]
and (Xk =0 ^ Yk 1), where xi (respectively, Yi) is the ith symbol of x (respectively,
y). For any x and y, x =< y, if either x < y or x y.

For any strings a, b e * such that a -< b, an interval [a, b] is the set {w: a =< w -< b}.
Two intervals and t’ are disjoint if tf)t’=. Let t=[a, b] and t’=[a’, b’] be any
two disjoint intervals. Note that either b < a’ or b’ < a; we define < t’ as b < a’.

We assume that the reader is familiar with basic concepts and notation in com-
plexity theory (see 1], [2]).

In this paper we mainly consider polynomial-time bounded truth-table reducibility.
For any integer k >_- 0, a k-argument truth table is a mapping c" {TRUE, FALSE}k

{TRUE, FALSE}. For any k-argument truth table a and any strings Yl," ", Yk, a list
(a, Yl, ", Yk) is called a k-argument truth table condition (in short, (k-)tt-condition).
For any k _-> 0, a k-truth-table function is a function that maps every string to some/-tt
condition (where l-< k). A tt-condition (a, Yl,’", Yk) is true relative to B if

tX(XB(Yl), Xt(Y,)) TRUE,

where XB is the characteristic function of B (i.e., XB(z)= TRUE:> z B).
A set A is polynomial-time k-truth-table reducible (in short, _-<_tt-reducible) to a

set B if there exists a polynomial-time computable k-truth-table function f such that
for every x E*,

x A (a, yl, , Yk) is true relative to B,

where f(x) (a, Yl, ", Yk). A set A is polynomial-time bounded truth-table reducible
(in short, -<tt-reducible) to a set B if A is -<__tt-reducible to B for some k->0. We

Pwrite A -tt B (respectively, A tt B) if A is =<k_tt-reduc ble (respectively,
_-<tt-reducible) to B.

Many polynomial-time reducibilities other than the above have been introduced
and studied. See [8] for the definition of those reducibilities, and see [3], [8], and [16]
for the comparison of their computational power. It should be mentioned here that
polynomial-time bounded truth-table reducibility is a generalization ofpolynomial-time
many-one reducibility, and is special case of polynomial-time truth-table reducibility.

We introduce the concept of the "left set," which plays an important role in this
paper. Let A be any set in P and p be any polynomial. A left set for A and p is the
following set Left (A, p)"

Left (a, p) {x # w: Iwl p(Ix[) ^ (::ly __> w: [Yl p(lxl))Ex # y aa}.
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For A and p, a right set Right (A, p) and a range set Range (A, p) are defined similarly:

Right (a, p) {x # w: Iwl- p(Ixl) ^ w: lyl- p(Ixl))Ex # y e A]},

Range (a, p) {x # Wl # w2: Iw l- Iw21-

^ (::ly: Wl --< y --< w2 ^ ly[ p(lxl))[x # y e a]}.

For any polynomial p, a p-witness set for a set L is a set C in P such that for
every x e E*,

x e LCz)(::Iw: w e {0, 1}P(Ixl))[x # w e C].

Note that every set in NP has a p-witness set for some polynomial [17].
PRoPOsI’riorq 2.1. Let L be any set in NP, and let C be any p-witness set for L. If

Left (C, p) (respectively, Right (C, p), Range (C, p)) is in P, then L is in P.
Proof. Let L, C, and p be as defined in the statement of the proposition. Since C

is a p-witness for L, for every x e E*,

x e LC:>(:qw: w e {0, 1}p(Ixl))[x # w e C].

Moreover, from the definition of left sets, it is easy to see that for every x e E*,

(::lW: W e {0, 1}P(Ixl))[X # W e C]:> x # 0p(Ixl) e Left (C, p).

Thus, for every x e E*,

x e L<=> x # 0p(Ixl) e Left (C, p).

Now assume that Left (C, p) is in P. Then, using a polynomial-time algorithm for
Left (C, p), whether a given x e E* is in L or not is decidable in polynomial time in

Ixl. Hence, if Left(C, p) is in P, L is in P.
The proof is similar for both Right C, p) and Range C, p) and thus omitted. [-1

3. The main theorem. In this section, we prove the following main theorem.
THEOREM 3.1. Every left-set that is <-tt-reducible to a sparse set is in P.
Consider any set Ao e P and any polynomial Po, and let Lo be Left (Ao, Po). Suppose

that Lo is btt-reducible to a sparse set So via a -<tt-function fo. We will show that Lo
is indeed in P.

In the following we develop a polynomial-time procedure that, for a given string
x # w such that Iwl-po(Ixl), searches a witness for x # we Lo, i.e., a string
[w, 1p(Ixl)] such that x # w’e Ao. Recall that such w’ exists if and only if x # w is in
Lo. Thus, we can construct a polynomial time acceptor for Lo by using the search
procedure. The following is the outline of our search procedure"

procedure SEARCH (input x # w);
(we may assume that Iwl

begin
u,- ([ w,
repeat

T - Ut t{t, t2: t (respectively, t2)
is the first (respectively, last) half of t};

(,) U-choose up to qo(lXl) intervals from T;
(qo is a polynomial defined later)

until all the intervals in U are of width 1;
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(**) search for a string w’ in Utut such that x # w’ Ao;
if w’ exists then return(w’)

else return("no witness exists")
end.

The key point of the above procedure is the way to select up to qo(lXl) intervals
from T at (,). Suppose that for a given x # w, the selection at (,) satisfies the following:

(1) qo(Ixl) intervals are selected from T so that they keep a witness for x # w
whenever T does, and

(2) The selection can be executed within polynomial time in Ix] and TII. Then
it is clear from (1) that the above procedure finds a witness for x # w (if it exists).
Note the following facts" (i) the number of repetitions at the main loop is bounded
by po(IXl) (since the width of the largest interval of U becomes almost the half of the
previous one at each repetition), and (ii) one can execute statement at (**) in polynomial
time (since the number of strings in U,ut is bounded by qo(IX[)). Thus, it follows
from (2) that SEARCH terminates within polynomial time. Hence, if we show a
selection procedure that satisfies (1) and (2), the proof is completed.

Consider any Xo # Wo in Lo, where IWo[ po(IXol), and let it be fixed throughout
the following discussion. Let no-lxol. By "interval" we mean a subinterval of
[Wo, lP(")]. Define Wmax to be lexicographically the largest w such that w [Wo, 1 p(n)]
and Xo # w Ao. Such Wma exists since Xo # Wo Lo.

For any set T of disjoint intervals, a subset C of T is called a cover of T if Wma
is not in any of intervals in T-C. In other words, C has Wma whenever T does. A
cover C is called a d-cover if c II--< d. For our purpose, it suffices to show that for
any set T of disjoint intervals, we can construct a qo(no)-cover of T within polynomial
time in no and TII.

The polynomial qo is determined depending on So and fo. Since fo is the
<= tt-reduction, there exists a constant ko and a nondecreasing polynomial rl such that
for every zE*, the value fo(z) is of the form (a, yl," ",Yk), where k<-ko and
[y,I <-- r,(lzl) for each i, 1 _-< _-< k. Hence, if y appears as an argument of some fo(Xo # w)
(where Iwl-po(l l)), then lyl<-_r,(2(no/po(no)/ 1)) (recall that we assume Ix # wl=
2<1 1/ Iwl/ 1)). Since So is sparse, there exists a nondecreasing polynomial r2 such that
IIs  ll <_-r2(m) for all m _-> 0. Thus, we have

II(Y So" y appears as an argument of f(xo # w) for some w 5:Po("o)}

<= r2(rl(2(no+Po(no)+ 1))).

Define /o(n)= r2(r(2(n+po(n)+ 1)))+ 1; then the number of strings in So appearing
as an argument off(xo # w) for some w Epo("o) is less than lo(no). Finally, define the
polynomial qo by

qo(n) (2k)4" (to(n)) k.

Now our goal is to prove the following lemma.
LEMMA 3.2. For any set T of disjoint intervals, there exists a qo(no)-cover C.

Furthermore, we can construct Cfrom T within polynomial time in no and TII.
We say that an interval t=[a,b] is of type iff(xo # a)=(a,y,.. ",Yk) for

some Yl, ", Yk. For a given set T of intervals, our strategy for obtaining its cover is
as follows" (i) classify all the intervals in T in terms of their types (let T, denote the
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set of intervals in T of type a), (ii) for each Ta, obtain a cover Ca of Ta, and (iii)
obtain C as the union of all Ca. The following fact guarantees this strategy.

FACT 1. Let T, and T2 be sets of intervals. If C1 and C2 are covers of T1 and
respectively, then C, (_J C2 is a cover of T, (.J T2.

Proof The proof is immediate since T, U T2) C1 [..J C2)
T C,) (_J T2- C2).

In the following, we develop a method to find such a cover Ca of Ta. The method
for a general ko is rather complicated, so we first describe a few examples. For an
interval -[ a, b], r(t) denotes the tt-condition fo(Xo # a). As we will show in Fact 2,
if there are two intervals and t’ such that < t’ and r(t)= r(t’), Wma is not in t. On
the other hand, for any two intervals and t’, whether -(t)= -(t’) or not is decidable
within polynomial time. Therefore, without loss of generality, we may assume that

(#) For any two disjoint intervals and t’ in Ta, r(t) r(t’).

Example 1. Covers for the case ko- 1. There are only two truth tables appearing
in tt-conditions; namely, id and -, where id (respectively, -) is the identity function
(respectively, negation) of one argument. Let a be either of them. Let Vl," ", vn be
an enumeration of the intervals in Ta in increasing order, where n Ta II- Furthermore,
for each i, 1 _-< <_- n, let Yi be the argument of the tt-condition r(vi); that is, ’(vi) (a, Yi).
From the assumption (#), we have for each and j, 1 <= <j <= m, Yi Y.

Now suppose that a id. Then, for each i, 1-< i-< m, ’(v) is true relative to So if
and only if Yi So. Recall that there are at most lo-1 strings in So appearing as an
argument of some tt-condition fo(Xo # w). Therefore, at most lo-1 tt-conditions r(vi)
are true relative to So. Since the enumeration is in increasing order, if r(vi) is true
relative to So, then, for all j, 1 =<j-< i, r(vj) is true relative to So. Thus, for all i-> lo,
r(vi) cannot be true relative to So. Hence, {Vl, v2,"" ", rio} is an /o-cover of

On the other hand, suppose that a 9. Then, for each i, 1 <-i<= n, r(vi) is false
relative to So if and only if Yi So. By a similar argument, we know that at most
lo-1 tt-conditions are false relative to So. Furthermore, since the enumeration is in
increasing order, if r(v) is false relative to So, then, for all j,i<=j <-n, r(v) is false
relative to So. Thus, for all i, 1 <-i <- n-lo+ 1, r(vi) is true relative to So. Hence,
{Vn-lo+,,’’’, v,-1, v,} is an /o-cover of Ta. Therefore, for any a, Ca
{Vl," ", v, vn-+,, ", Vn_l, v,} is a cover of Ta since Ca contains both of the above
two covers. Since Ca <= 2/o, Ca is a 2/o-COVer of

Example 2. Covers for the case ko 2. Without loss of generality, we may assume
that each 2-argument truth table is not reduced to any truth table of one argument or
less. Then, there are only 10 truth tables of 2-arguments. Let 0., and 0-2 be the first and
the second argument of such truth tables. Then the above-mentioned 10 truth tables
are the following"

f," id (0-,) ^ id (0-2), f" id (0-,) ^ -(0-2), f3" 91(0-1) ^ id (0-2), f4"-(0.1) ^ (0.2),
fs" id (0.1) V id (0._), f6" id (grl) V 9-](0.2) f7",--l(0.1) V id (0.2), f8" --1(0.1) V --1(0-2)

f9" 0-, 0-2, and f,o" 0-, 0-2.

Our method is based on the fact that these functions are divided into the following
two types.

Type T. If a(0-1, 0-2)= TRUE, then either 0-1 TRUE or 0-2 TRUE,
Type F. If a(0-,, 0-2)= FALSE, then either 0-1 TRUE or 0-2 TRUE.
Note that fl, f2, f3, f5 and f,o are of type T, and f4, f6, f7, fs, and f9 are of type F.
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We develop a method for finding a cover only for the case a =f6 because this is
a typical example. And for the other truth tables, similar methods are easily obtained
from that by simple modifications.

We begin by developing methods to find covers of Ta when Ta satisfies some
special properties. For simplicity, for any interval t, arg (1, t) (respectively, arg (2, t))
denotes the first (respectively, the second) argument ofthe tt-condition -(t), and Arg (t)
denotes the set {arg (1, t), arg (2, t) }.

Case 1. There are n(>=lo) disjoint intervals Vl,’’’, vn in Ta which satisfy the
following:

(Vi, j" l <- <j<- n)[v < v ^Arg (vi)flArg (vj)=].

Since a =f6 is of type F, for each i, 1 <=i<- n, if -(vi) is false relative to So, then
Arg(vi)f-)So; that is, arg(2, vi) is in So. Furthermore, since the enumeration
vl," ", vn is in increasing order, we have for any i, 1 <-i<- n, if -(vi) is false relative
to So, then there are at least n- + 1 strings in So. Finally, since lo is a strict upper
bound for the number of strings in So, r(v,_+l) must be true relative to So; thus, for
any <- n lo+ 1, ’(v) is true relative to So. Hence, the set {t Ta" t_-> vn_+} is a
cover of

Case 2. There is a string Yo such that for all Ta, arg (1, t)= Yo; that is, ’(t) is
of the form (c, Yo, z).

Let v,. , vn be an enumeration of the elements in Ta in increasing order, where
n -II L II, and for each i, 1 <= n, let Z --arg (2, vi) the second argument of ’(v). It may
be impossible to know whether or not Yo is in So within polynomial time. But, whatever
Yo may be, we can easily construct a cover for Ta by simply combining two covers,
one for the case Yo So and another for the case yo So.

Suppose that yo So. Then, for all i, 1 <- <- n, ’(v) is true relative to So. Therefore,
{v} is a 1-cover of Ta, since V is the largest element in

On the other hand, suppose that Yo So. Then, for all i, 1 <=iN n, ’(v) is false
relative to So if and only if zi So. Since the enumeration is in increasing order, for
each i, 1 <- <- n, if ’(v) is false relative to So, then, there exist at least n + 1 strings
in So. Recall again that lo is a strict upper bound for the number of strings in So
appearing as an argument of tt-conditions. Therefore, {v,_o/,..., v,_l, v,} is an

/o-cover of Ta. Finally, let Ca {Vl, v2,"" ", Vo}. Then, Ca is an /o-cover of Ta since

Ca contains each of the above two covers.
Case 3. There is a string Yo such that for all Ta, arg (2, t)= Yo; that is, ’(t) is

of the form (c, z, Yo).
Let Vl, v2," ", v, be an enumeration of the elements in Ta in increasing order,

where n 11Ta II, and for each i, 1 <= <- n, let z denote arg (1, )i).
Based on the same idea as in Case 2, we combine two covers. Suppose that yo So.

Then, for all i, 1 _-<iN n, -(v) is true relative to So if and only if zi So. Hence, by a
similar argument, we know that {Vl,. ", vo} is a cover of T,.

On the other hand, suppose that Yo So. Then, for all i, 1 <-iN n, ’(vi) is true
relative to So. Hence, by a similar argument, we have {vn} is a 1-cover of Ta (note
that vn is the largest element in Ta).

Therefore, the set {v,..., vo, v,} is an lo + 1-cover since it contains both of the
above two covers.

Next we combine the above three methods. Suppose that there exists an increasing
sequence of intervals {v}7__1 in Ta which satisfies the following conditions"

(1) (Vi, j" l<-i<j<-n)[Arg(vi)f’lArg(v)=],
(2) (Vt Ta)(::ii" l<-i<-n)[Arg(t)f’lArg(v)fg], and
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(3) (Vi: l<--_i<--n)(Vt T: t<--vi)(lj: l<-j<-i)[Arg(t)CIArg(vj)#Q]
(as we will show later, it is easy to find such a sequence).

For each i, 1 -< _-< n, let Ui { T, Arg (t) f’) Arg (vi) # }. Then, for each i, 1 _<-

iN n, Ui is the union of the following sets:

Ui)-- { T arg (1, vi) arg (1, t)},

U(2i)-- {t T" arg (1, v) arg (2, t)},

Ui)= { T" arg (2, vi) arg (1, t)},

U4)= {t T" arg (2, v) arg (2, t)}.

Note that either Case 2 or Case 3 holds for each UI), 1 < l=< 4. Thus, we can find
Z/o-covers C]i), C), C3), and C4) for U]), U2i), U3), and U4), respectively (recall
that there exists an lo cover and an lo+ 1 cover for Case 2 and Case 3, respectively).
Hence, C C]) U Ci) U C) U C]) is an 8/o-cover of U, and furthermore, from Fact
1, C U i"=lC is a cover of T because T U i"_-1 Ui from the. condition (2).

We claim that E U in=,_lo+C is a cover of T. It is obvious that the claim holds
for the case n -<_ lo, because n being -<lo implies E C. So, suppose that n > lo. Since
{v}’_ is an increasing sequence satisfying the condition (1), we know that Case 1 in
the above is applicable for T. Then, we have that the set { e T _-> v,_/o+l} is a cover
of T. Note that the set is contained in E’= U ’=,-/o+ U since the condition (3)
holds. Therefore, E’ is a cover of T. For each U, we showed that there exists an

8/o-cover Ci. Then, from Fact 3 to be shown later, E U %,_/o+C is an 8/-cover
of T.

For a general ko, we construct a method inductively by extending the method for
the case ko 2. We briefly sketch the construction. Assume that ko> 2 and for each
k < ko, a polynomial time method to find a polynomial cover is obtained. In a similar
way as in Example 2, we find a sequence of intervals {v}’_l which satisfies conditions
(1)-(3), where Arg (t) denotes the set of all arguments in -(t). Consider U for some
i, 1 _-< =< n. For each U, there exists some string y such that y appears in both -(vi)
and ’(t). Therefore, according to the positions where y appears in ’(v) and -(t), U
is divided into (ko)2 subsets T() where 1 < k, < ko More precisely, for each k, l, 1 <k,

k,l<ko tr() is the set {tUi’arg(k,v)=arg(l,t)}. For these subsets, a similark,l

argument as in Case 2 and Case 3 is applicable, so we can find a polynomial size cover
by using a method for ko-1. Finally, by using a similar argument as in Case 1, we
obtain a polynomial size cover for T.

In the following, we consider any fixed truth table c with k(<-ko) arguments. We
use K to denote {1,..., k}.

We need some notions and notation. Let [a, b] be any interval of type a, i.e.,
fo(Xo # a) (a, y, , Yk) for some Yl, ", Yk. The list (a, Yl, ", Yk) is called the
associated tt-condition for t. Let ’(t) denote it; that is, ’(t) fo(Xo # a). For each K,
arg (i, t) denotes y, namely, the ith argument of -(t). For any P_ K {1,..., k},
Arg (P, t) denotes (_J lp{arg (1, t)}.

For any set T of intervals, a class { U1," ", U,} is called a decomposition of T
if (.J 1__<=, U T and for all and j such that 1 _-< <j _-< m, U U .

For any P
_
K, we say that a pair of intervals and t’ is P-same if arg (l, t)=

arg (l, t’) for every 16 P. A set T of intervals is called a set of P-same intervals if every
pair of intervals in T is P-same.
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Let P be any subset of K, and let T be any set of disjoint and P-same intervals
of type ce. A sequence (U1,. ", U,) is called a left decomposition of T with respect
to P if it satisfies the following:

(1) { U1," ", U,} is a decomposition of T,
(2) There exist intervals q,..., tm such that

(a) (Vi: l<--_i<--_m)[t Ui]
(b) (Wi: l <-_i<-m)(Vt Ui)[ti<:t and Arg(K-P, t)f-)Arg(K-P, ti)7(],

and
(C) (i,j: l<:i<j<=m)[ti<tj and Arg (K-P, ti)fqArg(K-P, t)=].

The intervals tl,. ,tm stated above are called left-roots of U,. ., U,.
The notion of "right decomposition" is defined similarly by changing conditions

(b) and (c) as follows:
(b’) (Vi: l<-i<-m)(Vt Ui)[ti>=t and Arg(K-P, t)fqArg(K-P, t)]; and
(c’) (Vi, j: l<li<j<=m)[ti> tj and Arg (K-P, ti)fqArg(K-P, tj)--].
The intervals tl,’’’, t,, for a right decomposition are called right-roots of

Here we show that for a given T and P, we can construct a right (respectively,
left) decomposition of T with respect to P within polynomial time in no and TII.

LEMMA 3.3. Let P be any subset of K, and T be any set of disjoint and P-same
intervals of type a. There exists a right (respectively, left) decomposition of T with respect
to P. Furthermore, such a decomposition is computable within polynomial time in no and

IITII.
Proof. We construct a right decomposition in the following way. Define To T,

and for each i_-> 1,

max { t: T/_},

Ui {t T_, Arg (K P, ti) ["] Arg (K P, t) },

Define n to be the first such that T/= (clearly, such exists). Then (U1,. ", Un)
is a right decomposition. Note here that this construction is simple; thus it is easy to
see that one can construct (U1,. ., Un) within polynomial time in no and T[I.

The proof is similar for a left decomposition. U
We first prove the following facts.
FACT 2. For any disjoint intervals and t’, if < t’ and ’(t)= -(t’), then Wma is

not in t.

Proof Let t-[a, b] and t’-[a’, b’] be disjoint intervals such that < t’ and
-(t) ’(t’). Since and t’ are disjoint, it follows from < t’ that b < a’. Since r(t) -(t’),
we have that fo(Xo # a) is true relative to So if and only if fo(Xo # a’) is true relative
to So (recall that ’(t)=fo(Xo # a) and r(t’)=fo(Xo # a’)). Hence, Xo # a Lo if and
only if Xo # a’ Lo; equivalently, a <= Wma if and only if a’<= Wma NOW suppose that
Wmax E t. Then it follows that a-< Wmax b < a’ and thus a _-< Wma and a’> Wmax; a
contradiction. [3

FACT 3. For any sets C, D, and T of intervals, if C is a cover of D, and D is a
cover of T, then C is a cover of T.

Proof The proof is straightforward and thus omitted. [3

FACT 4. Let P be any subset ofK, and T be any set of disjoint and P-same intervals
of type t. Let U1,. ., Urn) and V,. ., Vn) be a left and a right decomposition of
T with respect to P, respectively. Iffor every i, 1 <-_ <- m, C is a cover of U andfor every
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j, 1 <-- j < n, Dj is a cover of V, then t.J 1oi=1Ci) 1.3 1.3 j=l( Dj) is a cover of T, where lo denotes
to(no).

Proof. Let C i 1Ci, D [_J 1D, C’ [_J 1 D’ 1oi=lfi, and ==ID. Since T=
(U’_-IU) (t3j"=lV), C U D is a cover of T. Hence, it follows from Fact 3 that if
C’t_J D’ is a cover of C U D, then C’ D’ is a cover of T. Thus, to establish the fact,
it suffices to show that C’ D’ is a cover of C D.

Since T is a set of P-same intervals of type a, every -(t) (such that T) has the
same truth table a and the same argument at each P. Thus, for all T, the same
a’ is constructed from c by substituting every /th (l P) argument of a with
Xso(arg (l, t)). Hence, for every t=[a, b] T,

Xo CA a Left (ao, po)Cr>a(Xso(arg (1, t)),..., Xso(arg (k, t)))= TRUE
ea’(Xso(arg (ll, t)), Xso(arg (lh, t)))= TRUE,

where {11,12, lh}= K-P.
Now assume to the contrary that there exists (C U D)-(C’U D’) such that

Wma to Since (U1,. ", U,,) and (V1,. ", Vn) are decompositions of T, there exist
some Ui and V both of which contain t. Since Ci (respectively, Di), is a cover of
(respectively, V), we have Ci (respectively, D). Thus, lo<i and lo <j.

Let ul,’’’, Um be left roots of (U1,..., U,,) and v,..., vn be right roots of
(V1," ", V,). Since Ui and lo<i (respectively, V and /o<j), we have

1,11 < Ulo Vto Vl

Note that Wmx t; hence, for every Wl and w in {0, 1}pII such that wl -< a =< b =< w
(where a, b]), we have Xo CA Wl Lo and Xo CA w Lo. Thus,
(1) (Vi: 1 =< -< lo)[C’(Xso(arg (11, ui)),""", Xso(arg (lh, ui))) TRUE], and

(2) (/j: 1 =<j -<_ lo)[C’(Xso(arg (11, Vj)), ", Xso(arg (lh, v))) FALSE].
We prove that no c’ satisfies (1) and (2) at the same time. We consider two cases

depending on c’.
Case 1. If a’(o’l,’",rh) is true, then there exists at least one such that

o-i=TRUE. Suppose that c’ satisfies (1). Then for every i, 1-< i=< lo, there exists
at least one I K-P such that Xso(arg (1, ui)) =TRUE; that is, there is at least one
element in Arg (K-P, ui)So. Note that left roots ul,’’’, u are defined so that
Arg (K-P, ui) is disjoint for each root. Thus, (1) implies that at least 1o strings in So
appear as an argument of some associated tt-condition. This contradicts the definition
of lo.

Case 2. If c’(rl,’", oh) is false, then there exists at least one such that
cri TRUE. Following an argument similar to the above, we can prove that c’ does
not satisfy (2).

By using these facts, we can prove the following lemma.
LEMMA 3.4. Let P be any subset ofK and let T be any set of disjoint and P-same

intervals of same type (say ce). Then, there exists a (h!)Z(21o)h-cover ofT, where h and

lo denote K P and lo(no), respectively.
Proof We prove the lemma by induction over h. For the induction base, consider

the case h 0. Since h 0, P is exactly K; that is, for all and t’ in T, -(t)= -(t’).
Let ’= max { t: T} and C { ’}. Then, from Fact 2, C is a 1-cover of T.

For the inductive step, let h > 0 and suppose that the claim holds for all h’ less
than h. Let U1, , U,) be a left decomposition of T with respect to P and Ul, ,
be left-roots of U1, , U,. Let any l, 1 _-< _-< rn be fixed here. For each and j K P,
consider the following set:

U!I!,,j { Ul arg i, Ul) arg (j, t)}.
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(i)Note that UI U j/-eti,j. Note furthermore that .i,j is P U {j}-same; thus, for
every and jK-P, Uf} has a ((h --1) !)22h-11ho-1-cover, which we denote by

(l)Now define C U,_ec,. It follows from Fact 1 that Ct is a (h)2h-ll-l-cover
of UI.

Similarly, let (V,. V,) be a right decomposition of T with respect to P and
Vl,’’" v be right-roots of V,..., V. Let any l, 1 l be fixed here. For each
and j K P, consider the following set:

,, {t e " arg (i, vt) arg (j, t)}.
Note that U U,r_pUJ. Then, by a similar argument to the above, we have for

v)
.j denote such a cover,every andj K-P, _, has a ((h-1))22h-11--cover. Let D)

(l)for each and j z K- P, and define D U,_e,. It follows from Fact 1 that D
is a (h l)2-l--cover of E.

Finally, define E =(UIC)U (ulD1). It follows from Fact 4 that E is a
cover of T. Note that IlEII  2/o, (h Therefore the lemma holds
for h.

LEMMA 3.5. Let T be a set of disjoint intervals of type a for some k-argument
truth-table a. ere exists a (kl)2kl-cover of T, where 1o denotes lo(no).

Proo The proof is immediate by considering the case P in Lemma 3.4.
From the proofs of Lemma 3.4 and 3.5, it is easy to see that the covers considered

in the above lemmas are polynomial-time computable.
Now we prove Lemma 3.2 thereby completing the proof of Theorem 3.1.
Proof of Lemma 3.2. Let F be a set of all truth tables of which the number of

arguments are bounded by ko. It is clear that FII 22. For each truth table a, let T
be the set of intervals in T of type a. Note that T UFT. From Lemma 3.4, for
each a, there exists a (kot). 2ko. lo-cover for T, which we denote by C. Now letting
C=UF C, we have that C is a cover of T from Fact 1 such that
2(kot)22k" lo(no)k (2)41o(no)k= qo(no). Hence, there exists a qo(no)-Cover for

Fuhermore, it is easy to see that computing T for a given T and a can be
executed in polynomial time in no and 1TII. Therefore, a qo(no)-Cover can be computed
within polynomial time in no and Tit.

Similar results are also available for right sets and range sets.
THEOREM 3.6. Every right set that is tt-reducible to a sparse set is in P.
THEOREM 3.7. Every range set that is tt-reducible to a sparse set is in P.
4. Bounded truth-table reducibilities of NP sets. In this section, we consider the

intractability of NP sets.
In the previous section, we showed that for every set C in P and for every

polynomial p, if Left (C, p) is tt-reducible to a sparse set, Left (C, p) is in P. On the
other hand, Proposition 2.1 states that if Left (C, p) is in P, the NP set for which C is
a p-witness is already in P. Combining these two results, we immediately have the
following corollary.

COROLLARY 4.1. Let L be a set in NP, C be a set in P, and p be a polynomial such
that C is a p-witness for L. If Left C, p) is tt-reducible to a sparse set, then L is in P.

Similar results are also available for right sets and range sets.
COROLLARY 4.2. Let L be a set in NP, C be a set in P, and p be a polynomial such

<Pthat C is a p-witness for L. If ght (C, p) is =btt-reducible to a sparse set, then L
is in P.

COROLLARY 4.3. Let L be a set in NP, C be a set in P, and p be a polynomial such
that C is a p-witness for L. If Range (C, p) is tt-reducible to a sparse set, then L
isin P.
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From any of the above three corollaries, we can easily obtain the following
corollary.

COROLLARY 4.4. If P NP, then there exists a set in NP that is not <=tt-reducible
to any sparse set.

Proof. The proof is straightforward and is thus omitted. D
Next we consider the complexity of number-theoretic problems. We define some

problems.
(1) FACT: for a natural number n, compute a prime factorization of n.
(2) DISC: for natural numbers n, a, and b, compute the minimum > 0 such that

a= b (mod n) if it is defined (such is called "the discrete logarithm of a base b
modulo n").

(3) SQRT: for natural numbers n and a, compute one of the square roots of a
modulo n if they exist.

These problems are deeply related to some cryptosystems. E1Gamal’s cryptosystem
[4], and Rabin’s cryptosystem [11] are based on the difficulty of solving DISC and
SQRT, respectively. FACT is the most fundamental problem in number theory and it
is known that if FACT is easily solvable, then SQRT is easily solvable. Also, if SQRT P,
then FACT can be done in probabilistic polynomial time.

Since these problems are evaluation problems, we often convert them to decision
problems of similar complexity. For example, consider the following sets in E*:

(1) LF= {(a, n): (::lm: a _-< m < n)[m divides n]},
(2) RD= {(a, b, k, n): (:lm: 0< m <-_ k)[a bm(mod n)]},
(3) RGS {(a, u, v, n): (:lm: u <- m <= v)[a me(mod n)]},

where (.,.) is a pairing function of integers.
It is easy to see that these sets are in NP, and each of them has computational

complexity similar to the corresponding evaluation problem.
Following the proof of our main theorem, we can prove the similar results for

these problems.
COROLLARY 4.5. If LF (respectively, RD, RGS) is btt-reducible to a sparse set,

then LF (respectively, RD, RGS) is in P, and consequently FACT (respectively, DISC,
SQRT) is polynomial time solvable.
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NONDETERMINISTIC COMPUTATIONS IN SUBLOGARITHMIC SPACE
AND SPACE CONSTRUCTIBILITY*

VILIAM GEFFERT’

Abstract. The open problem of nondeterministic space constructibility for sublogarithmic functions is
resolved. It is shown that there are no unbounded monotone increasing nondeterministically space construc-
tible functions such that sup s(n)/log (n) 0. Consequently, space constructibility ofmonotone functions
cannot be used to separate nondeterministic space from deterministic space, even for a very low-level
complexity range, since functions like log log (n) and /log (n) are not space constructible by nondeterministic
Turing machines. This result is obtained by the extension of the n n + n method, described in [Hierarchies
ofmemory limited computations, IEEE Conference Record on Switching Circuit Theory and Logical Design,
1965, pp. 179-190], to the nondeterministic case.

Key words, space-bounded computation, space constructibility, nondeterministic Turing machine, non-
deterministic space
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1. Introduction. One of the important open problems in space complexity theory
is the existence of nondeterministically space-constructible functions growing faster
than log log (n), but not as fast as log (n). Two of the most important results in space
complexity theory, Savitch and Immerman-Szelepcs6nyi theorems for s(n) space-
bounded nondeterministic Turing machines, were proved only for s(n)-> log (n) ([7],
[5], [11]).

It was shown ([1], [8], [3]) that no unbounded monotone increasing function
below log (n) is fully space constructible by the deterministic machines. The best-known
lower bound for the nondeterministic case was log log (n).

It was also shown [3] that we could separate nondeterministic space from deter-
ministic space, by showing a nondeterministically fully space-constructible function
below log (n). In particular, if log log (n) were fully space constructible by a nondeter-
ministic Turing machine, then we would have SPACE (s(n)) NSPACE (s(n)), for
any s(n) between log log (n) and log (n).

We shall show that no unbounded monotone increasing function with
supn_s(n)/log (n)=0 can be fully space constructible by nondeterministic Turing
machines. Since log (n) is space constructible (even deterministically), this lower bound
is optimal. We shall prove it by showing that if a nondeterministic machine A traverses
the whole input (from margin to margin), then A can do it by a computation path
which repeats, on a substantial portion of the input tape, some loop in a very
deterministic way. For such computation paths, we can use the n-> n + n! method,
which was used to prove a similar result for deterministic machines ([10], [1], [8]).

The paper is organised as follows: We begin in 2 by giving some basic definitions.
Section 3 develops some properties of nondeterministic computations in sublogarithmic
space, shows the "pseudodeterministic" behavior of some computation paths, and
then proves the main result of the paper. Section 4 discusses some consequences of
the main "Constructibility Theorem" and resolves some open problems.

2. Preliminaries. We shall deal with the standard Turing machine model, which
has a finite control, a two-way read-only input tape, and a separate semi-infinite
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two-way read-write worktape. (See [4], [6], or [10] for the exact definition and
properties of such machines.)

DEFINITION 1. A memory state of a Turing machine is an ordered triple k=
(q, u, i), where q is a state of the machine’s finite control, u is a string of worktape
symbols written on the worktape (not including the left endmarker or blank symbols),
and is a position of the worktape head (0-<_ i_-< lu] + 1, where lu] denotes the length
of u).

Note that the position of the input tape head has not been incorporated into this
definition and will always be displayed separately.

DEFINITION 2. The size ofa memory state k (q, u, i) is the length of the worktape
space used, i.e., lul. We shall denote it by /k/. The size of the initial memory state ki
is zero.

We may assume, without loss of generality, that our Turing machine is not allowed
to write the blank symbol on the worktape or reduce the size of its memory state.
Therefore, we may assume that if a memory state k2 can be reached from kl by some
computation path, then / k2/>= / kl/. This modification of the Turing machine does not
increase its space complexity.

DEFINITION 3 [3]. A function s(n) is fully space constructible if there exists a
Turing machine which for all inputs of length n marks off s(n) space on its worktape
and stops, using no more than s(n) space.

DEFINITION 4 [3]. A function s(n) is fully space constructible nondeterministically,
if there is a nondeterministic Turing machine which is s(n) space bounded on all
computation paths and uses exactly s(n) space on at least one computation path on
every input of length n.

Before passing to our main result, one pathological case should be eliminated:
There is no loss of generality in assuming that

(1) s(n)_->l for each n,

since, if s(n) is fully space constructible in sublogarithmic space, then so is s’(n)--
s(n) + 1. Therefore, we shall not consider functions with s(n)= 0, for any n.

3. Sublogarithmic space constructibility. We can now state and prove the main
result. We show that if s(n) is nondeterministically space constructible and
sup s(n)/log (n)= 0, then there exists fi such that for each n---fi we have

s(n)-- s(n+ n!)= s(n+2n!)= s(n+3n!)

Before doing this, we need some technical lemmas, which follow.
LEMMA 1 (Number of Memory States). For each s(n) space-bounded nondeter-

ministic Turing machine, there exists a constant c >-6 such that the number of reachable
memory states for all inputs of length n is at most cs(n, for each n.
(The argument is obvious: we use only (1) and the fact that the position of the input
tape head is not a part of the memory state.) Thus, we have a constant c such that

No. of memory states_-< cs(n) for each n,
(2)

6__<c.

LEMMA 2 (Sublogarithmic s(n)). For each s(n) such that sup,_ s(n)/log (n) =0,
and each c >- 6, there exists fi >- 2 such that

(3) (cS(n))6 < n, 1 <- cS("/6 for each n _-> ft.
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(We need (1) to show that cS(")/6>= 1. The rest of the argument is straightforward,
since there can be only finitely many n’s such that s(n)/log (n)>= 1/6 log (c).)

Now, let s(n) be a nondeterministically fully space-constructible function with
sup n_,o s(n)/log (n) 0, and let A be the nondeterministic s(n) space-bounded Turing
machine constructing s(n). Then, because of Lemmas 1 and 2, we have c => 6 and fi => 2
such that (cs(n))6 < n and 1 _-< cS")/6, for each n ->_ ft. Define

g s(fi)--the maximum size of memory states reachable from the initial memory
state, for all inputs of length

M cSn)--an upper bound on the number of reachable memory states, for all
inputs of length

Clearly, by Lemmas 1 and 2, we have that M6< r, 1 =< M/6, and therefore
2 M2 M M M6(4) I <-_-M <- M <--M <-_ <- <- <-...<_

Because the machine A must mark off s(n) space for all inputs of length n, it is
sufficient to consider only inputs of the form ln, where n _-> ft. From now on, we shall
concentrate on the inputs 1 n and 1 +. However, the argument can be easily extended
for each n _-> fi, because (3) is valid for each n _-> ft.

In what follows, unless otherwise stated, we shall assume that the input word
is 1 n+!.

The following lemma asserts, for input l+n and until the space used has not
exceeded g s(fi), that it is possible to replace each computation path making a "long
U-turn" (begin and end at the same position of the input tape visiting neither of the
endmarkers) by an equivalent computation path using a "short-cut," i.e., by a computa-
tion not moving the input head more than M2 positions to the right (or left).

LEMMA 3 (U-Turn). The following holds for all memory states kl, k2 such that
/kl/<=/k2/<- g: If there exists a computation path such that

(a) the first memory state is kl with the input head at a position i,
(b) the last memory state is k2 at the same position,
(c) the input head is never moved to the left of i, nor does it visit the right endmarker,

then there also exists a computation path satisfying (a), (b), and (c) such that the input
head is never moved farther than M2 positions to the right of i. (The same holds for
computations not visiting the left endmarker, taking place to the left of i.) (See Fig. 1.)

Proof Suppose that the furthest position of the input head, in the computation
path from kl to k2, is i+ h in memory state k, where h > M2.

Let p be the last memory state of the computation path from k to k such that
the input head was at the position i+j, for j 0,. ., M2. Similarly, let q be the first
memory state of the path from k to k2 such that the input head was back at the
position +j.

Clearly, the input head is never moved to the left of +j in the computation path
from p to qj, for each j 0,..., M.

Since / k2/<- g, the memory states Po, P, P2, and qo, q, q2, are g-bounded.

Therefore there must be at least one pair of memory states in the sequence
(Po, qo),"" ", (Pt, q) which is repeated, because there are at most M different
memory states not bigger than g. Thus we have j <j2 such that (p,, q,)= (pj, q)=
(P,q).

But then we can remove the computation paths from p2 to p2, and from q2 to q,
and we still have a computation starting in /q at position and ending in k2 at the
same position, because the input word consisted of identical symbols (ones) and the
head never visited the right endmarker.



NONDETERMINISTIC SPACE CONSTRUCTIBILITY 487

FIG.

Note that now the memory state k corresponds to the position i+ h- (j2-j)
+ h. This implies that the shortest possible computation path from kl to k2 never
moves the input head further than M2 positions to the right. The same holds also for
computations taking place to the left of i.

The next lemma states that each computation path not using more than g space
is "position independent," i.e., it can be "moved" freely to any position of the input
tape provided that both initial and final positions of this computation path lie outside
"critical zones," that is, at least M2+ 1 positions away from either margin.

LEMMA 4 (Position Independence). Thefollowing holdsfor all memory states kl, k2
such that / k/ <-_ / ke/ <= g:

If the machine A can get from memory state kl to k2 by moving its input headfrom
position il to i2 i + l, visiting neither of the endmarkers, then A can get from
by moving its head from a position jl to j2 =j + l, for each j, j2 such that

M2+ 1 <--jl <--j2 <-- fi + fi!-(M2+ 1),

(i.e., if both j and j2 are at least M+ 1 positions away from the margins). A similar
condition can also be formulated for moving to the left. (See Fig. 2.)

Proof By the U-Turn Lemma, in the shortest possible computation path from k
to k, A never moves the input head more than M2 positions to the left of il, nor can
the head be moved to the right of ie + Me. Otherwise, we could find a U-turn longer
than M2, which is not possible in the shortest computation path.

Therefore, for each jl and j2=jl+l such that Mz+I<=j]<=j2<=fi+!-(M2+ 1),
we can move the whole computation path so that it starts at position j and ends at
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M2+1 2 L...M2+I-I

N 2 , M 2

Jl J2

k2

FIG. 2

j2--jl -+- without the risk that the input head will hit any of the margins (which could
change the behavior of A). FI

DrqYItON 5. A loop of length beginning in memory state k is a computation
starting in memory state k at position i and ending in the same memory state k at
position iz i +/. Moreover, neither of the endmarkers is visited by the input head
during this computation.

Thus, the length of the loop is not the number of computation steps here, but
rather the distance between the initial and final input head positions.

Clearly, the nondeterministic Turing machine A is far from repeating regularly
any loop it gets into, because it can jump out of the loop by making a nondeterministic
decision. Still, we shall show that if A traverses the whole input, then A can also
traverse it by a computation regularly iterating a "short" loop (of length lo=< M) such
that the portions of the input tape traversed before and after this iteration are of lengths
sl and se, which are shorter than M4, but longer than MS+ 1. This means, roughly
speaking, that sl and se are "short," and that the whole iteration lies outside the
"critical zones" near the margins.

THEOREM 1 (Dominant Loop). The following holds for all memory states q, qe
such that /ql/</q2/<=g; If the input 1 n+n can be traversed from left to right by a
computation path beginning in ql and ending in qe such that the endmarkers are visited
only in ql and qe, then 1+ can be traversed by an equivalent computation path such
that A,

(a) having traversed Sl positions,
(b) gets into a loop of length lo which is repeated ro times,
(c) then traverses the rest of the tape of length s2, for some s, lo, ro, s2 such that

llo<=M,

(5) m2+ 1 s =< m4,
M2+ 1 _<- se=< M4.

Proof Since, by (4), (M2 -+- 1) + (M -k- 1) + (m2 -+- 1) < < t -+- t !, we can consider
two segments of length (M2+ 1) at either end of the input tape, and still have room
for one segment of length (M + 1) placed at the left (see Fig. 3).

FIG. 3
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Since there are at most M different memory states not bigger than g, the machine
must, in each segment of length M + 1, enter some memory state twice, i.e., it must
execute a loop, beginning in some memory state ko, of length lo such that 1-< lo -< M.
Let sl be the length of the tape segment traversed before the execution of this loop
(see Fig. 4), and let s2 denote the length traversed after:

ql

s to s 2
FIG. 4

q2

Clearly, M2+ 1 _<- sl <= (M2+ 1)+(M + 1), and M2+ 1 =< s2. But then, using (4), we have

l <=lo<=M,

(6) M2 + 1 _-< sl -<- M4,
M2 + 1 --<_ S.

But we would like to have s2 <- M4, i.e., we would like to have a computation path
with s2 as short as possible. Therefore, among all possible computation paths starting
in ql and ending in q2 such that A, after traversing s positions, gets into a loop of
length lo which is repeated ro times, and then traverses the rest of the input of length
s2, for some s, lo, ro, s2 satisfying (6), choose a computation path with minimal s2.
(We already have one such computation, with the number of iterations ro 1, hence,
the computation with minimal s2 really exists.) Note that by minimizing sz we
maximize ro.

We shall show that, in a computation path with minimal s2, no loop of any length
can occur more than 1o times between positions hi s + rolo and h2 t -+- t (M2 + 1),

i.e., after leaving the iteration of/o-loop and before entering the critical zone near the
right margin. Thus, the length of the first loop is an upper bound for the number of
occurrences of any other loop between h and h2:

Suppose that there are at least lo loops of length between positions h and h2,
for some/. They are not necessarily adjacent--they can start in different memory states
kl, k2," ", ko--but they are all of equal length (see Fig. 5). Let di be the length of
the input tape segment traversed by this computation path between ki and ki+, for
each 0,..., lo-1. (d denotes the length of the last segment between the end of
the last loop and position h2.)

But then, by the Position Independence Lemma, the machine A can get from k
to k,+ while moving its input head di positions to the right at any place of the input
tape, provided that both the initial and final positions of this segment lie at least M+ 1
positions away from either margin.

Therefore, we can remove the lo loops of length from the computation and shift
all the segments of lengths do, d, , do_l to the right so that the machine A, starting
from memory state ko at position h h + lol, will be able to reach memory state q_ at

the right endmarker (see Fig. 6).
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Loops of Length

dto_

s2

h2

M2+1

qol

FIG. 5

ql

s

ro-times

hl h1+tot

do d d2 dLo-1

h2

!M2’+i
o

s2

FIG. 6

To again get a valid computation path from ql to q2, it is sufficient to show that
the machine is able, starting from ko at position hi, to get to the same memory state
ko at position h hi+ lol. This is very easy, since, by the Position Independence
Lemma, we can repeat the loop of length lo beginning in memory state ko times (see
Fig. 7).
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h h t

to lto

ko ko ko

do

ro-t imes

d2

h2

1,-iirnes

Sl s2

FIG. 7

Thus, we have found a computation path starting in ql and ending in q_ such that
A, after traversing Sl positions, gets into a loop of length lo which is repeated r ro +
times, and then traverses the rest of the input of length s’ s2- lol < s2. But this is a
contradiction, since we assumed that s2 was minimal.

Therefore, in computation path with minimal s, no loop of any length can
occur 1o times between positions h S - rolo and h2-- rd-/[-(M2q 1), since we can
always replace lo loops of length by loops of length lo.

Now, divide the input tape between positions hi and h2 into adjacent segments
of length M+ 1 (the last one can be of length m-< M+ 1) (see Fig. 8).

The machine must, in each segment of length M + 1, get into a loop not longer
than M. (To avoid any ambiguity, take the first, i.e., the leftmost loop in each segment.)
Let rl be the number of segments with the length of the leftmost loop exactly equal
to l, for each 1,. , M. (If for some no segment has a leftmost loop of length l,
then rl 0.) Then s2 can be expressed in the form

M

s2 E rl(M+I)+m+(M2+I)<=M2(M+I)+(M+I)+(M2+I),
/=1

since m-<_ M + 1, and r <= lo <- M for each l, because no loop of any length can occur
more than lo times between hi and h2. But then, using (4), we have that s2 <- M4, and

Sl

hl h2

M*I M.1 I+1 m +1

ro-times

FIG. 8
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thus, by combining this with (6), we obtain

l<-_lo<-M,

m2 + 1 --<_ Sl =< m4,

m2 + 1 _--< S2 -< M4,

which completes the proof of the theorem. [3

The next theorem asserts that traversals of A on the inputs 1 and 1+ are exactly
the same, unless the space used exceeds g.

THEOREM 2 (Traverse). The following holds for all memory states ql, q2 such that
/ql/<- /q2/<= g: The machine A can get from the memory state ql to q2 by traversing the
whole input 1 (the endmarkers are visited only in ql and q2), if and only if A can get
from ql to q2 also by traversing 1 +.

Proof (A) (fi-> fi+ fi!).
By (4), M + 1 < fi, and therefore, if A traverses the whole input 1 then it must

get into a loop of length l_-< M < ft. But then A can also traverse the input 1 +, since
this loop of length can be iterated I] =1,/i more times.

(B) (fi+fi!-> fi).
Suppose that A gets from ql to q traversing the input 1 +. Then, by the Dominant

Loop Theorem, A can also traverse this input by a computation path such that there
exist s, /o, ro, s_ satisfying (5) such that A, having traversed s positions, gets into a
loop of length lo which is repeated ro times, and then traverses the rest of the input
of length s. Note that fi + fi s + rolo + s2 and therefore

ll - lYl S - rolo+ Sa =< 2M4+ rolo<-MS + rolo<= fi + rolo,

by (4), and hence

rolo>=fi!=lo" H i=lo’F,
i=1
i

since lo=< M < ft. Thus, ro>= F, i.e., there is a loop of length 1o, which is repeated at
least F times. The first F iterations of this loop traverse exactly lo" F fi! positions
to the right, beginning and ending in the same memory state ko (see Fig. 9).

Moreover, both the initial and final positions of this composite loop of length fi!
beginning in ko lie at least M2 + 1 positions away from either margin, since s >_- M2 + 1,
and s2 => m2 + 1. From this we see that this fi !-loop can be cut out of the computation

M2+I

s2

FIG. 9
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path so that we obtain a valid computation traversing the input 1 , without having the
head hit either margin.

Now we can show that the behavior of A on the margins of 1 and 1+ is exactly
the same, i.e., the set of memory states not bigger than reachable on the margins is
the same.

LEMMA 5 (Inshore Fishing). Thefollowing holdsfor each memory state k such that
Ikl<-:

The machine A, starting from the initial memory state k1 with the input head at the
left endmarker, can get to the memory state k at the left (right) endmarker of the input
1 if and only ifA can also get to k on the corresponding endmarker of 1 +.

Proof (A) From the Traverse Theorem it follows that the machine A can get from
ql to q2 traversing the whole input 1 from left to right if and only if it is also possible
for the input 1 +. The same also holds, due to symmetry reasons, for traversals from
right to left.

(B) The same can be shown for U-turns at the endmarkers of 1 and 1 +, since,
using the U-Turn Lemma, we can replace each U-turn by an equivalent U-turn not
moving the input head farther than M2< t positions away from an endmarker.

(C) The rest of the argument is a straightforward induction on the number of
times the head visits the endmarkers.

The above result can be extended for all reachable memory states not bigger
than .

LEMMA 6 (Deep-sea Fishing). The following holds for each memory state k such
that /k <-_ : The memory state k is reachable on the input 1 , from the initial memory
state kl at the left endrnarker, if and only if it is also reachable on the input 1+ (but
not necessarily at the same position).

Proof We shall show that all memory states not bigger than reachable on input
1+ are also reachable on input 1 . (The converse is also true, by a very similar
argument.)

Let ql be the last memory state of the computation path from k to k such that
the input head was at an endmarker of the input 1 +. By the Inshore Fishing Lemma,
ql is also reachable on the input 1
was at the left endmarker. Now, we have that A, starting from ql at the left endmarker
of the input 1 +, can get to k at some position (see Fig. 10).

But then A can also reach k from ql at a position i’_-< (M2+ 1)+ (M + 1), for, if
> m2 + 1 -+- (M + 1 ), then we can find a loop between positions m2

(M + 1). This loop can be, by the Position Independence Lemma, removed from the
computation path. This process can be repeated until we obtain a position ’<-

(MZ+I)+(M+I). But (MZ+I)+(M+I)+(MZ+I)<fi, by (4), and therefore k is
reachable from ql on the input 1

We can now state and prove the main theorem.
TIEOREM 3 (Constructibility). If s(n) is nondeterrninistieally fully space construe-

tible and sup,_ s(n)/log (n) =0, then there exists

s(n) s(n + n !) s(n + 2n !) s(n + 3n !)

Therefore, there is no function s(n) such that
(1) s(n) is unbounded (i.e., for each h there exists n with s(n) >- h),
(2) s(n) is monotone increasing (i.e., s(n) <= s(n + 1), for each n),
(3) sup,_s(n)/log (n)=0,
(4) s(n) is fully space constructible by a nondeterministic Turing machine.
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FIG. 10

Proof (A)For each nondeterministically space-constructible function with
sup,_ s(n)/log (n)--O, we have, by the Deep-Sea Fishing Lemma, that the set of
reachable memory states not bigger than g s(fi) is exactly the same for the inputs 1
and 1 +. But all of the arguments above also hold for 1 and 1 +ut, for each u _-> 1.
We only have to replace fi everywhere by ufi !. Thus, s(fi + ufi !) _-> s(r) for each u >- 1.

Now, suppose that s(fi + ufi !)> s(fi) for some u => 1. Since A must use exactly
s(fi+ufi!) space for 1 +u on at least one computation path, there must be a memory
state kl of size g s(r) reachable on 1 +" such that A, executing a single computation
step, enters some memory state k of size s()+ 1. But then A can enter k2 of size
s(fi)+ 1 on 1 (by a single step, from k), which is a contradiction, because A is s(n)
space bounded.

Therefore, s(r) s(fi + ufi !), for each u _-> 1.
(B) Let s(n) also be monotone increasing. Then, by (A), we have that s(n)= s()

for each n _-> ft. Hence, s(n) cannot be unbounded.
(C) We can easily extend (A) for all n_>-r (i.e., s(n)=s(n+un!), for each

and each u _-> 1), since all arguments throughout this section clearly hold if fi is replaced
by n>. D

4. Some consequences. In this section we discuss, without formal proofs, some
properties of functions constructed by nondeterministic Turing machines working in
sublogarithmic space. Then we shall present a characterization theorem for languages
recognizable by such machines, together with lower bounds for some languages and
a few separation results.

Remark 1. Functions log log (n) and x/log (n) are not nondeterministically fully
space constructible, since every monotone increasing function below log (n) is either
bounded by a constant, or not constructible by nondeterministic machines.

Remark 2. If s(n), with sup,_ s(n)/log (n) 0, is nondeterministically space
constructible, then infn- s(n) constant. (This follows from the fact that we can find
fi such that s(r)= s(fi + ufi !), for each u _-> 1.)

Therefore, the lowest nondeterministically space-constructible upper bound for
log log (n) (or any unbounded monotone increasing function below log (n)) is log (n).
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Remark 3. None of the four conditions in the Constructibility Theorem can be
omitted, since we can find functions satisfying each triple of these conditions:

2, 3, 4 (bounded): s(n) constant.
1,3,4 (not monotone increasing): s(n)=log2(fpr(n)), where fpr(n)=the first

prime not dividing n.
s( n is space constructib e within space s( n ), and

supn_s(n)/log(n)=O, because the language L={ln: (::lk) n-

pip2 PkPk+2t such that Pk+l does not divide t} is in SPACE (log log (n)).
(Here Pi denotes the ith prime. For a more detailed proof, see [3].)

1,2,4 (sup_.s(n)/log(n)>O): s(n)=log(n).
1,2, 3 (not fully space constructible nondeterministically): s(n)= V’log (n).
COROLLARY 1. For each unboundedfunction s(n) below log (n), thefunctionf(n)

max{s(1),... ,s(n)} is not fully space constructible by any nondeterministic Turing
machine.
(It follows from the fact that if s(n) is unbounded with sup_ s(n)/log (n)=0, then
so is f(n). Moreover, f(n) is always monotone increasing.)

This separates nondeterministic sublogarithmic space-bounded computations from
the corresponding low-level nondeterministic space-bounded computations for compu-
tational models in which it is possible to construct the maximum of the first n values
of sublogarithmic s(n) within sublogarithmic space (for example, Turing machines
which have an inkdot or pebble). We will return to these models later.

The next theorem characterizes languages recognizable within sublogarithmic
space, and might be considered a sublogarithmic counterpart of the "Pumping Lemma"
for context-free languages.

THEOREM 4 (Explosion). For each s(n) space-bounded nondeterministic Turing
machine A recognizing a language L {0, 1}* with sup s(n)/log (n) 0, and each
>- 1, there exists fi >= 2 such that, for each n >= , and each m >- /-ff, u 1 ’v of length n is

in L if and only if ulm+kmV is in L, for each k>-_l.

The above theorem, roughly speaking, asserts that, for sufficiently large n, there
is a "critical length" m such that if an accepted (rejected) word of length n
contains a segment of at least m consecutive identical symbols, then this segment
"explodes," i.e., the machine must also accept (reject) infinitely many other words
containing longer and longer segments of these symbols.

The proof is analogous to the proof of our main result. The theorem is valid even
if the constant is replaced by a function i(n) such that sup i(n)s(n)/log (n) 0.
The critical explosive length for inputs of length n is then m(n)= n 1/i(. Therefore,
there must be at least one critical explosive segment in each string with small information
content, e.g., in a string consisting of at most n 1-1/i(" segments of consecutive identical
symbols.

This theorem can be used for proving that some languages are not recognizable
within sublogarithmic space.

COROLLARY 2. Languages

L1 {a"b"; n >= 1},

L2 {a"b’; n # m},

L3 {w {a, b}*; N,,(w) N,(w)},

t4--- {w {a, b}*; Na(w) # N,(w)},
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are not in NSPACE (s(n)), for any s(n) below log (n). (Na(w) denotes here the number
of a’s in the word w.)

This reveals that the method of deterministic counting is the best one in some
cases, and no nondeterministic trick can be used to reduce the space used.

When talking about sublogarithmic space, we must take the utmost care not to
confuse different definitions of s(n) space-bounded Turing machines in the literature
(compare, for example, [2] with [4]). We now review the most typical variants.

DEFIN:ION 6. A nondeterministic Turing machine A is
(a) weakly s(n) bounded if, for each w in L(A) of length n, there exists at least

one accepting computation path using no more than s(n) space on the worktape,
(b) s(n) bounded (or strongly s(n) bounded) if, for each w of length n, no

computation path uses more than s(n) space,
(c) super-strongly s(n) bounded if, for each w of length at most n, all computation

paths are s(n) bounded.
Let NWEAKSPACE (s(n)), NSPACE (s(n)), and NSSTRONGSPACE (s(n))
denote, respectively, the classes of languages recognizable by weakly, strongly, and
superstrongly s(n) space-bounded nondeterministic Turing machines, and let
WEAKSPACE, SPACE, and SSTRONGSPACE be their deterministic variants.

(For example, deterministic weakly space-bounded Turing machines may use an
arbitrary space for inputs which are not accepted.)

Clearly, NSSTRONGSPACE (s(n))_ NSPACE (s(n)) NWEAKSPACE (s(n))
for each s(n). Moreover, NSPACE (s(n)) NWEAKSPACE (s(n)) for each non-
deterministically space-constructible s(n) and NSSTRONGSPACE (s(n))=
NSPACE (s(n)) for monotone increasing s( n ). But for each unbounded function s(n
below log (n) we have that s(n) is either not monotone increasing, or not non-
deterministically fully space constructible.

We shall now turn to some modified computational models which were described
in [3].

DEFINITION 7. (a) A 1-inkdot Turing machine is a usual Turing machine with the
additional power of marking one tape square on the input with an inkdot. (This tape
square is marked once and for all, no erasing.)

(b) A pebble machine is a Turing machine with the additional power of using one
pebble, which can be placed on and then removed from the input tape arbitrarily many
times.

(c) A demon s(n) machine is a Turing machine with a two-way read-only input
tape, and a two-way read-write worktape enclosed in endmarkers s(n) positions apart
for inputs of length n.
Let NSPACE* (s(n)), NPEBBLESPACE (s(n)), and NDEMONSPACE (s(n)) denote
the classes of languages recognizable by 1-inkdot, pebble, and demon nondeterministic
s(n) space-bounded Turing machines, respectively. (We will also use their deterministic
variants.)

Note that nondeterministic 1-inkdot Turing machines can compute, within space
max {s(1), ., s(n)}, the value of max {s(1), ., s(n)}, for any nondeterministically
space-constructible s(n), be it below log (n) or not. (The machine will nondeterministi-
cally guess between 1 and n with maximal s(i), mark this position on the input tape
with a dot, and then, using as its effective input the string between the left endmarker
and the dot, compute the value of s(i).)

The same holds for deterministic pebble machines and deterministically space-
constructible functions, for the machine can use its removable pebble to compute, one
by one, each of the values s(1), , s(n).
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Now, using the fact that {a"b"; n>= 1} is in DEMONSPACE (log log (n)) and
PEBBLESPACE (log log (n)), and that {a"bm; n m} is in NSPACE* (log log (n))
and WEAKSPACE (log log (n)), (for proofs, see [3] and [12]), and by Corollary 2,
we have the following corollary.

COROLLARY 3. For each s(n) between log log (n) and log (n):
(a) SPACE (s(n)) SPACE* (s(n)),

NSPACE (s(n)) NSPACE* (s(n)),
(b) NSPACE (s(n)) NDEMONSPACE (s(n)),

DEMONSPACE (log log (n))-NSPACE (s(n)) ,
(c) NSPACE (s(n)) NWEAKSPACE (s(n)),

WEAKSPACE (log log n NSPACE (s( n ,
(d) NSPACE (s(n)) NPEBBLESPACE (s(n)),

PEBBLESPACE (log log n )) NSPACE (s( n # .
Thus, even deterministic weakly space-bounded machines can be, in some cases,

better than strongly bounded nondeterministic ones. The use of a single inkdot also
increases the power of sublogarithmic nondeterministic machines. (The situation is
quite different in deterministic case [3], or for s(n) above log (n).)

5. Conclusion. We have shown that no unbounded monotone increasing function
with sup s( n)/log (n) 0 is fully space-constructible by nondeterministic machines.
This indicates that the sublogarithmic nondeterministic Turing machines are not very
powerful and that’the separation of nondeterministic space from deterministic space
is harder than one might expect, even in a very low-level complexity range. Con-
sequently, this main separation problem remains open.

On the other hand, it has some other consequences. We would like to conclude
this paper with one of them, a tally version of the famous Savitch and Immerman-
Szelepcs6nyi theorems. It can be shown that, for tally sets (i.e., L 1"), these two
theorems are valid for each s(n), be it space constructible or not, below log (n) or
not. Some extension for more general sets can be made, but we do not know the answer
in the most general case, i.e., whether these two theorems can also be proved for
functions below log (n), i.e., for each s(n), and each L_ {0, 1}*. Related results for
the deterministic case can be found in [9].

Acknowledgment. The author thanks Branislav Rovan, Dana Pardubski, and the
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A 4n LOWER BOUND ON THE COMBINATIONAL COMPLEXITY OF
CERTAIN SYMMETRIC BOOLEAN FUNCTIONS OVER THE BASIS

OF UNATE DYADIC BOOLEAN FUNCTIONS*

URI ZWICK?

Abstract. A simple, and easy-to-check, property of a symmetric boolean function is shown to imply a
4n- O(1) lower bound on the circuit complexity of the function over U2 B2-{03, =}, the basis of unate
dyadic boolean functions. Among the functions to which this lower bound applies are the modular functions

MODk (n) for any fixed k>-3 (MODk (n) is the function which returns if and only if (Y xi) mod k=0).
Finally, a 5n upper bound is obtained on the circuit complexity over Uz of the function MOD4 (n).

Key words, combinational complexity, boolean functions, lower bounds

AMS(MOS) subject classification. 68Q15

1. Introduction. In 1949, Shannon [Sh] showed that the circuit complexity of
almost all boolean functions is exponential. However, attempts to obtain concrete
lower bounds for functions in NP (see [KM], [HHS], [Sc-1], [Sc-2], [P], [St], [B])
yielded only linear results. The best lower bound of this kind known today over Be,
the full binary basis, is a 3n lower bound obtained by Blum [B]. Surveys of these
results may be found in [BS], [D], [W].

In this note, we show that a 4n- O(1) lower bound may be proved if the linear
functions XOR and its complement are removed from the basis. The best previous
lower bound over this basis, denoted by Ue, was a 3n lower bound on the circuit
complexity of the function MODe (n) obtained by Schnorr [Sc-1]. The result presented
here is, in a sense, a generalization of Schnorr’s result. Another result which is close
in spirit to the result presented here is the 2.5n lower bound (over Be) obtained by
Stockmeyer [St]. Some of the ideas in this work were inspired by the work of Lai and
Muroga [LM].

For additional lower bounds over the bases {I}, {v,-}, {v, ^,-a}, see [So] and
[Re] (the symbol denotes the NAND operation).

In proving the 4n-O(1) lower bound we use a simple variation of the elimination
method. It is very unlikely that this method will enable us to produce significantly
better (for example, nonlinear) lower bounds. In order to achieve such an improvement,
a major breakthrough, like the one recently obtained in the theory of monotone circuits
(see IRa], [A], [AB]), is probably needed.

2. Preliminaries. A circuit (over Ue) is a directed acyclic graph whose nodes have
indegree 0 or 2. Nodes with indegree 0 are called inputs and they are labeled by
variables or constants. Nodes with indegree 2 are called gates and they are labeled by
functions from Ue. Note that we may assume, without loss of generality, that all the
gates are labeled by the eight nondegenerate U2-functions (X ^ yb)C, where x xa.

Each gate in a circuit computes a function by applying the function labeling it to
the functions computed by the nodes feeding it. Since we are interested in this note
in the computation of scalar functions, we consider only those circuits in which just

* Received by the editors November 16, 1988; accepted for publication (in revised form) April 18, 1989.
This paper formed part of a Ph.D. thesis written by the author in Tel-Aviv University under the supervision
of Professor Noga Alon.

" Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Present address, The
Mathematical Institute, University of Warwick, Coventry CV4 7AL, United Kingdom.
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one gate has outdegree 0. This gate is called the output gate of the circuit, and the
function computed by it is defined to be the function computed by the circuit.

The size of a circuit/3, denoted by C(/3), is the number of gates contained in it.
The circuit complexity of a function f, denoted by Ct:2(f) or simply by C(f), is the
minimal size of a circuit computing f

If/3 is a circuit and A is a gate in/3, we denote by do(A) the outdegree of A, and
by res0 (A) the function computed at A (the subscript/ is omitted when no confusion
arises). If x is a variable, we denote by do(x) the sum of the outdegrees of the input
nodes labeled by x. Actually, we can assume that each variable labels only one input
node and then do(x) is simply the outdegree of the input node labeled by x.

Finally, we denote by d1(/3) the number of variables whose outdegree in /3 is
exactly 1. The numbers d1(/3) play a central role in the proof of the 4n lower bound.

If a gate A in a circuit/3 is fed by the node B and res (B) is constant, then we
can obtain a smaller circuit which computes f in the following way: If res (A) is also
constant, then we simply remove the incoming edges of A from the circuit and turn
A into a constant input node. Otherwise, res (A)-res (C)a, where C is the second
node in the circuit feeding A and a {0, 1}. In this case we remove the node A and
all its incoming and outgoing edges from the circuit. The gates which were fed by A
will now be fed directly by C. If a 1, a complement must be incorporated into these
gates. (We assume here that A is not the output gate of the circuit.) This process can
be carried on until a simplified circuit is obtained, i.e., a circuit with no constant input
nodes and no gates with constant output.

In the next section, we encounter many situations in which we are given a circuit,
some of whose gates are fed by constants. In each such case we explicitly identify a
subset of these gates and remove them one by one, as explained in the previous
paragraph.

If g(x, y) U2, then there exists a constant c {0, 1} such that g(c, y) is a constant.
We say that the constant c blocks the function g. Note that this property does not hold
for B2 and this is why proving lower bounds over this base is a harder problem.

3. The lower bound. We begin by defining the set of functions for which our lower
bound applies.

DEFINITION 3.1. The sets S(n), Mk(n), N(n), MN,,(n) are defined in the follow-
ing way:

(1) fS(n) if and only if f(x,... ,x,) depends only on Ei=I xi. Functions
belonging to S(n) are called symmetric functions. If f S(n) and f(xl," , x,) Vk,

where k xi, we associate with f the binary word v(f) roY1 v,. The word v(f)
is called the value vector of f

(2) f Mk(n) if and only if f S(n) and every restriction of f to a subset of k
variables is not constant. It is easy to see that f Mk(n) if and only if v(f) does not
have a constant subword (i.e., 000. or 111...) of length k + 1.

(3) f Nl(n) if and only iff S(n) and every restriction offto a subset {yl,. , y}
of f’s variables is not linear, i.e., not y03.. 03yl or its complement. It is easy to see
thatf Nl(n) if and only if v(f) does not have an alternating subword (i.e., 0101
or 1010 .) of length + 1.

(4) Finally, we define: MNk,l(n)= Mk(n) Nl(n). In other words, f MNk,l(n)
if and only if v(f) does not have a constant subword of length k + 1 or an alternating
subword of length l+ 1.

The structure of the sets Mk(n), Nl(n), MNk,l(n) for small k and is very simple.
It is easy to check that M(n) contains only the two linear functions x03" "x, 03 c
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that have the value vectors 0101 and 1010. and that Nl(n) contains only the
two constant functions that have the value vectors 000. and 111 .. Consequently,
the sets MNk,1 (n) for n _-> k _-> 1 and MNl,l(n) for n -> _-> 1 are empty. The first nonempty
set of the form MNk,(n) is MN2,2(n). Iff MN2,2, then v(f) does not contain the
subwords 000, 111, 010, 101. The only words with this property are 00110011...,
0110011 ..., 11001100..., and 1001100..., and therefore:

MN22 {[(Yxi+c)mod4J }"c=0,1,2,3
2

As a further example, we note that MODk (n) MNk-l,3(n) for k > 2.

Iff MNk,I(n) for some n _-> k, l, then v(f) has a subword from the set {001,110,
100, 011}. In particular, for every two variables x, y {Xl,"’’, xn} the function f has
a restriction of the form (x ^ ya)b. It is also obvious that if f MNk,l(n) for some
n > k, l, then every restriction off obtained by fixing the value of one variable belongs
to MNk,I( n 1).

We can now prove that iff MNk,(n) and n ->_ k+ 1, l, then Cu2(f)>-4(n m)- 1,
where m max { k + 1, l}.

LEMMA 3.2. Let fl be a circuit which computes afunctionf MNk,l( n for n > k + 1, l.
There exists a circuit 3 which computes a function f’6 MNk,I(n- 1) and which satisfies
C(6) dl(6)] -<- C(fl) d1(3)] -4.

Proof Let 3 be a circuit which computes a function f6 MNk,l(n), where n >
k + 1,/. If/3 is not simplified, then simplify it and denote the simplified circuit obtained
by y. It is easy to check that [C(y)-dl(y)]<=[C(/3)-dl([3)] (in every elementary
simplification step described in the previous section, the size of the circuit decreased
by 1 and dl could have increased by at most 1). In y there exists a gate B, which is
fed by two input variables. Let x, y be the variables feeding B. The outdegrees of x
and y must be at least 2 (since otherwise we can assign a value to one of them and
make the output independent of the other).

We say that the circuit y is degenerate if it contains the situation shown in Fig.
3.1 (or the symmetrical situation with the roles of x and y switched). It is easy to
transform y into a nondegenerate circuit y’ which also computes f and which satisfies
C(y’) <- C(y), dl(y’) all(y). This can be accomplished by either deleting A from the
circuit, if its output does not depend on both x and y, or by replacing the edge B -> A
by an edge y-* A, and by adjusting the gate A if necessary, otherwise. Notice that in
the latter case res (A)=(x ^ y)C since in order to compute (x@y)d at least three
U2-gates are needed. The only variables whose outdegree could have been changed
by these actions are x and y. But the outdegrees of x and y were, and must remain,
at least 2, and therefore dl(")= dl(y).

FG. 3.1

We may therefore assume, without loss of generality, that the circuit y is nondegen-
erate. We consider the following three cases.

Case 1. dv(x)_-> 3 or dv(y) >= 3.
Assume without loss of generality that dv(x) _-> 3. Let A, C be two additional gates

fed by x, as shown in Fig. 3.2. Let D be a gate fed by B. Since y is nondegenerate,
D A, C. We assign to x the constant c which blocks B and delete the gates A, B, C,
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A

FIG. 3.2

D from/3 as explained in the previous section. Denote by 6 the new circuit obtained.
The circuit 6 computes the function fx:=e MNk,t(n 1). Note that if dr(z) 1, then z
does not feed A, C, or D in 3’ (since otherwise choosing the right values for x and y
would make the output of 3’ independent of z and this is a contradiction since n > k + 1).
Therefore, d(z) remains 1 and thus we have C(6)=C(y)-4 and dl(6)>-_dl(y) as
required.

If Case 1 does not hold, then dr(x) dr(y 2. Denote by A, B the gates fed by
x and recall that B is also fed by y.

Case 2. dr B >= 2.
Denote by C, D two distinct gates fed by B (see Fig. 3.3). Since y is nondegenerate

C, D A. We assign to x the constant c which blocks B. As in the previous case, we
delete the gates A, B, C, D and we are left with a circuit 6 which satisfies C(6) C (3’) 4
and d1(6)>= d(y), as required.

A B

FG. 3.3

The last case we have to consider is Case 3.
Case 3. dr B 1.
We break this case into two subcases.
Case 3.1. There exists an edge y--> A in 3’.
If dr(A)_-> 2, then after switching the roles of x and y we are back in Case 2. We

therefore assume that dr(A)= dr(B)= 1. Denote by C the only gate fed by B, and by
D the only gate fed by A. We claim that C D, for otherwise the output of y depends
on x and y only through the gate C D. If res (C) is constant or of one of the forms
Xa, yb, (xa^ yb)e, then one of x or y may block the other, and this is clearly a
contradiction. The only possibility left is that res (C)= (xy)d but this also leads to
a contradiction, forin this casef cannot have a restriction to {x, y} ofthe form (x ^ ya)b.

The situation in this subcase is therefore as shown in Fig. 3.4. We assign to x the
constant which blocks B, and delete the gates A, B, C from the circuit. Denote the
resulting circuit by 3. Note that d(y)= 1 since y feeds in 6 only the gate D. Once
again, if dr(z)= 1, then also d(z)= 1, and therefore C(6)<=C(y)-3 and d1(6)>=
dl (3,) + 1, as required.

FIG. 3.4
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Case 3.2. There is no edge y- A in y.
Denote by C the unique gate fed by B. Denote by D the second gate fed by y.

By the nondegeneracy of 7 we obtain that C # A, D. We assume in this case that
D # A, thus the situation is as shown in Fig. 3.5. As usual, we assign to x the constant
which blocks B, and delete the gates A, B, C from the circuit. We can now repeat the
arguments of the previous subcase.

In each one of the above cases we obtained a circuit which satisfies the conditions
required and thus the proof is complete. El

THEOREM 3.3. If fMNk,l(n), then Cuz(f)>=4(n-m)-l, where m=
max {k + 1, 1}.

Proof We prove by induction on n that if/3 is a circuit which computes f6
MNk,(n), then [C(fl)-dl(fl)]>_-4(n m)-1. The basis of the induction for n m
follows from the fact that C (/3) _-> m 1, dl (/3) _-< m, and therefore C (fl) dl (/3) 1.
The induction step follows immediately from Lemma 3.2. El

In fact, this theorem can be slightly improved to Ct2(f) ->_4(n- m)+(m- k) using
the following lemma.

LEMMA 3.4. Iff Mk(n) and fl is a simplified circuit computing f, then dl(fl)% k.
Proof Suppose on the contrary that dt(Xl d(Xk) 1. Denote by Ai the

unique gate fed by xi for iN k. Since/3 is a simplified circuit, the second input of A
is not constant. Denote by V the set of variables on which this second input depends.
Since, by assigning appropriate values to the variables of V we can block x and thus
obtain a constant restriction, we immediately get that [V[ => n- k+ 1. Thus each V
contains at least one variable from the set {x,..., Xk}. Denote one such variable by
x=(). For each 1 _-< _-< k there exists a directed path in/3 from x() to Ai and therefore
also from A,r(i to A. But this is a contradiction since it implies the existence of a
directed circuit in 13. [3

4. An upper bound. In this section, we present U2-circuits of size 5n-7 which
compute the functions MOD4(n) (for n->3). This shows that 4n-O(1)_-<

Cc2(MOD4)<=5n-O(1).
Using the same methods, it is easy to see that any symmetric boolean func-

tion f(xl,’’" ,xn) which depends only on (x)mod2k can be computed using
(7 23-)n + o(2k/k) U2-gates or (5 23-k)n + O(2/k) Ba-gates. In particular, any
symmetric boolean function can be computed using 7n + o(n) Ua-gates or 5n + o(n)
B2-gates.

The basic building block in our circuits is the binary full adder (FA) shown in
Fig. 4.1(a). In Figs. 4.1(b) and 4.1(c) it is shown how an FA can be implemented using
five B2-gates or seven Ua-gates. It is easy to check that both implementations are
optimal.

We now present the circuits for MOD4 (n). If (S-l,"" ", So) is the binary rep-
resentation of x +. + xn, then MOD4 (x, x) NOR (s, So). The circuits com-
pute Sl, So using a tree of FAs.

A

FIG. 3.5
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carry- FA-sum

sum

carry

sum carry
(a) (b) (c)

FIG. 4.1. Implementation offull adders.

Assume for simplicity that n ->_ 3 is odd. Construct a trenary tree of FAs in which
every FA is fed by three inputs which are either input variables or sum outputs of
previous FAs (this is possible since n is odd). The exact structure of the tree is
immaterial. The number of FAs in the tree is (n- 1)/2. The output of the root FA is
So. The function Sl is obtained by computing the XOR of all the carries produced by
the (n-1)/2 FAs. This XOR can be computed using 3. ((n-1)/2)-3 U2-gates. The
value of the function MOD4 (n) is now obtained using one additional NOR gate. The
total size of the circuit is 7 ((n- 1)/2)+(3 ((n 1)/2)-3)+ 1 5n-7.

The same construction yields Bz-circuits of size 3n- 3 for the functions MOD4 (n).
Stockmeyer [St] constructed more efficient circuits for MOD4 (n) over B2 and showed
that CB2 (MOD4 (n)) 2.5n O(1).

Over U2 there is still an unresolved gap between the 4n lower bound and the 5n
upper bound presented for MOD4 (n). We believe that the upper bound is closer to
the truth and that the function MOD4 (n) is the easiest function among the functions
to which the lower bound presented in this note applies.

Acknowledgment. The author would like to thank Noga Alon for his help and
supervision during the preparation of this work.
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Abstract. In this paper a new property of sets, near-testability, is introduced. A set S is near-testable
(S NT) if the membership relation for all immediate neighbors is polynomially computable; i.e., if the
function t(x) Xs(X) + Xs(X 1) (mod 2) is polynomially computable. The near-testable sets form a subclass
of the class 0)P (parity polynomial time), introduced by Papadimitriou and Zachos, and Goldschlager and
Parberry. OP has a complete set O)SAT that has recently been shown by Valiant and Vazirani to be hard
for NP under randomized polynomial-time reductions. It is proved that there is a uniform polynomial
one-one reduction that takes every set in )P to a near-testable set, and it is shown that the image of @SAT
under this reduction (which we call NTSAT) is polynomially isomorphic to O)SAT. As corollaries it is

shown that NTSAT is complete for both NT and for P, that NTSAT is hard for NP under randomized

polynomial-time reductions, and that the existence of one-way functions implies the existence of sets that
are near-testable but not polynomially decidable. It is then asked whether near-testability is preserved under
p-isomorphisms. This leads to a generalization, NT*, of NT similar to those introduced by Meyer and
Paterson and by Ko for self-reducible sets. With this more general definition, NT* is shown to be closed
under polynomial-time isomorphisms while remaining a subclass of OP. It is conjectured that it is a proper
subclass. In fact it is shown that, relative to a random oracle, the containments P NT NT*_P are

proper with probability one. It is also shown that, relative to a random oracle, with probability one NT
and NT* are incomparable with both NP and with coNP. Finally, the effects that the distribution and

density of elements have on the complexity of near-testable sets are considered.

Key words, structural complexity theory, near-testability, one-way functions, parity polynomial time,
self-reducibility
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1. Introduction: Basic facts about near-testable sets. Structural complexity theory
is often concerned with the interrelationship between sets in a complexity class (e.g.,
is set S complete for class C?), and inclusion relationships between classes (e.g., does
P NP?). However, the internal properties of sets (e.g., do all NP-complete sets have
infinite polynomially decidable subsets ?) are also of interest. We are concerned here not
just with the internal structure of sets, but more specifically with the ordering structures
that exist within a set and with the effect that these orderings have on the time and
space complexity of the set.

The study of sets and their associated orderings is not new. For example, the
classes of Turing self-reducible sets, p-selective sets, and p-cheatable sets have each been
widely studied, and the sets in each class have an internal partial ordering that is
imposed by the nature of the "self-reducibility" the set exhibits. Turing self-reducible
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sets have an internal well-founded ordering that ties the membership question for any
element of the domain to the membership question for polynomially many "shorter"
elements, and the p-selective sets impose on their domain a polynomially testable
reflexive and transitive preorder.

This paper is part of a general investigation of how internal orderings affect the
time and space complexities of sets. Reference [GJY87a] surveys results concerning
various classes of "self-reducible" sets, outlining in a systematic way how ordering
structures affect the time and space complexities of these sets, and calling for a
"continuing systematic study of the relationship between.., internal structure and the
computational complexity of a set." References [GJY87b] and [GJY87c] go on to
more fully investigate the time and space complexity of p-selective, p-cheatable,
self-reducible, and word-decreasing-query self-reducible sets. Thus these investigations
fall within a longstanding--yet newly reemergent--research stream, surveyed recently
in [H90], that seeks to build a substantial collection of efficient operations that can
be performed on sets whose membership problems seem to be complex.

More recent advances along this line include polynomial-time enumeration
schemes for all NP-complete sets that have arisen by direct construction [HHSY] and
polynomial-time minimal perfect static hash functions for all standard NP-complete
sets [GHK90]. The present paper gives strong evidence that all sets in parity polynomial
time are one-one reducible to sets whose membership problem can be partially tested
in an efficient manner. Adapting and extending the techniques of this paper, [HH90]
goes on to show that an even larger class of sets---0) Opt P--can be one-one reduced
to sets having slightly more general algorithms for partially testing membership.

This paper defines and studies the class of near-testable sets, a class of sets that
have a particularly simple internal ordering structure. Like many other self-reducible
sets, near-testable sets lie somewhere between P and PSPACE. Sets are near-testable
if, in polynomial time, for any element x it is possible to fully relate the membership
question for x to the membership question for x’s immediate predecessor in the
lexicographic ordering. Because of this very simple structure, we hope that it will be
possible to analyze near-testable sets in ways that are not possible for more complicated
classes.2

This intuitive definition of near-testability is easily formalized as follows"
DEFINITION 1.1. A set S is near-testable if there is a polynomially computable

function that, given x > 0, decides whether exactly one of x and x- 1 is in S. That is,
the function

t(x) Xs(X) + Xs(X 1) (mod 2)

is polynomially computable. We denote the class of near-testable sets by NT.

Here and throughout this paper, we associate the integer n with the nth string in lexicographical
order, so that we may speak interchangeably about strings and numbers with no distinctions between the
two (see [MY78]). Thus, 0 will stand both for the number 0 and for the empty string.

In [Ba87], Balcizar introduced the word-decreasing-query self-reducible sets. Although our original
interest in near-testable sets was independent of Balcizar’s work, in hindsight his definitions provide a nice
motivation for studying near-testable sets. Balczar said that a set S is polynomial-time word-decreasing-query
(wdq) self-reducible if there is a polynomial-time deterministic oracle Turing machine M such that Ms

decides membership in S and for each input x, all queries to S lexicographically precede x. Near-testable
sets are easier to analyze thanBalczar’s sets, since for near-testable sets the membership question for any
given element can be reduced in polynomial time to the membership question for its immediately preceding
neighbor.
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Thus, with respect to our ordering on E*, we can fully relate the membership
questions for x and x-1, where x-1 denotes the lexicographic, or equivalently the
numeric, predecessor of x. We easily see that if S is near-testable, then S is also, and
that all near-testable sets are decidable in linear exponential time and in polynomial
space. In addition, it is easily seen that if S is near-testable and if either S or S is
polynomially sparse, then S is in P. On the other hand, a straightforward diagonalization
allows us to construct sets that are exponentially (or even just superpolynomially)
decidable but not near-testable. We summarize these observations as follows.

OBSERVATION 1.2. (i) P
_
NT coNT

_
E PSPACE.

(ii) If S NT and if either S or S is polynomially sparse, then S P.
(iii) There is a set in E that is not near-testable.
An important concept in the study of near-testable sets is the boundary of a set.

Given a set S, the boundary of S will be defined by

boundary (S) {x" x- 1 is defined and exactly one of x and x- 1 is in S}.

Thus the boundary of a set S consists of the first element of every contiguous sequence
of elements of S and of S with the exception of the first contiguous sequence.

We can picture a set S for which 0 S as follows"

(exclusive of points in its boundary) is represented by the thicker horizontal lines,
(exclusive of points in its boundary) by the thinner horizontal lines, and boundary (S)

by lines of the form "[" and "I"- Note that boundary (S)= boundary ().
OBSERVATION 1.3. S is near-testable if and only if boundary (S) P.

2. Relating near-testability and parity testing. Papadimitriou and Zachos [PZ83]
and Goldschlager and Parberry [GP86] introduced the complexity class 0)P, parity
polynomial time, which has recently proved useful in the study of randomized poly-
nomial-time reducibilities and in separating the polynomial hierarchy from PSPACE.
We will see that the near-testable sets form a subclass ofP, and perhaps surprisingly,
every set in 0)P is one-one polynomial-time reducible (-< (’) to a near-testable set.

DEFINI:ION 2.1. A set S is in 03P if there is a nondeterministic polynomial-time
Turing machine M such that x S if and only if the number of accepting paths in
M’s computation tree for input x is odd.

Papadimitriou and Zachos refer to 03P as "a more moderate version" of Valiant’s
class # P, which is the class of functions that count the number of accepting paths
produced by nondeterministic polynomial-time Turing machines [Va79]. Clearly, if
we could compute # P, then 03P would be no more difficult. Like # P, )P is in PSPACE
and is thought not to be contained in the polynomial hierarchy; Toda has recently
shown that if 03P is in the polynomial hierarchy then the hierarchy collapses [To88],
and Regan and Royer have shown that 0)P strictly contains the polynomial hierarchy
relative to a random oracle [RR90].

We next observe that the near-testable sets form a subclass of @P.
THEOREM 2.2. NT
Proof. Suppose that S is near-testable. Let us assume for the moment that 0 S.

We will describe a nondeterministic parity machine M that recognizes S. On input x,
M will guess a string lexicographically less than or equal to x, trying to guess an

Throughout this paper we will use E to denote the class of sets recognizable in deterministic time

and EXP to denote the class of sets recognizable in time 2nl).
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element of boundary (S) and verify its guess. Note that x S ifand only if the number
of strings in boundary (S) that are less than or equal to x is odd if and only if there
are an odd number of accepting computation paths for M(x). If 0 S, then we simply
add one vacuous accepting path to each of M’s calculations.

The preceding proof shows the close connection between a set, the boundary of
the set, and the parity of the boundary. In fact, for any set B if we let

1 if l{ w _-< z w B}] is odd,
parityB (z)=

0 otherwise,

then, identifying a set with its characteristic function, it is easy to see for any set S that

0 ESS parityboundary(S) and 0 ESS parityboundary(S).

Although it seems unlikely that all sets in (P are near-testable, we next show
that these two classes are nevertheless very closely related.

THEOREM 2.3. Every set in @P is <= P-reducible to a near-testable set via a poly-
4nomially invertible reduction that has a polynomially decidable range.

Proof We describe a polynomial-time procedure that, given a nondeterministic
polynomial-time Turing machine M, constructs a near-testable set S so that T <_-P S,
where T is the set accepted by M viewed as a @P machine--T {x: M(x) has an
odd number of accepting paths}.

Let p be a polynomial bound on the running time of M. Without loss of generality
we may make a number of assumptions about the polynomial bound p and the length
of M’s computations on inputs of length n"

(i) That p is of the form n i+i for some i"

(ii) That all computations for an input of length n have length exactly p(n); and
(iii) That no computation y is in 0* or in 1".
To construct the set S we first construct a polynomially decidable set B. S is then

completely defined by specifying that 0 S and that boundary (S) B. The basic idea
is to let

B {(x, y)" y is an accepting computation of M(x)},

where (x, y) OXlOX2 Oxn l yl Y2 yk, for x xl xn and Y Yl Yk. This con-
struction will yield only that T is polynomially truth-table reducible to S, so after
seeing how the basic idea works we modify the definition of B to obtain T _-< S.

When [yl p(lx]), we will call a pair (x, y) relevant. Note that (i) all (x, y)’s precede
all (x + 1, z)’s when (x, y) and (x + 1, z) are relevant pairs; (ii) for relevant pairs (x, y),
(x, y) is computable in time polynomial in the length of x; and (iii) there is a decoding
function for relevant pairs that is polynomially computable in the length of the string
coding the pair.

Using this pairing function, B is obviously in P, and if we define S by requiring
that 0 S and boundary (S)= B, then by Observation 1.3, S is near-testable.

Note that Theorems 2.2 and 2.3 do not guarantee that every set in @P is even polynomially many-one
equivalent to a near-testable set. We conjecture that such a strong equivalence between @P and NT does
not hold.

Here a computation is not the sequence of instantaneous descriptions that encode the complete
computation path but rather, a computation is the sequence of O’s and l’s that tell us which of the
nondeterministic branch points are taken as a nondeterministic Turing machine traverses a particular
computation.
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To see that T is truth-table reducible to S, note first that, by assumption (iv), no
string of the form (x, 0 p(Ixl)) or (x, 1 p(Ixl)) is in B. Using this and the fact that T is the
parity set for M’s computations, we see that for all x

x T<=>parityB ((x, 0p(Ixl)))# parityB ((x, l(PlX[))).
But B is simply the boundary of S, so by observation (.), which preceded the statement
of this theorem, we have that for x 0,

x T<z S((x, 0p(Ixl))) S((x, 1 p(Ixl))),

which is a very simple polynomial-time two-truth-table reduction of T to S.
But we want the stronger result that T-<f S. To obtain this, we modify S by

changing the definition of B. Note that if we simply doubled the number of accepting
paths then on every computation tree we would always have that parity((x, 0P(IXl))=
parity ((x, lP(Ixl)))-0. This would make the membership test we have given for T
always come out false, but note that if we could then always find a relevant pair (x, y)
such that exactly half of x’s computations always preceded (x, y), then we would have
that x T if and only if parity ((x, y)) 1.

This requirement is easily met. We modify S by changing the definition of the
boundary B to

(**) B {(xc, y): c {0, 1} and y is an accepting computation of M(x)}.

For each accepting computation of M(x), there are now two elements of/3, one less
than (xl, 0m>, one greater. Furthermore, parity ((x0, 0p(Ixl)))= parityB ((xl, 1 p(Ixl)))=
0. Therefore,

x TCparity ((xl, 0p(Ixl))) 1 (xl, 0p(Ixl)) S.

This gives the desired polynomial one-one reduction of T to S. The set S is again
near-testable because B is its boundary and B in in P.

This reduction is polynomially invertible and has a polynomially decidable range
because of our assumptions about p. [3

COROLLARY 2.4. @P # P if and only if NT P.
Note that for any one-one, polynomially computable, polynomially honest function

f, the set Range (f) is in qP. In fact Range (f) is in the subclass of q)P called UP,
which is the class of sets accepted by nondeterministic machines that always have at
most one accepting computation [Va76]. It has been shown that UP is equal to P if
and only if every one-one polynomially computable and polynomially honest function
has a polynomially computable inverse [GS84]. Polynomially computable functions
of this form that do not have polynomially computable inverses are called one-way
functions. Thus we have the following corollary.

COROLLARY 2.5. If one-way functions exist, then NT # P.

3. Complete problems for near-testable sets. The key to completeness for Valiant’s
class #P is the concept of a solution-preserving reduction. A reduction is said to be
parsimonious if it preserves not only membership in a set, but also the number of
witnesses that a given element is in the set. If we define #SAT to be the function
obtained by regarding Boolean formulas as inputs and obtaining outputs by counting
the number of satisfying assignments to the Boolean formulas, then it is easily seen
that #SAT is complete for #P, provided the reductions used in the proof of Cook’s
theorem are parsimonious reductions of sets in NP to SAT. If the proof is carefully
done, then these reductions are in fact easily seen to be parsimonious, one-one and
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polynomially invertible ([$75]; see [MY78, Thm. 7.3.9] for a simple proof). Valiant
[Va79] has shown that a number of interesting sets, including # SAT, are complete for
#P.

There is a corresponding definition ofSAT, which is the set of Boolean formulas
that have an odd number of satisfying assignments. Furthermore, because the reductions
used in the proof of Cook’s theorem are parsimonious, the proof that shows that #SAT
is =<P-complete for #Palso shows that SAT is _-< P- complete for P.

Since NT_P, the near-testable set to which SAT can be reduced using
Theorem 2.3 must be <= P-complete not only for the near-testable sets, but also for 03P.
We call this set NTSAT,6 Remember that the construction used in Theorem 2.3 implicitly
defined a near-testable set by defining its boundary. If p is a polynomial bound on
the run-time of the nondeterministic Turing machine recognizing SAT satisfying the
criteria of that construction, and Yl =P(IXl), then the following hold: (1) (x0, y)
NTSAT if and only if there are an odd number of satisfying assignments for formula
x up to and including y, and (2) (xl, y) NTSAT if and only if the number of satisfying
assignments for formula x, plus the number of satisfying assignments for x up to y, is
odd.

Valiant and Vazirani [VV86] have recently shown that SAT is of interest in the
study of randomized reductions since it is NP-hard under randomized reductions.

DEFINITION 3.1. S is reducible to T by a randomized polynomial-time reduction
r if there is a polynomial-time probabilistic Turing Machine computing r, and poly-
nomial p(n), such that for all x, if x S then r(x) T, and if x S then

Probability Jr(x) T] >- p(Ix])-.
THEOREM 3.2. The set NTSAT is

(i) Polynomially isomorphic to @SAT,
(ii) _-< -complete both for NT and for P,
(iii) NP-hard under randomized reductions, and
(iv) Truth-table self-reducible via a simple truth-table of size two.

Proof (i) By definition, O)SAT <= NTSAT under the one-one, polynomially
invertible function f of Theorem 2.3. The set @SAT is a polynomial cylinder because
it is easily seen to have a one-one polynomially computable, polynomially invertible,
padding function, pad (x, y) such that for all x and y

x SATCr>pad (x, y) SAT.

(Simply "pad" Boolean expressions by adding useless variables. If done properly, this
will not change the parity of the satisfying assignments for SAT.) Since SAT is
<=P-complete for P, NTSAT <= SAT. These interreducibilities between NTSAT
and 0)SAT imply that the padding function for SAT induces a corresponding padding
function for NTSAT, so both are cylinders. It follows (see, e.g., Lemma 2.4 of [MY85])
that SAT and NTSAT are polynomially isomorphic.

(ii) This follows immediately from (i) since NT
_

O)P, and hence NTSAT O)P.

(iii) First observe from the definition of randomized polynomial-time reductions
that if S is reducible to B via a randomized polynomial-time reduction and if B =< P C,

Technically, NTSAT depends both on the choice of the parity machine M, which recognizes SAT,
and on the polynomial p, used as an explicit bound on the run time of M. For now, any choice of M and

p satisfying conditions (i)-(iv) in the proof of Theorem 2.3 will do. When we use NTSAT in Theorem 3.2,
we will require that the machine M be chosen in a very straighforward and natural way.

Richard Biegel [Be87] has independently constructed a set that is _<- ’_.-complete for NT and NP-hard
under randomized reductions.
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then S is reducible to C via a randomized polynomial-time reduction. But SAT is
hard for NP under randomized polynomial-time reductions, and SAT <= NTSAT.

(iv) As we will see, this follows from a careful look at the proof of Theorem 2.3.
To this end, consider the set NTSAT. Recall that SAT came from a standard

encoding of SAT, and that the machine M that recognized SAT was required not to
have any accepting choice sequences in 0* or in 1". Without loss of generality, we can
assume first that the formulas in SAT are all in conjunctive normal form, and we
can further assume by appending appropriate useless conjuncts, (e.g., "[-xi] & [Xk]"
for new variables xi and Xk), that the formulas used in definingSAT have no satisfying
assignments in 0* or in 1".

Consider now a standard nondeterministic machine M that accepts SAT, and
consider formulas with variables xl, x2, , xn. The machine M runs in time quadratic
in the length of the formula, and in the proof we assumed that the computation, i.e.,
the list of choices of branch points, always had length equal to the computational time
of M. But in fact, if the machine M for SAT is chosen in its most obvious way, then
the relevant branch points for the nondeterministic machine always correspond exactly
to the choice of assignments for the variables xl, x2, , xn. Thus for this simple case,
in the proof of Theorem 2.3, we can assume that the computations, i.e., the sequence
of choices at the branch points, always have length exactly n.

Returning to the proof of part (iv) of the theorem, first consider the boundary set
B defined in equation (**) in the proof of Theorem 2.3. For any x there are an even
number of relevant pairs (xe, y) that are in the boundary set B. Thus, since we began
by putting 0 NTSAT, and since B is the boundary for NTSAT, we must have that
for all x, (x0, 0 p(Ixl)) NTSAT. Thus for the first computation sequence for x (i.e., the
sequence whose nondeterministic guesses are all zeros), membership in NTSAT is
directly testable.

Now let F(xl,.’’, xj_, xj, x/,..., x,) be any Boolean formula in conjunctive
normal form as described above. For any such formula, we made the possible computa-
tion choices of the standard nondeterministic Turing machine that recognizes SAT in
polynomial time and the parity machine that recognizes SAT correspond exactly to
the 2 zero-one valued Boolean vectors of the form b,..-, b_, b, b/,. ., b,,
which represent possible satisfying assignments for F(x,. ., xj_, x, xj/,. ., x,).
Thus in the proof of Theorem 2.3 equation (.), we can write the inputs and computation
choices that correspond to relevant pairs for the set B in the form

F x xj_ xj xj+ Xn ), C, b b_ bj, bj/
where the b’s and the bit c are all just Boolean values. Now for this Boolean formula
F let

correspond to any relevant pair.
Case 1. If c 0 and all b 0, then we already know that

F(x ,. ., Xj_l, Xj, Xj/ ," ", Xn) C, b ,. ., bj_l, bj, bj+ ,. ., b NTSAT.

Case 2. Assume that bl,’", b_, b, b+,..., bn 0n. Let j be the leftmost
position where the bit bj 1 (j may equal 1). In this case,

F(x, ., x_,, xj, x+,, ., x,), c, 01," ", Oj_,, 1j, b+,. ., b,

NTSAT ifand only if

For ease of notation, we will drop explicit reference to the encoding (xc, y) for the rest of this proof.
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there are an odd number of Boolean assignments less than or equal to c, 01, 0j_l,
lj, bj+l," , b, that represent successful computations on

F(x1, Xj_l, Xj, Xj+l, Xn).

But the assignments less than or equal to c, 01,’’" Oj_l, 1, bj+l,’," b,, are
exactly those less than or equal to

C, Ol, Oj_l, bj, bj+l, bn
in which the bit b is fixed at 1 together with those less than or equal to

, 01,""" Oj__l, bj, lj+l, 1,

in which the bit b is fixed at 0.
Therefore, we are able to see that there are an odd number of Boolean assignments

less than or equal to c, 01,’’’, 0j_l, lj, bj+l," , bn that are successful computations
on F(Xl,’’., Xj_l, x, X+l,’’ ", xn) if and only if the parity of the assignments less
than or equal to c, 01,"’, 0j_l, bj+l," ", bn that are successful computations on
F(Xl,’’’, xj-1,1, Xj+l,""’, xn) is unequal to the parity of the assignments less than
or equal to c, 01,’’’, 0_1, 1j+1,’’’, In that are successful computations on
F(xl, ., Xj_l, O, Xj+l, ", Xn). That is,

(***) F(x1, xj-1, xj, Xj+l, xn), c, 01,’’’, 0j-l, 1, bj+l, bn NTSAT]]

F(xl, , x_, O, xj+l, ", xn), c, 01," , 0_,, 1+1," , In NTSAT

F(Xl, ., X_l, 1, xj+, ,. ., xn), c, 01 ," ", 0j_l, b+l ," ", bn NTSATI],

which is a standard example of a two-truth-table self-reduction of NTSAT to shorter
elements of NTSAT.

Case 3. Finally, suppose c= 1 and all b-0. In this case, we know by our
assumptions on the computations that F(Xl, , x_, x, x+, , xn), 1, 01,

0j_l, 0j, 0j+l, O J B. But this implies that

F(x1, Xj_l, Xj, Xj+l, Xn) 1, 01, 0j_l, Oj, 0j+l, O NTSAT<=>

F(Xl, , X_l, xj, x+l, , xn), 0, 11, , 1_, 1, 1+1, , In e NTSAT.

This is not a self-reduction since both formulas have the same length, but for the latter
formula b 0, so the earlier results may be used to self-reduce

F(x1,’’" Xj_l, xj, Xj+l,’’" Xn) 1, 01, ,0j_l, 0j, 0j+l, O

by instead using (***) to self-reduce

F(Xl, Xj_l, xj, Xj+l, Xn) O, 11, lj-1, 1, lj+l, ", 1,.

4. Polynomial isomorphisms and generalizations of NT. In this section we address
the question, "To what extent is the property of being near-testable preserved under
polynomial-time isomorphisms?" Given the close connection between near-testable
sets and their boundaries, we might superficially expect that an isomorphism between
the boundaries of two near-testable sets would induce an isomorphism of the corre-
sponding sets, or conversely that an isomorphism between two near-testable sets would
induce an isomorphism of the corresponding boundaries. But such expectations fail.

OBSERVATION 4.1. For near-testable sets S and T
(i) Boundary (S) P boundary (T) does not imply that S P T, and
(ii) S -P T does not imply that boundary (S) P boundary (T).
Proof (i) If we take a very sparse polynomially decidable set, say, one whose

elements satisfy x < y implies Ix] < 2lyl, then this single set serves as a boundary for
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two near-testable sets S and S. Clearly, S and S cannot be polynomially isomorphic
even though they have the same boundary. Thus we cannot expect polynomial
isomorphisms of boundaries to induce polynomial isomorphisms of near-testable sets,
and no generalization of the notion of near-testability can change this.

(ii) If we ask the converse question, whether a polynomial isomorphism of
near-testable sets should imply an isomorphism of their boundaries, the answer is
again "no," but in this case the answer is less definitive. For example, let S
{0x- x {0, 1}*} and T {x0: x {0, 1}*}. In this case S and T are trivially near-testable
since they are in P. Note that S P T. But the boundary of T is all of {0, 1}*, and the
boundary of S contains only two elements of each length, so it is polynomially sparse.
Therefore boundary (S) P boundary (T).

Note that in our second example, the boundaries failed to be polynomially
isomorphic because of the rigidity of the underlying ordering structure that we insisted
on using for our notion of "nearness." If we had been allowed to use reverse lexico-
graphic ordering to measure "nearness" in the set T, then the boundaries of S and T
in the second example would have been polynomially isomorphic.

One property that distinguishes near-testable and wdq self-reducible sets from
other more general self-reducible sets is that their definition is based on the standard
lexicographic ordering of E*. For this reason near-testability and other notions of
self-reducibility are quite sensitive to the encodings of the set with respect to this
fixed-order structure. For example, these properties of sets are not necessarily closed
under polynomially computable isomorphisms (or even length-preserving permuta-
tions) of E*. Thus, because of our reliance on the canonical lexicographic ordering,
the property of near-testability as we have defined it is probably not preserved under
polynomial isomorphisms.

OBSERVATION 4.2. If NT P, then near-testability is not preserved by polynomial
isomorphisms.

Proof. Since NTSAT is complete for NT, if NT P then NTSATe P. As observed
in the proof of Theorem 3.2, NTSAT has a polynomially computable padding function
pad. Let T {x0" x NTSAT}. It is easy to see that T and NTSAT are polynomially
many-one equivalent and that the padding function pad for NTSAT can be used to
induce a corresponding padding function on T. Thus both NTSAT and T are polynomial
cylinders, and, as in the proof of Theorem 3.2, it follows from Lemma 2.4 of [MY85]
that NTSAT and T are polynomially isomorphic. Thus T P. We now show that T
is not near-testable. Since every other string is not in T, we see that x T if and only
if x boundary (T) {*0}. Therefore boundary (T) PT P. Thus boundary
(T) P, so T is not near-testable.

Our last two observations suggest that, if we want the property of being near-
testable to be more broadly applicable and to be closed under polynomial isomorphisms,
then we should relax our requirement that "nearness" be measured only in terms of
the standard lexicographic ordering of E*. Note that similar problems arise for proper-
ties like Turing self-reducibility when the definition of the property is strictly tied to
the lexicographic ordering of *. The situation can be remedied by allowing more
general orderings of E*; for example, Meyer and Paterson [MP79] and Ko [Ko83]
have given generalized definitions for underlying ordering structures for use in defining
Turing self-reducibility. We will use a similar approach to define a broader class, NT*,
that has many of the properties of NT, yet is more robust.

We would like to say that a set is in NT* if there is some suitable polynomial
ordering relative to which the set is near-testable. To formalize this definition we must
describe the properties of a suitable ordering.
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Our orderings will be tree orderings, or more precisely forests, where the minimal
elements are the roots of the trees. An element x is less than an element y, x < y, if
x y and x and y lie on the same branch of a tree with x closer to the root than y.
The roots of the trees must form a polynomially decidable set, which we will call
ROOTS. We will say that such orderings are polynomially computable if < is a
polynomially testable relation and if, for x e ROOTS, the function pred (x) the unique
element y such that y < x and for all z, z <xz <_ y, is polynomially computable. (It
follows that ROOTS P, so, without loss of generality, we will assume that pred (x)
crisply detects when its input is a root.)

In addition, to preserve some of the time and space complexity propeRies of NT
we will require that the ordering be exponentially well-founded. For some polynomial
p, max {Izlz < x}_-<p(Ixl). This will imply that I{Y’Y < x}l <=2P(Ixl), and thus that for
any x, the path from x back to its root behaves reasonably like the sequence x,
x-I,...,1.

DEFINITION 4.3. A set S is in NT* if there exists a polynomially computable,
exponentially well-founded ordering, <s, such that

(i) ROOTS S is decidable in polynomial time, and
(ii) For x e ROOTS, t(x) Xs(X) + Xs (preds (x)) (mod 2) is a polynomially com-

putable function. For a set S in NT* we define boundary (S)= {x: exactly one of x
and preds (x) S}.

THEOREM 4.4. (i) NT
(ii) NT* P:NT P: NT* NT.
Proof. (i) Any set in NT is in NT* since the lexicographic ordering satisfies the

properties of Definition 4.3. NT* is closed under complements since the tree defining
a set S NT* can be switched to define S simply by noting that if ROOTS S is
decidable in polynomial time, so is ROOTS c S. Sets in NT* are inP for essentially
the same reason that sets in NT are in P: we can design a nondeterministic machine
that on input x, guesses elements z along the branch of a tree from a root to x, checks
that z -<-s x, calculates y pred (z) if z is not a root, and checks (using the polynomially
computable function t) that y is a boundary element along this path or, if z is a root,
checks that z S. Thus the computation tree for this machine on input x has accepting
paths for each element z along the branch from x to its root for which z S<=>
pred (z) S, plus one additional accepting path if the root is in S. Thus x S if and
only if the number of accepting paths is odd.

(ii) If NT* P, thenP P, so, by Corollary 2.4, NT P. If NT P, the image,
T, of NTSAT in Observation 4.2 is an example of a set in NT*-NT. If NT* NT
then trivially NT* P.

From the above result we have that P NT* PSPACE, as well as the following
corollary.

COROLLARY 4.5. Every set in O)P is <--reducible to a set in NT*.
One motive for extending the definition of NT was to find a superset of NT that

was closed under polynomial isomorphisms. The next theorem shows that NT* accom-
plishes this goal.

THEOREM 4.6. NT* is closed under polynomial isomorphisms.
Proof. Suppose that S NT* and g is a polynomial isomorphism between S and

a set T, g" T- S. We will denote by <s, preds, ROOTSs, and ts the tree ordering,
predecessor function, set of roots and near-testability function for S. We define similar
relations, sets, and functions for T as follows.

(i) x <TY if and only if g(x) <sg(Y),
(ii) predT (x)= g-1 preds g(x),
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(iii) ROOTST {x: g(x) ROOTSs}, and
(iv) tr(x)= ts(g(x)).
Clearly, the ordering < r is polynomially computable, ROOTSr is a polynomially

decidable set of roots for < r, and tr is a near-testability relation for T. Also clearly,
ROOTSr (q T is polynomially decidable. To see that < r is exponentially well-founded,
let p be the polynomial that witnesses that <s is exponentially well-founded and let
pg be a polynomial that bounds the stretching and shrinking done by g. Then

max {Iz[ z <rx}<-pg(max {Izl g(z) <sg(x)I)<=pg(p(pg(lX[))).

In addition, note that

I{Y" Y <rx}[=[{y" y <sg(x)}l<-2P(lg(x)l)<=2P(Pg(Ixl)). []

In the calculations above, we never used the fact that the inverse g-l(x) is unique.
All we needed was that, for each x, the set g-l(x) can be found in polynomial time
and that its size is polynomially related to the length of x. Therefore, if g is not one-one
but is polynomially many-one and completely polynomially invertible in the sense just
described,9 then for each x we can < r order the elements of g-(x) by simply using
the natural lexicographic ordering. This yields the following observation.

OBS.RVATION 4.7. NT* is closed under polynomial many-one reductions that are
onto * and have completely polynomially computable inverses.

It is also worth observing that the isomorphisms of Theorem 4.6 preserve the tree
structures ofthe underlying orderings. Theorem 3.2(i) tells us that the standard complete
set for O)P, O)SAT, is polynomially isomorphic to NTSAT. Thus we have Corollary 4.8.

COROLLARY 4.8. The standard complete set for O)P, O)SAT, is in NT* with an
underlying polynomial ordering of type N, <).

Observation 4.1(ii) showed that polynomial isomorphisms of sets in NT do not
imply the existence of isomorphisms between the boundaries of those sets. This result
depended on the canonical ordering (N, <) in the definition of NT. For NT*, the
situation is different. In Theorem 4.6 we saw that if we have a set in NT* based on
the exponentially well-founded tree ordering <s, then any isomorphism g provides
an isomorphism of the induced ordering < r (as described in the proof of Theorem
4.6), and it is obvious that the boundaries under <s and <r are polynomially
isomorphic. We state this result as Corollary 4.9.

COROLLARY 4.9. Given any two polynomially isomorphic sets S and T in NT*, the
boundary ofS is isomorphic to the boundary of T. (The boundaries are taken with respect
to the tree ordering induced by the ismorphism.)

Corollary 4.8 raises the possibility that O)P NT*. We conjecture that the contain-
ment NT*c_ @P is proper. Except for the obvious hypothesis that there exist sparse
sets in q)P-P, we do not have interesting (and nontrivial) conditions that imply that
this is true, although in 5 we will see that with respect to a random oracle the
containment is proper with probability one.

If the containment is not proper, then NT*= {S" S <-_ P NTSAT}, and this would
say that this generalized notion of near-testability is not just an interesting ordering
property that some sets possess, but that it defines a natural complexity class.

To prove the oracle results in 5, the following variation of Observation 1.2(ii)
will be useful.

Functions with this property were called strongly invertible by Allender and Rubinstein [AR88]. Such
functions will be discussed in more detail in 6.
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OBSERVATION 4.10. If S NT* and if either S or S is polynomially sparse, then
SP.

Proof The proof is the same as for NT. Assume that S is sparse, and let p and
q be polynomials such that of the elements of length less than or equal to n, at most
q(n) S, and of the elements preceding x in the ordering <s none is larger than p([x]).
Then for any x, consider the 2 q(p(lx[))+ 1 elements in the chain of elements that
immediately precede x in the ordering <s. If there is an element of ROOTS within
2 q(p(]x]))+ 1 "steps" of x, then membership of x in S can be determined directly.
Otherwise, these 2 q(p(lx[)) + 1 elements may be split into two subsets by enumerating
them using the predecessor function and splitting them every time the near-testability
relationship tells us that we have crossed a border between S and S. One of these
subsets will be contained in S and the other in S. Because S is sparse, the larger of
these subsets is in S. This gives a polynomial test for membership in S. Obviously if
S is sparse, then the same test works, except that the larger of the two groups of
elements in the chain of predecessors is in S.

5. Relativizing NT. Bennett and Gill [BG81] began the study of results that hold
for almost every oracle. Although there are examples of results that hold for almost
every oracle yet are false in an unrelativized setting [Ku82], probability one results
still may be of some interest--in some sense, they explore the power of computation
in the presence of freely available randomness.

In this section we combine relativized versions of our results above with the results
of Bennett and Gill, and of Regan and Royer, to show that, with probability one, NTz

contains computationally difficult sets. We also show that, with probability one, both
NTA and NT*A are incomparable with NPA and with coNPa.

THEOREM 5.1. Relative to a random oracle A, pA NTA NT,ApA, with
probability one.

Proof Bennett and Gill [BG81, Thm. 3] use the language

ODDA= {x" an odd number of strings of length Ix are in A}

to show that ppA PSPACEA with probability one. Their proof is in error [Be88],
but the remaining, correct techniques of Bennett and Gill, particularly their Lemma
1, easily suffice to show that ODDA separates pA from pA with probability one;
alternatively, Aspnes, Beigel, Furst, and Rudich have recently announced that Theorem
3 of Bennett and Gill is a valid claim, and that they indeed even have reestablished
the claim, implicit in [BGS1], that ODDA witnesses the probability one separation of
pA from ppA [Be90]. If we let TA--def0* t ODDA, then ODDA=-Pm TA, SO we now
have that TA separates pA from (pA with probability one. But TA is sparse, and
since Observation 4.10 clearly relativizes to an oracle computation, TA
pA. Thus NT*ApA with probability one.

Now the proof of Theorem 2.3 and hence Corollary 2.4 also relativizes, as does
Theorem 4.4. Corollary 2.4 guarantees that any oracle that separates P from 0)P also
separates P from NT. And then Theorem 4.4(ii) guarantees that any oracle that separates
P from NT also separatesNT from NT*. This establishes for any oracle A for which
ODDA separates pA and pA,

pA NTA NT,A (pA.

Since the collection of oracles A for which ODDA separates P and 0)P has measure
one, this establishes the theorem. [3

THEOREM 5.2. With probability one relative to a random oracle A, NTA- PHa Q,
where PH represents the polynomial hierarchy.
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Proof Theorem 2.3 of this paper shows that every set in @P is polynomial-time
many-one reducible to a set in NT. Regan and Royer [RR90] have shown that with
probability one, @paD pHa. The theorem follows immediately from these two facts
and the fact that @P is closed downwards under polynomial-time many-one reduc-
tions.

THEOREM 5.3. Relative to a random oracle A,
NPA- NT*a) ( and (coNPA- NT*a)

with probability one.

Proof Given a set A, define a function ((x)=the string of O’s and l’s of length
Ixl such that the kth bit is 1 if and only if xl0k-1E A. Bennett and Gill show that, with
probability one, neither the language RANGE3A=oef{x: :ly[(y)=xxx]} nor the
language RANGE3A contains an infinite polynomially decidable set. Since RANGE3A

is obviously in NPA, this shows that, with probability one, RANGE3A separates NPA

from pA [BG81, Thm. 6].
But since RANGE3A and RANGE3A are both P-immune, 0* must intersect both

RANGE3A and RANGE3A infinitely often. Thus, as pointed out by Bennett and Gill,
TA--defRANGE3A 0* must be a polynomially sparse set that is in NPA- pA with
probability one. Since it is polynomially sparse, just as in the proof of Theorem 5.1,
TA must therefore be in NPA- NT*A with probability one.

Since NT*A is closed under complements, we may separate coNPA from NT*A

with probability one by using the complement of TA.
6. Some additional facts about near-testable sets. In this final section we present

additional results concerning near-testable sets. In 1 we noted that any polynomially
sparse set that is near-testable is polynomially decidable. Here we return to this theme,
first discussing the effects that the distribution and density of elements have on the
complexity of a near-testable set. Next, having observed in Corollary 2.5 that the
existence of one-way functions implies that there are near-testable sets that are not
polynomially decidable, we prove a partial converse to this result. Finally, we briefly
relate P-selective and near-testable sets.

We begin this section with some observations on the fragility of NT. Because
near-testability is sensitive to the distribution of elements in a set, and to density,
certain sets are unlikely to be near-testable. For instance, since the primes (with the
exception of 2) are distributed only throughout the odd integers, an odd number greater
than 3 is prime if and only if it is in boundary ({primes}).

OBSERVATION 6.1. If {q: q is prime} is near-testable, then primality testing can
be done in polynomial time.

Since the set of primes is known to be in ZPP, this tells us that not all sets in ZPP
are near-testable unless primality testing is in P. This again points out how sensitive
NT is to the underlying order structure. We can generalize this example by replacing
the set of odd numbers by any polynomially recognizable set that is sufficiently dense.

DEFINITION 6.2. Let < be any polynomially computable, exponentially well-
founded ordering. We say that a set D is uniformly dense with respect to < if there
is a polynomial p(n) such that for any string x, there is an element of D or a root
within p(Ixl) "steps" preceding x in the ordering <.1o

OBSERVATION 6.3. Suppose that S NT* via the ordering . If there is a set D,
uniformly dense with respect to , such that D P and D S P, then S P.

o An inverse of this notion, that of a set being uniformly sparse in the standard lexicographic ordering
is used in [HIS85] and also (in the uniform version that we use here in Theorem 6.7) in [GJY87c].
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Proof. Suppose the polynomial p(n) bounds the number of steps from any string
of length n to the nearest element of D. Suppose also that both D and D c S can each
be polynomially decided. To decide whether x S, we enumerate the p(Ixl) strings
immediately preceding x, if that many exist, and we then run the decision procedure
for D on each of these strings. Once we find y D, we quickly decide whether y D c S.
We then use the near-testability algorithm to decide membership for all of the strings
from y to x, including x.

The next observation shows that if the boundary of an NT* set is uniformly dense
then the set and its complement are many-one interreducible.

OBSERVATION 6.4. Suppose that Se NT* and that boundary (S) is uniformly
dense with respect to <s; then s<--P.m (Thus, if S is in NP or in coNP, then
S NP coNP.)

Proof Since boundary (S) P and is uniformly dense, both S and S are infinite
and in NT*. Define a polynomial many-one reduction, f, from S to S as follows. Given
x, we can find (in polynomial time) the first ysx such that yboundary (S) or
y ROOTS. If y ROOTS, then x S if and only if y S, and for y ROOTS this is
polynomially decidable. Given a S, b S, let

a, if y ROOTS S,
f(x) b, if y ROOTS c S,

pred (y) otherwise.

The results in 5 show that it is not likely that all sets in NP and coNP are
near-testable or even in NT*. The question of whether there are any near-testable sets
that are not in P was addressed in 2, where we showed that NP P if and only if
q)P P. As pointed out there, the existence of one-way functions implies that UP, and
hence q)P, is not equal to P. Thus, if one-way functions exist, NT P.

A natural question is whether we actually need the existence of one-way functions
in order to prove that there are sets in NT or in q)P that are not in P. One result
which suggests that one-way functions are not needed is the existence of oracles relative
to which one-way functions do not exist but paypa (this follows by the obvious
modification to [Ra82, Thm. 4]). Our next result, however, gives a partial answer
pointing in the other direction. Instead of asking about polynomially invertible one-one
functions, we instead ask about strongly invertible many-one functions. Recall that in
the proof of Observation 4.7 we used inverses of polynomially many-one, polynomially
computable, polynomially honest functions. If f is such a function, let f-(x)=
{y: f(y)= x}. Note that iff is polynomially many-one, it is conceivable that, given x,
we can find {y: f(y) x} in time polynomial in Ixl. Functions for which we can always
complete the listing of all of {y: f(y) x} in time polynomial in Ixl are called (many-
one) strongly invertible. Functions for which we cannot always completely list {y: f(y)
x} in polynomial time are said to be one-way.

Many-one, one-way functions have been studied in other contexts, and are dis-
cussed extensively in [AR88]. For example, for strong invertibility on 0", Allender and
Rubinstein prove that the following are equivalent:

(i) There is an honest polynomially many-one function computable in poly-
nomial time that is not strongly invertible on 0".

(ii) There is a polynomially sparse set in Few P-P.
(iii) E sparse(Few P) E.
(iv) There is a polynomially sparse set in P that is not P-printable.
(v) There is a polynomially sparse set in deterministic logspace that is not

P-printable.
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In this context, we have the following partial converse to Corollary 2.5. (Recall that
any set that is polynomially sparse has a polynomially sparse boundary, but the converse
is not true. Note also that any polynomially well-founded ordering will have a
polynomially computable function r which finds the roots of -<_.)

THEOREM 6.5. If there is a set S NT*-P with a polynomially sparse boundary,
and if there is a polynomial-time computable function r(x) such that r(x)<= x and
r(x) ROOTSfor all x, then there is a polynomially many-one, polynomially computable,
polynomially honest function that is not strongly invertible on 0".

Proof Let B =boundary (S). Let q(n) be a polynomial bound on the census
function for B, and let < be the underlying tree ordering used in witnessing that
S NT*. We define

Ixl ifxB,
f(x)

x otherwise.

Since S NT*, B P, so f(x)is polynomially computable. Since If(x)l Ixl, f is
honest. Note that f-l(0n) has at most q(n)+ 1 elements, all of length n. Suppose f-1
were polynomially computable on 0*. Given x, in time polynomial in Ix[, we could
then compute all off-(0), f-(02), f-(01xl), throwing away any z’s found in some
f-(0n) (n <_-Ix]) for which z 0* but z B, and throwing away any z for which z g x.
Thus, in time polynomial in Ixl, we can find all z’s <-_ x that lie on the boundary of S.
We then compute r(x), and decide (in polynomial time, since r(x) ROOTS), if
r(x) S. Given this information, and the number of boundary elements z<-_ x, we can
decide x S in polynomial time. Thus, if S P, f must be a one-way function.

(Note that if S has at most one element of any given length, then f is a one-one

one-way function.) [3

The proof ofthe previous theorem requires a set in NT* P with a polynomial-time
computable function r, and a sparse boundary. Given a one-way function, Corollary
2.4 and Theorem 2.3 let us construct sets in NT-P. However, these sets do not have
sparse boundaries, and we do not know interesting conditions that imply the existence
of sets in NT-P with sparse boundaries.1 We can construct, although we will not
do so here, an oracle A relative to which there exist sets in NTA-PA that have
boundaries with at most one element of any given length.

In closing, we give one more method that may construct sets that are near-testable
but are not polynomially decidable. This construction not only gives additional evidence
that NT P, but it shows that the combination of near-testability and P-selectivity is
unlikely to guarantee that sets are decidable in polynomial time. This is in contrast to
the case for p-cheatability, since it can be shown that near-testable sets that are (2k

for k) p-cheatable are all decidable in polynomial time [GJY87c].2

To do our final construction, we need to assume the existence of very sparse sets
in P that are not P-printable.

DEFINITION 6.6. A set S is uniformly log*-sparse if for all x and y in S, x < y
implies 21xl<ly I.

1 Recently Cai and Hemachandra have shown that every set in FewP is in 0)P [CH]. We might hope
to use this result together with the reduction from sets in )P to sets in NT given in Theorem 2.3 to strengthen
Theorem 6.5. Unfortunately this does not seem possible because Cai and Hemachandra’s result increases
the number of accepting paths so that it is no longer polynomially bounded.

12 For information about P-selective sets, see [$79], [$82a], [$82b], [Ko83], [GJY87a], and [GJY87c].
Amir, Beigel, and Gasarch [ABG87] have independently shown this last result for the special case of (2 for
1) p-cheatability.



NEAR-TESTABLE SETS 521

THEOREM 6.7. If there is a uniformly log*-sparse set in P that is not P-printable,
then there is a P-selective near-testable set that is not polynomially decidable.

Proof Let S be a uniformly log*-sparse set in P that is not P-printable. Define a
rapidly growing functionf by f(0) 2 and f(n + 1) 2y". We will let I, be the interval
of strings of length f(n) up to length f(n/ 1). From the definition of uniformly
log*-sparse sets, we know that IS c/,I <-- 1 for each n.

Let

So= S f-) w. {I3.}, SI S f"I . {I3.+I}, S2--S("1c;.{I3.+2}.

Then S P for each i, and for at least one i, S is not P-printable. Without loss of
generality, we will assume that So is not P-printable.

We then define the desired set T as follows:

T= {x: x I3, I3+, and :ly I3, So, y <- x} U {13,+a-{f(3n + 3) l}}.

In other words, all but the last element of I3,+2 is always in T, and the last element
of I3,+2 is always a boundary point. If there is an element y 13, So, then this y
serves as a "breakpoint," dividing 13, w I3,/ into a left-hand subinterval in T and a
right-hand subinterval in T. If there is no such element, then both I3, and I3,/ T.

The boundary of T thus consists of the rightmost elements of the I3,+2’s, the
element of I3, c So when there is one, plus the left-hand endpoints of the I3,+2’s for
which I3, So . By the definition of the Ik’S, if y is the left-hand endpoint of I3,+2,
then in time polynomial in lyl, we can test whether there is an element of So in I3,.
Thus, boundary (T) P, so T is near-testable.

Assuming x =< y, the following function is a P-selection function for T:

’y if x --f(3m + 3) 1 for some m, else,
x if x G I3m+2 for some m, else,

s(x, y) = y if x, y I3,, I3,,+ w I3m+ for some m, else,
x if X I3m C) I3m+1, Y I3n t I3n+1 k_) I3n+2

for some n > rn and x T, else,
y if x I3m I3m+1, Y I3, 13,+1W 13,+2 for some n > m and x T.

Note that in the last two cases we can test x T in time polynomial in lyl.
Finally, suppose that T e P. Then the following algorithm P-prints So: for each k,

if Ok T and 0k+ T, then there is exactly one boundary point for T of length k. The
assumption that T P thus enables us to find this boundary point in polynomial time
by using binary search. By definition of T, any boundary point for T has one of three
forms, and two of these, the elements of the formf(3 n + 3) 1 and of the formf(3 n + 2)
simply are not in So. Any other boundary point is in So. Since all elements of So are
boundary points of T, this gives a polynomial algorithm for printing So, a contradiction.

Thus, T is a P-selective, near-testable set that is not in P. [3

7. Conclusions. This paper introduces the near-testable sets, a class of sets having
a particularly simple internal ordering structure. These sets are defined to capture one
notion of having an efficient partial membership test; in polynomial time, we can
determine whether exactly one of a string and its predecessor are in a near-testable
set. Though the class of sets that have efficient exact membership tests, P, seems quite
small, we have shown that an apparently far broader class of sets are near-testable"
all 0)P sets =!<P reduce to near-testable sets. Thus, our results precisely locate the
complexity of near-testable sets in terms of an important and well-studied class, P.
It follows from our results that there are near-testable sets that are not polynomially
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decidable if and only if there are sets in 03P that are not polynomially decidable, and
that with probability one relative to a random oracle, near-testable sets separate
PSPACE from the polynomial hierarchy.
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Abstract. A complexity-theoretic approach to the classical data compression problem is presented. A
notion of language compressibility is defined, and it is shown that essentially all strings in a sufficiently
sparse "easy" (e.g., polynomial-time) language can be compressed efficiently. A notion of ranking as a form
of optimal compression is also defined, and it is shown that some "very easy" languages (e.g., unambiguous
context-free languages) can be ranked efficiently. Languages that cannot be compressed or ranked efficiently
under various complexity-theoretic assumptions are exhibited.

The notion of compressibility is closely related to Kolmogorov complexity and randomness. This

relationship and the complexity-theoretic implications of our results are discussed.

Key words, data compression, Kolmogorov complexity, computational complexity
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1. Introduction. In the classical data compression problem one is given a long
string and wishes to obtain a succinct representation of it so that it can be transmitted
or stored more efficiently. It is important that both the process of coding, i.e., mapping
the string to its representation, and the decoding process have low computational
complexity. This problem is typically solved in practice by exploiting characteristics
of the language of source strings, such as the low Shannon entropy of English text,
to achieve the compressed representation. The goal of this paper is to show that, under
certain very general complexity-theoretic assumptions about a language, one may
efficiently compute a compressed representation for essentially all of its members.

Data compression is closely related to Kolmogorov complexity l-K]. The Kol-
mogorov complexity of a string is the length of the shortest program that generates
the string. The shortest program may be viewed as a succinct representation. Kol-
mogorov complexity differs from data compression in that the difficulty of coding is
disregarded, and is generally an uncomputable function. The decoding is only required
to be computable, and not necessarily of low computational complexity. On the other
hand, one advantage of Kolmogorov complexity is that it applies very generally. If
one takes any recursive language which is of asymptotically low density, i.e., the
fraction of strings in it approaches zero as the size grows, then it is easy to see that
all but a finite number of its members have generating programs shorter by at least
some amount. The program only needs to know the index of the string in the lexico-
graphic ordering of the language to generate the string.

The main result of this paper is to show that if the density of a language goes to
zero sufficiently quickly and the language is computable probabilistically in polynomial
time, then there are probabilistic polynomial-time algorithms for coding and decoding
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which provide short representations for all but a finite number of its members. The
encoding and decoding algorithms operate by transforming the language to one which
may be compressed using arithmetic coding [El], [Ris], [RL]. One interesting property
of our scheme is that the representation of a given string is not determined solely from
the string itself but may also depend upon the random choices made by the encoding
algorithm. The decoding algorithm also operates probabilistically, but without the
knowledge of the random choices made by the encoding algorithm.

We consider this result to be of primarily theoretical significance. It is not directly
relevant to practice because the algorithms are too slow to compete with algorithms
presently in use, and they give compressions which are far from optimal in an
information-theoretic sense. In general, we obtain a savings of only O(log n) bits on
strings of length n. Sipser [S] shows how to obtain nearly optimal encodings under
the same hypotheses but his encoding and decoding algorithms run in polynomial time
only with an oracle for E.

One form of optimal compression is to represent a string in a language by its
index in a lexicographic ordering of the language. We call this operation ranking. Even
for polynomial-time languages it is not hard to show that ranking is generally P hard
to compute. We will show that one-way log space languages and context-free languages
can be ranked in polynomial time. Results similar to our results on ranking were
obtained independently by Allender [A] when he was studying classes of easily
invertible functions.

We note that our results apply in the presence of any oracle. We give oracles
under which our bounds cannot be significantly improved.

2. Definitions. In this section we define our notion of data compression on
languages. There are two functions, an encoding or compression function, and a
decoding or decompression function. We also allow for functions computed by prob-
abilistic machines, where the function value depends also upon the random choices
made by the machine. We call these probabilistic functions and consider them to be
mappings from strings to random variables whose distribution is taken from the
behavior of the machines.

NOTATION. Let E= {0, 1}; 2;* be the collection of all strings; E, E<, and
be the strings of length n, less than n, and less than or equal to n. For a language
L___ E* let L be the strings in L of length i. For a finite set S let ISI be the cardinality
of S. For a string s let Is[ be the length of s. The symbol , denotes the empty string.

DEFINITION. A function f:E*- E* is a compression function of language L if f
is one-to-one on L, and for all except finitely many x L, we have

DEFINITION. A language L is compressible in time T if there are functions f and
g where f is computable by a machine running in time O(T(n)) on inputs of length
n, and g is computed by a machine running in time O(T(n)), where n is the length
of the output; and for any x L, g(f(x)) x, the function f is a compression function
for L.

DEFINITION. A function f optimally compresses a language L if for any x L of
length n,

A special kind of optimal compression is ranking. The ranking function rL maps
x * to the number of strings in L that are less than or equal to x in a lexicographical
ordering of E*.
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DEFINITION. A probabilisticfunction f is a mapping from E* to random variables
over E*. If f, g, and h are probabilistic functions, we say f g- h if for each x, y E*,

Pr{h(x)=y]= E Pr{g(x)=z].Pr[f(z)=y].
zZ*

A standard function is considered to be a special case of a probabilistic function which
always outputs a random variable that is constant.

DEFINIXION. A probabilistic machine M computes the probabilistic function f if
for all x,

Pr [M on input x halts with output y] Pr [f(x)= y].

DEFINITION. A language L is compressible probabilistically in time T if there are
probabilistic functions f and g such that f is computable by a probabilistic machine
running in time O(T(n)) on inputs of length n, and g is computed by a probabilistic
machine where each branch of the computation uses at most time O(T(n)), where n
is the length of the output on that branch. For Ixl-,
and

Pr [go f(x) x] - 1

Pr [If(x)l<lxl] - 1.

3. Compressing polynomial-time languages.
DEFINITION. Given a language L, let //: N-* R be defined by tzi(n)=lLnl/2n.
In this section, we prove the following theorem.
THEOREM 1. IlL P, k > 3, and IL(n) <-- n -k, then L can be compressed in probabil-

istic polynomial time. For each x L of length n, the compression function yields strings
of length n (k 3) log n with probability approaching 1.

Proof Fix the input length n. Let A Ln. For s E=" let As be the strings in A
that have prefix s. Let

represent the density of As and for Isl < n, let

and

so aso/2as

I&o[/IAsl (let 0/0= 1),

sl 1--sO
-IAI/IA[.

Thus /3si is the fraction of strings in As that have prefix si. Note that if Is m and
So, s, , Sm are its m + 1 prefixes, then cs a /3so /3sin. For any string s, let
s’ be the next higher string lexicographically, except that if s contains no O’s, we let
s’ be the special symbol w. Recall that A is the empty string. Let

%=0
and

All logs are to the base 2.
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For s <n let

3% Ts
and

, + (s,- )to.
CLAIM 1. If one assigns to each string s the subinterval [Ys, Ys’) then one obtains,

for each m <-n, a partition of [0, 1) among the strings of length m, where the length of
the interval is proportional to the size of

Proof. We may prove this by induction on m. The basis at m 0 is clear since
[yx, )%)=[0, 1).

To prove the induction step at m, we must check that for each s of length m- 1
the interval [Ys, ys,) is split by ysl so that it is proportionally divided between sO and
sl. This follows because/3so gives the fraction of As that belongs to Aso. This tells us
the fraction of the interval [ys, ys,) that we must add to ys to give ’a//sl. [-]

Let tl, t2," "’, t be an enumeration of A in lexicographic order.
CLAIM 2. The sequence %, %, ., y,, %0 forms an arithmetic sequence beginning

at 0 and ending at 1.

Proof The proof follows from Claim 1 since for every i, ]A,I 1. Therefore the
intervals [%,, %,+,) all have the same length.

For each let h(t) be the first log IAI] bits in the binary representation of 3’,,.
By the above claimh is a 1-1 function. Thus h(t) may be seen as a unique representation
for t. This idea is called arithmetic coding [El], [Ris], [RL]. The function h compresses
the members of A optimally in an information-theoretic sense since it is clear that at
least log IA] bits are necessary to uniquely specify members of A. However it is not
hard to show that computing this coding is a #P-complete problem [V] and thus
unlikely to be computable efficiently. Instead, we will show that there is a probabilistic
polynomial-time machine F computing an approximation of h and a probabilistic
polynomial-time machine G such that G(F(x))= 1 with high probability.

The main idea is to obtain estimates to the values/3s by sampling, i.e., by choosing
random extensions to s to find members of A. Two difficulties arise. One is that for
some strings s, as may be very small because As is exponentially sparse. In that case
we would be required to take exponentially many samples to find even one element
in As. The second problem concerns the coordination between the compressor F and
decompressor G. Both must compute approximations to the/3’s, but if their estimates
differ by even a small amount it will be unlikely that the composition of the two
machines will compute the identity function on A, as required.

We solve the first difficulty by recalling that ax txi(n)<-n -k by the hypothesis
ofthe theorem. Observe that for any A, a, 1, and that for any s
In other words, the densities associated with the prefixes of any given e A start out
small, end up at 1, and cannot increase by more than a factor of two at any point. Let
u be the longest prefix of such that a, <--n -k. For all longer prefixes s, as > n -k and
therefore by taking polynomially many random extensions of s, one can obtain good
estimates to as. We write as uv and only apply the above arithmetic coding technique
to u. The prefix u is left unencoded. We thus encode by the string ue(v) where e(v)
is the encoding of v. We also append to the front [log n] bits giving [u], so that we
can unambiguously parse this code.

We now solve the second difficulty by choosing the estimating values for the fl’s
from a small set of standard approximations so that no two of them are nearly
equidistant from any of the actual fl’s. Hence any two sampling runs will very likely
obtain agreeing values for the/3’s. We select the estimating values as follows.
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Choose any string s A and let So, sl,"" ", sn be its n + 1 prefixes. Consider the
n values/3.oO,... ,/3,n_o. Let X be the set of numbers in [0, 1) that are within 1/6n2

of any of these values, i.e.,

X= x[0,1)’lx-/3,,01 <where <n=6n2

We view X as a collection of possibly overlapping intervals of length at most 1/3n 2

each. Let Y= {i/n: 0 <- <-_ n} and, for0_-< c_-< n, let Yc Y+(c/2n2), i.e., add the offset
c/2n 2 to each value of Y.

CLAIM 3. There is an integer c, such that 0 <-_ c <-n and Yc X (.

Proof There are n + 1 possible choices for c. Say a choice for c is bad if Y
intersects one of the intervals in X. The points in Y are 1/n apart, the offsets are 1/2n 2

apart, and the intervals are of length at most 1/3n. Hence each interval in X may
intersect at most one offset of one point in Y. So each interval in X may cause at most
one of the choices for c to be bad. Since there are n + 1 possible choices for c and
at most n intervals, there remains a good choice for c satisfying the conditions of the
claim.

Fix a good c as above. Define a [0, 1) -> [0, 1) as follows. If x Y then a(x) x.
If x ; Y but lies between two points yl and yz of Y then a(x)= y, where y is the
nearest of the two to 1/2, or the greater of the two if both are equidistant from . If x
is greater than or less than all members of Yc then a(x) is the nearest member of Y
to x.

CLAIM 4. If fl {soO., .._,O} and l-]<- l/6n then a(/)-- a(/3).
Proof Since/3 and/3 are in the same interval of X and no member of Y intersects

X, the claim immediately follows.
Let e=3/n.
CLAIM 5. For any [0, 1)
(1) a(fl)>=(1-e)fl;
(2) 1 a(/3) => (1 e)(1 -/3).
Proof First prove 1.

If/3 Y then a(/3)=/3.
If/3 lies between y and y2 in Y and if both y and y are less than or equal to, then a(/3)>/3. If y or y are greater than , then >=--l/n since ly-y2[ 1In

and/3 lies between them. Additionally, a(/3) >/3 1In since a(fl) is Yl or Y2. Therefore
a()/>=(-l/n)/C3=l-1/n. Since >=--l/n, it is easy to see that
1-3/n for n>=6. Thus a(/3)=> (l-e)/3.

If/3 is greater than all members of Yc then again a (/3) =>/3 1/n and/3 => 1/2-1/n,
so by the above argument a()>-(1-e)fl.

Finally, if/3 is less than all members of Yc then a(/3)->/3.
The proof of 2 follows similarly by an argument symmetric around the

point .
CLAIM 6. For any s <, if R is a collection of n+7 random extensions of s and

we estimate o using R then

Pr [lestimated value -/3ol > n-3] < n -1.
Proof This is an application of Chebyshev’s inequality (see, e.g., [F]).
Let m n -lul and let B {s m US A}. Redefine the y’s and h using B for A

and m for n, i.e., y =0, %o=1, yo= y, and ys y + (y,,- y)/3,o for sX<m. Also,
for B, h(t) the first log l] bits of y,, where IBI. Thus h provides a coding for
B, where if tB, [h(t)l=[loglBl]<=m-k[logn] since c,--<_n- and thus [BI-<
2m. ce, =< m- log nJ =< m- k[ log n].
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For each sex.<-" let/, a(/3,). Let / =0, /o 1, and for sex<n let /,o /, and
/ /s + (C/s,) /sso.

CLAIM 7. Let see <." andj=ls I. Then (/,,-/,)>_-(1-e)J(ys,- y,).
Proof The proof is by induction on j. The basis at 0 is immediate. To prove

for j assuming that the claim holds for j-1, we first take the case where s is of the
form t0.

Thus

Observe that

(,o,- /,o (/,,-
>- (1 e)-l(y,,- Y,)/to (by the induction hypothesis)

---(-)-1(%,-r,)(-)/3,o (by Claim 5)
(1 e)(%,- %)/3,o

The other case where s is of the form l is handled similarly, as follows. Observe that

Thus

(/,,- /,)(1 fl,o)
->__ (1 e)-1(%,- %)(1 i,o) (by the induction hypothesis)

>-(-e)-(r,,-%)(-)(-/3,o) (by Claim 5)

(1- e)i %,- %)(1- fl,o)

(1 e)(T(,,,- y,,). V1

For e B let h(t) equal the first [21+log 1] bits in the binary representation of
/,. Since e =3In, limn_.oo (1/(I-e)") e3<=21. Hence for large n, / is a 1-1 function
on B, by the above claim. This solves the second difficulty.

ENCODING ALGORITHM.
Input: teA, with prefixes So,’’’, s,. For each i<n we take enough random

extensions of si to determine with high probability whether a is significantly greater
than n-k. Let j be the maximum such that the estimate of as, < n -k, let u sj, and
let ut, t. Estimate the fls,o for each >-j by taking n k+7 random extensions of si. Find
a good c such that no /3,0 e X as above. Obtain the values of/3s,0 and flil- For i>=j
obtain /si from the fl’s and determine h(,).

For an integer m let double(m) be m written in binary with each bit repeated
twice and terminated with 01. The final encoding of t,f(t)= ZlZ2Z3Z4Zs.

z, double( n -If(t)[)
z2 =j

Z3-- U

Z4"-" C

zs= h(v).
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DECODING ALGORITHM.
Given f(t), obtain zl, and compute n. Obtain Zz and then z3 and z4 c. This gives

the set Yc. By sampling we can determine with high probability/3uo and/3ul and hence
/o and . The first bit of , is 0 if and only if z5 < /a. Continue in this way to get all
of the bits of ,.

Analysis. We calculate If(t)[. First [za <_-2 + log log n and Iz21 [log n ], and Iz41--
1 + [log n]. Also, levi- lul and levi I1 [k log n]+ 1. Hence [f(t)[<=n-(k-3)log n
for large n. [3

The following result, similar to Theorem 1, was pointed out to us by a referee.
Fact. If L P, k, />0, and /xL(n) -< nk/2 then L can be compressed by /log n

bits in deterministic polynomial time.
Note that L contains at most polynomially many strings of length n. A string of

L of length n can be encoded by giving its prefix of length n- (k + l) log n followed
by the index of the string among n-bit strings of L that have the same prefix.

4. Extensions and discussion. In the proof of Theorem 1, we have used the assump-
tion that L P to test for membership in L efficiently. Since the compression algorithm
given in the proof is probabilistic, it is enough to assume that L BPP to obtain the
same result.

If L is very sparse, say/xL -< 2 -n/z, then Theorem 1 seems far from optimal because
it gives only O(log n) bits of saving while one might expect to save n/2 bits. However,
it is unlikely that one will be able to prove a significantly stronger result because we
can construct an oracle for which our compression is close to the best possible.

THEOREM 2. There is a language S such that tXs e and S is not compressible
by more than O(log n) bits by a probabilistic polynomial-time machine with an oracle

for S.
Proof Let S be the language that, for each n 22", contains exactly one string of

length n which is Kolmogorov random, and no other strings. Note that there is a

polynomial-time compression function for S given an oracle for S by mapping the
strings in S" to strings of length log Inl. But this compression function has no efficient
decompressor.

Let M be a probabilistic machine with an oracle for S which runs in time nk. Let
s S, and let be a compression of s such that Isl-Itl > (k / 2) log n + 1. We show that
M cannot restore s from t.

We will show that ifM could restore s from t, then s would have a short description,
which would contradict the Kolmogorov randomness of s. To show this, we show that
we can describe in (k + 2) log n + 2 bits all information needed to answer the queries
M could ask the oracle.

The language $ is so sparse that on input of length n 2zm, M has no time to
write out a string in S of length greater than n. Therefore, the answers to all queries
about strings longer than n are "no." Also, S is so sparse that we can write out all
strings in S of length less than n in 2 log n bits; this will enable us to answer all queries
about strings of length less than n.

There is only one string of length n in S. We show how to give a short description
of it. Consider the computation of M on t. By assumption, we know that It] <
n ((k + 2) log n + 2). For a given sequence of coin tosses, M produces a value depend-
ing on the oracle answers. There is exactly one string of length n in S, so without loss
of generality we can assume that M never asks questions about strings of length n
after it gets the "yes" answer on a question about a length n string. For a given coin
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toss sequence, there can be at most n k questions to the oracle and at most nk+ 1
different sets of oracle answers on questions about strings of length n, depending on
the position of the "yes" answer in the lexicographical ordering of the questions,
including the possibility of no "yes" answers at all.

Information about the computation of M on can be represented by a table with
rows corresponding to coin toss sequences and columns corresponding to the rig+ 1
possible positions of the "yes" answer. Table entries are the values M produces. Since
M is a probabilistic machine, M must agree on at least one half of all values in the
column that corresponds to the oracle for S. Let R be the number of rows and let C
be the number of columns. C is at most nk+ 1. It follows from the above that there
is a group of at least R/2 table positions containing the same value. The total number
of different values corresponding to the groups of at least R/2 table positions containing
the same value is at most

RC --2C<=2(nk+l).
R/2

We can give an index of the value that corresponds to the right oracle using k log n + 2
bits.

The short description of s consists of three parts" all strings in S of length less
than n (at most 2 log n bits), the index of the table value (k log n + 2 bits), and (less
than n-((k + 2) log n + 2) bits). The total length of the description is less than n, and
s can be reconstructed from the descriptionma contradiction. [3

The above theorem shows that this compression is the best that can generally be
achieved by a probabilistic polynomial-time algorithm with respect to an oracle. Perhaps
the algorithm can be improved in a different way, by making it deterministic. We
construct an oracle for a sparse language not compressible in deterministic polynomial
time. This suggests that it would be difficult to eliminate the randomization in our
compression algorithm.

THEOREM 3. There is a language S where la,s2-n/2 and where S cannot be
compressed by any deterministic polynomial-time machine using an oracle for S.

Proof The proof is by diagonalization. Let M1, M2," be the list of all determin-
istic polynomial-time Turing machines with an oracle. Without loss of generality, we
can assume that each Mi runs in time nlgi. To each machine, we assign an infinite
sequence of input lengths according to the sequence

112123123412345

The nth element of the sequence is the index of the machine we consider for input
length n. We construct a set S, such that for every n, Mi with an oracle for S either
does not map a string in S into a shorter string, or maps two distinct strings in S
into the same string. Therefore, each machine M with an oracle for S fails to compress
infinitely many elements of S, and the theorem follows if p.s <--2-n/2"

We construct S in steps. During step n, we simulate the machine M on all inputs
of length n. At this step, the set S is already fixed for strings of length less than n, and
if the machine asks the oracle questions about these strings, we answer "yes" or "no"
depending on whether the string is in or out of S. We now determine which strings of
length n to add to S. Whenever Mi asks an oracle a query about a string of length n,
answer "yes." Assuming Mi gives an output on every string of length n, either there
is a string x which M maps into a string of length at least n, or there are two distinct
strings xl and x2, which the machine maps into the same string.
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In the first case, we add to S both x and all the strings of length n or more that
Mi asked the oracle about when simulated with x as an input. This ensures that with
the oracle for S, Mi works on x the same way as during the simulation, and therefore
does not compress x.

In the second case, we add to S both xl and x2, and all the strings of length n
or more that Mi asks about when simulated on inputs xl and x2. This ensures that
with the oracle for S, Mi maps x and xs into the same string.

It remains to show that /Xs =< 2 -n/s. The set S is fixed after the nth step. The
number of elements in S does not exceed 2 + (the number of questions asked during
steps 1 through n). Since the running time of Mi is nlgi,

Isl_-< 2+ n. nlg" < 2

for n large enough.

5. Incompressible languages.
TI-IEOREM 4 (Levin ILl). Assume that there is a one-way function. Let R be the set

of pseudorandom sequences generated by a cryptographically strong pseudorandom bit
generator IBM], [Y]. Then R cannot be compressed by any function computable in
probabilistic polynomial time.

Thus, if a one-way function exists, we cannot strengthen Theorem 1 to apply to
all languages in NP.

Proof If f compresses R in probabilistic polynomial time, then the following
statistical test, S, distinguishes the members of R from truly random sequences [Y].
Let S(x)= 1 if and only if x M2(M(x)), where M computes f and Ms computes
f-1. Thus, S(x)= 1 for at most half the sequences of length less than or equal to n,
but for all the sequences in R.

The next theorem shows how to construct a language incompressible probabilisti-
cally in polynomial time without assuming the existence of a one-way function. The
result is not stronger than the above, however, because the language we construct is
in double exponential time.

TrJEOREM 5.
(A) There is an exponential-time language that cannot be compressed in deterministic

polynomial time.
(B) There is a double exponential-time language that cannot be compressed in

probabilistic polynomial time.

Proof The proof is similar to the proof of Theorem 3. First, we construct a
language, S, which is not compressible by any polynomial-time Turing machine.

Consider a machine computing a function g" E*- E* on inputs of length n. Since
the number of strings of length n is greater than the number of strings of length less
than n, one of the following two statements must be true:

(1) there is a string x such that Ig(x)l >= Ixl, or
(2) there are two strings, xl and xs, such that g(x)= g(xs).
In the first case we let b be the lexicographically smallest such string, and make

S" {b}. In the second case we let b, b2 be the lexicographically smallest pair of such
strings, and make S" {bl, bs}. This ensures that g is not a compression function for
Sn. It remains to describe for which input length each polynomial-time machine will
be tricked as above.

Consider a list M1, Ms," of all Turing machines. To each machine Mi on the
list, we add an n timer to construct a new machine MI such that if the time runs out
before Mi halts, M’i rejects; otherwise, M’ simulates Mi. It is easy to see that each
polynomial-time function is computed by M’i for some i.
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To each machine Mi we assign infinitely many input lengths for which it will be
tricked. The strings are assigned according to the sequence

112123123412345

The nth element of the sequence corresponds to the index of the machine to be tricked
on the inputs of length n.

The language S described above has the property that for any polynomial-time
computable function f, there are infinitely many input lengths n such that f is not a
compression function for Sn. To prove part (A) of the theorem, it remains to show
that language S is in exponential time.

Given a string x of length n, we find the machine M’i which corresponds to n.
We simulate the machine on inputs of length n to find b or bl and b2 described above,
and check if x is in S. Since M’i runs in time n <- n and the bottleneck is the simulation
of MI on all inputs of length n, it is easy to see that the process takes exponential time.

To prove part (B) of the theorem, we consider all probabilistic polynomial-time
machines Mi and proceed as above. The complexity of the resulting language is double
exponential since it takes an exponential amount of time to simulate a probabilistic
polynomial-time machine.

6. Ranking. Recall that the ranking function for a language L, rL, maps its input
x into the number of strings in L that are less than or equal to x in a lexicographical
ordering of Z*. In this section we will study languages for which rL is computable in
polynomial time. Note that if r:L-> N is computable in polynomial time, then, using
binary search, r-l:N--> L is computable in time polynomial in the length of its output.
If L is sparse, then r is a compression function for L. In fact, r is an optimal
compression function.

6.1. Easy-to-rank languages. The next two theorems show that languages in two
natural language classes can be ranked in deterministic polynomial time.

THEOREM 6. Ifa language L is accepted by a deterministic one-way log space Turing
machine, then rL can be computed in polynomial time.

Proof Let M be a one-way log space Turing machine that accepts L. Given a
string x, we want to compute r(x). We modify M to accept exactly the set L L/ (x),
where L/ (x) is a set of all strings lexicographically less than x. The modified machine,
M,, is constructed as follows.

First, we construct a finite automata A that compares its input with x, and accepts
if and only if the input does not exceed x. Mx runs A and M in parallel, accepting if
both machines accept, and rejecting otherwise. It is easy to see that Mx can be
constructed in time polynomial in the length of x.

Next, we construct a graph G (V,/) such that vertices in V correspond to
configurations of M on inputs of length not exceeding the length of x, and edges
correspond to moves of M (by configuration we mean here a triple (state, input tape
position, work tape content)). Then there is a one-to-one correspondence between the
accepting computations of mx and the set of paths from the initial to the final
configurations in G (i.e., paths from the node that corresponds to the initial configur-
ation of m to the node that corresponds to a final configuration). Consequently, there
is a one-to-one correspondence between the paths and the members of L f3 L/(x).

Notice that G is loop-free because M runs in bounded (polynomial) time. We
can use dynamic programming to count the number of initial-to-final state paths in G
in time polynomial in the size of G. The size of G is polynomial in x, because Mx is
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a log space machine of size polynomial in Ix[. Therefore we can compute in polynomial
time the cardinality of Lf’)LE(x), which is equal to rl(X), l-]

Remark. The above proof can be easily modified to show that, given a finite
automata, the size of the language accepted by the finite automata can be found in
polynomial time. This is because either the automata accepts an infinite language
(which can be determined in polynomial time), or every initial-to-final state path in
its graph is simple, and we can use dynamic programming as above.

THEOREM 7. IfL is an unambiguous CFL given by an unambiguous grammar, then
rl can be computed in polynomial time.

Proof. Without loss of generality, we can assume that the grammar for L is in
Chomsky Normal Form and lambda free since, if we can compute r/x, we can easily
compute r/. Given a string x, we want to compute rl(X). Again, our main tool will be
dynamic programming.

First, we show that we can compute in polynomial time the function :(A, n)
which, for a nonterminal A of the grammar and an integer n, returns the number of
strings of length n derivable from A. This function can be computed from the following
equations:

(A, 1)= I{A-* a: a ;*}l(5.1)

and
n--1

(5.2) =(A,n)= Y (B,i)(C,n-i).
A-BC i=1

The equation counts the number of derivations of length n strings from A. Since the
grammar is unambiguous, the number of length n strings derivable from A is the same
as the number of derivations.

To compute + (A, n), we use (5.1) and (5.2) to compute # (X, j) for all nonterminals
X and all j less than n, and then compute the desired number. Since the size of the
grammar is fixed (i.e., the number of nonterminals and productions is constant), the
time needed to compute (A, n) is linear in n ]x].

Since context-free language membership can be tested efficiently, it is enough to
show that the function l(A, x), which equals the number of strings strictly less than x
derivable from A, can be computed efficiently.

If x is a null string, then

(5.3) l(A,x)=O.

If Ixl n >= 1, then
n--1 n--1

l(A, x)= :(A, x)+ [l(B, x(1, i))(C, n-i)
i=0 i=1 A-BC

(5.4)
+ r(B, x(1, i))l(C, x(i+ 1, n))].

In (5.4) x[i] refers to the ith symbol of x, x(1, i- 1) refers to the substring of x formed
by the first i-1 characters, and o-(S, w) is the characteristic function that is 1 if and
only if w is derivable from S. Equation (5.4) states that a string is less than x if it is
shorter than x, or if it is of the same length and either has a prefix which is less than
the corresponding prefix of x or the prefix is the same but the remaining portion of
the string is less than the remaining portion of x. There is no double counting because
L is unambiguous.

Since tr can be computed in cubic time, it is easy to see that and therefore rL
can be computed in polynomial time.
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Note that if L can be parsed in linear time, then the above algorithm computes
r/ in n 2 time.

Remark. The result of Theorem 7 has been strengthened in [BGS], where it is
shown that unambiguous CFLs can be ranked in NC2.

6.2. Approximating the ranking function. Assume L is a finitely ambiguous CFL,
i.e., the number of derivations of every string in L is bounded by some constant k. We
map every string x in the language into the number of derivations of strings less than
or equal to x, denoted by c(x). This can be computed efficiently using the algorithm
from the proof of the previous theorem. Because the language is finitely ambiguous,
we know that c(x)<= krL(x), and

log (c(x))-log (rl(X))<= [log (k)].
It follows that c is a good compression function for L; it is within a constant number
of bits of the optimal compression achieved by the ranking function.

In general, if we can compute a monotone approximation g,(x) of rL(x), which
is within a factor of h(lxl), this approximation comes within [log (hlxl)] bits from the
optimal compression achieved by the ranking function, and is a compression if L is
sparse enough. This is interesting because, as we will see, computing the ranking
function exactly is NP-hard for many languages; however it could be that approximating
the ranking function is not so hard.

6.3. Hard-to-rank languages. In this section we show that there are some languages
of a relatively low complexity (like 2-pebble languages) which are hard to rank.

Let SAT be the problem of testing the satisfiability of boolean formulas. Consider
the set of tuples (f, a), where f is a SAT instance and a is an assignment of variables.
Let L be the subset of tuples for which a is a satisfying assignment. It is easy to see
that membership in L can be checked by a (two-way) log space Turing machine; in
fact, it can be checked by a 2-pebble finite automaton. However, the following theorem
shows that L cannot be ranked unless P # P (which implies P-- NP).

THEOREM 8 (Blum [B]). If rl can be computed in polynomial time, then the number
of satisfying assignments to an instance of SAT can be computed in polynomial time.

Proof Let f be a boolean formula for which we want to compute +(f), the
number of satisfying assignments. Let Pred(f) be the biggest instance of SAT that is
smaller than f Let al and a2 be the biggest assignment of variables in f and Pred(f),
respectively. Then (f)= rL(f, al)- r(Pred (f), a2) by the definition of ranking.

It follows that if r can be computed in polynomial time, 4(f) can be computed
in polynomial time.
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Abstract. Here the problem of scheduling tasks, each of which is logically decomposed into a mandatory
subtask and an optional subtask, is considered. The mandatory subtask must be executed to completion in
order to produce an acceptable result. The optional subtask begins after the mandatory subtask is completed
and refines the result in order to reduce the error in the result. The optional subtask can be left incomplete.
The error in the result of a task is equal to the processing time of the unfinished portion of the optional
subtask. Two preemptive algorithms for scheduling, on a uniprocessor system, n dependent tasks with
rational ready times, deadlines, and processing times are described. An algorithm is optimal in the following
sense: whenever feasible schedules that meet the ready time and deadline constraints of all tasks exist, it
finds one that has the minimum total error of all tasks. One of the algorithms is optimal when the tasks
have identical weights, and its time complexity is O(n log n). The other algorithm has time complexity
o(na), but is optimal when tasks have different weights. A schedule is said to satisfy the 0/1 constraint
when every optional subtask is either completed or discarded. The problem of finding an optimal feasible
schedule that satisfies the 0/1 constraints and minimizes the total processing time of the discarded optional
subtasks is NP-complete. Two algorithms for finding optimal schedules of dependent tasks on a uniprocessor
system for the special case when all optional subtasks have identical processing times are presented.
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1. Introduction. In a hard real-time system, it is essential for every (real-time)
task to meet its timing constraint, that is, its execution begins after its ready time and
completes by its deadline. Otherwise, a timing fault is said to occur, and the result
produced by the task is of little or no value. Unfortunately, it is not always feasible
to schedule all tasks to meet their timing constraints. An approach to avoidance of
timing faults is to trade off the quality of the results produced by the tasks with the
amounts of processor time required to produce them. Such a tradeoff can be realized
by using the imprecise computation technique [1]-[4]. In a system that supports
imprecise computations, a task can be logically decomposed into a mandatory subtask
and an optional subtask. The mandatory subtask is the portion of the computation
that must be done in order to produce a usable result of acceptable quality. This
subtask must be completed before the deadline of the task. The optional subtask is
the portion of the computation that begins after the mandatory subtask is completed
and refines the result produced by the mandatory subtask. The quality of the intermedi-
ate result produced by an optional subtask is nondecreasing as it executes longer. If
it is allowed to execute until completion by its deadline, the result produced by it is
the desired, precise one. When it is not feasible for an optional subtask to complete
by its deadline, however, the subtask is terminated at its deadline, producing an
approximate result.

We are concerned with the problem of imprecise scheduling: each of the n
preemptable tasks to be scheduled (1) consists of a mandatory subtask and an optional
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subtask and (2) has rational ready time, deadline, and processing time. A scheduling
algorithm is optimal in the following sense. It determines whether feasible schedules
that meet timing constraints of all tasks exist, and when such schedules exist it finds
one that minimizes the total processing time of the unfinished portions of optional
subtasks. This scheduling problem can be formulated as a network flow problem in
the cases of dependent tasks on a uniprocessor system and independent tasks on an
identical, multiprocessor system. Optimal algorithms based on this formulation have
time complexity O(n2 log2 n) when the tasks have identical weights and O(n6) when
the tasks have different weights 5]. (Weights oftasks measure their relative importance.)
The special case in which all tasks are optional is considered in [6]. In this paper, we
present two preemptive algorithms. These algorithms have time complexity O(n log n)
and O(n2); they find optimal schedules of dependent tasks on a uniprocessor system
when the tasks have identical weights and different weights, respectively.

Some applications may require that every task is executed satisfying the 0/1
constraint. We say that the execution of a task satisfies the 0/1 constraint if its optional
subtask is either completed before its deadline or is not scheduled for execution, that
is, is discarded entirely. The problem of scheduling tasks with primary and alternate
versions [7] can also be formulated as one of scheduling with 0/1 constraint. In this
formulation, the alternate version, with shorter process.ing time, is modeled as a
mandatory subtask. The primary version is modeled as a mandatory subtask, with
processing time equal to that of the alternate version, and an optional subtask, with
processing time equal to the difference between the processing times of the primary
version and the alternate version. The latter must be either completed or discarded
entirely. We say that a schedule satisfies the 0/1 constraint when the execution of every
task according to the schedule satisfies the 0/1 constraint. We show here that the
problem of finding optimal schedules satisfying the 0/1 constraint, meeting timing
constraints and minimizing the total processing time of the discarded optional subtasks,
is NP-complete even when the tasks have identical weights. The special case where
tasks have identical weights and all optional subtasks have equal processing time can
be solved in polynomial time. We present two algorithms that find optimal schedules
of dependent tasks on uniprocessor systems in the cases of arbitrary ready times and
equal ready times. Their complexities are O(n) and O(n log n), respectively.

The algorithms described in this paper complement the heuristic algorithms
described in [1]-[3] for preemptive scheduling of independent, periodic jobs on
uniprocessor systems to minimize total error. Our work also complements the queueing
theoretical results on task scheduling to optimally trade off between average response
time and result quality on uniprocessor systems [8]-[9].

The remaining part of this paper is organized as follows. Section 2 discusses the
basic workload model used to characterize imprecise computations and the performance
criterion used in this study. Two basic algorithms for scheduling dependent tasks on
uniprocessor systems to meet deadlines and minimize the total processing time of the
discarded portions of all optional subtasks are described in 3 and 4. Section 5 shows
that the problem of scheduling with 0/1 constraint and timing constraints to minimize
the total processing time of discarded optional subtasks is NP-complete and presents
two efficient algorithms for finding optimal schedules for the special case when all
tasks have the same weight and the optional subtasks have the same processing time.
Section 6 summarizes our results and discusses future work.

2. The basic imprecise scheduling problem. The problem of imprecise scheduling
can be formulated as follows. We are given a set of preemptable tasks T=
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{T1, T2," ", Tn} in which each task T is characterized by the following parameters,
which are rational numbers:

(1) ready time r at which T becomes ready for execution,
(2) deadline d’i by which Ti must be completed,
(3) processing time z, which is the time required to execute T to completion in

the traditional sense, and
(4) weight wi, which is a positive number and measures the relative importance

of the task.
Logically, each task T is decomposed into two subtasks: the mandatory subtask Mi
and the optional subtask O. Hereafter, we refer to M and O simply as tasks. We use

M and O to mean specifically the mandatory task and the optional task of T,
respectively, and use T to mean the task as a whole. Let mi and o be the processing
times of M and O, respectively, m and oi are rational numbers, and m + o z. The
ready time and deadline of the tasks Mi and O are the same as that of T.

A schedule on a uniprocessor system is an assignment of the processor to the tasks
in T in disjoint intervals of time. A task is said to be scheduled in a time interval if
the processor is assigned to the task in the interval. In any valid schedule, the processor
is assigned to only one task at any time, and every task Te is scheduled after its ready
time. Moreover, the total length of the intervals in which the processor is assigned to
T, referred to as the total amount of processor time assigned to the task, is at least
equal to m and at most equal to z. A task is said to be completed in the traditional
sense at an instant when the total amount of processor time assigned to it between
its ready time and becomes equal to its processing time. A mandatory task M is said
to be completed when it is completed in the traditional sense. The optional task Oi is
dependent on the mandatory task Mi; it becomes ready for execution when M is
completed. O may be terminated at any time, however, even if it is not completed at
the time; no more processor time is assigned to it after it is terminated. A task T is
said to be completed in a schedule whenever its mandatory task is completed. It is
said to be terminated when its optional task is terminated. The traditional workload
model is a special case of our model in which o- 0 for all i.

The dependencies between the tasks in T are specified by their precedence con-
straints; they are given by a partial order relation < defined over T. T < T if the
execution of T cannot begin until the task T is completed and terminated. T is a
successor of T if T < T. In order for a schedule of T to be valid, the precedence
constraints between all tasks must be satisfied. A set of tasks is said to be independent
if the partial order relation < is empty, that is, the tasks can be executed in any order.

A valid schedule is afeasible one if in which every task is completed by its deadline.
It is possible that the deadline of a task is later than that of its successors. Rather than
working with the given deadlines, we use the modified deadlines, which are consistent
with the precedence constraints and are computed as follows. The modified deadline

d of a task T that has no successors is equal to its given deadline d. Let Aj be the
set of all the successors of T. The modified deadline dj of T is min {d, minTkA {dk}}.
Similarly, the given ready time of a task may be earlier than that of its predecessors.
We modify the ready times of tasks as follows. The modified ready time r of a task
Ti that has no predecessors is equal to its given ready time rl. Let B be the set of all
the predecessors of T. The modified ready time r of T is

max {r, max {rk}}.T aj

It has been shown in [10] that a feasible schedule on a uniprocessor system exists for
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a set T of tasks with the given ready times and deadlines if and only if there exists a
feasible schedule of T with the modified ready times and deadlines. Working with the
modified ready times and deadlines allows the precedence constraints to be ignored
temporarily. If an algorithm finds an invalid schedule in which Ti is assigned a time
interval after some time intervals assigned to T but T < T, a valid schedule can be
constructed by exchanging the time intervals assigned to Ti and T to satisfy their
precedence constraint without violating their timing constraints. In our subsequent
discussion, by ready time and deadlines, we mean modified ready times and deadlines.

In all the schedules considered here, an optional task O is executed only in the
time interval between its ready time and deadline; no processor time is assigned to it
after its deadline di. When the amount of processor time r assigned to O in a schedule
is equal to o, we say that the task Oi and, hence, the task T are precisely scheduled.
The error ei in the result produced by T (or simply the error of T) is zero. Otherwise,
if cr is less than o, the error of T is equal to

(1 a) ei oi cri.

In this case, we say that a portion of O of length o- ri is discarded in the schedule.
For a given schedule, the total error of the task set T is

(lb) e WiEi.
i=1

Again, w > 0 are the weights of the tasks. A schedule is said to be precise if the total
error e of the task set executed according to the schedule is zero. Only precise schedules
are valid schedules in the traditional sense. As an illustrative example, we consider
the task set shown in Fig. l(a). In this directed graph, there is an edge from T to T

T2 T4
,o-- T1

T
’NNT T5
o T4

T5

ri di i m o
0.0 0.6 0.4 0.2 0.2

0.2 0.7 0.4 0.1 0.3

0.4 1.0 0.5 0.2 0.3

1.2 1.5 0.3 0.1 0.2

0.6 2.0 0.8 0.5 0.3

(a)

Time

T1

T2

T3

T4

T5

0.4 0.8 1.2 1.6 2.0

(b)

FIG. 1. An example of imprecise schedules.
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if Ti < T and there is no task Tk which is such that T/< Tk < T. This task set cannot
be feasibly scheduled if every task must be precisely scheduled. However, a feasible
schedule with total error e 0.4 exists, and it is shown in Fig. l(b).

The imprecise scheduling problem is as follows. Given a set of tasks T=
{ T1, T2, , Tn }, we want to find an optimal schedule that is feasible and has minimum
total error as defined in (1). Our algorithms make use of a modified version of the
classical, earliest-deadline-first algorithm 10]. Like the classical algorithm, our version
is also preemptive and priority-driven. The priorities of tasks are assigned according
to their deadlines; tasks with earlier deadlines have higher priorities. (A tie between
any two tasks with the same deadline is broken by letting the task with the smaller
index have the higher priority.) However, according to our version of this algorithm,
every task is terminated at its deadline even if it is not completed at the time; no
processor time is assigned to any task in the time interval after its deadline. Scheduling
decisions are made at the ready time and deadline of every task and at every instant
when a task is completed in the traditional sense. At every instant, the processor is
assigned to the task with the highest priority among the tasks that are ready to be
executed, preempting any task with a lower priority if necessary. We refer to this
algorithm as the ED Algorithm. The complexity of this algorithm is O(n log n). This
algorithm always finds a schedule in which every task is scheduled in the time interval
between its ready time and deadline. We will use this algorithm to determine whether
a task set T can be feasibly scheduled, that is, whether every mandatory task completes
before its deadline. The feasibility test is done by using the ED Algorithm to schedule
the mandatory set M= {M1, Me,’’’, Mn} alone. If the resultant schedule of M is
precise, then the task set T can be feasibly scheduled. Otherwise, no feasible schedule
of T exists [10].

3. Scheduling tasks with identical weights to minimize total error. The ED Algorithm
can be used to find feasible schedules with minimum total error of any task set in
which all tasks are optional and have identical weights.

THEOREM 1. The ED Algorithm is optimal if the processing times of all mandatory
tasks in T { TI, T2," ", Tn} are zero, and the tasks have identical weights.

Proof That the schedule S obtained using the ED Algorithm is feasible is obvious.
We need only to show that the total error of the task set T is minimum when the tasks
are executed according to S. Clearly, if the processor never idles between the earliest
ready time a and the latest deadline of all tasks in T, the total error is minimum.

Suppose that the schedule S is as shown in Fig. 2(a); in S, the first idle period
begins at to and ends at t. Let T, T2,. ., T denote the tasks that are scheduled in
the interval [a, to] and T+I, T+., , T denote the tasks that are scheduled after t.
Since the processor is never left idle intentionally, tl must be the earliest ready time
of the tasks T+, T+2, , T, the processor is left idle in the interval to, tl] because
these tasks cannot be scheduled earlier. We, therefore, can consider the segment [a, to]
in S independently of the later segments. The total error of T is minimized if the total
error of the tasks scheduled in every such independent segment of S is minimized,
that is, every segment of S is optimal.

To show that the total error of T1, T2," ", T is minimized in S, let T be the task
with the latest finishing time among these tasks. We need to consider two cases" either

to is the deadline of T, or T completes in the traditional sense, with zero error, at to.
In the former case, the segment [a, to] of S is optimal since to is the latest among all
the deadlines d, de,’’’, dj (=to) and the processor never idles between a and to.
Therefore, only the latter case needs to be considered further.
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are scheduled here time

Tj+,Tj+z, ,T,

are scheduled here

to tl

(a)

t-1 to tl

(b)

a -4 -3 -2

(c)

FIG. 2. A possible ED schedule.

We now show by induction that T1, T2,’’’, T are optimally scheduled with
minimum total error if T completes in the traditional sense at to and ej is equal to
zero. This statement is clearly true ifj 1. Suppose that any segment in a, to] containing
less than j tasks is optimal. If T is assigned a contiguous interval of time as shown
in Fig. 2(b), the segment [a, to] is optimal since the error of T is zero. Alternatively,

T may be assigned noncontiguous intervals of time as shown in Fig. 2(c). In this case,
the tasks scheduled between adjacent intervals that are assigned to T cannot be
scheduled earlier. For example, the tasks scheduled in the interval It_2, t_l] in Fig.
2(c) must have ready time equal to or later than t_2. Moreover, either t_l is the deadline
of T_I, or T_l completes in the traditional sense at t_l. In either case, the total error
of these tasks is minimized in S. Similarly, the total error of the tasks scheduled in
t_a, t_3] is minimized, and so on. It follows that the segment a, to] is optimal. Similarly,
we can show that the other independent segments of S are optimal.

Our O(n log n) algorithm, called Algorithm F, for optimally scheduling a set of
n tasks with identical weights on a uniprocessor system works as follows. Again, we
are given a task set T { T1, T2," , Tn} that is decomposed into two sets, the set of
mandatory tasks M={M1,M2,’’ ",Mn} and the set of optional tasks O=
{O1, O2," ", On}. Algorithm F consists of three steps"

ALGORITHM F.
Step 1. Treat all mandatory tasks in M as optional tasks. Use the ED Algorithm

to find a schedule St of the set T. If T is a precise schedule, stop. The
resultant schedule has zero error and is, therefore, optimal. Otherwise,
carry out Step 2.
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Step 2. Use the ED Algorithm to find a schedule S,, of the set M. If S, is not a
precise schedule, T cannot be feasibly scheduled. Stop. Otherwise, carry
out Step 3.

Step 3. Transform St into an optimal schedule that is feasible and minimizes the
total error using S,, as a template.

An illustrative example is shown in Fig. 3. We note that the schedule St obtained in
Step 1 is not a valid one. Specifically, T4 is assigned only two units of processor time,
which is less than m4. Using S,, as a template, we adjust the amounts of processor
time assigned to the different tasks in St to obtain the optimal schedule So shown in
Fig. 3(b).

3.1. Processor time adjustment process. The (processor time) adjustment process
in Step 3 has as inputs the schedules S, and St. The following information is needed:

(1) Time intervals [aj, a+l] for j= 1,2,..., k. Let al be the earliest starting time
and ak+l be the latest finishing time of all tasks in the schedule S,,. We partition the
time interval [a, ak/l] according to S,, into disjoint intervals such that in S,, the
processor is assigned to only one task in each of these intervals and is assigned to
different tasks in adjacent intervals, k denotes the number of such intervals, and a
and aj/, forj 1, 2, , k are the beginning and the end of the jth interval [a, aj/],
respectively. In the example in Fig. 3, there are six such intervals; the time instants
al, a2," ", a7 are 0, 3, 7, 9, 13, 15, and 16, respectively.

T1

T2
T3

T4

T5

T6

ri di "i mi oi

0 7 5 3 2

3 12 7 4 3

2 14 6 2 4

5 16 6 4 2

5 18 3 2

10 19 4 3

(a)

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time

St T1 Tz

T1 T T2 T2 T4 T2 T3 T3 T4 T4 T5 T6

(b)

FIG. 3. An example illustrating Algorithm F.



544 W.-K. SHIH, J. W. S. LIU, AND J.-Y. CHUNG

(2) The interval [ak+l, ak+9]. Let ak+2 be the latest finishing time of all tasks in
the schedule St. Clearly, ak+2 > ak+. In our example, ak+ is 19.

(3) M(j), for j 1,2,..., k. M(j) is the mandatory task that is scheduled in
[aj, aj+] in Sm. Let T(j) be the corresponding task.

(4) X, forj 1, 2, , k + 1. X is the set of tasks scheduled in [a, a+] according
to the scheduled St.

(5) Lm(j), j 1, 2,..., k. Lm(j) is the total amount of processor time assigned
to the task M(j) in the interval [a, a+] and all later intervals according to the schedule
S,,. Lm(j) is computed from S,,. In our example in Fig. 3, the values of Lm(j) are 3,
4, 2, 4, 2, and 1 for j equals to 1, 2,. ., and 6, respectively.

(6) L,(j), j 1, 2,. ., k. Lt(j) is the total amount of processor time assigned to
the task T(j) in the interval [aj, a+] and all later intervals according to the schedule
St. Lt(j) is initially given by St and is later modified during the adjustment process.
In our example, the initial values of Lt(j) are 5, 7, 2, 2, 2, and 1, for j equals to
1, 2, , 6, respectively.

The operations of Step 3 are described by the pseudocode in Fig. 4. Step 3 modifies
St as follows: The last segment of St in the interval [ak+, ak+] is left unchanged. We
examine in turn, for j k, k-1,..., 1, the value of Lt(j), the total processor time
assigned to the task T(j) in the interval [a, a+] and all later intervals according to
the schedule St. If Lt(j) is equal to or larger than the total processor time Lm(j)
assigned to this task in these intervals according to S,,, the segment of St in [aj, aj+]
is left unchanged. Otherwise, let A Lm(j)-Lt(j). We assign A additional units of
processor time in [aj, aj+] to T(j). These units may be originally assigned to some
other tasks in X. We decrease the amounts of processor time assigned to them in this
interval and update the values of L,(i), for i= 1, 2, ,j, for all the tasks affected by
this reassignment accordingly. This reassignment can always be done because A is less
than or equal to a+-a and T(j) is ready in the interval.

Step 3: processor time adjustment process
Lm(j) and initial values of Lt(j) for j 1, 2, , k are given by S, and St, respectively.
begin

j=k
while (1 <=j k)

if (Lm(j)> Lt(j))
A=L,,(j)-L,(j)
Assign A units of processor time in [a, a+] to T(j);
Reduce the amounts of processor time assigned to other tasks in

X in [a, aj+] by A units to accomplish this reassignment.
Update the values of Lt(1), L,(2),..., L(j) and modify S,.

endif
j=j-1

endwhile

end Step 3

FIG. 4. Pseudocode of Step 3 of Algorithm F.

In the example in Fig. 3, Lt(6) and Lt(5) are left unchanged in the processor time
adjustment process because they are equal to Lm(6) and L,,(5), respectively. Lt(4) is
2 while Lm(4) is 4; therefore, two additional units of processor time is assigned to
T(j), which is T4. These two units of time are taken from T2. T2 has three units of
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processor time in the interval [9, 13] before the reassignment and only one unit after
the reassignment. The new values of Lt(j) are 5, 5, 2, and 4 for j 1, 2, 3, and 4,
respectively. Similarly, we compare Lt(3) and Lm(3), and so on.

3.2. Optimality of Algorithm F. The complexity of Algorithm F is the same as
that of the ED Algorithm, that is, O(n log n). To show that Algorithm F is optimal,
when wi 1 for all i, we need the following lemma. Let o.(T(j), t) and o.(T(j), m) be
the total amounts of processor time assigned to the task T(j) in the intervals prior to

aj in the schedules St and S,,, respectively.
LEMMA 1. o.(T(j), t)<=o.(T(j), m) for allj- 1,2,..., k.
Proof Both St and S are obtained using the ED Algorithm. Suppose that

o.(T(j), t)> o.(T(j), m) for some j. T(j) must be scheduled in some interval [t, t’]
prior to aj according to St but not according to S,,. T(j) is ready in t, t’]; moreover,
it is the task with the earliest deadline, and hence the highest priority, in the interval.
Therefore, a portion of T(j) that is scheduled in [a, aj+l] according to S should be
scheduled earlier in t, t’]. This contradicts the fact that Sm is an earliest-deadline-first
schedule.

THEOREM 2. Algorithm F is optimal when the tasks have identical weights.
Proof. If Algorithm F fails to find a feasible schedule of the given task set T, that

is, the schedule of the mandatory set M found in Step 2 is imprecise, no feasible
schedule of T exists. This fact follows from the optimality of the earliest-deadline-first
algorithm 10].

On the other hand if feasible schedules ofT exist, Algorithm F will find an optimal
one that minimizes the total error of T. That this statement is true follows from the
following four facts, which we now show are true:

(1) In both Sm and St, every task is scheduled between its ready time and deadline.
After the adjustment process, this remains to be true.

(2) The processor time assignment in St of any task T(j) is adjusted when we
find that T(j) is assigned insufficient time in St for M(j) to complete. After the interval
[a, a/l] is processed in Step 3, we guarantee that in the time intervals [aj, a/l],
[a/l, a/2],""", [ak/l, ak/2], the total amount of processor time assigned to T(j) in

St is at least equal to that in S. Since M(j) is precisely scheduled in S, there is
sufficient processor time in the adjusted schedule for it to complete, that is, the resultant
schedule is valid.

(3) Lemma 1 states that the amount of processor time assigned to T(j) prior to

a in the schedule St is less than or equal to that in the schedule S. Therefore, we
will never assign too much processor time in Step 3 to any task T(j) for the total
amount to exceed its processing time.

(4) The schedule St minimizes the total error of T. Throughout Step 3, no
additional idle time is introduced. The resultant schedule, therefore, minimizes the
total error of T.

4. Scheduling tasks with difference weights to minimize total error. In this section,
we consider the case where tasks in T have different weights. We number the tasks in
T according to their weights such that Wl --> w ->. ->_ wn. Let o.7 denote the processing
time of the scheduled portion of the optional task Oi in some optimal schedules of T.
In other words, o.7 is the total amount of processor time assigned to O in these
schedules. The LWF (largest-weight-first) algorithm, described by the pseudocode in
Fig. 5, first finds the values of o-7 for all in a nonempty subset of optimal schedules
and then finds an optimal schedule in this subset. Lemmas 2 and 3 provide the basis
for the procedure used to find
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LWF Algorithm
Tasks are indexed so that w >-_ w >=. >- W
begin

Use the ED Algorithm to find a schedule S, of M.
If S, is not precise, stop; the task set T cannot be feasibly scheduled.
else

The mandatory set M’(=(M, M,. , M’,}) M
i=1
while (1 <= <= n)

Use Algorithm F to find an optimal schedule So of M’t_J {Oi}"
O the portion of Oi scheduled in So

M M 13 O
i=i+1

endwhile
The optimal schedule sought is So

endif
end Algorithm LWF

FIG. 5. Pseudocode of the LWF Algorithm.

Let Ti ={M1, M2,’’’, Mi_l, T, T+I,... T,} be the task set in which the first
i-1 tasks have no optional tasks. Let So be an optimal schedule of the set M {O}
found using the Algorithm F. In So all tasks in M are precisely scheduled, and since
there is only one optional task, the total (weighted) error is minimized. In other words,
the amount of processor time r’ assigned to O in So is as large as feasible.

LEMMA 2. The amount ofprocessor time cri assigned to the task O in any optimal
schedule of the task set Ti is equal to or less than

The proof of this lemma, being straightforward, is omitted. Let Si denote the set
of optimal schedules of T in each of which the amount of processor time assigned to

Oi is r’.
LEMMA 3. The set S of optimal schedules of Ti is nonempty if the amount of

processor time assigned to Oi in the schedule S is

Proof. Suppose that in Sio the total amount of processor time assigned to O is
equal to o-’; however, S is empty. Let St be an optimal schedule of T in which the
total amount of processor time cr assigned to the optimal task O is not equal to r’.
Without loss of generality, let St be an earliest-deadline-first schedule. We now show
that it is possible to transform the schedule St into another optimal schedule So in
which the amount of processor time assigned to O is o-’ and, thus, lead to a contradic-
tion to the supposition that S is empty.

Let Sm be an earliest-deadline-first schedule obtained by scheduling, according
to the ED Algorithm, the mandatory set M and the portion of Oi that is scheduled in
So. The transformation of St into So is done using S, as a template. The processor
time adjustment procedure used for this transformation is essentially the same as the
one used in Step 3 of Algorithm F; this step is described in Fig. 4. The only difference
is that we now treat M as well as the portion of O scheduled in S,, as a mandatory
task M.

The proof that the processor time adjustment procedure in Fig. 4 leads to an
optimal schedule So of Ti in which the amount of processor time assigned to O is
equal to cry’ is essentially the same as the proof of Theorem 2. Specifically, (1)-(3) in
the proof of Theorem 2 remain to be true. To show that (4) the total error is not
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increased by the processor time adjustment procedure, we note that no additional idle
time is introduced by the procedure. Before and after this adjustment is made, the
amounts of processor time assigned to Oi are cri and rT, respectively. Because of
Lemma 2, r7 => ri. This additional r7- cri units of processor time assigned to O in So
is obtained by reducing the amounts of processor time assigned to the optimal tasks
0i/1, 0i/2," "’, On. Since T has the largest weight among the tasks T, T/I," , Tn,
the total error of the schedule So is at most as large as that of the schedule S,. However,
So is in the set Si, which contradicts the supposition that S is empty.

Lemma 3 allows us to determine the amounts of processor time that should be
assigned to the optional tasks in T in an optimal schedule with the minimum total
error. After using the ED Algorithm to verify that the task set T can be feasibly
scheduled, we determine these amounts as follows. First, we use the Algorithm F to
schedule the set of tasks M t_J { O1}. Again, T1 is the task with the largest weight; in the
resultant schedule $1o, its optional task is assigned r’ units of processor time. From
Lemma 3, we know that there are optimal schedules of T in which O1 is assigned r’
units of processor time. We commit ourselves to find one of these schedules by
combining M1 and the portion O of O1 that is scheduled in So into a task M. The
task M is treated as a mandatory task in the subsequent steps. In the next step, we
again use Algorithm F to schedule the task set {M, M2,’’ ", Mn} t_J {02}. Let O be
the portion, with processing time r, of the optional task O2 that is scheduled in the
resultant optimal schedule So. Again, Lemma 3 states that there are optimal schedules
of T in which the amounts of processor time assigned to O1 and O2 are r’ and
respectively. We commit ourselves to find one of these schedules by combining
and O into the mandatory task M. We repeat these steps for 3, 4, , n until all

r7 are found. The schedule So" found in the last step is an optimal schedule of T with
minimum total error. Again, this algorithm is called the LWF Algorithm and is described
in Fig. 5. Its time complexity is O(n2).

THEOREM 3. The LWF Algorithm is optimal.
Proofi The proof by induction of this theorem follows immediately from Lemma

3 and the definition of the LWF Algorithm.
Figure 6 shows an example. There are four tasks, and their weights are listed in

Fig. 6(a). The schedule S,, of M U {O1} produced by Algorithm F is shown in Fig.
6(b). We commit ourselves to finding an optimal schedule in which the amount of
processor time assigned to O1 is six. This schedule is an earliest-deadline-first schedule.
It is used in the second step as a template to find an optimal schedule of the task set
{M, T2, M3, M4}. This resultant schedule So is shown in Fig. 6(b). The total error of
the tasks is 25. Also shown is a schedule Su that minimizes the unweighted total error;
in this schedule the amount of processor time assigned to T1 is only the minimum four
units required to complete

5. Scheduling with 0/1 constraints. A schedule is said to satisfy the 0/1 constraint
if according to the schedule every optional task is either completed in the traditional
sense or discarded entirely. Hereafter, the expression that an optional task Oi is
scheduled means that it is assigned oi units of processor time. We consider only the
case where all the tasks have identical weights. In this section, we first show that the
problem of scheduling to meet the 0/1 constraint and timing constraints as well as to
minimize the total error is NP-complete when the optional tasks have arbitrary process-
ing times. We then present two algorithms for finding optimal schedules in the special
case where all optional tasks have equal processing time. An optimal schedule is a
feasible schedule in which the number of discarded optional tasks is minimum.
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0 2 4 6 8 10 12 14 16 18 20

(b)

FIG. 6. An example illustrating the LWF Algorithm.

THEOREM 4. The problem of scheduling tasks whose optional tasks have arbitrary
processing times to meet 0/1 constraints and timing constraints and to minimize total
error is NP-complete.

Proof. It suffices for us to show that the problem is NP-complctc in the following
special case. In the set T {T1, T2," ", Tn}, the processing times of all mandatory
tasks arc equal to zero. Let L i:1 oi be the sum of the processing times of all the
optional tasks in T. The ready times of all tasks in T arc equal to zero, and their
deadlines arc L/2. That the problem is in NP is obvious.

To show that the problem is NP-complctc, we transform the partition problem,
which is known to bc NP-complctc, into our problem. In the partition problem, wc
have a set B of n elements; each clement bi B has a size s(bi) Z+. Corresponding
to each clement bi there is an optional task in our task set; the processing time of this
optional task is s(bi). If wc can find a subset B’_ B such that

Y, s(bi)= Y s(bi),
blaB’ biB-B’

then we can find a schedule of T such that the processor never idles and the total error
is L/2, the minimum possible value. Optional tasks corresponding to the elements in
this subset are discarded. On the other hand, if we cannot find a subset B’ satisfying
the above condition, we cannot find a schedule with minimum total error L/2.

Hereafter, in this section, we confine our attention to the case where O 6, for
1, 2,. ., n; 6 is an arbitrary rational number. Our algorithm for scheduling with

0/1 constraint uses the following strategy: Each task and, hence, each optional task
in T is assigned a preference, an integer value determined from the ready times and
deadlines of the tasks in T. We first determine whether to schedule the optional task
with the highest (that is, the largest) preference, then determine whether to schedule
the optional task with the second highest preference, and so on. In particular, let
denote the preference given to the task Ti. For any two tasks T and T, we have
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(1) Pi > Pj if r <: t) and di > dj, or ri < r and di => dj, that is, the interval Jri,
contains the interval [r, d];

(2) Pi > P if ri < rj and di < dj and
(3) Pi =P if ri =r and di d.

We will return to justify this choice of giving preferences to different tasks. Without
loss of generality, we index the tasks in T such that p _-> p2 =>’’" => Pn.

5.1. The LDF Algorithm for scheduling tasks with the same ready time. When all
tasks have the same ready time, the tasks with later deadlines have higher preferences.
In this case, the LDF (latest-deadline-first) Algorithm shown in Fig. 7 can be used to
find an optimal schedule with the minimum number of discarded optional tasks.
According to the LDF Algorithm, a feasible, precise schedule S, of the mandatory
tasks is first constructed using the ED Algorithm. Since the ready times of all the tasks
are the same, the mandatory tasks are never preempted in Sin. Let tl, t2, be the
time instants at which M, M2," ", Mn completes according to S,,. In the next step,
we try to schedule O, then 02, and so on by readjusting the processor time assignments
of the tasks. This step is described by the pseudocode in Fig. 7. The complexity of this
algorithm is O(n log n).

LDF Algorithm
Step 1: Use the ED Algorithm to find a schedule S, of the mandatory set M. If S, is not precise, the

task set T cannot be feasibly scheduled; stop. Otherwise, carry out Step 2.
Step 2: t, t2," , tn are the completion times of M, Me," , Mn, respectively.

begin

dn+ ready time of all tasks
j=l
real_deadline d
while <=j <- n)

if( real_deadline tj >= 3
Schedule Oj and assign real_deadline m 3, real_deadline] to T
real_deadline min (real_deadline- mj 3, d/l)

else
Discard Oj; assign [real_deadline- m, real_deadline] to T
real_deadline min (real_deadline m, dj+

endif
j=j+l

endwhile
end Step 2

FIG. 7. Pseudocode of the LDF Algorithm.

THEOREM 5. The LDF Algorithm is optimal when all tasks have the same ready time.

Proof. Given an arbitrary optimal schedule in which Oi is scheduled but O is
discarded, and p > pi, that is, dj > di, we can transform this schedule into an optimal
schedule in which O is scheduled and Oi is discarded. This is done by reassigning
the time interval assigned to Oi in the given schedule to O instead. This reassignment
is possible because d > di. It follows that any optimal schedule can be transformed
into a schedule constructed by the LDF Algorithm. [3

5.2. The DFS Algorithm for scheduling tasks with arbitrary ready times. The DFS
(depth-first-search) Algorithm for scheduling tasks with arbitrary ready times is
described by the pseudocode in Fig. 8. Lemma 4 provides the basis for this algorithm.
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DFS Algorithm
Assign preference Pi to tasks; the tasks are indexed such that Pl => P2--> ">--Pn.
i=1
schedulables ch
M’-- M
while (1 <= <-_ n)

Use the ED Algorithm to find a schedule Sm of the tasks in M’U {Oi}
If (S i. is a precise schedule)

schedulables schedulables U Oi
Make the entire task T mandatory; M’= M’U {O}

endif
i=i+1

endwhile
Use the ED Algorithm to find a precise schedule of M t_J schedulables

end Algorithm DFS

FIG. 8. Pseudocode of the DFS Algorithm.

Again Ti-- {M1, M2," mi-1, Ti, T/+I, Tn} is the task set in which the first i- 1
tasks has no optional tasks.

LEMMA 4. There is a feasible, precise schedule of the task set M t_J { Oi} if and only
if there exists an optimal schedule Sio of T in which O is scheduled.

Proof Obviously, if there is an optimal schedule So, the set M U {O} has a feasible
and precise schedule. Suppose that the set M { Oi} has a feasible and precise schedule,
but there is no optimal schedule Sio in which Oi is scheduled. Let j be the smallest
integer such that there is an optimal schedule SJo in which Oi, O+1,"" ", Oj-1 are
discarded and Oj is scheduled. If no such So exists, the feasible, precise schedule of
M (.J { O} is optimal, we have a contradiction to the supposition that So does not exist.
Therefore, there exists an SJo.

Let x be any index such that i< x <j. Given that there is an So, we note that it
is not possible for the ready time and deadline of T to be such that either (1) r rx
and d dx or (2) (r, dj) is contained in (r, d) for any task T. If either (1) or (2) is
true, there is an optimal schedule in which O is scheduled. This contradicts that j is
the smallest index for So to exist. Therefore the ready times and deadlines of Tx and

T must be as shown in Fig. 9. In addition to T and T, the possible values of ready
times and deadlines of the other tasks are also shown. The arrow indicates the direction
of increasing preferences.

We need to consider two cases" either it is possible to adjust the processor time
assignments of T,..., T,..., T so that O, is scheduled instead of Oj or it is
impossible to do so. In the former case, we have a contradiction to the fact that j is
the smallest integer such that an optimal schedule So exists. In the latter case, we also
cannot adjust the processor time assignments of these tasks so that Oi is scheduled
and Oj is discarded. It is not possible for a feasible, precise schedule of M t_J {O} to
exist. We again have a contradiction. Therefore, we can conclude that So exists. ]

Lemma 4 allows us to determine whether the subset of optimal schedules in which
the optional task O1 is scheduled is empty. If it is empty, we decide to discard O1. If
it is not empty, we decide to schedule O1. After this decision is made, we then proceed
to determine whether the subset of optimal schedules in which both O1 and 02 are
scheduled is empty. If it is, we decide to discard 02; otherwise, we decide to schedule
02, and so on. The DFS Algorithm works in this manner to choose the subset of
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ri di

FIG. 9. Ready times and deadlines of Ti and T.

optional tasks to be scheduled and to construct a schedule of T {T1, T2," ", Tn}
that satisfies the 0/1 constraint and minimizes the number of discarded optional tasks.
Again, the algorithm is described by the pseudocode in Fig. 8. The complexity of this
algorithm is O(n2).

THEOREM 6. The DFS Algorithm is optimal.
Proof. We prove this theorem by induction. Clearly, if M t_J {O1} has a feasible

and precise schedule, O1 is schedulable according to Lemma 4. Otherwise O1 should
be discarded, since the subset of optimal schedules of T in which O1 is scheduled is
empty. Suppose that the theorem is true for some j. When the decision in regards with
whether O+1 should be scheduled or discarded is to be made, we have already decided
about O1, O2," ", O. In making the new decision, we try to find a feasible, precise
schedule of {M, M,. ., M, T+I, M.+2, ., Mn} where the mandatory task MI is

Mi if Oi is to be discarded and is T/if O is to be scheduled, for _-<j. Again, we can
use Lemma 4 to determine whether O+1 should be scheduled or discarded.

6. Summary. We present here a fast algorithm, called Algorithm F, for finding
preemptive, feasible schedules of n dependent tasks with rational ready times, deadlines
and processing times. Our criterion of optimality is that the algorithm guarantees to
find a feasible schedule if such schedule exists, and, among all feasible schedules, the
algorithm finds one with the minimum total error. Algorithm F is optimal when used
to schedule dependent tasks with identical weights on uniprocessor systems. By apply-
ing McNaughton’s rule [11], it can be modified to optimally schedule independent
tasks with identical weights on an identical multiprocessor system containing v pro-
cessors. The complexity of Algorithm F is O(n log n) in the case of uniprocessor
systems and is O(vn + n log n) in the case of identical multiprocessor systems. For the
case of different task weights, the LWF Algorithm with time complexity O(n) solves
this problem.

We also consider here the problem of scheduling tasks with 0!1 constraint, that
is, every optional task is either executed to completion or discarded entirely. This
general problem is shown to be NP-complete. In the special case when all optional
tasks have equal processing time, the DFS Algorithm finds optimal schedules of
dependent tasks on uniprocessor systems. Again, a schedule is said to be optimal if it
satisfies the 0! 1 constraint, is feasible, and minimizes the number of discarded optional
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tasks. The complexity of the DFS Algorithm is O(n2). If the ready times of tasks are
the same, the simpler LDF Algorithm with complexity O(n log n) can be used instead
to find optimal schedules.

An extension of the problems considered here is that of finding approximate
algorithms to solve the general problem of scheduling with 0/1 constraints when the
optional tasks have arbitrary processing times. When the criterion of optimality is the
number of discarded optional tasks, regardless of their processing times, a good strategy
is to give higher preference to optional tasks with shorter processing times and try to
schedule them first. Alternatively, a good strategy for scheduling tasks with 0/1
constraint to minimize total error is to give tasks with longer processing times higher
preference. A paper on the worst-case performance bounds of these approximate
algorithms is in preparation.
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BOOLEAN FUNCTIONS, INVARIANCE GROUPS, AND
PARALLEL COMPLEXITY*

PETER CLOTE? AND EVANGELOS KRANAKIS

Abstract. This paper studies the invariance groups S(f) of boolean functions f B (i.e., f: {0, 1}
{0, 1}) on n variables, i.e., the set of all permutations on n elements which leave f invariant. After building
intuition by presenting several examples that suggest relations between algebraic properties of groups and
computational complexity of languages, necessary and sufficient conditions are given via P61ya’s cycle index
for an arbitrary finite permutation group to be ofthe form S(f), for somef B. It is shown that asymptotically
"almost all" boolean functions have trivial invariance groups. For cyclic groups G =< S. a logspace algorithm
for determining whether the given group is of the form S(f), for some f B, is given. The applicability of
group theoretic techniques in the study of the parallel complexity of languages is demonstrated. For any
language L let Ln be the characteristic function of the set of all strings in L which have length exactly n
and let S,(L) be the invariance group of Ln. The index ]Sn :S,(L)I are considered as a function of n and
the class of languages whose index is polynomial in n is studied. Bochert’s lower bound on the index of
primitive permutation groups is used together with the O’Nan-Scott theorem, a deep result in the classification
of finite simple groups, in order to show that any language with polynomial index is in (nonuniform) TC
and hence in (nonuniform) NC1. As a corollary, an extension is given of a result of Fagin-Klawe-Pippenger-
Stockmeyer, giving necessary and sufficient conditions for a language with polynomial index to be computable
by a constant depth polynomial size circuit family. As another corollary, it is shown that the problem of
"weight-swapping" for a sequence of groups of polynomial index is in (nonuniform) NC1.

Key words, abelian group, boolean function, circuit, classification theory, cyclic-, dihedral-, hyperocta-
hedral-groups, index of a group, invariance group of boolean function, NC, parallel complexity, permutation
group, P61ya cycle index, pumping lemma, representable group, regular language, symmetric boolean
function, wreath product
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1. Introduction. The aim of this paper is to study the invariance groups of boolean
functions, provide efficient algorithms for determining the representability of a given
group as the invariance group of a boolean function, and use group theoretic techniques
in order to deduce results about the parallel complexity of formal languages.

Given n input values, each of which can assume one of two possible states 0, 1,
a "module" M outputs a value which assumes one of the states 0, 1. The output of
the module when the input values are Xl,’" ", xn depends in general on the order of
the inputs. There are certain permutations of the input states which leave the output
state invariant or unchanged. For example, it may be that the output is independent
of any permutation of the input states, in which case the given module is called
symmetric. In general, for a given module, the set of permutations which, when applied
to any set of input states, leave the output invariant is easily seen to form a permutation
group.
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Formally, the operation performed by such an n-ary module M is usually repre-
sented by an n-ary boolean function f: 2 2. For fixed n, let the set of all such n-ary
boolean functions be denoted by Bn. If the input states of the module are assigned
the boolean values xl,-.., xn then by definition f(xl,’", x) is the value of the
output state of the module M on input Xl,’’’, xn. Given such an n-ary boolean
function f let S(f) be the set of all permutations on the n elements 1, 2,..., n such
that for all input values (xl, , xn) 2, f(Xl, Xn) -’f(x(1), Xo-(n)). Clearly,
the group S(f) equalsthe full symmetric group S, exactly in the special case when
the boolean function f is symmetric.

By a counting argument Lupanov, Shannon, and Strassen have shown that almost
all boolean functions have exponential size circuit complexity. Despite this result, very
little is known concerning specific languages or families of boolean functions. Our
interest in the present study arose from attempting to use group theoretic techniques
in order to generalize the simple observation that any family {f’fn B,, n N} of
symmetric boolean functions is computable by a logarithmic depth, polynomial size
circuit family. Probabilistic techniques have been successfully used by several authors
(Furst, Saxe, and Sipser [FSS84], Yao [Yao85], etc.) in order to obtain lower bounds
on the size and/or depth of circuit families which compute certain symmetric languages
(families of symmetric boolean functions). However, there are few results giving tight
upper bounds, apart from the above cited fact that any family of symmetric boolean
functions is computable by a nonuniform circuit family of logarithmic depth and
polynomial size (formula size bounds have been obtained by various authors in this
case). In this paper we indicate the applicability of group theory in obtaining upper
bounds for the parallel complexity of families of boolean functions. Our work is
different from, but somewhat related to, studies on the automorphism groups of
error-correcting codes (e.g., kth order Reed-Muller codes, which are specific k-
dimensional subspaces of 2" [MS78]), as well as to work in [Har64] where group
theoretic methods are used to calculate the number ofnonequivalent boolean functions,
where the equivalence relation is defined by f--g if and only if there exists cr S,
such that for all X ," X {0, 1} (f(x1 ," ", Xn) g(X(1), X(n))).

In [FKL88] it was indicated how the classification theorem for finite simple groups
could be applied to VLSI technology by giving an algorithm to minimize pin-count in
a sequence of circuits. Here we consider the problem of placement of modules on a
chip where permutation of input wires is allowed. It is expected that study of the
invariance groups of boolean functions may lead to algorithms for optimizing space
in YLSI design, e.g., knowledge that certain modules leading into a block can be
permuted without changing the function computed.

It is interesting to point out that invariance groups are also relevant to the
computability problem for boolean functions in anonymous networks as used in
distributed computing. For example, we are interested in computing n-ary boolean
functions in an n-node anonymous network N. To compute the value of a given
function f at the input (bl,’", b,) the processors pa,...,p, are initialized with
the inputs bl," ", bn, respectively. By exchanging messages through the links all the
processors must eventually compute the same bit b--f(bl,’’ ", b). It has been the
focus of several papers to determine and study networks for which

f is computable in : S(f)_ Aut(),

Throughout the paper we identify a positive integer n with the set {0, 1,. , n- 1}, e.g., 2 {0, 1}; in

general, however, we will prefer the set-notation when we want to emphasize the elements of the language
under consideration.
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where Aut(dg’) denotes the group of automorphisms of . In fact, this is the case for
several types of networks, like directed and unlabeled rings [ASW85], labeled tori
[BB89], and labeled hypercubes [KK89].

1.1. Results of the paper. Following is an outline of the main results and contents
of the paper. We begin in 2 by providing some preliminary results regarding the size
of the index of a permutation group. We remind the reader of the essential parts of
P61ya’s beautiful enumeration theory that will be used in the present study.

In 3 and 4, to build intuition for the reader, we present a number of examples
concerning the invariance groups of certain types of languages, such as palindromes,
parentheses, and regular languages, and study the reverse problem of constructing
languages realizing specific types of groups. We compute the invariance groups of
Dyck palindrome languages and give an efficient algorithm for determining membership
in the invariance group of regular languages. We show that each of the cyclic (for
n 3, 4, 5), dihedral, and hyperoctahedral sequences of groups are representable by
regular languages and construct groups which cannot be represented by regular
languages.

In 5 we study the representation problem for general permutation groups. We
define a subgroup G-<_ Sn to be strongly representable if G is the invariance group of
an n-ary boolean function--i.e., there exists f Bn for which G S(f). We distinguish
between groups which are "strongly representable" and groups which are "isomorphic
to strongly representable." In the latter case, we show that, every permutation subgroup
of Sn is isomorphic to a strongly representable group S(f), for some f: 2ngn/l 2;
but as stated, this isomorphism is at the expense of increasing the number of variables
in the boolean function from n to n(log n + 1). The problem is more interesting in the
former case, where we give a necessary and sufficient condition in terms of the P61ya
index, for an arbitrary subgroup of Sn to be of the form S(f), for some n-ary boolean
function f: 2n 2. Using the classification theorem for maximal permutation groups
we show that "with few exceptions" (essentially, only the alternating group An, for
n _-> 10) all maximal permutation groups on n letters are strongly representable. This
contrasts with the fact that there are numerous nonrepresentable permutation groups.
We also give a logspace algorithm which, on input of a cyclic group G-<_ S,, decides
whether G is strongly representable, in which case it outputs a boolean function

f: 2 - 2 such that G S(f). Our last result in this section concerns asymptotics. For
any sequence of nonidentity permutation groups (Gn =< Sn: n >_-1) we prove that

lim
[{f B,," S(f)-> GnII

22n

It then immediately follows that asymptotically "almost all" boolean functions have
a trivial invariance group; i.e., they are equal to the identity permutation group.

Given a language L {0, 1}*, let Ln be the characteristic function of the set of
words of L of length exactly n. Section 6 is concerned with the complexity of languages
of polynomial index, i.e., languages L for which there exists a polynomial p(n) such
that ISn Sn(L)I --< p(n), where Sn(L) denotes the invariance group of the boolean
function Ln. We study the closure properties of the class of these languages and apply
the NC algorithm for permutation group membership of [BLS87] in order to show
that languages of polynomial index are in (nonuniform) NC. By using the O’Nan-Scott
theorem, a deep result in classification theory of finite simple groups, we improve the
last result to show that any language of polynomial index is in (nonuniform) TC and
hence NC1.
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In [FKPS85], Fagin, Klawe, Pippenger, and Stockmeyer used group theoretic
techniques together with the exponential size lower bound for constant depth circuits
accepting parity [Yao85] to give a necessary and sufficient condition for a symmetric
language L {0, 1}* to belong to AC; i.e., for L to be computable by a nonuniform
circuit family of constant depth and polynomial size. Our characterization of languages
of polynomial index allows an immediate extension of this result. Namely, for L
{0, 1}* of polynomial index, L is in AC if and only if the least number of input bits
which must be set to a constant in order for the resulting language Ln L {0, 1} to
be constant is polylogarithmic in n.

As mentioned in the introduction, we believe that group theoretic considerations
may possibly play a role in VLSI design. In particular, knowledge of the invariance
group of "modules" might allow minimization of the surface area for automated circuit
layout. Toward a mathematical formalization of this idea, we introduce some notation.
For any sequence G={G,: G,_-<Sn, nN} of permutation groups the problem
SWAP (G) is given by the following.

Input. n N, a1,’" ", an positive rationals.

Output. A permutation tr Gn such that for all 1 <= < n, a(i/ a(i+l) 2, if such
a permutation exists, and the response "NO" otherwise.

The intuition behind the problem SWAP (G) is that the output wires of modules
M1,’’ ", M, are the inputs to module M, and that the invariance group of M is
The "width" of module Mi is the rational number ai. Modules M and M. can be
placed next to each other if they do not "overlap"; i.e., exactly when a / aj 2, where
we imagine an average size of I per module. Thus, the output for SWAP (G) indicates
whether there exists a permutation of the input modules M which does not change
the output of M and which allows a layout of M(I,’’’, M( without overlap. A
simple application of our work yields an NC algorithm for the problem SWAP (G),
where G {Gn: G -< S, n N} is of polynomial index.

Recall that the stipulation of the layout problem is to find an optimal layout given
a number ofmodules together with their connections. A popular algorithm that attempts
to solve the layout problem is due to Kernighan and Lin [KL82] and partitions the
chip into an upper and a lower half, swapping modules on either side, trying to
minimize a certain parameter, then recursively partitioning simultaneously the top and
bottom into left and right parts, swapping modules between left and right parts to
minimize a parameter, etc. Our problem stipulation in SWAP is quite different: instead
of being given a list of modules and their connections (including which input port of
a target module), we allow the input ports ofthe target module to be swapped, provided
that the resultant function is not changed.

Finally, in 7, we discuss some open problems and give directions for further
research.

An acquaintance with the standard results on group theory and finite permutation
groups, as presented for example in [Ha157] and [Wie64], will be essential for an
adequate understanding of the results of the present paper.

2. Preliminaries. Here we give some introductory definitions and results regarding
permutation groups and complexity of circuits that will be used in our subsequent
investigations. The three topics we will discuss are:

the size of the group index,
the size of the cycle index and its computation via P61ya’s formula, and
complexity ofboolean functions with respect to the size and/or depth ofboolean
circuits computing them.
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2.1. Index of a permutation group. In the sequel it will be convenient to think of
permutations on the set {1, 2,. ., n} as bijective mappings on the set of all positive
integers such that o-(k) k for all k > n. Part of this paper is primarily concerned with
"large" permutation subgroups of the full symmetric group. Let Sn denote the group
of all permutations of n elements, and An be the subgroup of even permutations (also
known as the alternating group on n letters). In general, for any nonempty set f let
Sn denote the set of all permutations of f. For any group G the symbol H <- G means
that H is a subgroup of G. Regarding the sizes of permutation groups the following
theorem summarizes some known results on the sizes permutation groups.

THEOREM 1. Let H <-Sn be a permutation group which does not contain

(1) ISn’HI -> n.
(2) If the order of H is maximal then ISn HI n. In fact, for n 6 the subgroups

H of S, with ISn "HI n are exactly the one point stabilizers of
(3) IfH is primitive then

(Bochert) IS.’Hl>-[(n+l)/2]!.
(Praeger and Saxl) HI < 4n.
(Cameron) either H is a "known’ group or IHI< r/101glgn.

Proof For all three parts and further information, consult [Wie64], [Tzu82], as
well as the references in [KL88] (in particular, the proof of (3) is very hard). Part (1)
follows from the following claim.

CLAIM. IfH is a subgroup ofG and G" HI n then there exists a normal subgroup
N of G such that N <- H and G" NI divides n!.

Indeed, consider the set f {Hg: g G} of cosets of the quotient group G/H.
By assumption, this set has size n. Let Sa be the group of permutations on f. For
each x G consider the permutation b(x)’f-O, where 4)(x)(Hg)= Hgx. Clearly,
b" G--> Sa is a group homomorphism. Moreover, it is easy to see that

N := Ker(49) f-I Hg

g6G

is a normal subgroup of G, where Hg= g-lHg. By the homomorphism theorem, the
order of the quotient group GN divides the order of the permutation group Sa. This
proves the claim.

Now let us prove (1) by the above claim there exists a normal subgroup N of S,,
such that N_-< H and [Sn "N[ divides (n- 1)!. It follows that N 1. Since the only
normal subgroups of Sn are An, Sn, and 1, the result is clear.

2.2. Cycle index of a permutation group. Let G be a permutation group on n
elements. Define an equivalence relation i=j if and only if for some r G, r(i) =j.
The equivalence classes under this equivalence relation are called orbits. Let Gi
{r G" r(i)= i} be the stabilizer of i, and let be the orbit of i. An elementary
theorem asserts that [G’Gi[ lie[. Using this, we can obtain the well-known theorem
of Burnside and Frobenius, which states that for any permutation group G on n
elements, the number of orbits of G is equal to the average number of fixed points of
a permutation o- G,

1
(1) o)n(G)= ]{i" r(i)= i}l,

where o)n(G) is the number of orbits of G [Com70]. Any permutation rSn can be
identified with a permutation on 2 defined as follows"

x (x,..., x)-, x (x(), ., x(.)).
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Hence, any permutation group G on n elements can also be thought of as a permutation
group on the set 2". It follows from (1) that

1
2" xI{x" x 2"}1 =-Y I{x x}l,

where x {x: o- G} is the orbit of x. We would like to find a more explicit formula
for the right-hand side of the above equation. To do this, note that x x if and only
if x is invariant on the orbits of o-. It follows that ]{x e 2": x x} 2(), where o(
is the number of orbits of (the group generated by) . Using the fact that o()=
c()+...+c,(), where c() is the number of /-cycles in (i.e., in the cycle
decomposition of ), we obtain P61ya’s formula:

1 2o( 1
(2) I{x’x2"}1= Z VG
The number I{x:x 2"} is called the cycle index of the permutation group G and
will be denoted by O(G). If we want to stress that G is a permutation group on n
letters, then we write O,(G), instead of O(G). For more information on P61ya’s
enumeration theory the reader should consult [Ber71] and [PR87].

Since the invariance group S(f) of a functionf B, contains G if and only if it
is invariant on each of the different orbits x, x 2", we obtain that

I{f N,: S(f) e GII 2(.

It is also not difficult to compare the size of (G) and lS, G]. Indeed, let H
If

are the distinct right cosets of G modulo H then for any x 2" we have that

xG xHg, U XHg2 U" U XHgl.

It follows that (R),(H) _-< (R),(G) IG" HI. Using the fact that (R),(S,) n + 1 we obtain
as a special case that O,(G)<-(n + 1)IS, "GI. In addition, using a simple argument
concerning the size of the orbits of a permutation group we obtain that if
are different orbits of the group G-<_S, acting on {1, 2,..., n} then

We summarize these results in the following useful theorem.
THEOREM 2. For any permutation groups H <= G <= S, we have
(1) O.(G)<O.(H)<-(R).(G) IG’HI.
(2) (R),(G)<=(n+ 1). IS, "GI.
(3) n+l_-<@,(G)_-<2".
(4) If zXl,. ,A,o are different orbits of G then 1).,, (IA I/
It is easy to see that in general IS," GI and (R),(G) can diverge widely. For example,

letf(n) n-log n and let G be the group {o- S," Vi>f(n)(o-(i)= i)}. It is then clear
that (R),(G)=(f(n)+ 1) 2g" is of order n2, while IS," G] is of order nlg". Another
simpler example is obtained when G is the identity subgroup of

2.3. Circuits. An n-circuit a, is a labeled, directed acyclic graph whose nodes
are labeled by x,. , x, (input bits), --n, ^, v. The input nodes are of in-degree 0 and
there is a unique output node whose out-degree is 0. The size c(a) of a, is the number
of internal (i.e., noninput) nodes, while the depth d(a) of a, is the maximal length
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of a path from an input node to the output node. A word x c {0, 1} is accepted by an
n-circuit an if each input node labeled by xi has as value the ith bit of x. An n-circuit
an recognizes or computes a language Ln {0, 1} (respectively, boolean functionfc
if and only if for all words x in {0, 1} n,

x c Ln (respectively f(x) 1) : an accepts x.

A circuit family (an: ten is an n-circuit, n N) recognizes or computes a language
L {0, 1}* if and only if for all n (an accepts Lfq {0, 1}n). In this paper, we usually
consider nonuniform circuit families as defined above--of course, such families can
recognize nonrecursive languages. A circuit family (an: n N) is logspace uniform if
there is a logspace computable function F 1

_
cn for constructing the circuits. There

are stronger and weaker uniformity notions. See [Coo85] for further discussion and
for a survey ofparallel complexity theory. The class SIZE-DEPTH(f, g) is the collection
of languages accepted by a family (an: n N) where c(an)<-f(n) and d(an) <- g(n).
The class AUk (respectively, NCk) is the collection of languages2 belonging to SIZE-
DEPTH(n(1, O(logk (n))) where the in-degree of nodes labeled by ^, v is arbitrary
(respectively, 2). Of importance to this paper is the class AC of languages accepted
by (nonuniform) circuit families of constant depth and polynomial size with arbitrary
fanin, and the class NC of languages accepted by (nonuniform) circuit families of
logarithmic depth (and a fortiori polynomial size) with fanin 2. By unwinding a circuit
into an equivalent boolean formula (circuit with fanout 1), NC is easily seen to be
the class of languages computable by (nonuniform) polynomial size boolean formulas.
The class TC is the collection of languages computable by (nonuniform) circuit
families with constant depth and polynomial size, whose gates are arbitrary fanin
threshold gates. NC is defined to be t.J nN Nck. Trivially, NCk

_
ACk, and by replacing

an arbitrary fanin gate by a binary tree of fanin 2 gates, it is clear that ACk
___
NC k+l.

A language L
_

{0, 1}* is said to have (or be computable by) polynomial size circuits,
denoted L SIZE (n o1), if there is a circuit family (an n N) where an computes the
characteristic function of Ln=Lf’){0, 1} and c(an)<-_p(n) for some polynomial p.
Note that SIZE(n1)) is the same class, whether one considers arbitrary fanin or fanin
2 circuits. Since the out-degree of a node is arbitrary, partial computations may be
reused; thus the circuit provides a model for parallel computation. Stockmeyer and
Vishkin [SV84] have shown that ACk is the class of languages computed in O(logk (n))
time with a polynomial number of processors on a parallel random access machine
(PRAM).

For a boolean function f:2 - 2, we define

c(f) =min {c(a)" a computes f}

where a has fanin 2. The following results are well known (e.g., see [Sav76] or [Yab83]).
In particular, we shall use the second fact in a later proof.

(1) For any symmetric function f Bn, c(f) O(n).
(2) (Lupanov-Shannon-Strassen) I{f Bn" c(f) < q}l O(qq+l)
(3) For any e>0, the ratio offBn such that c(f)>(1-e)2n-1/n tends to 1

as n --- oo.3. Invariance groups of certain languages. The main objects of study in this paper
are boolean functions and their invariance groups. Let Bn,k be the set of all k-valued

Usually these classes are defined to be classes of functions rather than languages. Since we will not

discuss function computations in this paper, we adopt the above definition.
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functions f" 2"- k on n boolean variables. If k 2 then we abbreviate B..2 by B,. If
Z2 denotes the finite two-element field then it is clear that

Z2[Xl,""" ,Xn]
Bn-- 2(xi-xi, i= 1,2,’’’, n)

For x (xl, , xn) e 2" and r e S., let x (x(1), , x(.)). For any n-ary boolean
function fe B. let f be defined by

f(xl, x,) f(x(1), x(,)).

The invarianee group of f is defined by

S(f)={o-S.’f=f-}

{o" S," Vx 2"f’(xl ," ", x,) =f(x(1), ", x(,))}.

If K {0, 1}" is a set of words of length n, then by abuse of notation we shall write
S(K) for the invariance group of the characteristic function of the set K. If L

_
{0, 1}*

is a set of finite words and n => 1 then S,(L) denotes the invariance group of the n-ary
boolean function L,. Clearly, S(f), being nonempty and closed under multiplication,
is a subgroup of Sn.

Here we compute the invariance groups of well-known formal languages. We
begin with the Dyck (or parenthesis) and palindrome languages and conclude with an
"efficient" algorithm for computing the invariance group of regular languages.

3.1. Dyck languages. The semiDyck language D [Harr78] is defined as the least
set of strings in the alphabet 0, 1 such that A e D and (for all x, y D) (xy D and
0xl e D). The semiDyck language is not regular, as can be seen from the fact that the
elements 0" give rise to infinitely many distinct equivalence classes in the right
congruence relation for D. The Dyck languages Dr, r => 1, are defined in the alphabet
--r--’-{0i, l i’i 1,..., r} in a similar fashion" D is the least set of strings in the
alphabet --r such that A D and (for all x, y Dr) (for all <- r) (xy D A Oixli Dr).
Clearly, D--D1. Next we determine the invariance group of the Dyck languages.

THEOriES 3. For the Dyck language D defined above we have that

1 if n is odd or r>-2
S (Dr)

((i, + 1)" < n is even) if n is even and r 1.

Proof First, notice that D is a homomorphic image of Dr. The homomorphism
hr "’r --> is defined by setting hr(bi) b, where b {0, 1}. It follows that for all strings
x of length n, and all permutations rS,, hr(x)=(hr(x)), which in turn implies
that Sn(Dr)S,(D). Now, if n is odd, then trivially S(D)= 1 and so S(D) 1.
Suppose that n- 4, r 2, and, respectively, write "(", "[", ")", "]" in place of 01, 02,
11, 12. Then ([ ]) D], but (] [) D4. Similar examples can be constructed to verify
that S(Dr) 1 for 2 <= r. To prove the theorem, it is enough to show that, for n even,

S,(D)=((i,i+l)" i<n is even).

For any string x xl xk let l(x) k be its length and s(x) its signature, where

k

s(x)= E (-1) x’.
i=1

Then we can prove the following claims.
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CLAIM 1. For any string x, x DC: s(x) 0 and for all <-_ l(x)(s(x i) >= 0).
Proof of Claim 1. The direction from left to right is trivial by induction on the

construction of x D. To prove the other direction, assume the right-hand side is true.
We use induction on the length of x. If for some k < l(x), s(x k) 0 then x (x k)y,
for some y. Clearly, the induction hypothesis applies to x lk and y. Consequently,
both x k, y D and hence also x D. Otherwise, for all k < l(x), s(x k) > 0. Clearly,
Xl(x 1 (otherwise s(x)> 0). We also know that Xl =0. Hence, x =0y l, for some y.
Clearly, this y satisfies the induction hypothesis stated in the right-hand side of Claim
1. Hence, y D and consequently also x D.

As mentioned above, if n is odd the theorem is trivial. Hence, in all the proofs
below we assume that n is even.

CLAIM 2. For any b {0, 1} and any 1 < < n there exists a string x Dn such
that xi- b.

Proof of Claim 2. The proof is by induction on n. The claim is trivial if n- 2. So
assume n > 2. If 2 then consider the strings 01y, 001 lz 6 Dn. If n 1, then consider
the strings y01, z00116 D,. Hence, without loss of generality, we can assume that
2 < < n 1. But then consider strings of the form 0yl, where y D_2, and use the
induction hypothesis.

CLAIM 3. r Sn(D):=>cr(1) 1, tr(n) n.

Proof of Claim 3. Assume tr(1) 1. Consider an x D such that xi- 1 (use
Claim 2). Then note that x= ly Dn, for some string y, which is a contradiction. A
similar proof shows that tr(n) n.

CLAIM 4. If r Sn (D) and r[{ 1," ., 1 }] [{ 1," ", 1 }] and or(i) < then
(a) is even, (b) tr(i) i+ 1, (c) o-(i+ 1)-- i.

Proof of Claim 4. To prove (a) assume on the contrary that is odd. Consider an
x D, such that x y0.. lz, where xi =0 and x(i)= 1 and s(y)- 0. Applying cr to
x we obtain that x=yl.... But then s(yl)= s(y)-1 s(y)-I -1 0. Hence,
x D,, by Claim 1, a contradiction.

To prove (b) assume on the contrary that r(i) > + 1. For simplicity, assume that
o-(i) i+ 2 (a similar proof will work if r(i)->i+ 2). We distinguish several cases. If
tr(i + 1) + 1 then consider the string x y0011 D, with l(y) 2, xi_ x 0
and xi+=xi+2 =1. Then it is clear that x=y011 .D, a contradiction. If
o-(i + 1) + 3 then consider the string x y000111 D,, with l(y) 2, x_
x xi+ 0 and x+2 xi+3 x+4 1. Then it is clear that x y011 D,, a contra-
diction. If o-(i+ 1)> i+3 then consider the string x =y0011 1 . D,, with/(y)=

2, xi_ X 0 and xi+ Xi+2 Xo-(i+l 1. Then it is clear that x y011 D,,
a contradiction. Thus, we obtain a contradiction in all cases considered above. Hence,
tr(i) i+ 1. This completes the proof of (b).

To prove (c) use an argument similar to (b). Indeed, assume on the contrary,
cr(i + 1) # i. It follows that o-(i + 1) >= + 2. If cr(i + 1) + 2 then take x y0011
D,, with xi_ xi =0, xi+ x+2 1. If we apply o- to x then we obtain x y011 .
D,, which is a contradiction. If r(i+l)=i+3 then take x=y00101.. "Dn, with
x_ x xi+2 0, x+ x+3 1. Ifwe apply r to x then we obtain x y011 D,,
which is a contradiction. In general, a similar proof works if r(i+ 1)-_>i+3. This
completes the proof of (c).

Now we are ready to complete the proof of the theorem. Let r D. We know
that tr(1)= 1. Let i be minimal such that o-(i) i and for all i<i(r(i)<i). By
minimality o-(i)> i. It follows from Claim 4 that i is even and cr(i)-i+ 1 and
0"(i1+ 1)= i. Let i be minimal i such that 0-(i2) i2 and for all i< i2(0(i)i). By
minimality r(i2) i2. Hence, Claim 4 applies again to show that i2 is even and o-(i_) i2 + 1
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and r(i2 + 1) i2. Proceeding in this fashion we show that S, (D) c__ ((i, + 1)" n is
even). It remains to show that, in fact, equality holds. Indeed, let < n be even. There
are four possibilities for xixi+l in the string x:

X yO0 X2 yO1 X3 ylO , X4 yll

where y is a string of odd length. But then it is easy to see that for all j 1, 2, 3, 4,
(i,i+1)Xe D. : ._j e D,,

which completes the proof of the theorem. [-I

3.2. Palindrome language. The palindrome language is defined as the set of all
strings (in the alphabet ;, with at least two elements) u Ul"" u, such that for all
(u, u._,+l).

THEOREM 4. If L is the palindrome then

S.(L) <=> (Vi<=n)(o’(n=n-tr(i)+l)).

Moreover, S(L) is isomorphic to S[,/2x (Z2) ["/21.
Proof. (3) Let o- S,(L). Suppose that tr(i)=j. Consider the string u=ul...u

such that u; u_3+1 0, and Uk 1, for all k # i, n -j 1. Clearly, u Lm. Hence, also
u L,. It follows that u(i)=u; =0 and consequently u(_i+l)=0. But this is true
only if tr(n + 1) n -j + 1, as desired.

() This direction is obvious from the very definition of the palindrome.
To determine the group S(L), notice that by the previous result, a permutation

o’ S(L), is determined by the values o-(1), , tr([n/2]). Furthermore, note that if
n is odd then r((n + 1)/2)= (n+ 1)/2. Now consider the permutation tro such that for
all i_-< n, tro(i)= n + 1- and put G {trtr0mr-1" o- St,/2}. It is easy to see that G,
is isomorphic to S,/2, moreover the group H generated by G and the transpositions
(i, n- i+ 1) is exactly the group

G,, x (1, n) x (2, n- 1) x... x (In/2], n-In/2]- 1).

Moreover, H, S(L). This completes the proof of the theorem.

3.3. An algorithm for the invariance group of regular languages. Here we are
interested in studying the complexity of membership in the invariance group of a
regular language. To this end consider a term t(x, y) built up from the variables x, y
by concatenation. For example, t(x, y) xyx, t(x, y) x2yxSy3, etc. are such terms. The
number of occurrences of x and y in the term t(x, y) is called the length of and is
denoted by Itl, e.g., tl 3 and lt 11, in the two previous examples. For any permuta-
tions r, - let the permutation t(tr, -) be obtained from the term t(x, y) by substituting
each occurrence of x, y by tr, -, respectively, and interpreting concatenation as the
product of permutations. We know that the symmetry group S, is generated by the
cyclic permutation c, (1, 2, , n) and the transposition r- (1, 2) (in fact any trans-
position will do) [Wie64]. A sequence tr (tr,: n -> 1) of permutations is term-generated
by the permutations c,, r if there is a term t(x, y) such that for all n _-> 2, r, t(c,, ’).
We have the following theorem.

THEOREM 5. (1) Let cr=(tr,: n--> 1) be a sequence ofpermutations which is term-
generated by thepermutations c, (1, 2, , n), " (1, 2). Thenfor any regular language
L, L is also regular.

(2) For any term oflength Ill the problem of testing whether, for a regular language
L, L L, where cr (tr,: n-> 1) is a sequence of permutations generated by the term
via the permutations c, (1, 2,..., n), ’= (1, 2), is decidable; in fact it has com-
plexity O(21’1).
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Proof Part (2) is an immediate consequence of the proof of part (1) and the
solvability of the equality problem for regular languages [Harr 78]. So we concentrate
only on the proof of (1). To prove the theorem we need the following claim, whose
proof is easy and left to the reader.

CLAIM.

L REG=>{x: 0x L} REG.

LREG,{x: xl L} REG.

L REG,{x: 0xl L} REG.

L REG,{x: lx0 L} REG.

First we show how to prove the theorem when rn (1, n). Indeed,

Ll"n) {x 2" xnx: X_lXl L}

and this last set is the union of the following four sets:

{x 2: 0x:. x,_10 L}, {x 2 lx:. X_ll L},

{x2: 0x:. x_l L}, {x2n: lx:. x_10 L}.

This completes the proof in view of the above claim. A similar proof will yield the
result when each crn (1, 2). Next we use the above result for the transpositions (1, n)
to prove the result for the n-cycles, o- c. Indeed,

LREG{x x,: xl L} REG

:=>{Xl x.: Xl x,1 L} REG

{x x: lx: xnx L} REG

{xl x,: x_ xx L} REG.

Finally, the theorem follows by using the following product formula, which is valid
for any permutations ’1, ’: S,,

7,’rl 7"2Lrn,’r2--(__n/

This completes the proof of the theorem. [3

The assumption on term generation of the sequence (or," n => 1) of permutations,
made in the last theorem, is necessary as the following example shows.

Example 6. Let R be a recursively enumerable but nonrecursive set. Consider the
permutation r,, which is equal to (1, n), if n R, and is equal to idn, if n R, where
id, is the identity permutation on n letters. Consider the regular language defined by
L= 10". Then it is easy to see that L={10n: n+IR}U{0"I: n+lR}. It follows
that n R:>0"-IL. Hence, L is not even a recursive language, although L is
regular.

4. Constructing languages with given invariance groups. This section is concerned
with the problem of realizing specific sequences of finite permutation groups by
languages L{0, 1}*. A language L is said to realize a sequence G=(G,: n->l) of
permutation groups G,-< S, if it is true that S.(L)= G,, for all n. We consider the
following types of groups and determine regular as well as nonregular languages
realizing them.
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Reflection. R, (p), where p(i)= n + 1- is the reflection permutation,

Cyclic. C, ((1, 2,. ., n)).

Dihedral. D C x R..
Hyperoctahedral. O, ((i, + 1): is even <- n).

THEOREM 7. (1) Each of the identity, reflection, cyclic (for n 3, 4, 5), dihedral,
and hyperoctahedral groups can be realized by regular languages.

(2) Each of the identity, cyclic, and dihedral groups can be realized by languages L
such that L : SIZE n o(1)).

Proof. (1) For each of the above-mentioned types of groups we provide a regular
language realizing it.

Identity. This case is simple" take L 0"1..
Dihedral. Let L 0* 1"0" U 1"0" 1". It is clear that D

_
S(L). Let p be the reflec-

tion permutation defined by p(i) n + 1 and let tr (1, 2, , n). It is easy to check
that trptr p. It follows that D {trkp: k-< n, 0, 1}. Next we prove the following
claim.

CLAIM. For all - S, if addition is modulo n,

or
’ D. :> Vi<- n(’(i+ l)= ’(i)+ l)

Vi_--< n(’(i) ’(i+ 1)+ 1).

Proof of the claim. From left to right the equivalence is easily verified for the
permutations trkp (1 _--< k-< n, 0, 1). For example, o-(i + 1) tr(i) + 1 and p(i)
p(i + 1)+ 1. To prove the other direction, assume that - satisfies the right-hand side.
Say, -(1)- k. It is then easy to see that either -= crk-1 or "- trkp. This completes the
proof of the claim.

It remains to show that S,(L)__ D,. If n-< 3 the result is trivial. So assume that
n => 4. Let - D,. There exists an =< n 1 such that I-(i + 1) r(i)l => 2. Let us suppose
that 1 <= ’(i) + 1 < r(i + 1) _-< n. Then we have that

X--oi-ll20n+l-i G Ln, x’r---O’r(i)--llo’r(i+l)--lln--’(i+l) Ln.
Reflection. Let L-0*I*0*. It is clear that R, c_ S,(L). We want to show that

S, (L)
__

R,. By the proof given in the case of dihedral groups we have that S, (L,)
__
D,.

Assume on the contrary that z S,(L), but z D,- R,. It follows that z trip, for
some i_-> 1. Since p S,(L) we obtain that tri S,(L), which is a contradiction.

Cyclic. First assume that n 2. Then consider the regular language

L= (01U 10)0"1"

and notice that S.(L) (1, 2).

Next assume that n >_- 6. Consider the regular language L L f3 L2 where L is
the language

1"0"1" U 0"1"0" U 101000"1U 0"1101000" U 0"011010

(30*0011011,.J 10"001100010"0011

and L2 is the language

10"00101.
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Clearly, Cn
_
Sn (L). In view of the result on dihedral groups we have that Sn (L)

___
D.

Let x 101000-61 E L,. Then x 10"-600101 Ln, where p(i) n + 1 i. Hence, C
S,(L), for n >= 6.

It is interesting to note that for 3 -<_ n -<_ 5 the groups C, are not representable. This
is obvious for n 3, since C3 A3. For n--4, 5, one can show directly that for any
boolean function f B,, if Cn S(f) D, then S(f)= D.

Hyperoctahedral. Consider the language L consisting of the set of all finite strings
x (xl, , xk) such that for some <= k/2, x2i- x2i. The regularity of the language
follows from the obvious equality

L ()*(00 U 11)E*.

For any set I {i,j} of indices, let f be the n-ary boolean function defined by

1 if xi= xf(x)
0 if xi Xj.

Put m [n/2]. For each 1, , m consider the two-element sets Ii {2i- 1, 2i}
and the functions f, defined above. Consider the boolean function

f--fIlV" "vfI.
It is then clear that Sn(L)--S(f). It is also easy to see that this last group consists of
all permutations r S, which permute the blocks Ii, i--1,..., m. In fact this last
group has exactly 2t"/2] In/2]! elements.

To prove part (2) of the theorem we use Lupanov’s theorem (see 2.3), i.e.,

[{f 6 B,," c(f) < q}l- O(qq+l)

Identity. By Lupanov’s theorem we have that

I{fe B." c(f) <= n’g"} 20(nlgn(lgn)2)<< 22"

I{f6 B,: S(f)= 1}].

It follows that for all but a finite number of n there exists f, e B, such that L(f,) >-_ n"
and S(f,)= 1. If we define a language L such that for all n, L, =f,, then the proof is
complete.

(3)

Cyclic. The result will follow by a proof similar to the above if we could prove that

I{f B.- S(f D,,}1>=22"/"-"("-’)/2>> 20(ng’/n(lgn)2).

Indeed, the left part of the above inequality is true because one may independently
assign a value of 0, 1 to each orbit, except for orbits of words having 2 or 3 occurrences
of the symbol 1. Let r (1, 2,." ", n) be the n-cycle and let p be the reflection on n
letters. We agree to have f(v)f(w), where Ivl,- Iwl - 2 and

v{(120n-)’’.O<_i<_n-1} w2"-{(120n-2)’.O<__i<__n-1}"

This removes n. Choose 2 independent choices while adding one choice of 0 or 1. We
agree to have f(v)f(w), where IVll-Iwll--3 and

v E {(101000n-61). 0< < n 1}, wE{(lO’-6OOlO1)’O<=i<=n--1}.

Again, this removes n. Choose 2 independent choices while adding one choice of 0
or 1. Hence, the proof of the desired lower bound (1) is complete.
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Dihedral. By [Ber71, p. 171], O(Dn)_-> 2-1/n. An argument similar to the one for
cyclic groups used above shows that

[{f B." S(f) D.} >- 22"-/n--n(n--1)/2>> 2("’"/"(g")>.

This completes the proof of the theorem. [3

There is another interesting way for realizing the cyclic groups C,, for n => 4. For
any groups G, H, put G, HI {g-1 h-lgh, g G, h H}. Let G, H _-< S, be two permuta-
tion groups. Consider the set of words in G* defined by

L,, {w G*" w e H}.

(The reader should be warned of the different interpretation of w in the expressions
w G* and w H; the former is a word in G* and the latter is an element of a group.)

TI-IEOREM 8. For any permutation groups G, H <-Sn, if G, G] is not a subset of
the normal subgroup H of G, then S, (L,,) Cn, for n >-4.

Proof First we show that C, c__ S,+(L,H). Indeed, consider the cyclic permutation
cn (1, 2, , n) and notice that for w 0-1 0-, G*,

W O’cn(1 O-cn(n 0"20" 0"n0"1 0"11W0"n"
It follows from the normality of H in G that c S+(L,H). This completes the proof

+of C c_ S(L,H). Next we prove that S(L,H) c_ Cn. Indeed, let p be a permutation
in S- Dn. It follows from the proof of Theorem 7 that either (A) there exists an
such that [p(i+ 1)-p(i)[ mod n> 1, or (B) Ip(n)-p(1)l mod n> 1. We show that
p S(L,H). First we consider case (A) and distinguish four subcases.

Case 1. l <- p( i) < p( + l )n.
Let o-, - be given such that [0",z]=0"z0"-l--lC:H. Let j=p-l(p(i)+l), k=

p-l(p(i + 1) + 1). Consider w 0"1 o-, G", where 0"i 0", 0"i+1 0"--1 CFj
--1

and all other 0-’s are equal to 1. Then we have that w 0"0--1 zz-1 or 0-0--l’z-=lz depending,Z’0-k "
respectively, on whether or notj < k or k <j. In either case w 1, but w 0"z0"-lz-1 : H.

Case 2. p(i)<p(i+l)<-n.
Let 0", be given such that [0, ] o-z0--1-1 H. Let j= p-l(p(i)- 1) and k=

p (p(i)+ 1). Choose w such that w 0"1 0", G", where 0" =0, 0-i+1 z 0-i z,
0-k 0--1 and all other o-t’s are equal to 1. Then it is clear that w 1, while w H.

Case 3. 1 <- p( + 1) < p( i) < n. This is similar to case 1.
Case 4. 1 < p + 1) < p <- n. This is similar to case 1.
Case (B) is handled exactly as before. Hence, we have proved that Sn(L,,)c_ D,.

It remains to show that in fact S,(L,,)= Cn. Since G, G] is not a subset of H, GH
cannot be abelian. Therefore, there exist elements gl, g2, g3, g4 G G such that

glg:zg3g4 H, but g4g3g2gl H.

It follows that the reflection permutation does not belong to S, (L,n), which completes
the proof of the theorem. [3

Given a language L_ E* over the alphabet E the syntactic semigroup GL of L is
defined as follows. Define w w’ mod L if for all u, v E*, uwv Luw’v L. Then
let GL be the quotient of E* modulo the equivalence relation mod L. Recall that the
Krohn-Rhodes theorem [Arb69] states that the syntactic semigroup G of any given
regular language L is the homomorphic image of a wreath product of cyclic simple
groups, noncyclic simple groups, and three particular nongroup semigroups called
"units." If G is abelian and H 1, then it is clear that S,(L,n)= S,. If G is a
nonabelian group and H 1, then Theorem 8 yields that S.(La,n) C.. We have seen
families of these groups as invariance groups of regular languages. However, we have
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examples of representable groups whose homomorphic image is not representable,
(e.g., (1, 2, 3) is the homomorphic image of (1, 2, 3)(4, 5, 6)), thus indicating that it is
unlikely that the Krohn-Rhodes theorem can be used to characterize those families
of invariance groups of regular languages. Similarly, from the examples given in the
paper, there is no invariance group structure preserved when taking regular operations"
from Sn(L) and Sn(L’), we cannot say anything in general about Sn(M), where
M L: L’ and : is a boolean operation or language concatenation or where M L*
(Kleene star). This blocks a natural attempt to inductively define the families of
invariance groups of regular languages.

It is not known whether there is a characterization of those sequences of groups
which can be realized by regular languages. However, it is interesting to note that for
regular languages L the invariance group S2n (L) can never be equal to the { 1, 2, , n}
point-stabilizer of

TIaEOREM 9. (1) There is no regular language L such thatfor all but afinite number
of n we have that

s(L) (S),,,...,.
(2) ere is a regular language L such that for all n we have that

S2n(t) (S2n){2i.in/2}.

Proof (1) By the pumping lemma for regular languages [Harr78] there exist words
ai, hi, i< m and , b, j < and languages Li, Lj such that

L= aibLi, = jj,
im

where L {0, 1}*-L is the complement of L. Let r be the least common multiple of
the lengths of all the above words. Put r+ 1, j i+ r, and no 3r. Consider the
transposition z (i, j) and let n no. Then for any word w of length n we consider
the following two cases.

Case 1. w L.
Then for some io < m and some s we have that w must be of the form aobocio.

The ith position in the word w falls within the block bo. Since the length of bg divides
r the jth position of the word w falls in exactly the same position with respect to the
block bo. It follows that wg =w and hence w= w.

Case 2. w L,.
This is similar to the proof of Case 1.
It follows from the above that z S(L), as desired. This completes the proof of

pa (1).
(2) Consider the languages L’=0* and L"= 1"0". It is clear that for all n, S(L’)

S, and S(L")= 1. Let L be the set of all words w of even length 2n such that

Wl W W2n_ L’, W2W4 W2n L".

Clearly, L is a regular language and S2,(L) (S,)2i:i,/2. It remains to show that
in fact S2,(L) (S2,)zi:i,/. Indeed, let S,(L) and decompose as a product
of the disjoint cycles . . Assume on the contrary that there exists an io such
that io (a, , ar) and

(i) either there exists a 1 jo < r such that ajo is even and ao+l is odd,
(ii) or a is even and a is odd.
We treat only case (ii), the other case being entirely similar. Consider a word w

defined as follows. Let w w3 w,_ 0 and w2 w4 wo 1 and the
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remaining wi’s equal to O. Then we L. However, (Wet)a, 1, where al is odd, and so

(W’)l(WCr)3 (wCr)2n_l J L’.

It follows that w L. Hence, cr Z ;2n(L), a contradiction. [3

5. Representations of permutation groups. The aim of this section is to give general
results on permutation groups G-<Sn which can be represented as the invariance
groups of boolean functions, i.e., G S(f) for somefe Bn. It will be seen in the sequel
that there is a rich class of permutation groups which are representable in this way.

The main motivation for the results of the present section is the simple observation
that the alternating group An is not the invariance group of any boolean function

f e Bn, provided that n->_ 3. Although this will follow directly from our representation
theorem it will be instructive to give a direct proof. Suppose that the invariance group
of fe Bn contains An. Given x e 2n, for 3 -<_ n, there exist 1 <= <j <= n such that xi xj.
It follows that the alternating group An and a transposition fix f on x, and hence Sn
does as well. As this holds for every x e 2 n, it follows that S(f)= Sn. In fact it is clear,
using part (1) of Theorem 1, that An is not isomorphic to the invariance group S(f)
of anyfe Bn. However, An is isomorphic to the invariance group S(f) for some boolean
function feBn(logn+) (see Theorem 11 below).

One can generalize the notion of invariance group for any language L
{0, 1,..., k}* by setting Ln Lf-){0,..., k} and S(Ln) to be

{r e S." Vx,,. , x. e {0, 1," , k}(x , xk e L, x(, , x(n) e Ln)}.

We leave the details of the proof of the following fact as an exercise for the reader.
FACT. For all n, there exist groups Gn <-Sn which are strongly representable as

Gn S(Ln) for some L {0, 1,..., n- 1} but which are not so representable for any
language L’_ {0, 1,..., n-2}n.

Proof The alternating group An S(Ln), where Ln {w e {0,. ., n 1} n" trw e An},
where trv" w(i 1) + 1. By a variant of the previous argument, An is not so represent-
able by any language L’ {0, 1,. ., n- 2} n. [3

Compared to the difficulties regarding the question of representing permutation
groups G__-<Sn in the form G S(f), for some fe Bn, it is interesting to note that a
similar representation theorem for the groups S(x) {tre Sn" x x}, where x e 2n, is
relatively easy. It turns out that these last groups are exactly the permutation groups
which are isomorphic to Sk Sn_ for some k. Indeed, given x e 2 let

X={i" l<-_i<=n and Xi =0}, Y={i" l<=i<=n and xi= 1}.

It is then easy to see that S(x) is isomorphic to Sx Sy. In fact, cr e S(x) if and only
if X=X and Y= Y.

5.1. Elementary properties. Before we proceed with the general results we will
prove several simple observations that will be used frequently in the sequel. We begin
with a few useful definitions. For any feBn, let S+(f)={treSn for all x e

2n(f(x) Of(x) =0)}. For any permutation group G =<S, and any A {1, 2,..., n}
let GA be the set of permutations tre G such that (for all e A)(tr(i) i). GA is called
the pointwise stabilizer of G on A. Notice that (S,)k+,...,n Sk, for k<-n. For any
permutation cr and permutation group G let G= tr-Gtr, also called a conjugate of
G by tr. For any feB, let lfeBn be defined by (10)f)(x)= lf(x), for xe2".
If f,’’’,fkeBn and feBg then g=f(f,...,fk)eB, is defined by g(x)=
f(f(x),... ,fk(X)). The following theorem contains several useful observations that
will be used frequently in the sequel.
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THEOREM 10. (1) IffBn is symmetric then S(f)=Sn.
(2) S(f) S(10)f), for all f Bn.
(3) For any permutation or, S(f) =S(f).
(4) For eachf Bn, S(f) S+(f).
(5) If fl,’’’,fkBn and fBk and g=f(fl,’’’,fk)B then S(fl)VI’’’fq

S(fk)_S(g).
(6) (For all k<-n)(:lfB)S(f)=Sk.
Proof. The proofs of (1)-(3), (5) are easy and are left as an exercise to the reader.

To prove (4), notice that S+(f) is a group and trivially S(f)
_
S+(f). Now let tr S+(f)

and suppose thatf(x) 0 holds. Since, cr-1 S+(f) we have thatf(x)=f((x)-’) 0.
It follows that S+(f) S(f), as desired. To prove (6) we consider two cases. If k + 2 n,
define f by

f(x)=(lo otherwise.ifxk+l<=Xk+2<=’’’<=x"
Let cr S(f). First notice that for all i> k(r(i) > k). Next, it is easy to show that if cr

is a nontrivial permutation then there can be no k<-i<j<= n such that or(j)< o’(i).
This proves the desired result. If k n 1, then the functionfmust be defined as follows.

f(x)={; otherwise.ifxl"’"xn-lXn
A similar proof will show that S(f)=S_I. This completes the proof of the
theorem. [3

We define a permutation group G-< S, to be representable (respectively, strongly
representable) if there exists an integer k and a function f B,k (respectively, with
k 2) such that G S(f). G _-< Sn is called weakly representable if there exists an integer
k, an integer m < n, and a function f: m- k such that G=S(f). It will be seen in
the sequel (representability theorem) that the distinction between representable and
strongly representable is superfluous since these two notions coincide.

Notice the importance of assuming m < n in the above definition of weak rep-
resentability. If m n were allowed, then every permutation group would be weakly
representable. Indeed, given any permutation group G-< S define the function f as
follows:

0 if (x,, xn) G
f(xl x,) [1 otherwise

(here, we think of (Xl,’’’ ,x,) as the function i xi in n") and notice that for all
trS,, trS(f) if and only if for all ’S, (’ Gc:>-tr G). Hence G=S(f), as
desired.

Another issue concerns the number of variables allowed in a boolean function in
order to represent a permutation group G-<S,. We can also consider representing
functions by using additional variables, but as the following theorem shows, every
group becomes representable if enough variables are allowed.

THEOREM 11 (Isomorphism Theorem). Every finite permutation group G<=S, is

isomorphic to the invariance group of a boolean function f Bn(logn+l).
Proof First, let us give some notation. Let w be a word in {0, 1}*. [wl is the

number of occurrences of 1 in w, and wi is the ith symbol in w, where 1 <_- <_-Iwl length
of w. The word w is monotone if for all 1 _-< <j -<[w[, w 1 wj 1. The complement
of w, denoted by is the word which is obtained from w by "flipping" each bit w,
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i.e., [w[ 11 and , 1 wi, for all 1 _-< i_-<[w[. Fix n and let s log n + 1. View each
word w {0, 1} (of length ns) as consisting of n-many blocks, each of length s, and
let w(i)- w(i-s/l wis denote the ith such block. For a given permutation group
G-<_ Sn let L be the set of all words w {0, 1} such that

either (i) Iw[l=s, and if the word w is divided into n-many blocks
w(1), w(2), , w(n), each of length s, then exactly one of these blocks consists of
l’s, while the rest of the blocks consist only of O’s,
or (ii) [w[ _-< s-1 and for each 1-_< i-< n, the complement of the ith block of w is
monotone (this implies that each w(i) consists of a sequence of l’s concatenated
with a sequence of O’s),
or (iii) [w[->_ n and for each 1 <=i <- n, w(i) =0 (i.e., the first bit of w(i) is 0) and
the binary representations of the words w(i), say bin(w, i), are mutually distinct
integers and Crw G, where Crw: {1,. , n}- {1,. , n} is the permutation defined by

Crw(i bin(w, i).

The intuition for items (i) and (ii) above is the following. The words with exactly
s-many l’s have all these l’s in exactly one block. This guarantees that any permutation
"respecting" the language L must map blocks to blocks. By considering words with
a single 1 (which by monotonicity must be located at the first position of a block) we
guarantee that each permutation "respecting" L must map the first bit of a block to
the first bit of some other block. Inductively, by considering the word with exactly
(r-1)-many l’s, all located at the beginning of a single block, while all other bits of
the word are O’s, we guarantee that each permutation "respecting" L must map the
(r-1)st bit of each block to the (r-1)st bit of some other block. It follows that any
permutation respecting L must respect blocks as well as the order of elements in the
blocks; i.e., for every permutation zSns(L),

(0_--< k< n)(Zl0_-< m < n)(l <= i<= n)z(ks+ i)= ms+ i.

Call such a permutation "s-block invariant." Given a permutation z S,(L) let S,
be the induced permutation defined by

?(k)= m :> (Vl<-_i<-n)z(ks+i)=ms+i.

We claim that G= {?" zS+ns(L)}. Indeed, to prove (_) notice that every element
of G gives rise to a unique "s-block invariant" permutation z. If w L and [w[-<_ s,
then by s-block invariance of z, w L. This proves (_). If w L and Crw G, then
r(w Crw? G (composition is from the right). To prove (_) let w L be such that
Crw is the identity on S. Then for any rSs(L), wL, so O’(w)=rw=G,
which proves the above claim. This completes the proof of the theorem.

Clearly, the idea of the proof of the previous theorem can also be used to show
that for any alphabet E, if L

_
Zn, then S,(L) (the set of permutations in S, "respecting"

the language L) is isomorphic to S,(L’), for some L’ {0, 1}", where s 1 + log [[.
We conclude by comparing the different definitions of representability given above.
THEOREM 12. For any permutation group G<-S, the following statements are

equivalent"
(1) G is representable.
(2) G is the intersection ofafinitefamily ofstrongly representablepermutation groups.
(3) For some m, G is a pointwise stabilizer of a strongly representable group over

S,+,, i.e., G (Sn+,,(f)),+l,....,+,,, for some f B,+,, and m <-_ n.
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Proof First we prove that (1)==>(2). Indeed, let f6B,,k such that G=S(f). For
each b < k define as follows a 2-valued function fb" 2 {b, k}:

f(x)={b iff(x)--b
k iff(x)b.

It is straightforward to show that

S(f) S(fo)CI-." S(fk-1).

But also, conversely, we can prove that (2)==>(1). Indeed, assume that fb Bn, b< k,
is a given family of boolean valued functions such that G is the intersection of the
strongly representable groups S(fb). Define f Bn, as follows:

f(x) (fo(x),""" f-l(x)),

where for any integers no,’’’, n_, the symbol (no,’", n_) represents a standard
coding of the k-tuple (no,. , n_). It is then clear that S(f) S(fo) f-I. fq S(fi_),
as desired.

To prove that (3) is equivalent to statements (1) and (2) it is enough to show that
(i) for any family {f" 0-<i_-< k} of boolean functions f Bn there exists an integer
0_-< rn -< log k and a boolean function f6 Bn+m such that

(4) (S(f)) {,+,,...,n+m}-- S(fl) ["l (’] S(fk),

and (ii) also conversely, for any integer m >=0, and any boolean function f Bn+m
there exist boolean functions {f" 0-<_ i-<_ k}, with k-<_ 2" such that equation (1) holds.

Indeed, part (i) of the above statement follows by repeated application of part
(6) of Theorem 10 and the case k 2 of the above statement. To prove the case k--2,
define f(xl,’", xn, i)=f(xa,..., xn). The desired equality is now easily proved. To
prove the converse part (ii), let m, f be as in the hypothesis and define the desired
family of functions f,,..., as follows.

j,,...,(xl,""", Xn)=f(x,,’" ", X,, b,, , b,,).

It is now easy to see that equation (1) is satisfied. This completes the proof of the
theorem.

5.2. Representation theorems for general permutation groups. Here we study the
representability problem for general permutation groups, give a necessary and sufficient
condition via P61ya’s cycle index for a permutation group to be representable, and
show that the notions of representable and strongly representable coincide. In order
to state the first general representation theorem we define, for any n + 1 <= 0 <-2 and
any permutation group G-<_Sn, the set G(on)={M<-G (R)n(M)= 0}. Also, for any
H g Sn, and any g e S,, the notation (H, g) denotes the least subgroup of Sn containing
the set H U {g}.

THEOREM 13 (Representation Theorem). The following statements are equivalent
for any permutation groups H < G <-_ Sn.

(1) H G f3 K, for some strongly representable permutation group K <-Sn.
(2) H G fq K, for some representable permutation group K <= Sn.
(3) (for all g e G- H)(19n((H, g)) < (R)n(H)).
(4) H is maximal in G(on), where (R) (H) O.
Proof We prove the equivalence of the above statements by showing the following

sequence of implications: (1)==>>(2)=:>(3)=:>(1) and (4)==>(3)==>(4). The proof of (1)==>
(2) is trivial. First, we prove (2)==>(3). By Theorem 12, K is the intersection of a family
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of strongly representable groups. Hence, by assumption let S(f), where {f} Bn, be
a finite family of invariance groups such that

H n S(f) n G.

Assume on the contrary that there exists an H K =< G such that O(K)= O(H). This
last statement is equivalent to the statement

We show that in fact

VX E 2 (XK xH).

K c__ N S(f)n G,

which is a contradiction, since the right-hand side of the above inequality is equal
to H. Indeed, let o-E K and x E 2n. Then we know that

x’ (x)" =(x)’.
It follows that x=(x), for some rE H. Consequently, f(x)=f((x))=f(x), as
desired.

Next we prove that (3)O(1). Let Pn(X) be the property of subgroups stated by
X --<Sn ^ (for all L> X)(On(L) < On(X)). (When n and X =< Sn are clear from context,
we say simply that X satisfies property P.)

CLAIM. For all n and subgroups X of Sn,

Pn (X) X is strongly representable.

Proof As the direction from right to left is obvious, we only consider the direction
from left to right. Suppose, in order to obtain a contradiction, that this direction fails.
Let X-<-Sn be of maximal size such that Pn(X) holds, but that X is not strongly
representable. It follows that

(VL> X)(L satisfies P:=>L is strongly representable).

Since the full symmetric group Sn is strongly representable we can assume, without
loss of generality, that X < Sn. In particular, there is a strongly representable group
L> X of minimal size. Let h E Bn be such that L S(h). Thus,

(.) VM(X < M <LM does not satisfy P).

Since Pn(X) holds, we have that On(L)< On(K). It follows that there exist x, y
such that

x y mod L, x y mod X,

where for H -< Sn and x, y E 2 the symbol x y mod H means that y x, for some
o- E H. Define a boolean function g E Bn as follows, for w E 2n,

h(w) ifw#xmodX, w#ymodX
g(w)= 0 ifw=xmodX

1 ifw=ymodX.

It follows from the definition of g that X-<_S(g)<S(h)= L. Since every strongly
representable group satisfies property P, an immediate consequence of (*) is that
X S(g). This completes the proof of the claim.
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Now returning to the proof of (3)O(1), by assumption, for all gG-H,
2.(<H’g>) <2-(H. In particular, for all g G- H, there exists a boolean function fg Bn
such that H_--< S,(fg), but (H, g) is not a subset of Sn(fg). Consider the representable
group K defined by

/(= C SL).
gG-H

It is now trivial to check that H K fl G. Moreover, as in the implication (2)0(3)
above, it follows that the permutation group K satisfies property P. By the above claim,
K is strongly representable. This concludes the proof (3)O(1).

It remains to prove the equivalence of the last statement of the theorem. First we
prove (4)0(3). Assume that H is a maximal element of G(0n, but that for some
g G-H, we have that (R)n((H, g))= (R),(H). But then H < (H, g)_-< G, contradicting
the maximality of H. Finally, we prove (3)0(4). Assume on the contrary that (3) is
true but that H is not maximal in G(0n>. This means there exists H < K -< G such that
(R)n (K) (R) (H). Take any g K H and notice that

On ((H, g)) => On(K) 0 On(H) => (R)n((H, g>).

Hence, On(H)= (R)n((H, g)), contradicting (3). El
A "naive" algorithm for testing the representability of a general permutation group

G =< Sn is to test all boolean functions f Bn to see if G Sn(f). Clearly, this requires
time 22" An immediate consequence of the representation theorem is the following
algorithm whose running time is O((n!)2) 2 (nlgn).

Algorithm for Deciding the Representability of Permutation Groups Input
A permutation group G_-< Sn.
for each r S G do

if On((G, r)) O(G)
then output G is not representable.

od
else output G is representable.
end

The well-known graph nonisomorphism problem (NGIP) is related to the above
group representation problem. Indeed, let

G-- ({Vl, Vn} EG) H--- ({Ul, /’n}, EH)

be two graphs on n vertices each. Consider the permutation group ISO(G, H)<= Sn+3
whose generators cr satisfy"

V1 <-- i, j <: n(EG(vi, Vj)< EH(btcr(i), go-(j))),

and in addition the permutation n +i-* r(n+ i), i= 1, 2, 3, belongs to the group
C3- (n + 1, n + 2, n + 3). It is easy to show that if G, H are isomorphic, then there
exists a group K _-< Sn such that ISO(G, H)= K x C3. On the other hand, if G, H are
not isomorphic, then ISO(G, H) (id,/3). As a consequence of the nonrepresentability
of C3, and the representability theorem of direct products, it follows that G, H are
not isomorphic if and only if ISO(G, H)= (idn+3).

Remark. An idea similar to that used in the proof of the representation theorem
can also be used to show that for any representable permutation groups G < H-< Sn,

2. I{h B," H-S(h)}l<-_l{gB, a-s(g)}l.
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Indeed, assume that G, H are as above. Without loss of generality we may assume
that there is no representable group K such that G < K < H. As in the proof of the
representation theorem there exist x, y 2 such that x y mod H, x y mod G. Define
two boolean functions hb Bn, b 0, 1, as follows from w 2n,

h(w) ifw#xmodG, wymodG
hb(W) b ifw x mod G

b if w y mod G.

Since G-<S(hb)<S(h), it follows from the above definition that each h Bn with
H S(h) gives rise to two distinct hb Bn, b 0, 1, such that G S(hb). Moreover, it
is not difficult to check that the mapping h-{ho, hl}, where H=S(h), is 1-1. It is
now easy to complete the proof of the assertion.

An immediate consequence of the representation theorem is that all cycle indices
(R)n(G) can in fact be realized by representable permutation groups. The previous
theorem also has a consequence concerning the representation of "maximal" permuta-
tion groups.

THEOREM 14 (Maximality Theorem). (1) If H is a maximal proper subgroup of
G <-_ Sn then

(R)n(G)<(R)n(H) <=> (=lfBn)(H=GfIS(f)).

(2) All maximal subgroups of Sn are strongly representable, the only exceptions
being: (a) the alternating group An, for all n =>3; (b) the 1-dimensional, linear, affine
group AGLI(5) over thefield offive elements, for n 5; (c) the group oflinear transforma-
tions PGL2(5) of the projective line over the field offive elements, for n 6; (d) the group
ofsemilinear transformations PFL2(8) of the projective line of the field of eight elements,
for n=9.

Proof To prove (1) let H be a maximal proper subgroup of G such that (R)n (G) <
(R)n(H). Put 0 (R)n(H). Since condition (4) of the representation theorem is satisfied,
H is of the form S(f), for some f B,. This completes the proof of (3). To prove
the other direction, assume that (R)n(G)= (R),(H). Then for all g G-H, (R)n((H, g))=
(R)n(H). Hence, again by the representation theorem, there is no fB, such that
H G 71S(f). This completes the proof of (1).

To prove (2) let M be a maximal subgroup of Sn. We distinguish two cases.
Case 1. (R)n(M)> n+l.
In this case, part (1) of this theorem implies that M is strongly representable,

since (R),(Sn)= n + 1. (Note that by Theorem 2(4), the condition of Case 1 is satisfied
by all intransitive groups M, i.e., groups with wn(M) _-> 2.)

Case 2. (R)n(M)= n+ 1.
In this case we know from the main theorem of [BP55] that M is of one of the

forms in the statement of the theorem. [3

As noted above, all maximal permutation groups with the exception of An are of
the form S(f), provided that n => 10. Such maximal permutation groups include: the
cartesian products SkS,,-k (k<--n/2), the wreath products Sk $I (n= kl, k, l> 1),
the affine groups AGLd(p), for n =pd, etc. The interested reader will find a complete
survey of classification results for maximal permutation groups in [KL88]. It should
also be pointed out that there are plenty of nonmaximal permutation groups which
are not representable. In fact, it can be verified that examples of such groups are the
wreath products G IAn. In general we can prove the following theorem. For any
permutation groups G-- S,, H <_- S.
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THEOREM 15. Let G-<_S,, H <--Sn. Then
(1) G and H representable G H is representable.
(2) G IH is representableH is representable.
(3) G IH is representable and 2n< m G is weakly representable.
(4) For p prime, a p-Sylow subgroup P of Sn is representablecp 3, 4, 5.
Proof (1) Suppose we are given two representable groups G S(L)_-< S,,, H

S(L/)-<-Sn, where L6 {0, 1}m, Ln {0, 1} n. We want to show that the wreath product
G H <=Smn is representable. The wreath product G H consists of all permutations
p-[or; ,. ., Zm], where o- G and ,. ., , 6 H, such that

p((k- 1)n + i) tr(k)n + ’ro-(ko(i),

for 1 _-< k _-< m, 1 _-< n. (Intuitively speaking, p acts on rn x n matrices in such a way
that zi acts only on the ith row and r permutes rows.) Without loss of generality we
can assume that 0m, 1 L and 0n, I LH. Define a set L {0, 1} of words w by
the disjunctoin of the following three clauses:

(a) Iwl-- n, and for some 0-< k< m, Wkn+l Wkn+n-- 1 (i.e., the (k+ 1)st row
consists only of l’s).

(b) [w[1 > n, and w is of the form ee eT,, where the word ele2" em L.
(c) Iwl > n and w is not of the form e e2 e,,, but Wkn+’’" Wkn+n LH, for

all 0 _-< k < m.
We claim that Stun(L)= G IH. Indeed, the inequality G IH Smn(L) is clear. To

prove the other direction assume that p Stun (L)- By clause (a), p respects the n-blocks
of words of length mn. Hence, p is of the form p [o-; z, , %], and zi Sn, o- G,
where i= 1,..., m. If o- G, then there is a word v of length m, with vL and
vo- L. Then (using clause (b) above) we have that w v’v.., v, L, but w L,
which is a contradiction. If for some i, zi H, then there is a word v of length n such
that v LH and vi : LH. It follows (by clause (c) above) that the word w v. v L,
but w L, a contradiction. This completes the proof of (1).

(2) By assumption, GIH=S,nn(f), for some fBmn. Hence,

GIH={[o-; 7"1,""" Tm]_SmIS (VX1, ",Xmlyt o-(1), ",Xom))
--f(X1,’’" ,Xm)}.

In particular, we have that

"r H id,,; "r, idn, idn] G H

VXI[VX2, Xtn(fX2,...,Xm(X)--’fx2,...,Xm(X,))]
l" N S(fx2,... ,Xm)

X2, ,Xm2

as desired.
The proof of (3) is similar and uses the simple observation that for any permu-

tation cr Sin,

[or; idn," ", idn] G 1 :> (VX, ,. ., X,,)f(Xo-(,),. ., So.(m)) =f(X,, ., X,).

(4) Let p be a prime p-< n. By Sylow’s theorem, all the p-Sylow subgroups of Sn
are conjugates of one another. Moreover, by [Pas66, pp. 8-11 ], if C is the cyclic group
(1, 2,..., p), then there exists an integer r such if we iterate the wreath product r
times on C then the group CIC C obtained is a p-Sylow subgroup of
Combining this with the previous assertions of the theorem, as well as part (3) of
Theorem 10, we obtain the desired result.
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The converse of part (1) of the above theorem is not necessarily true. This is easy
to see from the following example. We show that the wreath product A IS2 is
representable, but that A3 is not. Indeed, consider the language

L= {001101, 010011, 110100, 001110, 100011, 111000}_ 26.
We already proved that A is not representable. We claim that A IS2--S6(L). Consider
the three-cycle -=({1,2}, {3,4}, {5,6}). It is easy to see A3S2 consists of the 24
permutations o- in $6 which permute the two-element sets {1, 2}, {3, 4}, {5, 6} as in the
three-cycles -, -, .3. A straightforward (but tedious) computation shows that S6(L)
also consists of exactly the above 24 permutations.

Another class of examples of nonrepresentable groups is given by the direct
products of the form A,, G, G Am, where G is any permutation group acting on a
set which is disjoint from {1, 2,..., m}, rn->_3 (for a proof of this, see the next
subsection).

We conclude this section by showing the representability of the normalizers of
groups G generated by a family of "disjoint" transpositions. Let G be a subgroup of
Sn and let H (H(x): x 2n) be a family of normal subgroups of N(G) (the normalizer
of G in S,) such that for all o- N(G), x 2", H(x)= H(o-(x)). (This last condition
is satisfied if, for example, each H(x)= 1 or each H(x)= G.) For any x2" let
Gx {ere G: x= x} be the stabilizer of G at x. Define the function f,H :2-* 2 as
follows:

1 if Gx H(x)
f,.(x)

0 if Gx H(x).
Normalizers of certain permutation groups can be written in the form S(f). To see
this observe the following two claims.

(1) N(G)S(f,,).
(2) If (for all o-S,) [(for all x2n) (G=H(x)CC, G,=H(x)):=>G’=G]

then there exists an f B, such that N(G)= S(f).
For convenience, let o-(x) denote x. To prove (1) let o- N(G). This means that

G= G. We want to show that

Vx2"(G=H(x) , G()=H(x)).
To prove the implication (3) notice that

H(x) Gx (G) (G(x) H(x).
Hence, H(x)= G(, as desired. The converse () is similar.

The proof of assertion (2) is immediate. The hypothesis is simply a restatement
of the condition S(f,H)

_
N(G).

5.3. A logspaee algorithm for the representahility of cyclic groups. This section is
devoted to the proof of the existence and correctness of a logspace algorithm which,
when given as input a cyclic group G _-< S, decides whether the group is representable,
in which case it outputs a boolean function f B,,k such that G S(f). The algorithm
is as follows.

Algorithm for Representing Cyclic Groups
Input
G (o-) cyclic group.
Step I
Decompose o-= O’10"2 O’k, where o1, o’2,""", o’k are disjoint cycles of lengths
11, 12," ", Ik >--2, respectively.
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Step 2
if for all 1 _-< =< k,

li 3===>(:=lj i)(31/) and

li =4(=lj # i)(gcd (4,/) # 1) and
li 5(:lj # i)(51/)
then output G is representable.

else output G is not representable.
end

At the present time, we do not know how to efficiently test the representability of
arbitrary abelian groups (or other natural classes of groups such as solvable, nilpotent,
etc.). If a given abelian group K can be decomposed into disjoint cyclic factors, then
we have the following NC algorithm for testing representability" (1) use an NC
algorithm [LM85], [MC85], [Mu186] to "factor" K into its cyclic factors and then (2)
apply the "cyclic-group" algorithm to each of the cyclic factors of K. In view of the
lemma below, the group K is representable exactly when each of its disjoint, cyclic
factors is.

LEMMA 16. Let G<=S,, H <-S, be permutation groups. Then G H is represent-
able <::> both G, H are representable.

Proof. (3) By the representability ofthe groups G, H there exist boolean functions
fB, and gB such that GH=S(f)xS(g). By the maximality theorem there
exists a function h’2m+-2 such that S(h)=SS. Hence, if we put F(x,y)--
(f(x), g(y)), then it is easy to see that

S(f) S(g) S(h) 0 S(F).

This implies that G H is representable, and hence also strongly representable.
To prove () assume that G x H S(f), for some f: 2 "/" --> k. It is then easy to

see that

G {r S,," (r, id,) GxH}

{r Sin" (Vx, y)(f(x, y) =f(x, y))}

{r e S,," (/y)(f =fy)}

s().
y2

A similar proof works for the group H. [3

The main result of the present section is the following theorem.
THEOREM 17 (Cyclic Group Representability Theorem). There is a logspace

algorithm which, when given as input a cyclic group G <-S,, decides whether the group
is representable, in which case it outputs a function f6 B, such that G S(f).

The rest of this section is dedicated to the proof (sketch) of correctness of the
above algorithm. The proof is in a series of lemmas. For technical reasons, we intro-
duce two definitions. A boolean function f B, is called special if for all words w of
length n,

Iwl,-lf(w)-l.

Let o-1,’’’, o-k be a collection of cycles. We say that the group G=ra,’’’, rk,

generated by the permutations rl," ", r, is specially representable if there exists a
special boolean function f" 2a--> 2 (where fl is the union of the supports of the cri’s)
such that G =S(f). The support of a permutation r, denoted by Supp(cr), is the set
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of such that o-(i) i. The support of a permutation group G, denoted Supp(G), is
the union of the supports of the elements of G.

5.4. Main ideas of the proof. Before proceeding with the details, it will be instruc-
tive to give an outline of the main ideas needed for the corectness proof. We are given
a cyclic group G generated by a permutation tr. Decompose o- into disjoint cycles
or1, o-2," , crk of lengths 11, 12," , lk >----2, respectively.

If k 1 then we know that G is specially representable exactly when ll 3, 4, 5.
(The representability of the cyclic group Cs, for s 3, 4, 5 is proved in 4; for s 3, 4, 5
observe that for any f Bs, if C S(f) then D___S(f), where D is the dihedral
group. We refrain from repeating the proof and refer the reader to 4 for the details.)

If k 2 then the result will follow by considering several possibilities for the
pairs (/1, 12):

if gcd (11,/2) 1, then G (o-1)x (r2) is the direct product of rl and 0"2. Hence, G
is specially representable exactly when both factors are specially representable,
if (11, 12)=(3, 3) or (4, 4) or (5, 5) then G is specially representable,
if (ll,l)=(3, m) (with 31m) or (4, m) (with gcd (4, m) 1) or (5, m) (with 5lm),
then G is specially representable.

This will take care of deciding the representability of G for all possible pairs (11,/2).
A similar argument will work for k => 3. This concludes the outline of the proof of
correctness.

5.4.1. Sketch of proof. The details of the above constructions are rather tedious
but a sufficient indication is given in the sequel.

LEMMA 18. Suppose that o’1,’", crn/l is a collection of cycles such that both
(oh,’", crn) and (crn+l) are specially representable and have disjoint supports. Then
(0"1, O’n/l) is specially representable.

Proof.
Put

’0 Supp(o’i), -1-- Supp(’n+l)
i=l

and let [12ol m, 1121l--k. Suppose that fo: 2a-> 2 and fl:2,-> 2 are special boolean
functions representing the groups (or1," , rn) and (crn+l) respectively. Without loss
of generality, we may assume that 1 =fo(O")fl(Ok)=O. Let 12 =12o[-J121 and define
the function f: 2-> 2 by

f(w) fo(w 112o)fl(w1121).

Clearly, (rl,""", crn+l) Sa(f). Hence, it remains to prove that

S.(f) (o" ,’’ ,, On+l).

Assume on the contrary that S(f)-(rl,"’’, rn+l). We distinguish two cases.
Case 1.
Let w {0, 1} be defined by w 112o 0, and

(w 121)(/) {0 iflj
1 ifl=j,

for 1. Since f is a special boolean function and using the fact that fo(0) fl(0)
we obtain that f(w)= 1 f(w) =0, which is a contradiction.

Case 2. (For all Oo)(r(i) o).
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that
Put Zo (z fo) Sao and 7" 7" -1) So By hypothesis, for all w 2", we have

f(w) =fo(w flo)fl(wl 1)=f(w’) =fo((W 112o)’)fl((w l)’rl),
+which implies 7"0 e Sao(fo) and 7"1 e Sal(fl). This completes the proof of the lemma.

An immediate consequence of the previous lemma is the following.
LEMMA 19. IfG, H have disjoint support and are specially representable then G x H

is specially representable.
Next we will be concerned with the problem of representing cyclic groups. In

view of Theorem 7 in 4, we know that the cyclic group ((1, 2,. , n)) is representable
exactly when n 3, 4, 5. In particular, the groups ((1, 2, 3)), ((1, 2, 3, 4)), ((1, 2, 3, 4, 5))
are not representable. The following lemma may be somewhat surprising, since
it implies that the group ((1,2,3)(4,5,6)), though isomorphic to ((1,2,3)), is

representable.
LEMMA 20. Let the cyclic group G be generated by a permutation tr which is the

product oftwo disjoint cycles oflengths ll, /2, respectively. Then G is specially representable
exactly when the following conditions are satisfied: (11 3=:>31/2) and (/= 3=:>31/1),
(11 =4gcd (4, l:) 1) and (/ 4:=>gcd (4, 11) 1), (/1 5=:>51 l) and (/2 5=:>5111).

Sketch ofproof. It is clear that the assertion of the lemma will follow if we can
prove that the three assertions below are true.

(1) The groups ((1,2,. -., n)(n+l, n+2,..., kn)} are specially representable
when n 3, 4, 5.

(2) The groups ((1,2,3,4)(5,...,m+4)) are specially representable when
gcd (4, m) 1.

(3) Let m, n be given integers such that either m n =2 or m =2 and n_->6 or
n =2 and m >_-6 or m, n >_-6. Then ((1, 2, , m)(m+l, m+2, , m+ n)) is specially
representable.

Proof of (1). We give the proof only for the case n 5 and k 2. The other cases
n- 3, n 4, and k => 3 are treated similarly. Details of these constructions are left to
the reader. Let tr-troo’l, where Cro=(1,2,3,4,5 and o’1=(6,7,8,9,10). From the
proof of Theorem 7 in 4 we know that

D5 Ss(L’) Ss(L"),

where L’=0*I*0* U 1"0"1" and L"={w6L’: IWlo>= 1}. Let L consist of all words w of
length 10 such that
meither wl 1
or Iw11-2 and (:t1_-< i_-<5) (wi= ws+i and (Vj# i, 5+i) (wj =0))
or Iw]-3 and (:i0_-< i_-<4) (w (1000011000)’ or w (1100010000)’)
--or Iwl 3 and Wl...w5 L’ and w6... wlo L".

We want to show that in fact ((1, 2, 3, 4, 5)(6, 7, 8, 9, 10)) Slo(L). It is clear that

((1, 2, 3, 4, 5)(6, 7, 8, 9, 10)) Slo(L).

Conversely, suppose that 7" Slo(L). Assume on the contrary there exists an 1 _-< =< 5
and a 6 =<j =< 10 such that 7.(i)=j. Let the word w be defined such that Wl 0, if =j,
and --1 otherwise. It follows from the last clause in the definition of L and the fact
that 05 L" that w L and w L, contradicting the assumption 7. Slo(L). It follows
that 7" is the product of two disjoint permutations 7"0 and 7"1 acting on 1, 2, , 5 and
6, 7,..., 10, respectively. It follows from the last clause in the definition of L that
7"0 D5 and 7"1 7r -1D57.r, where 7r(i) 5 + i, for 1, , 5. Let Po (1, 5)(2, 4) and
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Pl (6, 10)(7, 9) be the reflection permutations on 1, 2, , 5 and 6, 7, , 10, respec-
tively. To complete the proof of (1), it is enough to show that none of the permutations

Po, PI POPl Poo.1, o.oPl, O’oO’1,

for j, belong to Slo(L). To see this, let x 1000011000 e L. Then for the permutations
for i= 1 2, 3 5, and ’= O’pl for i= 1, 2, 4, 5 it is easy to check" po, pa, pop1, poO’a

that x" L. Let x 110001000. Then for - poO’
4 and "- O’3opl it is easy to check that

x" L. Finally, for x 1000010000 L and O’oO’1, where j, we have that x L. This
completes the proof of part (1) of the lemma.

Proof of (2). Put O’o=(1,2,3,4), O’1=(5,6, ., m+4), O’=O’oO’1. Let L be the
set of words of length rn + 4 such that

either wll 1
or Iw 2 and (=10_-< =<lcm (4, m)- 1)(w (100010"-1)’)
or Iw 1=3 and (=lO<=i<=lcm(4, m)-l)(w=(llO010"-l)’)
or Iw =3 and wl"’" w4e L’ and ws"’" w,,+5 L",

where L’ 0* 1"0" U 1"0" 1" and L" are as in Theorem 7 of 4 satisfying S, (L") Cm
and moreover for all -> 1, 0i L". Clearly, ((1,2,3, 4)(5, 6,. ., m +4))c_ S,,+4(L). It
remains to prove that

S,,+4(L)
_

((1, 2, 3, 4)(5, 6,..., rn +4)).
Let ’((1,2,3,4)(5,6,...,rn+4)). As before, ’=’o’1, where ’oD4 and

’1 r-1Dmr, where r(i) 4 + for 1, 2, , m. Let p (1, 4)(2, 3) be the reflection
on 1, 2, 3, 4. It suffices to show that none of the permutations

j
/9O’1 O’0O’1

for i#j mod 4 are in Sm+4(L). Indeed, if ’= o.oo.1, then let x= 100010’-1. So it is
clear that x L, but x’ L. Next assume that -= pO’il. We distinguish the following
two cases.

Case 1. rn 4k, i.e., a multiple of 4.
o-JLet x 100010"-. Then x L, but x L unless x"= x for some j. In this case

j=3mod4 and j=imod4k. So it follows that i=3,7,11,...,4k-1. Now let
y 110010"- Then yL, but y’L for the above values of i, unless y" y for
some I. In that case we have that 1=2 mod4 and l= mod4k. So it follows that
i=2, 6, 10,..., 4k-2. Consequently, "r Sm+4(L).

Case 2. gcd (4, m)= 2.
o-JLet x 100010m- Then x L, but x L unless x" x for some j. In this case

j 3 mod 4 and j mod 4k. So it follows that for even values of i, Sm+4(L). Let
y 110010’-1. Then y L, but y L unless y =y for some 1. In that case we have
that 2 mod 4 and mod m. So it follows that for odd values of i, ’ S,+4(L).
This completes the proof of (2).

Proof of (3). A similar technique can be used to generalize the representability
result to more general types of cycles. Details are left as an exercise to the reader.

A straightforward generalization of Lemma 20 is given in the next lemma.
LEMMA 21. Let G be a permutation group generated by a permutation O" which can

be decomposed into k-many disjoint cycles oflengths/1, l, ., lk, respectively. The group
G is specially representable exactly when the following conditions are satisfied for all
l<-i<-k,

li 3(::lj i)(31/) and

li =4(:lj i)(gcd (4, l) 1) and

li 5(::lj i)(51 l).
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Now the correctness of the algorithm is an immediate consequence of Lemmas
1-5. This completes the proof of Theorem 17.

5.5. Asymptotic behavior. Finally, for any sequence (Gn <--Sn" n => 1) of permuta-
tion groups we consider the value of the limit

lim
22n

I{f B. S(f)=

We have the following theorem.
THEOREM 22. (Almost all boolean functions have trivial invariance groups.) For

any family (G," n >= 1) ofpermutation groups such that each Gn <= S,, we have that

I{f B.. S(f) {id.}}l [{fe B." S(f) -< G.}I
lim lim 1.
n-o 22" 22"

Moreover, if lim inf [G > 1 then

[{f B." S(f) >= G.}I I{f B." S(f) G.}I
lim lim O.
n- 22" 22"

Proof During the course of this proof we use the abbreviation O(m):=
(R),,(((1,2,..., m))). First we prove the second part of the theorem. By assumption
there exists an no such that for all n >= no, IG, > 1. Hence, for each n >- no, G contains
a permutation of order k(n) >- 2, say or,. Without loss of generality we can assume that
each k(n) is a prime number. Since k(n) is prime, r, is a product of k(n)-cycles. If
(il,""", ik(,)) is the first k(n)-cycle in this product then it is easy to see that

O.((cr.))--< O.(((il, ik(.)))).

It follows that

I{f B." S(f) >= G.}[ <-I{f 6 B." r. S(f)}l

2o.(.) 20(k(n))’2"-(").

2o.(%) _< 2o(t(n)) 2"-(").

Recall from [Ber71] that the formula

O(m)=l. y b(k). 2"/
m Mm

gives the P61ya cycle index of the group ((1,2,..., m)) acting on {1,2,..., m}, where
4(k) is Euler’s totient function. However, it is easy to see that for k prime

O(k) 1 2 2

2k k 2 k2"
In fact the function in the right-hand side of the above equation is decreasing in k.
Hence, for k prime,

O(k) 0(2) 3

2 22 -4"
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It follows that

22"

Since the right-hand side of the above inequality converges to 0 the proof of the second
part of the theorem is complete. To prove the first part notice that

{f6 B,," S(f) # id.} LJ {f B,," o- S(f)},
id

where tr ranges over cyclic permutations of order a prime number _-< n. Since there are
at most n! permutations on n letters we obtain from the last inequality that

[{f6 B," S(f) # {/do}}[< 2_2.-2 O(nlogn)

22. n. 2 2-2"-2 0,

as desired.
As a consequence of the above theorem we obtain that asymptotically almost all

boolean functions have trivial invariance group.

6. Invariance groups of languages and circuits. In this section we classify languages
according to the size of their invariance groups. Furthermore, we consider questions
concerning their structural properties and complexity. Recall that for each L {0, 1}*
and n, Ln is the set of strings in L of length exactly n. By abuse of notation we also
denote the characteristic function of Ln with the same symbol. Let S,(L) denote the
invariance group of the n-ary boolean function L,. For any language L aqd any
sequence tr (o’," n _-> 1) of permutations such that each tr, Sn we define the language

L={x2" x.L}.
For each n let G,-<_ S, and put G (G,’n >-_ 1). Define

LG-- [,.J L-.
G

For each 1 < k<,_- let Fk be the class of functions nclgkn, c > 0, where log) n
log n, log(k+) n log logk n, and log) n 1. Clearly, F is the class P of polynomial
functions. We also define Fo as the class of functions 2% c > 0. Let L(Fk) be the set
languages L__ {0, 1}* such that there exists a function f Fk satisfying

Vn(IS." S.(t)l <=f(n)).

We will also use the notation L(EXP) and L(P) for the classes L(Fo) and L(F),
respectively. Occasionally, a language L L(P) will also be called a language which
has polynomial index or is even almost symmetric.

6.1. Structural properties. The following theorem gives some of the structural
properties of the classes of languages L(Fk).

THEOREM 23. For any 0<= k<- and any language L L(Fk),
(1) L(Fk) is closed under boolean operations and homomorphisms,
(2) (L. X,) L(Fk),
(3) L L(Fk), where r (tr," n >-_ 1), with each r, S,,
(4) if IS," Ns.(G,)l<=f(n) and fF then LaL(Fk), where G=(G," n_->l).
Proof We use extensively (even without explicit mention) the results of Theorem

10. To prove (1) notice first that S,(--qL)= S,(L). To prove that L(Fk) is closed under
union and intersection use the following inequality from group theory: for K, K’<- G,

IO" g f3 g’l<--Io" gl lO" g’l.
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For example, for closure under intersection we have that S. (L) (’1S. (L’). S. (L 0 L’),
which implies that

IS. S.(L f3 L’)I<IS.’S.(L)fS.(L’)!<[S.’S.(L)[

To prove closure under a homomorphism h" L- L’ note that S.(L)c_ S.(h(L)). Hence,

IS. S. (L’)I--IS. S.(h(L))[-< IS.
To prove (2) let L’= L. Z {xa: x L, a Z} and note that

IS. :S.(t’)l-< n

To prove (3) note that S.(L)- S.(L). To prove (4), note that we have Ns.(G.) (q

S. (L) __c_ S. (L"). Indeed, for " Ns.(G.) (’1S. (L) we have that G." -G., which in
turn implies that

," L." U UL.. L..=L...
G G

Hence,

IS.’S.(L")I<=IS. N(G.)I

as desired, l-I
The classes L(P) and L(EXP) enjoy the closure properties mentioned below.
THEOREM 24.

LL(P) and p6P==>lSp(,)’Sp(,)(L)]=n (1).

Proof The proof is obvious, since the class of polynomials is closed under
composition. D

THEOREM 25.

that

L1, L2 L(EXP) L {xy" x e L1, y L2, l(x) =/(y)} L(EXP).

Proof It is clear that S.(L1) xS.(L2)
_

S2.(L). It follows from Stirling’s formula

Is.. s.(L)I <= (2n)!
Is. (L)I. IS;. (L)]
(2n)!
n!.n!

-.IS..S.(L)I

(2n)l<-’. 2(") 2 ("). F!
n!.n!

Let REG denote the class of regular languages.
THEOREM 26. The following properties hold for any 1 <-_ k < ee,

(1)

(2)

L(F) L(P) c...c L(Fk+I) c L(Fk) c... L(EXP) L(Fo),

REG fq L(P) , REG L(EXP) , L(P) REG .
Proof To prove L(Fk+I) c L(Fk), for 1 <- k < oo, putf(n) n -log(k) n and consider

the language

L {x e 2"" xs(.)+l =<. =< x.}.
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Then we have that

/’/! O(log(t) n)IS, "S,(L)[ n
f(n)!

It follows that L(Fk+I) c L(Fk). (Note that by the pumping lemma for regular languages
L cannot be regular.) The proof of L(F)
is maximal in $2,. It follows from our representation theorem for maximal groups that
there exists a language L such that for all n,

It follows from Stirling’s formula that [S, "S,(L)[ 2 ("), as desired. The proof of
L(F) c L(F), k >- 1, follows from the above remarks. This completes the proof of (1).
To prove REG f’l L(P) , consider the trivial language L= {0, 1}*. To prove REG-
L(EXP) , consider the language L--0"1". To prove L(P)- REG . For any set
S of positive integers let Ls= {0"" n S}. Clearly, LS,(x) 1 if n S and x 0", and
=0 otherwise. It is easy to see that for all S, Ls L(P), and hence L(P) is uncoutable.
(In fact, S,(Ls) S,, for all n and S.) In particular, the nonregular language L= {0p" p
is a prime number} L(P).

A few useful and illuminating examples are now in order.
Examples. (1) Let Lg={x{0,1}*" l(x)>=k, Xl<= "<=Xk}. Then Sn(Lk)=Sn_k

and therefore IS’S(L)I- n!/(n-k)!= O(nk). Hence, for all k, Lk L(P).
(2) Foreachwordx=xl... x, letxT= x, x and Lr= {x" x L}. Put r,(i)=

n- i+ 1. Then L= L, where o-= (o-," n _-> 1).
(3) There exist languages L, L 6 L(P) such that L. L L(EXP). Indeed, put

L={0}*, L={1}*. Then L=L.Ll={O"l’’ n, m >= 0}. It is easy to see that
IS’S.(L)I: n!.

(4) There exists a language L L(P) such that L* L(P). Indeed, put L= {01}.
Then for n even, r S if and only if for all <= n (i is even if and only if r(i) is even).
It follows that IS’S(L)I-nt/(n/2)!(n/2)!. Hence, L* L(EXP)- L(P).

(5) L(P) is not closed under inverse homomorphism. Indeed, let D be the Dyck
language on one parenthesis and h" D-* L be the homomorphism h(0)= h(1)---0. In
view of the results of 3, D L(P).

(6) For each function f" N- N such that for all n _-> 1, f(n)<= n, we define the
language

LY, ={xe2"" x_-<" "-<

Using the pumping lemma for regular languages we can show that LeREG
sup,f(n) <

Similar classes of languages corresponding to the cycle index can be defined as
follows. Let Lo(F) be the set of languages L such that there exists a function f
satisfying

’n((S(L,)) <-- f(n)).

Since, (R)(S(L))<_- (n+ 1) IS, "S,(L)], it is clear that L(Fg)
_
Lo(F). In fact we can

show that L(Fg) L(Fg). To see this take f(n) n-log(k) n. Define x L, if and only
if x<=x2 <-... <-xy(,). Then it is easy to see that S,(L) =Sy(,. Hence, [S,’S,(L)]
O(ng"), while 19(S,(L)) (f(n)+ 1)2g(" O(n).

6.2. Circuit complexity of formal languages. In this section, we study the com-
plexity of languages L L(P). The following result is proved by applying the intricate
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NC algorithm of [BLS87] for permutation group membership. By delving into a deep
result in classification theory of finite simple groups, we improve the conclusion to
that of Theorem 29. For clarity however, we present the following.

THEOREM 27. For any language L_ {0, 1}*, ifL L(P) then L is nonuniform NC.
Proof. As a first step in the proof we will need the following claim.
CLAIM. There is an NC algorithm which, when given x {0, 1}n, outputs traSh

such that x= I’On-m, for some m.

Proof of the claim. Before giving the proof of the claim, we illustrate the idea by
citing an example. Suppose that x 101100111. By simultaneously going from left to
right and from right to left, we swap an "out-of-place" 0 with an "out-of-place" 1,
keeping track of the respective positions. This gives rise to the desired permutation
tr. In the case at hand we find or= (2, 9)(5, 8)(6, 7) and x= 1603.

Now we proceed with the proof of the main claim. Define the predicates Ek,b(U),
to hold when there are exactly k occurrences of b in the word u (b 0, 1) are in NC1.
The predicates Ek.b are obviously computable in constant depth, polynomial size
threshold circuits, i.e., in TC. By the work of Ajtai, Koml6s, and Szemer6di [AKS83]
TC c_ NC1. For k 1, , [n/2] and 1 _-< <j _-< n, let og.i,j, k be a log depth circuit which
outputs 1 exactly when the kth "out-of-place" 0 is in position and the kth "out-of-
place" 1 is in position j. It follows that Ol.i,j,k(X 1 if and only if "there exist k-1
zeros to the left of position i, the ith bit of x is zero, and there exist k ones to the
right of position i" and "there exist k- 1 ones to the right of position j, the jth bit of
x is one, and there exist k zeros to the left of position j." This in turn is equivalent to

Ek_l,o(Xl, Xi_l) and xi 0 and Ek,l(Xi+l, Xn) and

Ek_l,l(Xj+l, Xn) and xj 1 and E,o(Xl x-l).
This implies that the required permutation can be defined by

tr=I-I (i,j)" i<j and cz,,,
k=l

Converting the fanin, [n/2]-v-gate into a log ([n/2]) depth tree of fanin, 2-v-gates,
we have an NC procedure for computing r. This completes the proof of the claim.

Next we continue with the proof of the main theorem. Put Gn Sn(L) and let
Rn {hi," , hq} be a complete set of representatives for the left cosets of Gn, where
q<=p(n) and p(n) is a polynomial such that [Sn:Gn[<-p(n). Fix x{0, 1} n. By the
previous claim there is a permutation r which is the product of disjoint transpositions
and an integer 0=<k -<n such that x= lg0 n-g. So x=(lg0n-g). In parallel for

1,..., q test whether h-lr6 Gn by using the principal result of [BLS87], thus
determining such that r hig, for some g Gn. Then we obtain that

Ln(x) Ln((lg0n-g)) Ln((lg0n-g) h’g) Ln((lg0n-g)h’).

By hardwiring the polynomially many values Lri((lkon-k) hi) for 0=< k -< n and 1 -<_ -<_ q,
we produce a polynomial size polylogarithmic depth circuit family for L. [3

Theorem 27 involves a straightforward application of the beautiful NC algorithm
of Babai, Luks, and Seress [BLS87] for testing membership in a finite permutation
group. By using the deep structure consequences of the O’Nan-Scott theorem below,
together with Bochert’s result on the size of the index of primitive permutation groups

This is a well-known trick for improving the efficiency of the "partition" or "split" algorithm used in
quick-sort.
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(see Theorem 1(3) in 2), we can improve the NC algorithm of Theorem 27 to an
optimal TC algorithm (and hence NC1). First, we take the following discussion and
statement of the O’Nan-Scott theorem from [KL88, p. 376].

Let I { 1, 2, , n} and let S, act naturally on L Consider all subgroups of the
following five classes of subgroups of S,.

01.1: Sk x Sn_k, where 1 <= k <-_ n/2,
az:SaSb, whereeither(n=abanda, b 1) or(n=a b anda>_-5, b->2),
a3: the affine groups AGLd(p), where n--pd,
a4: Tk" (Out(T) X Sk), where T is a nonabelian simple group, k _-> 2 and n IT[ k-l,

as well as all groups in the class,
as" almost simple groups acting primitively on I.
THEOREM 28 (O’Nan-Scott). Every subgroup of S, not containing A is a member

of ozlU. .Ha5.

Now we can improve the result of Theorem 27 in the following way.
THEOREM 29 (Parallel complexity of Languages of Polynomial Index). For any

language L {0, 1}*, ifL L(P) then L is in 9-nonuniform TC and hence in (nonuniform)
NC

Proof. The proof requires the following consequence of the O’Nan-Scott theorem.
CAM. Suppose that (G, <= S.: n->_ 1) is a family ofpermutation groups such that

for all n, IS, G,I <- n , for some k. Then for sufficiently large N, there exists an i, <- kfor
which G, U, x V, with the supports of U,, V, disjoint and U, <-Si., V, S n_ino

Before proving the claim we complete the details of the proof of Theorem 29.
Apply the claim to G, S,(L) and notice that given x 2", the question of whether x
belongs to L is decided completely by the number of l’s in the support of K, S,_i.,
together with information about the action of a finite group H, =< Si., for i, -<_ k. Using
the counting predicates as in the proof of Theorem 27, it is clear that this is a TC
and hence NC algorithm. Thus, the proof of the theorem is complete, assuming the
claim.

Proofof the claim. We have already observed at the beginning of 5 that G, A,.
By the O’Nan-Scott theorem, G, is a member of al U U as. Using Bochert’s theorem
on the size of the index of primitive permutation groups ( 2, Theorem 1(3)), the
observations of [LPS88] concerning the primitivity of the maximal groups in a3 U O4 LJ
a5 and the fact that G has polynomial index with respect to S, we conclude that the
subgroup G, cannot be a member of the class O U O4 U O It follows that G, a U O2

We show that in fact G, az. Assume on the contrary that G, <_- H, Sa Sb. It follows
that [H,I a!(b !)a. We distinguish the following two cases.

Case 1. n ab, for a, b> 1.
In this case it is easy to verify using Stirling’s interpolation formula

(n/e)"x/-ff < n!< (n/
that

n! a
IS.’nl=a!(b!) 3b/2(3/a)v/-d"

Moreover, it is clear that the right-hand side of this last inequality cannot be asymptoti-
cally polynomial in n, since a _<-n is a proper divisor of n, which is a contradiction.

Case 2. n ab, for a--> 5, b_->2.

A similar calculation shows that asymptotically

n! n!

a!(b!) a!(b’!)’
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where b’ a b-1. It follows from the argument of Case 1 that this last quantity cannot
be asymptotically polynomial in n, which is a contradiction. It follows that Gn
Let Gn <-Si Sn-i, for some 1 <- in n/2. We claim that, in fact, in <- k for all but a finite
number of n’s. Indeed, put in and notice that

n!
ISn’SiS,,-i[:i!(n_i)=O(n’)lSn’Gnl<--nk,

which proves that i_-< k. It follows that Gn Un x Vn, where Un <_-Sin and Vn <--Sn-in.
Since in<-k and ISn: Gnl<-n k it follows that for n large enough Vn =Sn-in. This
completes the proof of the claim. Now let L {0, 1}* have polynomial index. Given
a word x {0, 1} n, in TC one can test whether the number of l’s occurring in the n in
positions (where Vn Sn-in) is equal to a fixed value, hardwired into the nth circuit.
This, together with a finite look-up table corresponding to the Un part, furnishes a
TC algorithm for testing membership in L. [3

6.3. Applications. An immediate consequence of our analysis is that if (Gn--<
Sn: n => 1) is a family of transitive permutation groups such that ISn :Gnl n(1 then
Gn =Sn, for all but a finite number of n’s (this answers a conjecture of Perrin). It is
also possible to give a more algebraic formulation of the main consequence of Theorem
29. For p a polynomial in the variables Xl, , xn and with coefficients from the two
element field Z2, let

S(pn) {tr Sn: X1, ", Xn(Pn(Xl," ", Xn) pn(x(1), ", x(n)) mod 2)}.

A family (Pn: n_>-1) of multivariate polynomials in Z2[x,’’ ", xn] is of polynomial
index if ISn S(pn)l n(1).

THEOREM 30. If (pn:n_-->l) is family of multivariate polynomials (in
Z2[xl,"’" ,xn]) of polynomial index then there is a family (qn: n_-> 1) of multivariate
polynomials (in Z2[Xl,’’’, xn]) ofpolynomial length such that pn

Because of the limitations of families of groups of polynomial index proved in
the claim above, we obtain a generalization of the principal results of [FKPS85].
Namely, for L {0, 1}* let/xL(n) be the least number of input bits which must be set
to a constant in order for the resulting language Ln- Lf’l {0, 1} to be constant (see
[FKPS85] for more details). Then we can prove the following theorem.

THEOREM 31. IfL L(P) (i.e., L is a language ofpolynomial index) then

/zL(n) <- (log n) (1) :> LAC.
Our characterization of permutation groups of polynomial index given during the

proof of Theorem 29 can also be used to determine the parallel complexity of the
following problem concerning "weight-swapping." Let G=(Gn: nN) denote a
sequence of permutation groups such that Gn_-<Sn, for all n. By SWAP(G) we
understand the following problem:

Input. n N, al, , an positive rationals, each of whose (binary) representations
is of length at most n.

Output. A permutation tr Gn such that for all 1 _-< n, a,(i + a(i+l)-<- 2, if such
a permutation exists, and the response "NO" otherwise.

THEOREM 32. For any sequence G ofpermutation groups ofpolynomial index, the
problem SWAP (G) is in nonuniform NC1.

Proof By the characterization of sequences of groups of polynomial index, there
exist integers k, N such that for all n _-> N, Gn Hn x Kn, where Hn -<- Sg. and Kn Sn-.,
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with in -<- k. Given n ->_ N, and n positive rational weights al, , an test whether there
exist permutations tr Hn and Kn such that for 1 <= <- n, a((i+ a(+(i+l <-- 2,
as follows. For z, sort the set of weights {ai: Supp(Kn)} in decreasing order. Assume
wlog that Supp(Kn) {1, , n in}. Let p Kn be a "sorting" permutation such that
ap(l >-- ap(2 >=" >= ao(n-in. Test in parallel whether

ap(1) -1- ap(n-i,,) 2, ap(2) + at,(n_i._l) --< 2, , etc.

If so, then let z be the appropriate permutation such that

l-p(1), 2-p(n-in),’." n-in-l--p|n-in-l|[\
\/2

n-in -- p 2

if n- in is even, and a variant of this, if n- in is odd. Since sorting n many n-bit
numbers is in NC1, computing r is in NC1. Since Hn _<-S., where in --< k, there are only
a finite number of possibilities to test for tr. These are hardwired (by nonuniformity)
into the circuit.

The following conjecture would relate the cycle index of a sequence G
of groups with the circuit complexity of the language L.

CONJECTURE 33. For any language L {0, 1}*, ifL Lo(P) then L is nonuniform
NC.

This conjecture appears somewhat plausible, since it follows from the next theorem
that if G (Gn--<Sn: n-> 1) is a sequence of groups whose cycle index (R)n(Gn), as a
function of n, majorizes all polynomials, then there is a language L with Sn(L)_
and L SIZE n o(1)).

TUEOREM 34. For any sequence G (Gn: n _-> 1) ofpermutation groups Gn <--Sn it
is possible to find a language L such that

L: SIZE(x/(R)(Gn)), and Vn(S(Ln)
_

Gn).

Proof By Lupanov’s theorem [{f Bn: c(f) <-_ q}[ O(qq+a) 2(qgq. Hence, if
qn - oo then ]{f Bn" c(f) <- qn}[ <2q". In particular, setting qn x/(R)(Gn) we obtain

[{f Bn: c(f)<-x/(R)(Gn)}[<2("=[{fBn: S(f)

It follows that for n big enough there exists an f Bn such that S(fn)_ Gn and
c(fn) > x/O(Gn). This completes the proof of the theorem.

7. Discussion and open problems. Three of the main questions we have tried to
answer in the present paper are (1) which permutation groups arise as (or are isomorphic
to) the invariance groups of boolean functions, (2) determining the complexity of
deciding the representability of a permutation group, (3) determining the relation
between the family of invariance groups of a formal language L and the parallel
complexity of L.

Concerning question (1), we saw that most (i.e., with a few exceptions) maximal
permutation subgroups of Sn are representable. We have shown that every permutation
group G Sn is isomorphic to the invariance group of a boolean function f Bn0ogn+l).

However, we do not know if this last "upper bound" can be improved to f Bn, for
some constant c independent of n. In the case of question (2), we gave a logspace
algorithm for deciding the representability of cyclic groups. In general however, we
do not know of any efficient algorithm for deciding the representability of any other
natural classes of permutation groups (e.g., abelian, nilpotent, solvable, etc.). The
existence of a polynomial time algorithm for testing representability of an arbitrary
permutation group is related to the question of whether graph nonisomorphism is in
polynomial time.
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Concerning question (3), we have shown a relation between the size of the index
of the invariance group of a formal language and its complexity. We showed that any
language of "polynomial size index" is in (nonuniform) TC. It is possible that a finer
analysis of the structure results for maximal permutation groups will yield a similar
result for other classes of languages, like the ones with subexponential or even
exponential size index. We conjecture that a similar result is true for any language of
"polynomial size P61ya index." We believe as well that there should be a relation
between the algebraic structure of the syntactic monoid of a regular language L

_
{0, 1 }*

(Krohn-Rhodes theorem) and the family of invariance groups of Ln. As indicated by
our preliminary work, straightforward approaches to such an investigation are not
likely--the property of a group being representable is not preserved under homomorph-
ism. Our parallel complexity results concern nonuniform families of boolean circuits.
A natural sequel to our work might investigate uniform versions of some of our results.
For instance, if L_ {0, 1}* is a regular (or context free, or logspace computable, etc.)
language with polynomial index (or polynomial size P61ya index) then is L in logspace
uniform TC?

Another interesting question concerns the problem of giving an efficient algorithm
A which on input a formal language L, a permutation crSn, and an integer n,
determines whether or not o- Sn(L), i.e.,

A(L, n, o)= {10 ifo-S(L)
otherwise.

We investigated this question in the present paper for regular languages. The obvious
algorithm has complexity O(2") (to check membership of a permutation cr in Sn(L)
test whether for all x 2", x L, :> x L,). A similar question applies to right-quotient
representatives of S,(L). It would also be interesting to investigate these questions for
other types of languages, such as CFL, etc.
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TESTS FOR PERMUTATION POLYNOMIALS*
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Abstract. If Fq is a finite field and f E Fq[X], then f is called a permutation polynomial if
the mapping Fq Fq induced by f is bijective. This property can be tested by a probabilistic
algorithm whose number of operations is polynomial (in fact, essentially linear) in the input size,
i.e., in deg f. log q. This is extended to "almost permutation polynomials," whose value set consists
of almost all elements of Fq.
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sequence, subresultant, probabilistic algorithm
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1. Introduction. A univariate polynomial f E Fq[x] over a finite field Fq with
q elements (q a power of a prime number) induces a function Fq Fq via a f(a).
If this function is bijective, then f is called a permutation polynomial. Permutation
polynomials have been studied since Hermite [14] and Dickson [9], and recent interest
stems from potential applications in public-key cryptography (see Lidl and Mullen
[18]); reference to other uses is given in the latter article. A list of all permutation
polynomials of degree at most 5 is given in Dickson [10] and Lidl and Niederreiter
[19]. We may always assume, without loss of generality, that deg f < q.

Given an arbitrary polynomial f q[X] of degree n, one can test whether it is
a permutation polynomial simply by producing its list of values (see 2). Another
general test goes back to Hermite and Dickson (see 3). In their survey paper, Lidl
and Mullen [18] pose as an open problem:

(P1) Find an algorithm of lower complexity than O(qn) to test whether a given
polynomial is a permutation polynomial of Fq.

For such a test, the input size--the number of bits required to represent finis
about n log q. The above-mentioned tests use exponential time, for large q, and no
polynomial-time tests are in the literature. Lidl and Mullen [18] quote some criteria
in terms of the coefficients of f. We present a probabilistic test whose number of
operations in Fq is essentially O(n log q), i.e., essentially linear in the input size n log q.

In 2, we briefly consider the "simple" test and find that off-the-shelf techniques
from computer algebra already improve the running time slightly, without any new
insights into the problem. Hermite’s classical test has been one of the most important
tools in the study of permutation polynomials, both for theoretical and practical
purposes. Section 3 gives a probabilistic variant of this test, reducing the running
time from f(q2) to essentially O(q). In 4, we derive a criterion saying that f is a
permutation polynomial if and only if gl 0, where gl Fq[y] is a new polynomial
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592 PERMUTATION POLYNOMIALS

whose coefficients are polynomials in the coefficients of f. This criterion is equivalent
to one given by Raussnitz [23]. The main result of this paper is in 5, where we show
how to calculate gf(u) fast for randomly chosen u in some finite extension field of Fq.
The resulting polynomial-time probabilistic test always gives the correct answer if the
input is a permutation polynomial. If it is not, it may give the incorrect answer, but
with controllably small probability e. The running time is essentially proportional to
log e-1. If we use e q-l, the running time is O(n log q), up to factors log n: softly
linear running time.

Precious few classes of permutation polynomials are known (see Lidl and Mullen
[18]), and a random polynomial in ]Fq[x] of degree less than q is a permutation polyno-
mial with very small probability q!/qq e-q. (Recall that the polynomials of degree
less than q correspond bijectively to the functions Fq ---, ]Fq.)

To enlarge the pool of candidate polynomials, we generalize the notion of permu-
tation polynomial as follows. Suppose some p E 1 is given, and let V(f) #f(]Fq)
be the size of the image of f. We say that f is p-large if the image of the mapping
f has at least q- p elements" V(f) >_ q- p. Thus f is 0-large if and only if f is a
permutation polynomial.

Section 6 gives a criterion for p-large polynomials analogous to the criterion in
4 for permutation polynomials, and 7 gives the resulting test. It is a probabilistic
algorithm with expected time polynomial in np log q; in fact, the time is softly linear
in np log q.

The method presented here suggests the following general question: which (spe-
cial) problems can one solve in (random) polynomial time for polynomials of expo-
nential degree given by small arithmetic circuits? Section 8 briefly discusses this.

A "naive" test for permutation polynomials is to choose some elements u E ]Fq at
random and check whether each has exactly one preimage under f. At first sight,, it
looks as if this test has little chance of success, e.g., for a polynomial whose values
leave out only very few elements of ]Fq. However, a geometric study of permutation
polynomials, initiated by Hayes [13], leads to the essentially equivalent notion of
exceptional polynomials. This property can also be tested in random polynomial
time, and the approach shows that the above naive test has a good chance of success.
Its running time is about the square of the time for the algorithm presented here
(von zur Gathen [12]). Shparlinskiy [26] presents a deterministic test using essentially
O(n3q/2) operations.

2. The simple test revisited. Given f Fq[X] of degree n, one can produce
its list of values and sort them, to determine whether f is a permutation polynomial.
This takes O(nq) arithmetic operations, plus O(q log2 q) binary operations for sorting.
Alternatively, one can test whether the q values are distinct with O(q log2q log log q)
arithmetic operations (Baur and Strassen [3]).

Since we know what the q values have to be, we can do better by checking the
condition

II (x x,
vq

which is equivalent to f being a permutation polynomial. All f(v) can be computed
in O(qlog2nloglogn) arithmetic operations, and the product can be calculated at
the same cost (see Borodin and Munro [4]).

3. Hermite’s test revisited. Hermite’s criterion says that f Fq[X] is a per-
mutation polynomial if and only if
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(i) f has exactly one root in ]q,
(ii) Vi, l<_i<_q-2, deg(firem(xq-x))<_q-2

(Lidl and Niederreiter [19, Thm. 7.4]). Here, (g rein h) 6 Fq[X] is the remainder of g
on division by h: (g rein h) g rood h and deg(g ram h) < deg h (assuming h 0).
The obvious implementation of Hermite’s test requires about q multiplications of f
with a polynomial of degree less than q, each followed by a reduction modulo xq -x.
Even when n deg f is small, say constant, this may require (q2) operations in ]q.
We now implement this test more efficiently.

With a new indeterminate y, we have

(f + y)q-1 ( q l Yq--f
O<i<q-i \ /

+ 1) ri mod Xq X,
l<i<q--2

where ri fi rein xq x for 1 _< < q. Each of these binomial coefficients is nonzero
in Fq (Lucas [20]; Lidl and iiederreiter [19, Exercise 7.1]). Let

r ((f + y)q- fq-) rein (xq x) Fq[X, y],

and s Fq[y] be the coefficient of xq- in r. Then we have

(ii) s 0.

Since degy(f+y)q- q-l, we have degy s g q-1. Computing (f+y)q- ram (xq-x)
as a bivariate polynomial would again result in cost f(q2). However, we can substitute
a randomly chosen u qm for y, from a suitable extension ]qm of ]q, and compute

r(u) ((f + u)q-l- fq-1) rein (xq -x) 6 Faro[X],
and s(u) as the coefficient of xq- in r(u). We return "YES" if s(u) 0, and "NO"
otherwise. (We also check condition (i)" deg gcd(xq x, f) 1.)

To estimate the cost, let M" 51 --, denote a "universal" cost of multiplication,
i.e., let it be such that two polynomials of degree at most n over a ring R can be
multiplied in O(M(n)) arithmetic operations in R, and two n-bit integers can be
multiplied with O(M(n)) bit operations. We can choose M(n) n log n log log n
(Schhnhage and Strassen [24], Cantor and Kaltofen [7]). If g, h e Fq[X] are polynomials
of degree at most n, then the division with remainder of g by h (if h # 0) can be
performed in O(M(n)) operations in Fq.

PROPOSITION 1. The probabilistic algorithm given above can be implemented with
O(M(q) log q.M(m)) arithmetic operations in Fq. Its output is correct with probability
at least 1- q-m.

Proof. The algorithm can be performed in O(M(q)log q) operations in ]Fq., us-
ing "repeated squaring." Elements of ]qm are represented by their coordinates in
(Fq)m, and a single arithmetic operation on such elements can be performed with
M(m) operations in Fq. Finally, the gcd condition can be checked with O(log qM(n))
operations in Fq (Aho, Hopcroft, and Ullman [1, 8.9]). Thus the total cost is
O(M(q) log q. M(m)) operations in Fq. (We have neglected the cost of construct-
ing Fq. see 5.)

Assume that (i) holds. If f is a permutation polynomial, then s 0 and s(u) O.
If f is not a permutation polynomial, then s 0 and s(u) 0 occurs with probability
at most deg s/qm < ql-m. y3
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We can make the error probability arbitrarily small, by choosing m appropriately.
The running time of this test is still at least linear in q. However, the idea of random
substitutions will lead to a substantial improvement in 5.

In practical applications of Hermite’s test, one stops of course as soon as deg r
q- 1 is found for some _< q- 2. In the same vein, our algorithm would first calculate
fq-1 rem xq x by repeated squaring, and stop whenever one of the (few) powers of
](rem xq x) calculated is found to have degree q 1. One proceeds similarly in the
subsequent computation of certain ((f / u) f) rem x x by repeated squaring.

4. A criterion for permutation polynomials. By definition, a polynomial
f E Fa[x] is a permutation polynomial if and only if for all u E there exists a
unique v Fq with f(v) u, or, equivalently, x- v divides f- u in q[X]. Since Fq
is a finite set, surjectivity is sufficient:

f is a permutation polynomial
Vu Fq :::Iv Fq f(v) u
VUFq V eFq X--V{f--u.

For two nonzero polynomials a amXm + + ao, b bnxn + W bo ]q[X],
we denote by gcd(a, b) their monic gcd. If ambn O, then

am am-1 ao
am am-1 ao

R(a,b) am am-1
bn bn-1 bo

bn bn-1 bo

ao

bn bn-1 bo

(m-l-n)(m+n)

is their Sylvester matrix, consisting of n rows of coefficients of a, and m rows of
coefficients of b. Furthermore, res(a, b) det R(a, b) is their resultant. A fundamental
fact is that

gcd(a, b) : I res(a, b) 0

(see van der Waerden [28]). Since xq -x Ylbeq (x- b), we have

is a permutation polynomial
VU Fq gcd(xq x, f u) : 1
u]q res(xq-x,f-u)-0
yq y lres(xq x, f y).

Here, y is a new indeterminate, hf res(xq-x, .f-y) Fq[y], and the divisibility
condition is in ]q[y].

What are the degree and leading coefficient of hi? The constant term f(0)-y of
f-y Fq[y][x] occurs q times on the lower right part of the diagonal of R(xq-x, f-y),
and nowhere else. The cofactor in the Laplace expansion for the determinant of that
part of the diagonal is the upper left n n-submatrix, which is upper triangular
with l’s on the diagonal, and has determinant 1. Thus hf has degree exactly q,
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and leading coefficient (-1)q. It follows that the condition "yq -ylhi" is equivalent
to "hf (-1)q(yq -y)." We have proved the following criterion for permutation
polynomials.

THEOREM 2. Let f G Fq[x], and

gl res(xq x, f y) (- 1)q (yq y) e Fq[y].

Then f is a permutation polynomial if and only if gl O.
Easy matrix manipulations show that Raussnitz’s criterion [23], when expressed

in terms of the Sylvester matrix, is equivalent to the above.

5. Testing permutation polynomials. Let f Fq[X] have degree n. We want
to use Theorem 2 to test efficiently whether f is a permutation polynomial or not.
Computing the resultant as the determinant of the (q / n) x (q / n)-Sylvester matrix
would be very costly. We can, however, use the Euclidean algorithm to compute the
resultant as follows.

Let F be any field, ao, al Fix] of degrees no >_ nl _> 0, respectively, and consider
the Euclidean scheme for (a0, al), consisting of the remainders ao, a, a2,..., as e Fix]
and the quotients q,..., q Fix] in the Euclidean algorithm for ao and a, defined
by

(1) ai- qiai / ai+ and deg ai+ < deg ai

for 1 _< _< l, using a+ 0. This scheme always exists and is unique. (q, ...,
q, a) is called the Euclidean representation of (ao, a) (Knuth [17] and Strassen
[27]). Furthermore, let ni deg ai, di deg qi, ai G F be the leading coefficient of
ai, and /i F the leading coefficient of qi. The "fundamental theorem on polynomial
remainder sequences" says that if n >_ 1, then res(a0, al) 0, and if n 0, then

res(a0, a,) (-1)sa’-’ H -’_<i<

where s- 0_<i< nini+ (Collins [8] and Brown and Traub [6]).
Equation (1) implies that ai_ "iai and hi-1 di + ni for all i. It follows that

for 2 _< _< 1. Substituting this into (2) and collecting powers of /i, we find

(3) res(ao, al)--(-1)sa+nl

if n 0.
Thus we could calculate our gf by executing the Euclidean algorithm for xq -x

and f-y in ]q(y)[x]. Again, this would be very inefficient since the first division
of xq -x by f-y may already leave us with a remainder whose degree in y is very
large--about q/n. We circumvent this problem by substituting a random element
u ]Fq. for y, using an appropriate extension Fq. of
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ALGORITHM TEST FOR PERMUTATION POLYNOMIAL.
Input" Coefficients of a monic polynomial f E ]Fq[X] of degree n, 2 _< n < q, and con-

fidence parameter e > 0. [Intuitively, e << 1. Note that any linear polynomial
ax + b with a 0 is a permutation polynomial.]

Output: YES or NO.
1. Set m 1 + [logq(2e-1)], and find an irreducible polynomial E Fq[Z] of

degree m.
2. Choose (uniformly) a random element u e ]Fq, Fq[Z]/().
3. Set ao xq -x, al f- u, and compute the coefficients of a2

(xq -x) rem (f u) Fq,[x]. This division with remainder is performed
by "repeated squaring" of x, reducing modulo f- u after each multiplication
step.

4. Compute the Euclidean representation (q2,’" ",qt,at) for (a,a2) in Fq,[x],
let di deg qi and ,i ]Fq, be the leading coefficient of qi, for 2 _< _< 1. If
deg at _> 1, return YES and stop.

5. Compute no q, n n, and n2,’.., nt from ni ni_ -di, and calculate
s 0<i<t nini+ rem 2.

6. Compute

(-i)’ 1]
2<i<l

7. Return YES if v 0, and NO otherwise.

It is convenient to ignore logarithmic factors using the "soft O" notation, intro-
duced by von zur Gathen [11] and Babai, Luks, and Seress [2]"

g O~(h) = k g O(h(log2 h)k).

THEOREM 3. The algorithm can be performed with m random choices in Fq, plus
the cost of finding an irreducible polynomial of degree m, and O(log q. M(n)M(m))
arithmetic operations in Fq, where m 1 + [logq(2e-1). These are O~(nlog2
operations in Fq i] e <_ q-. If f is a permutation polynomial, the output is YES. If
f is not a permutation polynomial, the output is NO with probability at least 1-

Proof. Step 3 can be done in O(logq. M(n)) operations in ]Fq,. The usual
algorithm for the Euclidean scheme calculates all quotients and remainders in O(n2)
arithmetic operations. However, the Euclidean representation (q2,"" ,qt,at) can be
computed in only O(M(n). log n) arithmetic operations by the Knuth-SchSnhage

ni-i+nialgorithm (see Aho, Hopcroft, and Ullman [1, 8.9] and Strassen [27]). Each
can be calculated in O(log n) operations, and thus step 6 requires O(1 log n + log q)
or O(n log n + log q) operations in Fq,. Since one operation in Fq, can be simulated
with O(M(m)) operations in Fq, the total cost is O(log q. M(n)M(m)) operations in
Fq. This is O~(n log e-) if e < q-, since then log q. logq(2e-1)] O(log e-).

Set A f-y Fq(y)[x]. Then hy res(a0, A). Since a A(u) F[x]
has the same degree as A, we have rest(a0, a) by(u) and v gy(u) in step 6. If
f is a permutation polynomial, then gy 0 and v 0. If f is not a permutation
polynomial, then gy fi Fq[y] is a nonzero polynomial of degree less then q, and v 0
with probability more than 1- q/q" > 1- el2.

If degat > 1 in step 4, then f(v) u for some v E Fq, and thus u ]q; the
probability of this happening is at most q/qm
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If we choose e polynomial in q-l, then the algorithm uses O~(n log q) operations.
Some Boolean operations occur in the algorithm, e.g., in the calculation of m, the
and s; we have neglected the small cost of these.

We have not specified a method for finding an irreducible polynomial in step 1.
Rabin [22] gives a probabilistic algorithm for this problem, using O(kmM(m) log m
log q) operations in Fq, and returning successfully with probability at least 1 -m-k,
for any k. Choosing k log e-1 gives failure probability at most e for this step, and
cost O(log e-mM(m) logm log q), which is O-(log n log3 e-) if e <_ q-.

We actually do not need of degree exactly m, but degree between m and 2m,
say, is sufficient. This may be useful if a table of irreducible polynomials is available,
or if a particular degree is preferable, say powers of 2. One could even take a random
E ]Fq[z] of degree m without linear factors (i.e., gcd(zq z, ) 1) and compute in

the "pretend-field" Fq[Z]/(); if a division by a zero-divisor turns up in the algorithm,
this gives a factorization "2, and one can continue in the two rings Fq[Z]/()
and ]Fq[z]/(2). The algorithm would still work (by the Chinese Remainder Theorem),
but the analysis is slightly more complicated.

Yet another possibility would be to take of degree 2 if n <_ q/2 (or n is not too
close to q), and of degree 3 otherwise; run the algorithm with several random choices
Ul,’’’, U2k+l in ]Fq2 (respectively, ]q3); and take a majority vote on the individual
outcomes. Each individual run has an error probability at most qn/q2 (respectively,
qn/q3), and for k log2 e- (respectively, k logq e-), the total error probability
is at most e. The cost of this implementation is O-((n + log q)log e-) (respectively,
O-(nloge-)), plus the cost of finding .

Instead of studying polynomials inducing permutations on ]Fq, Brawley, Carlitz,
and Levine [5] consider permutations of the matrix algebra Fadd, and prove that f
]Fq[x] is a permutation polynomial ofFdd if and only if f is a permutation polynomial
of ]Fq, Fq2, , ]Fqa, and the derivative ff does not have a root in ]Fq, ]Fq., , Fq,, where

[d/.
COROLLARY 4. Let f e ]Fq[x] have degree n, and 0 < e <_ q-d. There is a prob-

abilistic algorithm which determines whether f is a permutation polynomial on ]Fdq xd
correctly with probability at least. 1- e. Apart from random choices and the finding of

O (d og + d)),
operations in Fq.

Proof. We simply implement the first of the Brawley, Carlitz, and Levine condi-
tions using the Algorithm Test for Permutation Polynomial, with

O-((n + j log q) logq

arithmetic operations in ]q, for 1 _< j _< d, each costing O-(j) operations in ]q. This
leads to the stated bound. The second condition

gcd(xq-x,f’)=l for l<_j <_k

can also be tested at this cost.

6. A criterion for large polynomials. Let p N, and recall the notion of
p-large from the introduction, and hf ]Fq[y] from 4. Then we have:

f is p-large = 3P C_ q (#P >_ q- p and Vu P 3v q f(v) u)
BPC_]Fq(#P>_q-pandVuP Bv]Fq x-vlf-u
BPC_Fq(#P>_q-pandVuP gcd(xq-x,f-u)=l)



598 PERMUTATION POLYNOMIALS

3PC_Fq(#P>_q-pandVuEP hf(u)=0)
P C_ Fq (#P >_ q p and Vu P y u lhi)
deg(gcd(yq -y, hl) > q-p
deg((yq y)/ki) < p

deg(hf/kI) <_ p,

where kI gcd(yq -y, hi) Fq[y]. Thus we have the following criterion for p-large
polynomials.

THEOREM 5. Let f e Fq[X], and hI res(xq-x, f-y) and kI gcd(yq-y, hi)
in Fq[y]. Then f is p-large if and only if deg((yq -y)/kl) < p.

If f is p-large, then all but at most 2p elements u of Fq have exactly one preimage
v under f; this unique v can be easily found from x v gcd(xq x, f u).

7. A test for large polynomials. Let ao xq- x, A1 f-y Fq(y)[x],
and QI,’",QI,At Fq(y)[x] be the Euclidean representation of (ao, A) (i.e., the
quotients and the gcd as calculated by the Euclidean algorithm). If u E Fq,, a
A(u) f-u Fq, [x], and q,. ., qt,, at, is the Euclidean representation of (a0, al) in
F, Ix], then l’, q Q(u) for all i, and al A(u). In particular, deg q deg Q.

The Euclidean algorithm for (a0, A) requires, of course, tests for zero or branch-
ing, in order to determine the degree sequence (deg Q,..., deg Qt, deg At). However,
the computation using u gives us the correct degree sequence, and then all entries
of the Euclidean scheme are rational functions in the coefficients of a0 and A; the
subresultant theory provides explicit formulas. In fact, we obtain an arithmetic cir-
cuit (or straight-line program) for hi, i.e., a computation using only the coefficients
of f and the operations +,-,.,/. The size of an arithmetic circuit is the number of
arithmetic operations in it.

It is not clear how to calculate efficiently kI gcd(yq- y, hl) if we regard the
degree q of B yq y and B2 hI as exponentially large. However, in

BI yq y (yq y)/kI CBo C--;

the two polynomials C1 (yq- y)/kI and C2 hl/kI are relatively prime. We can
now call Kaltofen’s [15] Algorithm Rational Numerator and Denominator, to calculate
those two polynomials from the arithmetic circuits for hI (discussed above) and yq-y
(repeated squaring).

FACT 6 (Kaltofen [15]). Suppose an arithmetic circuit a of size s with one input y
over a field F computes Bo C/C2 F(y), with C, C2 F[y] relatively prime, and
that u F is such that no division by zero occurs in a on input y -- u. Then, given a
and u, and an integer p, one can compute (deterministically) with O(M(p)(s+logp))
arithmetic operations in F an arithmetic circuit 13 of size O(M(p)(s + log p)) over F
which computes two polynomials c and c2 in F[y] of degree at most p such that if
deg C, deg C2 N p, then cl C and c2 C2. has no divisions by zero on input
y---Uo

This is a special case of Kaltofen’s theorem 8.1 [15]. To derive it, we note that
we can replace Kaltofen’s "Step FT" with a u, and all the nasty possibilities that
complicate Kaltofen’s proof (for multivariate polynomials) vanish in our simple case.
In particular, this variant is deterministic, while in the general case, Kaltofen needs
probabilistic choice. Note that, if degC > p or deg C2 > p, then Bo # c/c2. (We
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ignore the Boolean cost of the procedure, and assume, also in the sequel, a reasonable
convention for p 0 in the O-notation.)

The following algorithm results from the above discussion.

ALGORITHM TEST FOR POLYNOMIAL WITH LARGE IMAGE.
Input: Coefficients of a monic polynomial f E ]Fq[x] of degree n, 2 < n < q, some

p E N with 0 < p _< q, and a confidence parameter e > 0.
Output: YES or NO.

i. Set m 1 / [logq(3e-1)], and find an irreducible polynomial ]Fq[z] of
degree m.

ii. Perform steps 2, 3, 4, and 5 of Algorithm Test for Permutation Polynomial.
iii. Compute b2 (-1) s 1-I2<i<//-(n_l+n,) ]qm, and bl uq -u.

iv. Let A f-y ]Fq(y)[x]. Consider the following arithmetic circuit a over
]Fq with one input y, working in five stages.

a. Compute A2 xq x mod A.
b. Compute the "Euclidean representation" (Q2,’", Ql, A1) for (A, A2) in

Fq(y)[x], using the degree sequence (d2,..., d) computed in step ii.
c. Let F ]Fq(y) be the leading coefficient of Q, and compute

B2 hf (-1)s H F-(n-I+n) e Fq[y].
2<i</

d. Compute B yq -y, by repeated squaring.
e. Compute the output Bo BI/B2.

[Note that in this step we do not actually calculate Bo, but rather describe
an arithmetic circuit for B0.]

v. Call Kaltofen’s Algorithm Rational Numerator and Denominator (Fact 6)
with input a and u, and degree bound p both for numerator and denominator.
The output is an arithmetic circuit/ computing two polynomials c and c2
in ]Fq[y] of degree at most p. [If deg C <_ p, with C B/kI as above, then
Bo =c/c2.]

vi. Execute with input u to calculate c(u) and c2(u), and compute c3
b c2(u) b2 .c(u). If c3 0, then output YES; otherwise output NO.

THEOrtEM 7. The algorithm can be performed with m 1+ [logq(3e-)] random
choices in Fq, plus the cost of finding an irreducible polynomial of degree m, and

O(M(m)M(n)M(p) log q)

arithmetic operations in Fq. These are O-(nplog2 -) operations if e < q-. If f is
p-large, the output is YES. If f is not p-large, the output is NO with probability at
least 1 e.

Proof. If nt > 1 in step ii, then gcd(xq x, f u) # 1 and hence f(v) u for
some v ]Fq, and thus u ]Fq. This occurs with probability at most q/q" <_ /3.

The subresultant theory (Brown and Traub [6]) guarantees that hI is correctly
computed in step iv.c, by (3). Recall Bo B/B2 C/C2, with C, C2 e ]Fq[y]
relatively prime, and let C3 C1 .c2 C2 .c ]Fq[y]. If the correct output is YES,
so that deg C, deg C2 _< p, then Fact 6 says that c C and c2 C2. Then C3 0
and c3 C3(u) 0, and the correct answer YES will be output.

If the correct output is NO, then we know that degC1 and degC2 are larger
than p. Step v will output two polynomials c and c2 of degree at most p, essentially
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unrelated to our problem. Now C3 E Fq[y] is nonzero of degree at most q + p, and an
incorrect output in step vi implies that C3(u) 0, which happens with probability
at most (q + p)q-m <_ 2e/3 (Schwartz [25]). The total error probability is at most
e/3 + 2e/3 .

We assume the standard representation of elements of Fq, by vectors in ]Fn.
The number of random choices in ]Fq is m. Using n < q, one finds that the size s
of a is s O(M(n)log q), and log p O(s). The number of arithmetic operations
in Fq is O(sM(m)) in steps through iii, negligible in step iv (which just sets up a

circuit), O(sM(p)) in step v, and O(sM(m)M(p)) in step vi. Thus the total number
of arithmetic operations in Fq is O(M(m)M(n)M(p)log q), which is O~(np log2 e-1)
ife<_q-1.

For f E Y[x], let pi q- V(f), so that f is p/-large and not (pf 1)-large. By
a "binary search on p" one can compute pi with O~(npl log e-) operations correctly
with probability at least 1- e.

8. Manipulating polynomials of large degree. A central ingredient of the
algorithms presented here are efficient computations (for special problems) with poly-
nomials of large (exponential) degree and small (polynomial-size) arithmetic circuits.
It remains open how to put this development into a more general framework. Sup-
pose we have two polynomials f and g (over a field, in many variables), given by
two arithmetic circuits of size s and t, respectively, and an integer p, not larger
than 28 and 2t. Kaltofen’s methods can decide, e.g., whether degf _< p in ran-
dom polynomial time (ps)(). If deg f deg g is known, then the method given
above (namely, computing the reduced numerator and denominator of f/g) can de-
cide whether deggcd(f,g) _> degf- p in random polynomial time (pst)(1); degf
may be exponentially large.

In fact, this method only requires an estimate e _> degf- deggl, and uses
time (pste)(1). As an application, suppose that char(F) 0 and, for simplicity,
that f 6 Fix]. One can easily find a small arithmetic circuit for f’ Of/Ox; Baur
and Strassen [3] produce one of size at most 5s even in the multivariate case. Then
deg f’ deg f- 1, and we can test in time (ps)() whether deg gad(f, f’) >_ deg f- p,
i.e., whether the squarefree part of f has degree at most p.

Here is a list of a few problems in manipulation of polynomials of exponentially
large degree that one would like to answer in time (pst)(). For some, deg f might
be an additional input.

(1) Test whether deg f _< p in time polynomial in log p.
(2) Does g divide f?
(3) Is f squarefree? Does the squarefree part of f have degree at least (deg f)- p?
(4) Is deg gad(f, g) _< p? (This is probably a difficult problem; Plaisted [21] shows

that the question "is gad(f, g) 1?" is NP-hard for f, g e Q[x].)
(5) Can one compute the Euclidean representation of (f, g) in time polynomial

in the input plus output size, say in the sparse representation? For this, it
seems sufficient to have a (probabilistic) polynomial-time test for

?
deg f <_ d

(given f as above and the binary representation of d N), due to the rational
nature of the Euclidean scheme for fixed degree sequence.

(6) Do some (or all) irreducible factors of f have degree at most p? Degree at
least (deg f) p?
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The positive results mentioned above easily carry over to the "black box" model;
Kaltofen and Trager [16] present the necessary (probabilistic) algorithms. For ques-
tions (2)-(6), one might start by considering the sparse representation of f.
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CONSTRUCTIVE WHITNEY-GRAUSTEIN THEOREM:
OR HOW TO UNTANGLE CLOSED PLANAR CURVES*

KURT MEHLHORN AND CHEE-KENG YAP

Abstract. The classification of polygons is considered in which two polygons are regularly equivalent
if one can be continuously transformed into the other such that for each intermediate polygon, no two
adjacent edges overlap. A discrete analogue of the classic Whitney-Graustein theorem is proven by showing
that the winding number of polygons is a complete invariant for this classification. Moreover, this proof is
constructive in that for any pair of equivalent polygons, it produces some sequence of regular transformations
taking one polygon to the other. Although this sequence has a quadratic number of transformations, it can
be described and computed in real time.

Key words, polygons, computational algebraic topology, computational geometry, Whitney-Graustein
theorem, winding number
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1. Why a circle differs from a figure-of-eight. First consider closed planar curves
that are smooth. Intuitively, a "kink" on such a curve is a point without a unique
tangent line. It seems obvious that there is no continuous deformation of figure-of-eight
to a circle in which all the intermediate curves remain kink-free (see Fig. 1).

Figure 2 shows another curve that clearly has a kink-free deformation to a circle.
Let us make this precise. By a (closed planar) curve we mean a continuous function

C :[0, 1]--> E 2, C(0)= C(1), where E2 is the Euclidean plane. The curve C is regular
if the first derivative C’(t) is defined and not equal to zero for all t[0, 1], and
C’(0) C’(1). Let h :[0, 1 [0, 1 --> E 2 be a homotopy between curves Co and C1, i.e.,
h is a continuous function and each Cs :[0, 1]--> E2 (0 -< s-< 1) is a curve, where we
define Cs(t)= h(s, t) (t[0, 1]). The homotopy is regular if each C is regular. Two
regular curves are regularly equivalent if there is a regular homotopy between them.
A classical result known as the Whitney-Graustein theorem [5], [1] says that two
curves are regularly equivalent if and only if they have the same winding number (up

FIG. 1. Transforming a figure-of-eight to a circle" kink appears.
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FIG. 2. A kink-free deformation.

to sign). Here, the winding number of a regular curve C’[0, 1]- E2 may be defined
as follows. The "tangent map" of C is defined to be

O)C "S __> S

where S is the unit circle and for any point 0= 0(t) =exp (27rtx/’L-i-) S 1, 0-<_ <- 1,
we let toc(O)= C’(t)/IC’(t) I. Note that toc is well defined since C is regular. Then the
winding number of C is

1 Is dooc.
2r

The winding number is an integer. For instance, the winding number of the figure-of-
eight is zero and the winding number of the circle is + 1 (depending on the orientation
of the curve C). Since these two curves have have distinct winding numbers, the
Whitney-Graustein theorem confirms our intuition that they are not regularly
equivalent.

We should point out a closely related result of Hopf. Hopf’s theorem [2] says
that two maps f, g" S - S are homotopic to each other if and only if they have the
same winding number. In fact, Hopf’s theorem generalizes to higher dimensions for
maps on the n-sphere S.

The purpose ofthis paper is to give a constructive version ofthe Whitney-Graustein
theorem. The rest of this paper is organized as follows. In 2, we formulate the discrete
(polygonal) version of regular curves and regular equivalence. Section 3 introduces a
normal form for polygons. In 4, we prove the Whitney-Graustein theorem for
polygons. An algorithm is developed in 5 using the insights from the proof. Section
6 concludes the paper.

2. Classification of regular polygons. Computational issues arising from the
Whitney-Graustein theorem include asking for a procedure to decide equivalence of
two given regular curves and to construct a regular homotopy between two equivalent
curves. To obtain computational complexity results, we discretize these questions. The
natural candidates for discretized regular curves would be polygons (i.e., closed
polygonal paths). Unfortunately, polygons are never "regular" since they automatically

In our original paper [3], we mistakenly referred to the Whitney-Graustein theorem as Hopf’s theorem.
We are grateful to Gert Vegter for setting the record straight.
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have kinks at their vertices. This would seem to destroy any hope for a Whitney-
Graustein theorem for polygons. It turns out that we can isolate the essential features
of the original "regularity" assumption, and transfer these features into the polygonal
setting. So there are "regular" polygons after all.

DEFINITION. A path II is specified by a sequence

II (Vl, v2,""", vn), n =>2

of points which we call vertices. The initial and final vertices are v and vn, respectively,
and if n => 3, we call v2,’" ", vn_ the interior vertices. We require adjacent vertices to
be distinct: vi s vi+ for 1,..., n- 1. The edges of the path are the line segments
Ivy, v+] for i= 1, , n 1. The reverse of (v, v2, , vn) is (vn, , v2, v). A closed
path is one of the form

H =(v," vn, v,+), n =>2

such that vn+ Vl. Intuitively, if we identify the first and last vertices of a closed path,
then we would like to consider two closed paths as equivalent if one sequence can be
obtained from the other by a cyclic shift. More precisely, two closed paths H, H’ are
cyclically equivalent if II (Vl,""", vn, vl) and II’ is equal to

Vi, Vi+I, Vn, Vl, V2 Vi--1, Vi)

for some 1, , n. An oriented polygon P on n => 2 vertices is defined as the cyclic
equivalence class of some closed path (vl,’’’, vn, vl). The reverse of an oriented
polygon is defined as expected. A nonoriented polygon P is the class of closed paths
cyclically equivalent to some closed path or its reverse. For short, "polygon" is
understood to mean nonoriented polygon. If P is the polygon consisting of closed
paths cyclically equivalent to (vl," ", vn, vl) or its reverse, we denote P by

P=(vl," ", v,).

So P could also be written as (vn, vn-1,""", vl), and also (v2, v3,"" ", vn, v), etc.
DEFINITION. Let v be a vertex of a path (v,. , vn) or a polygon (vl,.. ", vn),

where vi is an interior vertex in case of the path. Then v is a kink if the two edges
[vi-1, v] and [v, v+l] incident on v overlap. By definition, the initial and final vertices
of a path are never kinks, and the vertices of a two-vertex polygon are always kinks.
A path or polygon is regular if it has no kinks. An oriented polygon is regular if its
nonoriented counterpart is regular.

Here, as throughout the paper, arithmetic on subscripts of vertices of a polygon
P is modulo n, the number of vertices of P. Note that regularity precludes neither
nonadjacent vertices from coinciding nor nonadjacent edges from overlapping.

Let vi be an interior vertex of a regular path (vl,. ", vn). Then the turning angle
at vi is defined to be the angle of absolute value less than 7r that is equal to 0i-
0_l(mod 2r), where 0 is the orientation of the ray from vi through v+l. Note that if
v were a kink, we would have an ambiguous choice of either r or -Tr. We say the
path makes a right-turn, left-turn, no-turn at v according as the turning angle at vi is
negative, positive, or zero, respectively. Let P be a regular oriented polygon that is
cyclically equivalent to the closed path H (vl, v2," ", vn, vl). We define the turning
angle of a vertex v of P as follows. If # 1, then this is equal to the turning angle of
vi when vi is regarded as a vertex of H; if 1, then this is the angle of absolute value
less than 7r that is equal to 01 0n (mod 27r). The winding number of an oriented regular
polygon is the sum of the turning angles at each of its vertices, divided by 27r. We see
that the winding number of a regular oriented polygon is an integer which is equal to
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the negative of the winding number of the reverse oriented polygon. Hence we may
define the winding number of a nonoriented polygon to be equal to the absolute value
of the winding number of any one of its two oriented versions.

It is capturing this notion of turning angle that necessitates our regularity require-
ment. Henceforth, we assume all polygons and paths are regular unless otherwise noted.

We introduce three types of regular transformations of a polygon P (vl, , v,).
Let i=l,. .,n.

(TO) Insertion. We may transform P to

Q (v,,..., v, u, v+,...,

where u is a point in the relative interior of the edge [vi,
(T1) Deletion. We may transform P to

Q (v,,..., v_,, v+,,...,

provided v-l, vi, vi+l are collinear (and hence, by regularity of P, v lies strictly between
v_l and

(T2) Translation. We may transform P to

where u is any point such that for all 0-<t-<l, the polygon Q,=
(vl, , v_l, (1 t)v + tu, V+l, , v,) is regular. In particular, Q Q1 is regular.

It is not hard to characterize the possible choices for the point u in (T2). Relative
to vertex v, we define two forbidden cones (at Vi_l and at V+l, respectively)" the
forbidden cone at Vi_l is bounded by the two rays emanating from v_l, one ray directed
towards v_2 and the other directed away from v+l. See Fig. 3. Ofthe two complementary
cones bounded by these rays, we choose the one that does not contain v. The forbidden
cone at v+l is similarly defined, being bounded by the two rays emanating from
(one directed towards vi+2 and the other directed away from V+l). Each cone is a
closed region so it includes the bounding rays. In (T2), we are free to choose any u
as long as u is not in the union of the two forbidden cones.

DEFINITION. We say that two polygons P, Q are (regularly) equivalent if one can
be transformed to the other by a finite sequence of regular transformations.

Clearly, insertions and deletions are inverse operations but translations are "self-
inverses." It is easily seen that regular equivalence is an "equivalence" relation in the

vi vi /vi-2

v.i+l
vi-

I-Ill "<:-Nx" Vi+l

vi+2

(a) (b)

FIG. 3. (a) Forbidden cone at Vi+l. (b) Forbidden cone at vi_ Forbidden cones are shaded.
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usual mathematical sense. Also, our transformations preserve winding number. We
would expect the discrete analogue of the Whitney-Graustein theorem to assert that
winding number is a complete invariant for regular equivalence among polygons.
Towards this end, we will define a "normal form polygon" for each winding number
and show that a quadratic number of regular transformation steps suffices to bring
any polygon to one of these normal forms. Our algorithm finds these quadratically
many steps in linear time (sic). (The subtitle of this paper refers to this transformation
sequence from P to its normal form/3 as "untangling.") This is sufficient to solve the
problem of finding the regular transformations from anypolygon P to any other
equivalent polygon Q" first transform P to its normal form P and then apply in reverse
order the inverse of each of the transformation steps that takes Q to its normal form

To think about what normal forms might be desirable, we note (see Fig. 4) that
the triangle and the bow-tie are obvious candidates for normal forms. Perhaps less
convincingly, the 5-point star (5-star) also seems like a good candidate for a normal
form.

Figure 5 illustrates a sequence of regular transformations (some steps are omitted)
from the "Victoria Cross" to the 7-star polygon (with one fewer vertex). It does not
seem obvious how we can systematically transform the Victoria Cross to the 7-star
polygon, even if we were told that such a sequence of transformations exist.

Remark. Any smooth closed curve can be approximated by a polygon, and any
homotopy between smooth curves can be discretely approximated by a series of our
(TO), (T1), (T2) transformations. So in some sense, we have solved the original question
of constructing regular homotopies between equivalent regular curves.

FIG. 4. The triangle, bow-tie, and 5-star.

2 steps

FIG. 5. Reduction of the Victoria Cross.
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3. Star polygons.
DEFINITION. A polygon is reducible if it is equivalent to one with fewer vertices.

It is irreducible otherwise.
We can easily check that the triangle, bow-tie, and 5-star cannot be transformed

by (T1) or (T2) transformations into any polygon with fewer vertices. But it turns out
that even allowing (TO) transformations (which insert new vertices), these polygons
cannot be transformed into ones with fewer vertices; in other words, they are irreducible.
Since they have different numbers of vertices, it follows that they are inequivalent to
each other. In fact, any polygon with at most six vertices is equivalent to one with
three candidates. In particular, there is no irreducible polygon on six vertices.

The 5-star is equivalent to the polygons in Fig. 6. The first polygon (the Fox) in
Fig. 6 has the minimum number of self-intersections among its equivalence class, so
one could argue that the Fox is a better choice for normal form than the 5-star.

Fox Rabbit Radioactive
Sign

FIG. 6. Equivalent to the 5-star: a Fox, a Rabbit, and a Radioactive Sign.

LEMMA 1. Every polygon P can be transformed by (T2) transformations into a

polygon Q, all of whose vertices are distinct and lie on a circle C. Here C is any circle
that contains P in its interior.

Proof Let C be such a circle. Recall that for each vertex v of P, we have defined
two "forbidden cones." The "nonforbidden region" of v is the complement of the
union of these two cones. It is not hard to see that the nonforbidden region of v
contains a nonemtpy open cone K of infinite rays emanating from v. Any ray R from
this cone K intersects the circle C at some point u, and a translation will take v to u.
Since K is open, we can choose R to ensure that u is distinct from each vertex of P
already on C. This can be repeated for successive vertices v of P. [-I

Henceforth we assume that all vertices of polygons and paths are distinct (with
the obvious exclusion for closed paths) and lie on some circle. The circle depends on
the individual polygon or path.

DEFINITION. A path H (vl, , v,) is called a starpath if each edge ei [vi, Vi+I]
(for i= 1,..., n-1) intersects each of the edges

el, e2, ", ei-1.

See Fig. 7. Since edges are closed line segments, ei (i_-> 2) always intersects
A polygon P--(vl,. ", v,) is called an n-star if for some choice of an initial vertex
vi, 1,. ., n, the path

(1) Hi-- (vi, Vi+l, Vn, Vl, n2, vi-1)

is a star path.
This terminology agrees with what we have called a 5-star. A triangle is a 3-star

and a bow-tie a 4-star. Figure 8 shows the next few n-stars.
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V1 V2

-....... /.
Vn_V6

Vn_4

n even)
FIG. 7. Star path.

FIG. 8. 6-, 7-, and 8-stars.

Let us make some simple observations about star paths. A path is right-turning
(respectively, left-turning) if it makes only right-turns (respectively, left-turns) at each
of its interior vertices. A path is right-turning if and only if its reverse is left-turning.
We see that a star path of length n_->3 is either left-turning or right-turning. Let
II1 =(vl,. , vn) be a star path. For each i= 1,. ., n, let YIi be the path in (1). I’Ii is
basically some cyclic shift of H. If n is odd, then I-I is a star path for each i. For
even values of n 4, Hi is not a star path for all i> 1. For n =4, 1-I and H3 are the
only star paths.

Notation. If u,
circle C, we write

Uk, k >_--3, are distinct vertices of polygon P lying on some

(2) U < U2 <" < Uk

to mean that, as we traverse the circle C in a clockwise fashion starting from ul, we
will meet the vertices u, u2,’", Uk in this order (though other vertices not among
the u’s may intervene). Thus ul < u2 <" < Uk is equivalent to u2 < u3 <" < Uk <
etc. We call a list of the form (2) a cyclic permutation on the vertices u,..., Uk. So
any polygon or path whose vertices include u,..., Uk induces a cyclic permutation
on Ul," ", Uk. Note that the cyclic permutation induced by a path or its reverse are
the same.
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For example, H (vl,. ’’, vn) is a left-turning star path if and only if H induces
the following cyclic permutation on the points Vl," "’, vn
(3) 1 D3 5 Vodd t)2 4 V6 /-)even

where Voda V,, Deven--Vn--1 if n is odd, and Vodd Vn-1, Veven--" Vn if n is even. Figure
7 illustrates the case where n is even.

The following gives a method for moving a vertex to another given position.
LEMMA 2 (moving a vertex). Let P (ul," , u,) be a polygon whose vertices lie

on a circle C. Let x be any point of C. Let A
_
C be one of the two closed arcs bounded

by U and x. Call an edge ofP active if at least one of its endpoints is in A. The vertices
in A are thus partitioned into connected components where two vertices are "connected"
if they arejoined by a path ofactive edges. Let U be a union ofany number of connected
components with the provision that u U and (ifx is a vertex of P) x U. Then for any
open neighborhood N of x, there is a sequence of[U[ translations that moves u to x,
moves the vertices in U-{ul} into (C N)-A, and keeps all the remaining vertices of
Pfixed. Moreover the relative ordering of the elements in U is preserved.

Proof The vertices in U can be ordered according to increasing distance from x,
where distance is measured along the arc A. See Fig. 9. Starting from the vertex in U
that is closest to x, we translate each one in turn into (C 71 N)- A. The last vertex to
be translated would be Ul itself, and this can be translated to x. To see why this works,
note that a vertex u can be translated to any position in C provided the induced cyclic
permutation on uj_2, b/j_l, b/j, Uj+I, Uj+2 is preserved. So when we try to translate u U
as described, we see that each of uj_, U_l, U+l, u+2 either has been moved into
(C (’l N)-A already or lies outside of A. In any case, we can translate u to some
position in (C f N)- A which preserves the induced permutation of U.

A

N

FIG. 9. Moving clockwise from u to x.

The transformation described by this lemma may be described as ’moving U to
x relative to (A, U, N)." The smallest choice for U is the union of the connected
component of ul with the connected component of x (regard the latter component to
be empty if x is not a vertex). The largest choice for U is the set of all the vertices in
A. If N is chosen small enough so that N contains no vertices of P, then we refer to
the move corresponding to the smallest choice for U as a weak move clockwise/counter-
clockwise from ul to x (where A is the arc clockwise/counterclockwise from ul to x).
If U is the largest possible choice, it is similarly known as a strong move. Note that a
strong move preserves the induced cyclic permutation of P.

LEMMA 3. Let P (Ul,. Un) and A (Vl," Vn) be twopolygons with all their
vertices lying on a common circle C. Let cr and " be the cyclic permutations on the u’s
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and v’s induced by P and Q, respectively. If tr and " are similar (in the sense that after
renaming each ui by vi, they are identical), then P and Q are regularly equivalent in less
than or equal to 1.5n steps.

Proof. As usual, the u’s are pairwise distinct and so are the v’s; without loss of
generality, assume r and " are both the identity. Using the above lemma, we make a
strong move clockwise or counterclockwise from ul to vl; of the two possible clock
directions, we could choose the one using at most n/2 translational steps. Applying
the lemma again, we make a strong move from either u2 to v2 or v2 to u using only
one translational step. In general, assuming u, , ui-1 is coincident with v, , vi_,

we can move either u to v or v to u in only one step.
For instance, any n-star (v,. ., vn) induces the cyclic permutation (3). Hence

this lemma tells us that any two n-stars (which we may assume to lie on a common
circle C) are regularly equivalent. In view of this, we henceforth refer to "the n-stars"
as if these were unique for each n.

LEMMA 4. Let n, m be odd positive integers or equal to four. If n m, then the
n-star and the m-star are inequivalent.

Proof. We check that the winding number of the 4-star is zero and for each positive
integer k, the (2k+ 1)-star has winding number k. The result then follows from the
fact that the winding number of a polygon is unchanged by any regular transfor-
mation.

This lemma supplies us with an infinite list of inequivalent polygons. We will
prove that every regular equivalence class is represented in this list.

4. The Whitney-Graustein theorem for polygons. The main result of this section
is Theorem 5.

THEOREM 5 (canonical form). Every polygon can be transformed by a sequence of
(T1) and (T2) transformations into an n-star, for some n that is either odd or equal tofour.

COROLLARY 6. An n-star is irreducible if and only if n 4 or n is odd.
Proof. Suppose that an n-star is irreducible. Then the theorem implies that n must

be four or odd. Conversely, let n 4 or odd. If an n-star were reducible, then the
theorem shows that it would be reducible to an m-star for some m < n where m 4
or odd. This contradicts the previous lemma that the n- and m-stars are
inequivalent. [3

We prove the canonical form theorem by a sequence of lemmas.
A polygon that can (respectively, cannot) be transformed to one with fewer vertices

using just (T1) and (T2) transformations will be called semireducible (respectively,
semi-irreducible). (Of course, in view of Theorem 5, semireduciblity turns out to be
the same concept as reducibility.)

Notation. For compactness, we will usually write only the indices (i.e., subscripts)
of vertices in place of the vertices themselves. Thus we write P (1, 2,..., n) for a
polygon on n vertices. Combined with an earlier notation, we may write "1 < 3 < 2"
to mean "vl < v3 < v2": this is hopefully not too confusing.

The following simple fact is often used.
LEMMA 7 (deleting a vertex). Suppose P =(1,..., n) (n _-> 5) is such that the pair

of edges [1, 2] and [3, 4] does not intersect, and also the pair [2, 3] and [4, 5] does not
intersect. Then P is equivalent to (1, 2, 4, 5,..., n) after a (T2) followed by a (T1)
transformation. In other words, we may delete index 3.

Proof. See Fig. 10. The nonintersection assumptions of the lemma imply that the
interior of the triangle A234 is nonforbidden for vertex 3. Hence we can translate vertex
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3 3 3

2 4

2 2

FIG. 10. Can delete index 3.

3 to the midpoint of edge [2, 4] by a (T2) transformation. Next, a (T1) transformation
eliminates vertex 3.

Henceforth, whenever we delete vertices, it is by appeal (usually implicit) to this
lemma.

We say that P (1, 2,..., n) contains an N-shape if n => 4 and for some choice
of index i, we have

i<i+l<i+3<i+2

(Fig. 1 la) or

i<i+2<i+3<i+l

(Fig. llb). We call (i, i+ 1, i+2, i+3) an N-shape.
LEMMA 8. A semi-irreducible polygon P (1, 2, , n) does not contain an N-shape

unless n 4.

Proof By way of contradiction, assume that P has an N-shape. By symmetry,
assume that 1 < 2 < 4 < 3 (Fig. 12).

i 3 i i+2

,+2 i ,+3

(a) (b)
FIG. 11. An N-shape.

n
2 4 2 4

1 3 1 35

2 4

1 5 3

(a) (b)
FIG 12. Reduction of an N-shape.
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The result is true for n 4, so suppose n -> 5. Since P is semi-irreducible, by the
previous lemma, the edge [4, 5] must intersect [2, 3]; hence 3 < 5 < 2. Similarly, 2 < n < 3.
This shows that n 5 so assume n => 6. If 1 < 5 < 2 (Fig. 12(a)) then we can translate
index 2 so that 1 < 2 < 5 (this translation can occur because 2 < n < 3). Then we can
delete 3, a contradiction. Therefore, we have 3 < 5 < 1. By symmetry, we have 2 < n < 4.
The situation is shown in Fig. 12(b).

If n 6 then it is easy to see that P is semireducible. Otherwise, consider the
location of index 6. There are two cases. First suppose n < 6 < 4 (Fig. 12(c)). If index
7 is such that 5 < 7 < 1 then we can delete index 5, a contradiction. Otherwise we may
translate index 5 so that 1 <5 <2, which reduces to a previous case (Fig. 12(a)). In
the second case, 6 < n < 4 and we can translate index 4 so that 4 < n < 3 (and hence
4 < n < 2). This again reduces to a previous case. [3

Note that a polygon does not contain any N-shape if and only if its oriented
versions are left-turning or right-turning.

COROLLARY 9. An n-star is semireducible if n is even and not equal to four.
Proof If (1, , n) is a star path and n is even, then (n, 1, 2, 3) forms an N-shape.

Since n 4, the previous lemma implies that (1,..., n) is semireducible. [3

We say that P (1, 2,..., n) contains a U-shape if n-> 4 and for some choice of
index i, we have

i<i+l<i+2<i+3

(Fig. 13(a)) or

i<i+3<i+2<i+l

(Fig. 13(b)). We call (i, i+ 1, i+2, i+3) a U-shape.
LEMMA 10. A semi-irreducible polygon P (1, 2, , n) cannot contain a U-shape.
Proof We can easily check this for n 3, 4, and 5; so assume that n => 6. Suppose

indices (2, 3, 4, 5) form a U-shape as in Fig. 14, 2 < 5 < 4 <3.

i+1 i+2

i i+3 i+1

(a) (b)

3

i+2

FIG. 13. A U-shape.

Since index 3 cannot be deleted, we must have 4 < 1 < 3; similarly, since index 4
cannot be deleted, 4 < 6 < 3. Suppose that the relative positions of indices 1 and 6 satisfy

(4) 4<1<6<3,

as in Fig. 14(a). Then we may translate index 3 so that 1 < 3 < 6 and then delete index
4, a contradiction. Hence we may assume the situation of Fig. 14(b), with 4 < 6 < 1 < 3.
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A
2 5

3 4 3

i+2
3 4 i+

1 6 1

i+1
6

B(a) (b) (c)

FIG 14. The elimination of U-shape.

Note that the path (1,..., n, 1) is left-turning since P contains no N-shape This
means < 1 < + 1 holds for all i. In particular, 1 < n < 2 and 5 < 7 < 6. This implies
n>8.

Let A be the arc clockwise from index 5 to index 4, including the index 5 but not
4. Similarly, B is clockwise from index 6 to index 1, including 6 but not 1. First note
that we can translate index 7 into A. If index 8 is not in B then we can translate index
6 so that (4) holds, a contradiction. So index 8 lies in B and n _-> 9. But 7 < 9 < 8 implies
n>-10.

Suppose inductively that we have shown for some odd i=>7 (a) the indices
5<7<. .<i-2<i all lie in A, (b) theindices6<8<...<i-l<i+l all lie in B,
and (c) n => i+ 3 (see Fig. 14(c)).

We claim that either we can extend the inductive assumptions (a)-(c) or we get
a contradiction. First we can translate +2 into A so as to extend (a). Next, if i+ 3
does not lie in B then let x be a point such that 1 < x < 3 and 1 < x < + 3. We make
a weak move from index 6 clockwise to x (see Lemma 2). Note that neither of the
edges [3, 4] and [i+2, i+3] is active relative to the arc clockwise from 6 to x, and
hence index 1 is fixed by the weak move. But now we are in the situation of (4) again,
a contradiction. So assume that + 3 is in B. It is easy to see from this that we have
extended assumption (b). Now + 3 is in B implies n ->_ + 4. But since + 2 < + 4 < 1,
we see that in fact n->_i+ 5, which is assumption (c) extended.

Since we cannot extend the inductive assumptions indefinitely, we will eventually
derive a contradiction [3

We give one more lemma before proving the main result of this section.
LEMMA 11. Let P (1, 2,..., n), n--> 5, be any semi-irreducible polygon. Then

H (1, 2, n is a star path.
Proof We now know that P contains no N- and no U-shapes. We will show that

if H=(1,2,..., v) (for v=3,...,n-l) is a star path, then 1-I/1 is a star path.
Consider the situation in Fig. 15 (without loss of generality, assume 1 < 3 < 2).

The induction basis v 3 follows from the previous two lemmas since if I’I4 is not
a star path, then it forms a U- or an N-shape. The same remark holds for v 4, so let
v=>5.

First suppose v is odd. If II+1 is not a star path then 1 < v + 1 < v-2. Let x be
a point such that 1 < x < 3 and 1 < x < v + 1. We do a weak move clockwise from 4 to
x. Note the edges [2, 3] and Iv, v+ 1] are not active. Hence index 1 is left fixed by the
weak move. So (1, 2, 3, 4) is now a U-shape, a contradiction.
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7 v-2

-1

1 1

v-1
8 v 8

v-3 v-4

(v odd) v even)
FIG. 15. Star paths from semireducible polygons.

Suppose v is even. If 1-I+1 is not a star path then 2 < v+ 1 < v-2. Let x be such
that 2 < x < v+ 1 and A be the arc from v-2 counterclockwise to x. We do a weak
move from v- 2 to x. Note that edges [1, 2] and Iv- 1, v] are not active. Hence v + 1
is left fixed. So (v- 2, v- 1, v, v + 1) is now a U-shape, a contradiction.

The main result, Theorem 5, now follows: given any polygon P, we can reduce it
by (T1) and (T2) transformations until it is semi-irreducible. Then, by the last lemma,
the result must be an n-star. By Corollary 9, n is odd or equal to four. This proves
the theorem.

Since there is a unique canonical form for each winding number and conversely,
this proves that the winding number is a complete invariant for regular equivalence.
This is the polygonal version of the Whitney-Graustein theorem.

5. Algorithm. The proof of the canonical form theorem contains an implicit
quadratic-time algorithm to transform a polygon to its normal form. We now give a
real-time algorithm to construct a similar sequence of quadratic transformation steps--
this apparent paradox is soon clarified.

The algorithm processes the input vertices in order. In the generic situation, the
vertices vl,. ., Vj_l have been processed and the polygon has been transformed into
an equivalent polygon

P (u,,. u,_,, v,. v,).

Furthermore, we assume that

(u,,...,

forms a star path. (Throughout this section, the indices and j will have this special
meaning.) The current vertex being processed is vj although our algorithm may look
ahead slightly, up to vj+3. (The algorithm halts after "wrapping around" to process
Vn+2 V2 .)

An interesting feature of the algorithm is that it uses only O(1) runtime memory.
More precisely, at the moment of processing vj, we only need in the active memory
(i) the values of the indices i, j; (ii) the values of the vertices

Vj, Vj+I, Vj+2, Vj+3;

and (iii) the sign information: whether the paths

(ui-2, ui_, vj> and (ui-1, vj,
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make right or left turns at their respective interior vertices. The transformed vertices
u,..., ui_ are output in an even stack and odd stack, storing the odd and even
indices, respectively.

Our algorithm runs in real time in the sense that each vertex takes O(1) time to
process. However, we may output for vertex vj a sequence of O(j) transformation
steps. To understand how O(j) steps can be described in O(1) time, recall the "weak
move" subroutine from Lemma 2. It turns out that whenever we output an unbounded
number of transformation steps, it is through making one or two such weak moves.
The vertices to be translated in such a weak move turn out to form a contiguous block
of elements in the odd or even stack, and so the weak move has a constant size
description (of a suitable sort). After processing all n vertices, we produce O(n2)
transformation steps overall. Thus P can be transformed to an irreducible star polygon
in O(n 2) transformation steps.

For simplicity, we will not explicitly specify the (T1), (T2) transformation steps
to output. But each step of the algorithm will be given justification and the reader can
easily deduce the transformation steps needed.

Since u,- ., ui_ are obtained by transformations of v,. ., vj-1, and since we
may delete but never insert vertices, the relation

always holds. Therefore it is unambiguous to refer to the vertices by their indices: an
index k refers to vk if k < and refers to uk if k _->j. We assume that j >= 4. To initialize,
we may let u v for 1, 2, 3 and j 4. Without loss of generality, assume that the
path (1, 2,..., i-1) is left-turning.

There are four cases to consider while processing vertex vj: the triple (i- 2, i- 1,
j) (i.e., (u_2, u_l, vj)) represent either a left turn or a right turn, and is either odd
or even. First assume that is odd (see Fig. A).

Case A. 2, 1, j) is a right turn.
Case A1. (i 1, j, j + 1) is a left turn. We pop the even stack which contains index

i-1. In effect, we have decremented by one.

Justification. See Fig. B. We may delete index i-1. To reconstruct the sign
information, note that the turns (i 3, 2, j) and (i 2, j, j + 1) are both left turns.
(As illustrated here, we could always reconstruct such sign information without

5 i-2

i-1

i-3

FIG. A. Case i= odd.
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j i-2

5

13 2

4

i-1

FG. B. Case A1.

reexamining the vertices i- 1, i- 2, or i-3. Henceforth we will not explicitly mention
this.)

Case A2. (i- 1,j, j + 1) is a right turn. We have three subcases depending on the
relative positions of indices j and j + 1.

Case A21. j <j + 1 < 2. After at most one translation, we may delete index i-1.
In effect we decrement by one.

Justification. See Fig. C. By translating index 2 to some neighborhood of index
2 if necessary, we may assume that j <j + 1 < 2. Now delete index 1.

Case A22. j <2 <j+ 1 < 1. After O(j) translations, we may delete index i-2.
Effectively we decrement by one.

Justification. See Fig. D. By translating index 2 to some neighborhood of index
2, and by making a weak move (Lemma 2) counterclockwise from index i-4 to some
neighborhood of index 1, we may assume that i-4<j< i-2. As noted, this weak
move may involve O(j) translational steps but this has a constant size description.
Then we are in the situation of Fig. D(a). We may now translate index i- 1 clockwise
until i-4 < i- 1 <j (Fig. D(b)), and then delete i-2. Now (1, , i-3, i- 1) is a star
path.

Case A23. j < < 2 <j + 1 (see Fig. E). We consider two subcases for index j + 2.
Case A231. j < 1 =<j + 2. By translating index j clockwise until 1 <j < 2, we reduce

this to Case A22.
Case A232. j <j + 2 < 1. See Fig. F. Next consider subcases depending on index

j+3.
Case A2321. (j + 1,j + 2,j + 3) is a right turn. Increment j by two.

Justification. We may delete j + 1 and j (in that order).
Case A2322. (j + 1,j + 2,j + 3) is a left turn. See Fig. G(a). After some translations,

we replace index i-1 by j + 2; effectively we increment j by three.

"+1 ._

1 2

3

FIG. C. Case A21.
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J
i-1 J

i-
i-2

1 1 2

i-l.i- 3

j+l
J+ i-3

(a) (b)
FIG. D. Case A22.

j+l

i-1
FIG. E. Case A23.

i-2

j+2 i-3

1

i-1
FIG. F. Case A232.

Justification. We translate j + 1 counterclockwise until 1 <j + 1 < i-2, as in Fig.
G(b). Now we may delete i-1 and j (in either order), and then delete j+ 1. Then
(1, , 2, j + 2) is a star path.

Case B. (i-2, i- 1, j) is a left turn. We have two subcases depending on whether
index j lies in the arc from index 2 clockwise to index 2, or from 2 clockwise to 1.

Case B1. j < 2 <i-2. Push index j on the odd stack; thus we increment and j
by 1 each. See Fig. H.

Justification. (1,..., i-1,j) is a star path.
Case B2. j < 1 < 2. We consider subcases depending on j + 1.
Case B21. (i 1,j,j + 1) is a right turn. We replace index i- 1 by index j, and

increment j by one.
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i-2 j

1 2 1 2

j+2 i-3 i-3
1

J+

j+3 i-1
j i-1

FIG. G. Case A2322.

1 2

i-3

FIG. H. Case B1.

Justification. By a weak move counterclockwise from i-3 to some neighborhood
of 2, we may assume that 2 <i-3 <j. See Fig. J. After deleting i-1, (1,..., i-2,j)
is a star path.

Case B22. (i-1,j, j+ 1) is a left turn. We consider two possible positions for
index j + 1.

Case B221. j <j + 1 < 1. See Fig. K. We consider the position of index j + 2 next.
Case B2211. j <j + 2 < 2. After translating index j, we can push index j onto the

odd stack and increment both and j by one.

Justification. We can translate j counterclockwise until i-2<j<2. Now
(1, , 1, j) is a star path.

Case B2212. 2 <j + 2 <j. See Fig. L. We must examine index j + 3 next.
Case B22121. (j + 1,j + 2,j + 3) is a left turn. Increment j by two.

1 2

i- i-3

j+l

FIG. J. Case B21.
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FIG. K. Case B221.

"-2

i-1

FIG. L. Case B2212.

Justification. We delete j + 1 and then j.
Case B22122. (j+ 1,j+2,j+3) is a right turn. After some translations, we may

replace i-1 with j in the even stack, and push j+ 1 onto the odd stack. Effectively,
we increment by one and j by two.

Justification. See Fig. M(a). After making a weak move counterclockwise from
index 3 to some neighborhood of index 2, we may assume that 3 <j < 1. Then
we can translate indexj + 1 clockwise until 2 <j + 1 < 2 and delete 1. The sequence
(1,..., i-2,j,j+ 1) is a star path (Fig. M(b)).

Case B222. 1 <j + 1 <j. After some translations, we can replace index i- 1 by j
on the stack; effectively we increment j by one.

i-2

1 2 1 2

j+lj+2 j+2

3 i-1"i-3
J J

(a) (b)
FIG. M. Case B22122.
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i-2 i-2
1 1

1 2 1 ... 2

i-1 i- 4

i-a j

() (b)
FIG. N. Case B222.

Justification. See Fig. N(a). We make a weak move counterclockwise from i-2
to some small enough neighborhood of index 1 so that i- 2 <j + 1 <j. Next, make a
weak move counterclockwise from i-3 to some small enough neighborhood of index
2 so that i-3<j<i-1. See Fig. N(b). Now delete index i-1 and see that (1,...,

2, j) is a star path.
This completes subcase B and hence the case where is odd.
The case where is even is similar and is left to the reader. Finally, when j reaches

vertex v,,+2 v2 again, we are done.

6. Conclusion. We have given a constructive analogue of the Whitney-Graustein
theorem, resulting in a real-time algorithm to "untangle" any polygon. We emphasize
that the true contribution of this work is the construction of the transformation steps"
checking if two polygons are equivalent is in itself a trivial process of keeping a
cumulative sum of the angles turned.

Our proof shows incidentally: (1) It suffices to use (T1), (T2) transformations to
make a polygon irreducible, and (2) any two equivalent irreducible polygons are
inter-transformable using only (T2) transformations.

Since the publication of these results, Vegter [4] has improved them by defining
the isothetic normal forms for polygons, and showing that a linear number of regular
transformation steps suffices to convert any polygon into its isothetic normal form.
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REVERSAL COMPLEXITY*

JIAN-ER CHEN’I AND CHEE-KENG YAP?

Abstract. The importance of reversal complexity as a basic computational resource has only been
recognized in recent years. It is intimately connected to parallel time complexity and circuit depth. In this
paper, some basic techniques necessary for establishing analogues of well-known theorems on space and
time complexity are developed. The main results are, for reversal-constructible functions s(n)=> log n,

DSPACE(s(n))
_
DREVERSAL(s(n)),

and a tape reduction theorem. As applications of the tape reduction theorem, a hierarchy theorem is proved
and the existence of complete languages for reversal complexity is shown.

Key words, reversal, space, tape reduction theorem, reversal hierarchies, complete languages, parallel
complexity

AMS(MOS) subject classifications. 68Q05, 68Q10, 68Q15

1. Introduction. The number of reversals made by tape heads during a Turing
machine computation has assumed new importance as a complexity measure in com-
plexity theory. This is because reversal complexity is intimately connected with uniform
circuit depth and parallel time. For example, Hong [7] has shown that reversal in
sequential machine models (including the standard Turing machines) corresponds to
parallel time in parallel machine models. Also, Pippenger [9] shows that simultaneous
time and reversal in Turing machines are polynomially related to simultaneous size
and depth in uniform circuits. However, reversal complexity has some unexpected
properties which, until recently, made researchers treat it as a curiosity rather than as
a fundamental computational resource. Baker and Book 1] have shown the surprising
fact that every recursively enumerable set can be recognized by a nondeterministic
Turing machine making at most two tape reversals. Moreover, unlike time complexity
and space complexity, which have nice properties such as "linear speedup" and "tape
reduction," reversal complexity has defied attempts at finding similar theorems in the
multitape Turing machine model.

Hartmanis [5] was the first to study reversal complexity. He considered on-line
one-tape Turing machines and showed that for such machines, reversal and space are
polynomially related. Moreover, he pointed out that for slow-growing functions, the
"linear speedup theorem" for reversal complexity does not hold. Fisher [4] gave the
"linear speedup theorem" for reversals in off-line one-tape Turing machines using the
idea of "crossing sequences." However, the technique of Fisher does not generalize
to multitape Turing machine models.

By a "tape reduction theorem for reversal complexity" we mean a result showing
that, for some slow-growing function f(n), and for some constant k -> 1, any multitape
Turing machine using r(n) reversals can be simulated by a k-tape Turing machine
using f(r(n)) reversals. Call this an (f(n), k)- tape reduction theorem. For instance, the
famous Hennie-Stearns [6] simulation achieves an (n log n, 2)-tape reduction theorem
for time complexity. There is also an (n, 1)-tape reduction result for space complexity.
However, the tape reduction theorem for reversal complexity seems to have withstood

* Received by the editors June 30, 1986; accepted for publication (in revised form) October 11, 1990.
This work was supported in part by National Science Foundation grant DCR-84-01898.

? Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,
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previous attempts, and the only published indication of this is a paper by Kameda
and Vollmar [8]. In that paper, the authors showed that any r(n) reversal-bounded
k-tape Turing machine without stationary moves can be simulated by a 2-tape Turing
machine making at most 6r(n) reversals. Unfortunately, it appears that such machines
are too restrictive from the viewpoint of reversal complexity; in any case, their tech-
niques do not generalize. One of the main results in this paper will be an (n2, 2)-tape
reduction theorem for reversal complexity, applicable to unrestricted multitape Turing
machines.

We now give some definitions. Our machine model is the multitape Turing machine.
We follow Yap [13] in the following conventions: by a "k-tape Turing machine," we
mean a Turing machine with a 2-way read-only input tape and k work tapes.

DSPACE(s) the class of languages accepted by deterministic Turing machines
that use at most s(n) tape squares of the work tapes on inputs of length n.

NSPACE(s)=the class of languages accepted by nondeterministic Turing
machines that use at most s(n) tape squares of the work tapes on inputs of length n.

Remark. When we say a machine M "accepts" L in space s(n), we mean that
for all inputs x of sufficiently large length, if x is in L, then some path accepts after
using at most s(Ixl) space; but if x is not in L, then no bounds are imposed on the
space used on any path. This convention is used for the other resources as well.

DREVERSALk(r) the class of languages accepted by k-tape deterministic Turing
machines which makes at most O(r(n)) tape reversals on inputs of length n. It should
be observed that reversals made on the input tape are counted.

Remark. The crucial point to note in this definition is that we use "O(r(n))"
rather than "r(n)." This is because we do not have a linear speedup theorem on
multitape Turing machines for reversal complexity.

DREVERSAL( r) [_J k DREVERSALk( r).
A function f(n) is said to be g(n)-reversal-constructible if there is a 2-tape Turing

machine that, given an integer n > 0 in unary form, produces the unary form of f(n)
on one of its work tapes making at most O(g(n)) tape reversals. Ill(n) is f( n )-reversal-
constructible, we say f(n) is reversal-constructible.

In 2, we present useful techniques for efficiently using tape reversals on Turing
machines; in 3, we show one of our main results, namely, DSPACE(s(n))_
DREVERSAL(s(n)); in 4, we discuss the relationship between space complexity and
reversal complexity. We give a tape reduction theorem for general multitape Turing
machines in 5. Finally, we give some applications of tape reduction results in 6
and 7; in particular, we show that most common reversal complexity classes have
complete languages and that hierarchy theorems exist for reversal complexity classes.

2. Efficient use of reversals. Reversal complexity is very different from time and
space complexity. Reversal complexity seems much more "powerful" than time and
space complexity. For example, only two reversals on a 2-tape Turing machine are
enough to duplicate an arbitrarily large tape segment. In any case, our intuitions about
reversal complexity are not as well developed as in the case of space and time. Here
we present some techniques for efficiently using reversals on Turing machines.

LEMMA 1 (natural number generation). Given an integer r > 0 in unary, the string
Sr O# 1#2# #2r- 1# can be generated by a 2-tape Turing machine M making
O(r) reversals. Here rh denotes the binary representation of the integer m of length r,
prefixed with zeros if necessary.

Proof M first generates the pattern Pr (0r#)2r on one of its tapes, say T1. This
can be done within O(r) reversals. Using Pr, M generates (01) 2r- on its second tape
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T2, making a constant number of reversals.
Now M uses r phases, each making a constant number of reversals, to fix the r

bits in each segment of zeros separated by 4 in Pr. Suppose that at the beginning of
the (i+ 1)st (i-> 0) phase, M has fixed the first bits for each segment of Pr on tape
T1, and suppose the string (02i12i) 2r-i-1 is inductively available on tape T2. Here the
first bit of a segment refers to its least significant bit. Note that the (i + 1)st bit of the
jth segment is exactly the jth bit of string (02i12) 2"--’. Thus, with only one sweep, M
can fix the (i+ 1)st bit for each segment of Pr on tape T1.

Note that in the (i + 1)st phase M also needs to know which bit in the jth segment
is the (i+ 1)st bit. This is easily solved, for example, by placing a special mark on
another track below the ith bit of each segment. These marks are easily updated at
each phase.

Using a constant number of sweeps, M can generate the string (02i+112i+1) 2r-i-2

from string (0212;) 2r-i-’ on tape T2. It is easy to check that at the end of the rth phase,
the string Sr 0# 1 2 2’-- 1 # is on tape T1 of M. M will terminate when it finds
that all the bits have been fixed.

This completes the proof.
A string of the form Xl#X2# #xn# (n=> 1, xi E*, 4) is called a list of n

items (xi is the ith item). A list is said to be in normalform if n is a power of two and
each xi has the same length. The next lemma shows how to convert any list into one
in normal form.

LEMMA 2 (list normalization). There is a 2-tape Turing machine M which, given a
list xl#x2#’"4xn# of n items on its input tape, can construct another list
y#yz#t # yzk# in O(log n) reversals satisfying"

(a) 2k-<n-<2"
(b) Each Yi (i= 1,..., 2) has length maxi=,...,, ]xil; and
(c) Each y (i= 1,..., n) is obtained by padding x with zeros and each y (j= n+

1,..., 2) is a string of zeros.

Proof First M computes the unary representation Zo {0}* of max=,...,, x[ as
follows. With O(1) reversals, M initializes tape 1 to have all the odd-numbered items
from the original list and tape 2 to have all the even-numbered items. So tapes 1 and
2 contain the lists XlZZX3z=X5:: and XZZZX4zzX6= "’’, respectively. In another pass,
M compares x2_ on tape 1 with Xzi on tape 2 (i= 1,2,..., In/2]), marking the
longer ofthe two words. In O(1) passes, M can produce a new list z# z2# zr,/2?#
of these marked words. M repeats this process" it splits the list into two with roughly
the same number of items, compares and marks the longer item of each comparison,
and produces a new list consisting of only the marked items. After O(log n) reversals,
M is left with a list containing only one item. This item has the longest length among
the xi’s. It is now easy to construct Zo.

The next goal is to construct a string of the form

(ZOO)2k (k= [log n]).

Suppose we already have (ZOO:)2’. Using x4x2 x,4 and (Zo)ZM can compare
n with 2 g" if n _-< 2 then we are done, otherwise we will construct (Zo)2’+’ from (ZOO)2’
with O(1) reversals.

Finally, from (Zo4)2t’, we can easily construct the desired yy+ .y2+.
A more complicated problem is computing the transitive closure of a matrix. There

are known efficient parallel algorithms for it. Since reversal is intimately related to
parallel time, it is not surprising that we can get a bound on the reversal complexity
of transitive closure that is close to the corresponding parallel time bound. It turns
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out that the key to computing transitive closure is a fast matrix transposition algorithm.
Thus, we have Lemma 3.

LEMMA 3 (matrix transposition). There is a 2-tape Turing machine M, such that,
given an n x m matrix A (ao), stored in row majorform, M can compute the transpose
AT ofA, storing AT in row majorform in one of its tapes, within O(log (n+ m)) reversals.

Proof We may assume that n m 2k for some integer k-> 1 and that each entry
of A has the same length. By Lemma 2, it is clear that M can use O(log n) reversals
to make A satisfy this property.

For each 0, 1, , k, and for j 1, 2, , 2 i, let Ai denote the n x 2k-i matrix
consisting of the

((j 1)2-’ + 1)st, ((j 1)2-i + 2)nd, ., (j2-i)th

columns of A. For example, AJ) is the jth column of A and for each i,

A((a a]i)]A(2i) ]" 2’"
An i-row representation of ,A is a string consisting of the row-major forms of

a]), a),. ., a,), separated by ’$," in that order.
Let A() denote the/-row representation of A. The lemma follows if we can show

how to obtain A(i+1) from A() in O(1) reversals. This is because the input is A() (the
row major form of A) and the desired output is A(k) (the column major form of A).

In order to do the A(i)- A(i+) transformation, we need some auxiliary data. For
this, define the block pattern:

2 2k-i-1pi) ((Wo wl #) $) 2i (i=0,..., k- 1)
k-i-I

where Wo 0 and w--1, s being the length of an element of matrix A. Each Wo
2(respectively, w ’marks" the left (respectively, right) half of the rows of AJ

j 1, 2,..., 2. pi) helps us to "separate" the rows of each AJ) into "left half" and
"right half."

We may inductively assume that each tape has two tracks with the following
contents" Ai is on track 1 and P) is positioned directly underneath Ai on track 2.
The case i=0 is easy to initialize in O(1) reversals. A copy of Pi+) can be made on
track 2 of tape 2 using P). Now it is easy to see how to obtain A+ on track 1 of
tape 2. [3

LEMMA 4 (parallel copying lemma). There is a 2-tape Turing machine M which,
given an input X=on:xx2 Xm, where xiE*, (i= 1,..., m), produces string y=
2nx2n 2x "’’Xn within O(n) tape reversals, where we assume that M can recognize the

boundary between blocks x and x+l, i= 1,. ., m- 1.

Proof Using O(n) reversals, M can get a string S=(xx2’’’ Xm)2. Note that
2 2 2’1

X X2 "’X is the transpose of S if we regard S as being a m x 2 matrix. [3

From the last two important lemmas, we immediately get Lemma 5.
LEMMA 5 (matrix multiplication). There is a 2-tape Turing machine M such that,

given two n x n Boolean matrices A (ao) and B (bo) in row majorform, M computes
their product AB (co) in O(log n) reversals.

Proof By Lemma 3, we can obtain the transpose B T of B within O(log n) reversals.
Let

and

BT--(bll bnlb12" bn2" b.. bnn ).
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By Lemma 4, we can get

and

(all’’" aln)n(a21 a2.)"’’" (anl" a,,,,)"

B(=(b,... b,b12"" b,2" b,.., b,,)"

within O(log n) reversals. Then O(1) more reversals will give AB. So O(log n) reversals
are enough for n x n Boolean matrix multiplication. [q

LEMMA 6 (matrix transitive closure). There is a 2-tape Turing machine M such
that, given an n n Boolean matrix A (ao) stored in row majorform, M computes the
transitive closure A* ofA in O(log2 11) reversals.

Proof Since A* =(E +A)", where E is the identity matrix, we can reduce this
problem to log n matrix multiplications. 0

Sorting seems a very important tool for reversal complexity. Here we give an
upper bound for sorting.

LEMMA 7 (sorting). There is a 2-tape Turing machine M which, given a list

XlZZX2: : X :: on its input tape, can construct the sorted list X,n-(1):ZXer(2): Xer(n):
in O(log n) reversals. Here each item xi is assumed to have the form (kiCdi) where k is
a binary number representing the sort key and d is the data associated with k.

Proof By Lemma 2, we can assume that the input list is in normal form. We will
be implementing a version of the well-known merge sort. The computation will be
accomplished in k phases, where n 2k. To initialize the first phase, we use the parallel
copying lemma to construct on tape a string of the form

(Xl$) :: (X25) :: :z (Xn$) ::,

where $ Z LJ { # }, using O(log n) reversals.
For 1, 2,... k, let f(i) 2k Z]2’, U 2k 2 + 2. So f( 1 2 and f(k) 2. At

the beginning of the (i + 1)st phase (i= 0, 1,..., k-1), we will inductively have, on
tape 1, a string of the form

B# B2@ B2’-i :z

where each B has the form

(Xj, l$)f(i+l)%(Xj,2$)f(i+l)%" %(Xj,2i$)f(i+l)

and where x,, xj,z,..., x,2, are distinct items from the original list, already sorted in
nondecreasing order. Call Bi the ith block. The substring in a block between two
consecutive "%’s" is called a subblock. Observe that phase I has been properly initialized
above.

We also need some auxiliary data to carry out the induction. Let w0 O*l where
s ]xi[ (for all i). For this, we assume that at the beginning of the (i+ 1)st phase, we
also store on tape 1 the patterns

Pi (w’#)" and Qi (WYo(i)#)".

Note that Q can be easily obtained from P_ and Qi- within O(1) reversals and that
Pi can be obtained from P_I in another O(1) reversals. Again, phase 1 is easily
initialized.

Let us now see how we carry out phase i/l. First we split the string
B# B2# #B2-’# into two lists containing the odd- and even-numbered blocks:
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tape 1 now contains B1 # B3# # B2
This can be done using 0(1) reversals.

and

and tape 2 contains B2:

Our goal is to "merge" B2j_ with B2j, for all j 1, 2,..., 2 k-i-1 in parallel. Let

Bzj-1 (yl$)f(i+l)%(yz$)f(i+l)% %(y2i)f(i+l)

B:z (z,$)s(’+l)%(z:z$)Y(’+)% %(z2’$)f(’+).

We begin by comparing the first copy of y with the first copy of z. Suppose y >-zl
("=>" here is the ordering on the items, as defined by the sort key). Then we "mark"
the first copy of z and move head 2 to the first copy of z2 in the block B2. We can
compare the second copy of y with this copy of z2, marking the smaller of Yl and z.
If yl is smaller, we move to the first copy of y2 and next compare y2 with z2. Otherwise,
z2 is smaller and we next compare the third copy of y with the first copy of z3. In
general, suppose we compare (some copy of) y with (some copy of) zj. We mark the
smaller of the two. If yi is smaller, we next move head 1 to the first copy of yi+ and
move head 2 to the next copy of zj and proceed with comparing these copies of y+
and zi. Otherwise, z is smaller and the roles of y and z are exchanged in the description.
(For correctness, we will show below that there is a sufficient number of copies of
each item.)

Eventually, one of the blocks is exhausted. At that point, we scan the rest of the
other block and mark the first copy of each remaining item. Note that each subblock
now contains exactly one marked copy. We then proceed to the next pair of blocks
(B2j+I and B2j+2).

After we have compared and marked all the pairs of blocks, we will get two strings
S and S (with one copy of an item in each subblock of each block marked) on the
two tapes, respectively. Our goal is to produce the merger of B2_1 and B2 from S1
and S. Call the merged result Bj. We will scan $1 and output on tape 2 a partially
instantiated version of B. Our preceding marking algorithm ensures that if a marked
copy of item w in Sa is preceded by h copies of w, then w has been compared to and
found larger than h other items in $2. In the merge result, we want to place these h
smaller items before w. Since each item should be repeated f(i + 2) times in its subblock
in B we must precede w with

h(1 +lZl$1f(i+2))

blank spaces to accommodate these h subblocks, which will be placed there in another
pass. With the help of the pattern Q+, we can leave the required amount of blank
spaces for each subblock in B. More precisely, we make a copy of Qi/ in a track of
tape 2 and use it as a "template," which has the block and subblock structure already
marked out. As we scan string S, for each unmarked copy of an item preceding its
marked version, we skip a subblock of Qi/2. When we reach a marked version of item
w in S, we will copy the f(i+ 2) successive copies of w into a subblock of Qi/2. To
see that there are enough copies of w on S following this marked w, observe that
there are a total of f(i + 1) copies of w in its subblock in S1, and since at most 2
copies of w precede its marked version, there are at least f(i + 1)-2 >=f(i + 2) copies
left. When we finish this process, we scan the partially formed B and the string S
simultaneously, and fill in the remaining subblocks of B. We finally have a new list
of blocks:
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where each Bj has the required form

(x,$)+%(x,$)’+)%. %(x,,+$)’+).

This completes the proof.
For some applications, we need the sorting algorithm to be stable. Thus, we have

the following corollary.
COROLLARY (stable sorting). The above sorting algorithm can be made stable in

this sense: if the output list is

X.a" :z X 2 z4z X’n"

where each x=(i) has the form (k(i)d=(i)), then k=()= k(+l) implies r(i) < r(i+ 1) for
all i= 1,..., n-1.

Proof To do this, we first number, in another track (say, track K) of the tape,
the items in the string to be sorted sequentially. This takes O(log n) reversals. Next,
use the method of Lemma 7 to sort the string. After sorting, those items with a common
sort key will form a contiguous block. We apply the sorting method again to each
block of items, where we now sort each block by the numbers of items (as written on
track K). To do this in O(log n) reversals, we must do this second sorting for all the
blocks simultaneously (our above method can be modified for this).

3. Simulating deterministic space by reversal. In this section, we will prove one of
our main results" for reversal-constructible s(n) l(log n),

DSPACE s) DREVERSAL2(s).

Thus, for deterministic Turing machines, reversal as a complexity resource is at least
as powerful as space. This is a direct consequence of the following theorem.

THWOREM 8. Suppose s( n is reversal-constructible and s(n) 12(log n ). Then any
language L DSPACE (s) can be accepted by a 2-tape deterministic Turing machine M
within O(s) reversals.

Proof First we assume that s(n) 12(n).
Suppose a deterministic Turing machine N accepts L in space s(n). We construct

a 2-tape Turing machine M that accepts L in O(s(n)) reversals.
(a) Given an input x of length n, M first generates a string of the form

W=#]+ff.... #2s(")-l:.

Since s(n) is reversal-constructible, Lemma 1 implies that this can be done in O(s(n))
reversals. Note that we can suppose that all the possible configurations of N on input
x are included in the string W1.

(b) From string W, within O(1) reversals, we construct another string

W2 z04 Zl 4 4 z2(-)_14

such that IZm[-- s(n) and z,, is the "successor configuration" of configuration in the
string W1, m 0, 1,..., 2 s(n)- 1, as follows. First we scan the string W1 from left to
right. When we have completed scanning a configuration rh in the string W1, we know
what the "next action" of this configuration of N is, and hence we can put this
information at the right end of the corresponding configuration in the string W
(for this, we only need to make the alphabet of M large enough). Then we go back
through the string W1 from right to left, using the information recorded in the last
scan, to obtain W.

Combining strings W1 and W2 into one tape, we get a string

W3 U : U2 :6 U2s
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with each u, (m 1, 2,. ., 2s) is a 2-track string of the form

where Cm and C’ are configurations of N on input x such that C C’.
(c) Next we construct two identical strings $1 and $2 on tapes T1 and Ta of M,

respectively, using O(s) reversals:

S S2 ((Ul$)2szz(u2$)2s: :(u2s$)2s%)2s.

We will call each substring of the form (Ul$)2sz(U2$)2s:: ::(Uas$)2s% a segment of
S or $2, and for each j 1, 2,. ., 2 we will call the substring (uj$)as a uj-subsegment.

(d) With these two strings, we now find the computation path

P=CI-C2 }--" ’’-Cr
of N on input x (r= 2 or Cr is terminal) in another O(1) reversals as follows.

(dl) Consider the first ui,-subsegment in S where the upper track of ui, contains
the initial configuration C1 of N on input x. Begin by marking the first copy of u, in
this subsegment and place the head H1 of T between the first and second copies of
u, in the u,-subsegment. (By "marking" of a copy of u,, we mean a special symbol
is placed at the end of that copy on a separate track.) Moreover, place the head H2
of T2 at the beginning of the string

(d2) Inductively, suppose we have already found and marked a sequence
Uil Ui2, , Uiq on the string S on tape T such that the lower track of ui. is identical
to the upper track of ui+,, j 1, 2,..., q-1. Hence, the upper track of u, contains
the configuration C in the path P, 1, 2,. , q. Suppose also that head H is placed
between the first and second copies of
is placed at the beginning of the qth segment in $2. Our goal is to find a subsegment
(u,+,$)a in the qth segment of Sa such that the lower track of ui, is identical to the
upper track of ui,,+,. To do this, we compare the lower track of successive copies of

u, in the subsegment (ui,$)2 of the qth segment of S with the upper track of the first
copy of the configuration in each subsegment of the qth segment of $2.

Eventually, we will find the desired subsegment (u,+,$)2 in the qth segment of
the string $2. The head Ha will now be between the first and second copies of u,,+, in
subsegment (u,+,$)2s. We will use the 2- 1 unscanned copies of this subsegment in
$2 to find the same subsegment (u,+,$)a in the (q + 1)st segment in the string $1. When
we find that u,+,-subsegment in $1, the head H1 will be between the first and second
copies of ui,+, and we move the head Ha to the beginning of the (q + 1)st segment in
string $2. Now we are ready for the next iteration.

The fact that there are 2 copies of uj in each uj-subsegment (j 1, 2,..., 2),
and there are 2 segments in each of the strings $1 and $2 ensures that we will always
have enough copies of each uj (j 1, 2, , 2s) for the comparisons in our algorithm.

If N accepts or rejects x, then at some moment in the above iteration, M will
realize it. M will accept or reject accordingly. If N is in an "infinite loop" then M
will exhaust one of the two strings S and Sa before it finds a terminal configuration
of N on input x: M will also reject x in this case.

Finally, we indicate how to modify the above proof for the case where s(n)=
l(log n). Instead of storing the entire input string x with each configuration, we attach
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to each modified configuration of N only the position of the input head. Then by
sorting the string W1 by the positions of the input head, followed by one sweep of the
input x, we are able to record the "current input symbol" into each of the modified
configurations. A similar sort can be applied to W2 in its construction.

This completes the proof. Iq

We should remark that a result of Rytter and Chrobak [10] may appear to be
stronger than Theorem 8 for the case s(n) log n. Their result says that O(1) reversals
are sufficient to simulate O(log n) space. However, a closer examination reveals that
they do not count reversals on the input tapemin fact their simulation makes a
polynomial number of reversals on the input tape.

4. The relationship between space and reversal. Borodin [3] proved that an s(n)
space-bounded computation of nondeterministic multitape Turing machines can be
simulated by uniform circuits of depth O(s2(n)). Later, Pippenger [9] showed that
uniform circuits of depth d(n) can be simulated by O(d3(n)) reversal-bounded deter-
ministic multitape Turing machines. However, Borodin and Pippenger were using two
different kinds of uniform circuits: Borodin’s circuits are "space uniform," while
Pippenger’s circuits are "reversal uniform." A closer investigation reveals that Borodin’s
circuits are in fact "reversal uniform" as well. Thus, combining their results with a
slight modification, we obtain

NSPACE s) DREVERSAL(S6).

This yields the strongest result for the relationship between space and reversal com-
plexity until now.

Using Theorem 8, we can greatly improve this result in Theorem 9.
THEOREM 9. Suppose s(n) is reversal-constructible and s(n)= f(log n). Then any

language L NSPACE (s) can be accepted by a 2-tape deterministic Turing machine M
within O(s2) reversals.

Proof By Theorem 8 and Savitch’s result 11 ]:

NSPACE s n DSPACE s2 n

we get our desired theorem. Note that the reversal constructibility of the function s(n)
implies the reversal constructibility of the function s2(n). ]

Remark. In fact, we can give a direct proof for this theorem, using a method
different than that used in Theorem 8. For this, we use Lemma 6 to compute the
transitive closure of the transition matrix of N on input x.

We can get an even stronger result. Borodin, Cook, and Pippenger [2] have shown
the following result:

RSPACE (s)
_
DSPACE (s)

where RSPACE (s) denotes the class of languages which are accepted by probabilistic
Turing machines within s(n) space. Using Theorem 8, we get Theorem 10.

THEOREM 10. Suppose s( n is reversal-constructible and s( n 12(log n ). Then any
language L RSPACE (s) can be accepted by a 2-tape deterministic Turing machine M
within O(s2) reversals.

The restriction of constructibility of the function s(n) is not severe. We observe
that most common complexity functions are reversal-constructible.

LEMMA 11. For all integers k >= 1, n k (logk n, k n, n n, respectively) is log n (log n,
n, n, respectively)-reversal-constructible.

The proof of this lemma is omitted.
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If we do not want to restrict the function s(n) to be constructible, then we have
the following theorem.

THEOREM 12. Let s(n) be an arbitrary complexity function with s(n)= (log n).
Then

and

DSPACE s)
_
DREVERSAL(82)

NSPACE s DREVERSAL(s3).

Proof The proofs for these two results are similar, so we only outline the proof
for the first one.

We use the well-known technique of guessing the value of s(n), starting from
s(n) log n, 1 + log n,. .. For each guessed value h, we use O(h) reversals doing the
computation in the proof of Theorem 8. If the input is in the language, we will accept
when h s(n), using at most

s(n)

E O(h)=O(s(n)2)
h log

reversals. [3

To obtain results in which we simulate reversal-bounded Turing machines by
space-bounded Turing machines efficiently, we first note the following lemma. (See
Yap [13] for a proof.)

LEMMA 13. If a language L is accepted by a deterministic Turing machine M
within reversal r(n)=(log n), then M simultaneously accepts within time O(2r) and
space O(2r).

THEOREM 14. For arbitrary r (log n),

DREVERSAL( r)
_
DSPACE r2).

Proof Simon [12] (see Yap [13]) has shown that D-TIME-REVERSAL(t, r)
DSPACE(r log t). By Lemma 13, we get the conclusion immediately. 13

We close this section with the following important corollary.
COROLLARY.

DSPACE no1)) NSPACE no)) DREVERSAL(n o(1)),
DSPACE(logo1) n) NSPACE(log n) DREVERSAL(logo1) n).

5. Tape reduction theorem for reversal complexity. Now we are ready for the tape
reduction result for reversal complexity. In fact, if we restrict the complexity functions
to be reversal-constructible, then from Theorems 14 and 8, we get immediately the
following.

If r(n) (log n) and rZ(n) is reversal-construetibte, then

DREVERSAL( r) DREVERSALz( r2).

However, here we would like to remove the restriction of constructibility of the
complexity functions and give a direct proof for general complexity functions. For
this, we introduce the concept of "phase."

To define "phase" we first give a precise definition of reversal complexity. Let
C (Ci)i>_-o be a computation path of a k-tape Turing machine. We say that head h
(h =0,..., k) tends in direction d (for d {-1, +1}) in C if the last transition Cj_ - Cj
(j-< i) preceding C in which head h moves is in the direction d. If head h has been
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stationary up until Ci we say head h tends in the direction d 0 in Ci. We also say
that head h has tendency d if it tends in direction d. It is important to note that the
head tendencies of a configuration C are relative to the computation path in which C
is embedded. We say head h makes a reversal in the transition Cj-1 C in C if the
tendency of head h in C_1 is opposite to its tendency in Cj. We say C_ -C is a
reversal (transition). The reversal of C is the total number of reversals made by all
the heads over the entire computation path.

Observe that changing the tendency from 0 to +1 is not normally regarded as a
reversal. However, for the purposes of some proofs, we may regard C_ - C to be a
reversal if the tendencies of some head h in C_ and in C are different" this only
overcounts the number of reversals by k + lmonce for each of the heads h 0, , k.
Each computation path C can be uniquely divided into a sequence of disjoint partial
computation paths Po, P," , where every configuration in Pi (i 0, 1,. has the
same head tendencies. Each Pi is called a phase. If C - C+I - - C+r is a phase,
then C and Ci+r will be called the start configuration and end configuration of the
phase, respectively. The transition from one phase P to the next P+ is caused by the
reversal of at least one head. Clearly, the reversal of C is bounded by k + 1 times the
number of phases in C.

LEMMA 15. If a language L is accepted by a Turing machine N making at most

r( n reversals on input of length n, then there is a Turing machine M which satisfies the
following conditions"

(1) M and N have the same number of tapes;
(2) M accepts L in at most r( n reversals;
(3) in each step of M, at least one tape head moves; and
(4) The head of each work tape of M does not change the symbol it is scanning

unless it is about to leave the square.
Proof Given a Turing machine N accepting L, by increasing the "finite state

complexity" of N, we can obtain the Turing machine M satisfying the conditions
stated in the lemma. [3

THEOREM 16 (tape reduction for reversals). Let r(n) be any complexity function
where r(n)=fl(log n). If L is accepted by a multitape Turing machine within r(n)
reversals, then it is accepted by a 2-tape Turing machine M that makes at most O(r2)
reversals, i.e.,

DREVERSAL( r) DREVERSAL2( r2).

Proof We will use a direct simulation.
Suppose L is accepted by a k-tape Turing machine N within r(n) reversals on

input of length n. Without loss of generality, we assume that N satisfies the properties
stated in Lemma 15.

We will construct a 2-tape Turing machine M which will simulate N and make
at most O(r2(n)) reversals.

M uses k + 1 tracks on one of its tapes, say, T, to hold the configurations of N,
namely, track 0 corresponds to the input tape of N and track j (1 <=j <_- k) corresponds
to the tape j of N. Sometimes we also talk about "the head position" or "the head
tendency" of track j, referring to the corresponding simulated head of N.

For the start configuration of phase in the computation of N, M can, within
O(1) reversals, make the corresponding configuration of T satisfy the following
properties:

(1) All heads of the tracks of T will tend to the right in that phase;
(2) All heads of the tracks of T1 are at the square 0.
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So the start configuration of each phase of N is represented on the tracks of T1 as
follows:

track 0

track 1

track k

XXXXX XXXXXXXXXXXXX
X X X X X X X X X

XXXX XXXXXXXXXXX
where ’ stands for the position of the head of the track and - indicates the tendency
of the tape head. Note that the contents of tape of N may be written in reverse order
on track of T1.

By a full trace of phase of N, we mean a tuple of the form

z= (q, ho, ao,’’’, h,,

where q is a state of N, aj’s are tape symbols of N, and the hj’s lie in the range
0-<_ h < ei, where c is a constant depending on N. Intuitively, hj denotes a head position
on tape j of N and a is the symbol under the head. Lemma 13 shows that, within the
ith phase, no head position h can be out of the range 0_<-hj < e i. We will store each
full trace in 2k + 3 tracks of tape T2 of M, with the first k + 1 tracks for the h’s, the
k + 2nd track for the q, and the last k + 1 tracks for the a’s.

A partial trace of phase of N is obtained by replacing any of the components
of a full trace by a distinguished symbol ..

Let Y{ be the set of all partial traces of the ith phase of N. We define a quasi
ordering on Y{ as follows. If

r= (-, ho, -," ,hk, -)

where means that we do not care what is in that position, and if

h, -),ho
then r_< r’ if and only if h -< h for 0, , k. If z_< r’ and r’ +/- r, then we say that
they are equivalent, and write r r’. (This is a quasi ordering rather than a partial
ordering because z r’ does not mean r r’.)

M will simulate phase of N using the following steps (details for accomplishing
these steps follow afterwards).

Step 1. M generates on the tape T2 all partial traces of the ith phase of N which has
the form

(q, ho,*," ", h,.),

i.e., all the tape symbols are replaced by ".." Let W]) denote this list of partial
traces.

Step 2. Next, M converts each partial trace in W]i) into a full trace by filling in the
correct tape symbol for each head position on each track of the trace. More
precisely, if h is the head position of N on track l, and a is the symbol in
the hth square on track of tape T, then we place a into the (k+2)+/th
track in the tape T2 under the h. Let W(2i) denote this list of full traces.

Step 3. M does a "topological sort" of the list W(i) of full traces found on tape T2.
By this we mean that if r and r’ are full traces (r_< r’ and r and r’ are not
equivalent), then r appears before r’.

Step 4. For each full trace r in the list W(2i) construct its successor partial trace r’
We place " on another 2k+ 3 tracks directly below r on the tape T2. By the
successor partial trace r’ of full trace r, we mean that if r corresponds to a
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configuration C of N and C C’ in phase i, then " corresponds to the
configuration C’.

Step 5. Similar to the proof of Theorem 8, using the string on tape T2 obtained in
Step 4, we can place marks on the upper 2k + 3 tracks ofthe tape T2 to determine
a sequence Pi of full traces

’0’rlF-’’’

corresponding to the partial computation path in phase of the computation
of N, where Zo and ’r, respectively, are the full traces corresponding to the
start and end configurations of phase i.

Step 6. By the definition of the quasi ordering, we have

T0 ’/’1 "" "-- ’r

and they appear in this order in the tape T2, so we can read the Pi sequentially
on the tape T and modify the contents of each track of tape T1 accordingly.

Step 7. Prepare T1 for the next phase of N.

M will repeat the above algorithm until it finds that N accepts or rejects; then
M accepts or rejects accordingly.

Clearly, M accepts if and only if N accepts.
Now we present the details to make sure that M makes at most O(r2) reversals.
Step 1. By Lemma 13 we can assume that hj is a c-ary number, so its length

is less than or equal to i, for all j 0, 1,..., k. Similar to Lemma 1, we can generate
the string

Si =0c#lc# #(ci- 1)c

within O(i) reversals, where mc is the c-ary representation of integer m of length i,
prefixed with zeros if necessary.

From Si, we can construct k + 1 strings defined as follows:

slh--1) ((Oc: )cih( lc:4: )cih (( ci --1)c 4 )cih) ci(k-h),
h=l,...,k. By Lemma 4, each of these Sh-1)’s can be constructed within
O(log (cik))- O(i) reversals.

If we put string SI h+l) in the track h + 1 of T2, h 0, 1, , k, then in T2 we will
get a string

I1 KIK2@ # Kci(k+)

where all K (j 1,. ., ck+)) are different, and each K is of form

((ho), (h,),..., (hk)),

O hi< c , (with (hl) on track l), /=0, 1, k.
Suppose N has e states. From I we construct

I2 K#ge2 Ke’(k+c

We construct W]) on tape T: by putting a different state of N to the (k + 1)st track
of each K in K in I:, j 1,. ., ci(+).

W]i) can now be represented by the following string:

W]i) z # z# # z(+)

and
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where each is of form

(q, (ho)c, *,’’’, (hk)c, *},

with (hl)c in the lth track, 0, 1,. ., k, and q in the (k + 1)st track of rj.
Step 2. It is enough to show how we deal with one track, say track j, of T2. First,

we sort the partial traces in the list Wi) on tape T2 by the head positions on track j.
This can be done within O(i) reversals. Then using one more reversal, we can scan
tapes T1 and T2, reading the corresponding symbol on the hjth square in the track j
in tape T1, putting the symbol into the track (k + 2)+j under the corresponding head
position (hj)c in tape T2, hj 0, 1,. , c 1.

Step 3. To topologically sort the full traces in the list W(2) on tape T2, we only
have to do a stable sort of the full traces by the head position on track 0, then by the
head position on track 1,..., finally by the head position on track k. This can be
done in O(i) reversals. We claim that if r_< -’ and r and r’ are not equivalent, then
r appears before r’ in the list W(). In fact, if -’ appears before - in the list W), then
at least on one of the tracks, the head position of r is "larger" than the head position
of ". Thus, r_< " cannot be true.

Step 4. For each of the full traces in the list W2), we can decide immediately
what the "next" action is. That is, given a full trace

’=(q, ho, ao, hk, ak),

we can decide the successor partial trace

-’= (q’, h;, .,..., h,, .).

Thus, by scanning W(’) within O(1) reversals, we can construct a list W) such that
the /th partial trace of W
in phase for all I.

(Remark: Suppose - r’ in phase i, where both - and -’ are full traces; then the
head positions of -’ will be obtained by adding the corresponding head positions of

" by one or zero. If a full trace does not have successor partial trace in phase (for
example, it corresponds to the end configuration of phase i), we just designate a special
symbol to denote its symbolic successor.)

So Step 4 can be done in O(i) reversals.
Step 5. Note that unlike the proof of Theorem 8, the current symbol of each trace

is uniquely determined by the head position, so there is no need to convert the partial
traces of W(3i to full traces. Hence, we can compare the full traces in the list W(2i with
the partial traces in the list W) directly. As in theorem 8, we use parallel copying,
mark certain traces, etc.

Step 6. Now collect into a contiguous list W(4 all marked full traces in the list
W(2i), in the order in which they appear in list W(). Note that this is exactly the order
in which the corresponding configurations of N appear in the partial computation
path in phase i. Now it should be clear how we modify the tape contents of T1 to
obtain the contents which represent the start configuration of the next phase of N:
For each track h, by scanning the list W(4), we would know how to update the symbols
of that track from left to right. Note that O(1) reversals suffice for all the tracks.

Step 7. We reverse the contents on those tracks of tape T1 that corresponds to
tape heads of N, making a reversal as we go from phase to phase i+ 1.

Since N has less than or equal to r(n) phases and M needs at most O(i) reversals
to simulate the ith phase of N, M makes O(r2(n)) reversals. This completes our
proof.
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6. Reversal hierarchies. Now that we have a tape reduction theorem for reversal
complexity, we can obtain reversal analogues of well-known theorems on space and
time complexity. In this section, we prove a hierarchy result for reversal classes.

THEOREM 17 (reversal complexity hierarchy). Let rl(n) and r2(n) be complexity
functions such that (r2(n))2= o(rl(n)), r2(n) l)(log n), and rl(n is reversal-construct-
ible then

DREVERSAL( rl n )) DREVERSAL( r2( n )) # f.

Proof Since (r2(n))2=o(rl(n)), by the deterministic space hierarchy theorem,
there exists a language L such that

L DSPACE r n

and

L DSPACE((r(n))).
By Theorem 8,

L DREVERSAL(r,(n)),

and by Theorem 14,

L : DREVERSAL(r( n )).

This gives

L DREVERSAL( r, (n)) DREVERSAL(r2(n)).

Remark. We can prove this theorem directly with the help of the tape reduction
theorem, but an appeal to the space hierarchy theorem as above gives a shorter proof.

7. Complete languages for reversal complexity. First we prove Lemma 18.
LEMMA 18. Let M be a Turing machine that accepts in f(n) reversals. Ill(n) is

reversal-constructible, then there exists a Turing machine N such that
(1) N and M have the same number of tapes;
(2) L(M) L(N);
(3) N makes at most O(f(n)) reversals; and
(4) N always halts.
Proof Since f(n) is reversal-constructible, N first computes the unary form of

f(n), appending it to the end of one of its tapes. N will use it as a counter to protect
itself from making too many reversals. Then N simulates M step by step, and in its
finite control N guards the "infinite loop" of M. In this description, by "infinite loop"
we mean that M is in a nonhalting computation path in which no reversal is made.
Once N finds out that M is using too many reversals or is in an "infinite loop," N
rejects immediately. It is easy to see that N satisfies the properties stated in the
theorem.

COROLLARY. Iff(n) is reversal-eonstructible, then for any h >= 2

co-DREVERSAL f n DREVERSALh f n ).

As noted in Yap 13], hierarchy theorems and the existence of complete languages
for a complexity class can be proved in a systematic fashion using the concept of
"efficient universal machines," defined in the following way.

DEFNVrON. A Turing machine U is an efficient universal machine for a class
DREVERSAL(F), where F is a family of complexity functions, if

(1) U takes input of the form i#x on its input tape where i, x {0, 1}*;
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(2) Let Li(U) {x[ U accepts i#x}; then
(2.1) For all i=>0, there exists an fF such that U accepts i#x within

Oi(f(Ixl)) reversals, where the subscript means that the implicit con-
stant in the O-notation depends on i;

(2.2) For any L DREVERSAL(F), where L_ {0, 1}*, there are infinitely
many indices such that L Li(U).

For a general universal machine U (not necessarily efficient) taking input of the
form i#x, if we fix the prefix i# of the input, we can conveniently regard U as an
ordinary Turing machine Ui which accepts the language Li(U)= {xlU accepts i#x}.
Sometimes we write { Uo, U1,""" } instead of U.

We now have the following theorem.
THEOREM 19. The classes DREVERSAL(n() and DREVERSAL(O(1)n) have

efficient universal machines.

Proof We just show the result for DREVERSAL(nI).
Let U--{ Uo, U1,""" } be the universal Turing machine for 2-tape deterministic

Turing machines. We construct a new 3-tape Turing machine U as follows.
For a given input ix, l simulates Ui on input x step by step for at most

reversals. If Ui does not accept x within Ixl reversals, O rejects, otherwise O accepts.
To simulate Ui, 0 first makes O(2 Il;) copies of the "machine code" for Ui and puts
them on its tape, say, T1. This can be done within Oi(Ixl i) reversals by Lemmas 4
and 11.

Then, U can simulate each step of Ui by first reading a copy of the "machine
code" of Ui on tape T1 without making extra reversals. O(2Il’) copies of machine
code are enough for the whole simulation, by Lemma 13.

It is easy to check that/ is an efficient universal machine for DREVERSAL(no).
By Lemma 18, we can suppose that U on any input i#x always halts and makes
Oi([xl i) reversals. If a language L is in DREVERSAL(n k) then our Theorem 16 shows
that L DREVERSAL(nk), so /Q can recognize L efficiently.

THEOREM 20. The classes DREVERSAL(no) and DREVERSAL(O(1)) have
complete language under log-space many-one reducibility.

Proof Again, let us consider the case of DREVERSAL(n().
From Theorem 19, we may suppose that U { U, Uz, } is the efficient universal

Turing machine for DREVERSAL(n(), where all U/ always halt on any input,
accepts or rejects in f(n) reversals and f(n) is a polynomial.

It is easy to check that the following language is DREVERSAL(n(l)-complete:
L={w=i#x#O" m=[x[ i, Xe Ui}. []

8. Remarks. In this paper, we proved various relationships between space com-
plexity and reversal complexity, and also gave a fundamental tape reduction theorem
for reversal complexity. We demonstrated that deterministic reversal and space are
polynomially related. If we accept that reversal is parallel time, then we have yet
another evidence of the so-called "Parallel computation thesis." We suggest some
directions for further research.

(1) Can our result that

DREVERSAL( r) c_ DREVERSAL2(r2)
be improved to either

(,) DREVERSAL( r)
_
DREVERSAL1 rk)

or

(**) DREVERSAL( r) DREVERSALh (r)
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for some constants k and h? We believe (,) is unlikely to be true and (**) seems to
require new techniques.

(2) The problem of "speedup reversal complexity by a constant factor" still
remains open. It is known that there are languages accepted with k reversals but not
with k-1 reversals. So any linear speedup result for reversal must exclude the case
where a constant number of reversals are made.
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COMPUTING THE STRENGTH OF A GRAPH*

DAN GUSFIELD

Abstract. The strength of a graph is a measure of its vulnerability, strictly generalizing the edge
connectivity of a weighted graph. Cunningham [J. Assoc. Comput. Mach., 32 (1985), pp. 549-562] showed
how to compute the strength of a graph in O(IvlalEI) time, using ideas from polymatroids and network
flow. In this paper, his polymatroid approach is modified, a modified version of the Goldberg-Tarjan
network flow algorithm [J. Assoc. Comput. Mach., 4 (1988), pp. 136-146] is used. Then, using ideas developed
by Gallo, Grigoriadis, and Tarjan [SIAM J. Comput., 18 (1989), pp. 30-55], and by Gusfield, Martel, and
Fernandez-Baca in [SIAMJ. Comput., 16 (1987), pp. 237-251 ], it is shown that the solution runs in O( VI31EI)
time. Analogous speedups for sparse-case bounds are also obtainable.

Key words, graph vulnerability, parametric network flow, bipartite flow, polymatroids
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1. Introduction. In a major paper on parametric network flow by Gallo,
Grigoriadis, and Tarjan [4], the Goldberg-Tarjan network flow algorithm is shown to
have the surprising property that it can solve a sequence of O(IVI) network flow
problems of a common important type within the same time bound established for
just a single network flow computation; we will refer to this as the GGT method or
GGT result. The GGT method is exploited in [4] to speed up (by a factor of between
log VI and VI) the computation of several well-studied combinatorial problems, firmly
establishing the importance of the method in combinatorial computing. Each of the
problems considered in [4] involves computing a sequence of flows, and for most of
these problems, the Goldberg-Tarjan flow algorithm can be directly applied to the
sequence, yielding a speedup over the time needed to compute each flow in the sequence
independently. One such problem discussed in [4] is that of computing the strength
of a directed graph, first considered by Cunningham [3]. However, the major focus of
Cunningham’s paper is the problem of computing the strength of an undirected graph.
This problem seems considerably harder than the directed version, as evidenced by
the depth of the mathematical ideas used in the original solution of the undirected
case compared to the directed case [3], by the intricacy and time complexity of that
solution, and by the difficulty in adapting it to the flow methods of GGT.

In this paper we show that the parametric method of GGT can be extended to
compute the strength of an undirected graph, achieving a factor of lVI speed up over
the solution reported in [3]. However, Cunningham’s initial solution does not fit the
model specified in [4], and so the GGT methodology cannot be directly applied: both
Cunningham’s original solution, and the original Go|dberg-Tarjan algorithm and
analysis must be modified to obtain the speed up, and the method must be applied
not just to a single sequence of flows, but to several interleaved sub-sequences of flows.
Hence, in addition to accelerating the computation of graph strength, this paper further
illustrates the importance of the general GGT methodology, as it shows that there are
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1990. This research was partially supported by United States Census Bureau grant JSA 86-9 and National
Science Foundation grant CCR 8803704.

t Computer Science Division, University of California, Davis, California 95616.
1The comparison between the problems in [4] shows that the undirected strength problem is harder

than the directed case.
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applications of the methodology outside of the original model considered in [4]. More
generally, it suggests that additional applications for the GGT methodology can be
found by the specific approach taken in this paper: convert a nonbipartite flow problem
where internal edges have parameterized capacities to a larger bipartite flow problem
where the only parameterized edges are incident with the source or sink node, as is
required by the GGT model; then exploit properties of the bipartite network to show
that, despite the increased size, flow computation on the bipartite network is still fast.

1.1. Background on the strength of a network.
DEFINITION. G--( V, E) is a connected undirected graph with nonnegative edge

weight s(e) on each edge e. The weight s(e) will be called the strength of the edge e.
DEFINITION. For a set of edges A E, let k(A) be the number of additional

connected components created by deleting edges A from G. That is, k(A) is one less
than the total number of components in G-A.

DEFINITION. Let S(A) be the total strength of the edges in A, i.e., S(A)=
-’eAS(e).

DEFINITION. The strength of graph G, denoted or(G), is defined as
min (S(A)/k(A)) taken over all subsets of edges A such that k(A)> O.

Strength is the minimum possible cost per new component created, and is a
measure of graph vulnerability strictly generalizing the edge connectivity of a weighted
graph. Connectivity (which corresponds to the least weight set of edges that must be
deleted in order to create one new component) is often used as a simple measure of
graph vulnerability, or the disruptability of the system that the graph models. Con-
nectivity is clearly not an adequate measure for all purposes, but it is easy to compute.
Strength yields more information about vulnerability than does connectivity, and while
it is also not a perfect measure, it is useful because it also can be computed efficiently.
Strength, as a measure of vulnerability, was first suggested in [8] in the case that all
edge weights are one, and in the more general form in [3].

Cunningham [3] first showed that the strength of G, r(G), can be computed in
polynomial time with the approach sketched below.

DEFINITION. For a fixed value of parameter b, the attack problem for b is that
of finding a set A to minimize [S(A)-bk(A)" A

_
E].

LEMMA (Cunningham [3]). r(G) equals the maximum value of b such that the set

A is an optimal solution of the attack problem for b. Further, o-(G) can be computed
by solving at most VI attack problems, where the value of b decreases for each successive
problem.

Hence the key to computing strength is in how to solve a single attack problem.
Cunningham reduces the attack problem to IEI network flow problems in a sequence
of reductions described below.

DEFINITION. For a set of edges A, define r(A) as the size of the largest subset of
A which contains no cycles.

DEFINITION. Let A be E- A, the complement set of edges of A.
It is easy to prove that r(A)=[VI-[k(A)+ 1], hence the attack problem can be

solved as min [S(A) + br(A)" A E].
This problem is again transformed by setting x(e)= s(e)/b for each edge e, and

then solving the problem min [x(A)+ r(A)" A E], where x(A)=eA x(e).
DEFINITION. For B V, let 3/(B) be the set of edges in the subgraph of G induced

by B.
DEFINITION. Let y be an assignment of real values to the IEI edges to G, and for

a subset A E, let y(A) be defined as ea y(e).
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DEFINITION. Let P(G)={y>-O y(3,(B))<=IB[-1 for all B, B V}.
DEFINITION. Given an ]E length vector x, vector y is said to be maximal with

respect to x and P(G), if y-< x componentwise, y P(G), and no component of y
can be increased without violating one of those two conditions.

The following theorem and algorithm are due to Edmonds, and are described and
justified in [3].

THEOREM (Edmonds). Given a nonnegative IF] length vector x, let y be any
assignment of values to edges of G which is maximal with respect to x and P( G). Then
y(E)=min[x(A)+r(A)" A El. Further, the method described for finding such a
maximal y also yields a subset of edges A which minimizes Ix(A) + r(A)" A El.

POLYMATROID GREEDY ALGORITHM (Edmonds). Input" graph G and associated
vector x.

Ouput: vector y, which is maximal with respect to x and P(G), and a set A_ E,
which minimizes [x(A)+ r(A): A

_
E].

1. Set y 0 (note that 0-< x, and 0 P(G)).
2. Set A E.
3. For j 1 to EI do steps 4, 5, and 6.
4. Find ej=min[lBl-l-y(y(B))’j y(B),B V].
5. If yj+ej<=xj then set A=A\y(B).
6. Set yj to min Ixj, yj + ej ].

In steps 5 and 6, y + e can be replaced with e since y 0, but the version above
will facilitate a modification that will be introduced later.

Step 4 of the algorithm is solved as min []Bl+y(y(B))’j y(B), B
_

V]. Cunning-
ham shows how this can be solved as an s, network flow problem.on a network with

vl / 2 nodes and 21 vl / EI edges, where the values of the y’s show up both on edges
incident with t, and on interior edges of the network, i.e., edges which are not adjacent
to s or t.

Hence Cunningham solves the attack problem, for a given value b, with [El network
flow computations" in the attack problem with parameter b, vector x is set to s b, and
the polymatroid greedy algorithm is used to find a set A E minimizing Ix(A)+ r(A)"
A El. Hence Cunningham’s method computes the strength of G using vl IEI network
flow computations. This gives a time bound for the method of O(IVlalEI) for dense
graphs, and O(IVI21EI 2 log (1 vl=/ll)) for sparse graphs.

1.2. Background on the GT network flow algorithm. Goldberg [5] and Goldberg
and Tarjan [6] introduced an O(] V[ 3) time2 network flow algorithm (referred to as the
GT algorithm) that differs in several interesting ways from previous methods. We won’t
repeat the details of their method, but we refer the reader to [6]. A good sketch of
the method is also found in [4]. From 2.3 on, familiarity with the contents of [6]
will be essential, but readers not completely familiar with the GT method and analysis
can read until 2.3 to get the general idea of the present method for computing graph
strength. For such readers, and for continuity, we introduce a few of the ideas of the
GT method, and some of its terminology.

For the sparse case, the time bound for the Goldberg-Tarjan method is O(IV El log (Iv2/IEI)).
The details of the method in [6] are somewhat different than those presented in earlier conference

preceedings. In this paper we follow the version discussed in [6].
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The Goldberg-Tarjan method is a preflow method, meaning that during its execu-
tion the flow into a node may be larger than the flow out of the node. At the end of
the execution, the preflow becomes a maximum flow. At the start of the algorithm, all
the edges out of s are saturated (filled to capacity) and thereafter, no pushes from s
are made. After those initial pushes from s, each node v will be labeled by a nonnegative
integer value d(v). A labeling will be called valid for a preflow f if d(s) ]VI, d(t) O,
and d(v)<d(w)+ 1 for every (directed) edge (v, w) in the residual graph Gs off4

The node labels may change during the algorithm, but they never decrease. The excess
at a node v, denoted e(v), is the amount of flow into v minus the amount of flow out
of v. A node v will be called active if d (v) < , and e(v) > 0. The algorithm terminates
when there are no active nodes.

The initial facts about the Goldberg-Tarjan algorithm that we will use are: it can
start with any initial preflow and associated valid node labeling, provided that all
edges out of s are saturated; once the first preflow and valid labeling have been
established, a preflow and a valid labeling are maintained throughout the algorithm;
all node labels are bounded by 21VI; and, if d (v)-->IVI in a valid labeling for prefiow
f, then v is disconnected from in the residual graph G.

1.3. The GGT parametric flow method. Gallo, Grigoriadis, and Tarjan [4] make
a very fundamental observation about the GT algorithm and its time analysis. Suppose
one wants to compute a sequence of maximum flows on a network G, where between
each flow computation the capacity on each edge incident with s is either unchanged
or increased, and all other capacities are left constant. We call this a parametric flow
problem. As we will show, computation of graph strength can be viewed as a set of
I/1 interleaved parametric flow problems, and there are many other applications where
parametric network flow problems arise (many of them are discussed in [4], [10], and
[11]). If the sequence of flow problems is of length O(I VI), then, solving each flow as
an independent computation, the dense time bound for all the flow computations is
O(IVI4). The first observation in [4] is that this time can be reduced to O(IVI3) by
using the GT algorithm, as we sketch below.

DEFINI’rOy. Let Gk be the kth network in the parametric flow problem, and let
ck (s, v) be the capacity of edge (s, v) in G. Letf denote the maximum s, flow in G.

For each G in a parametric flow problem, no edge capacity in Gk+l is smaller
than in G, so we can compute f+l in G+I by starting with f, rather than starting
with the zero flow. When the GT flow algorithm is used, this simple idea is shown to
solve a parametric flow problem of length O(I VI) in the same time bound as for one
flow. However, there is a technical point that needs some discussion. In a direct
application of the idea above, when computing the maximum flow in Gk+ by the GT
algorithm, we would start computing f+ by setting the flow in each edge (s, v) to
c+(s, v) (saturating all edges out of s), leaving the flow in all other edges as in f.
However, if all edges out of s in G+ are so saturated, then the existing node labels
may not be valid for the resulting preflow, and if we set new valid node labels, they
may become smaller, which must be avoided for the desired time analysis.

To avoid the above problems, when computing fk+l from f, the original GT
algorithm is modified so that it never pushes flow on an edge (s, v) if

The edges of the residual graph Gf for a preflow f are as follows: if the flow f(v, w) along the edge
(v, w) is greater than zero, then there is a directed edge (w, v) in Gg; if the flow along edge (v, w) is less
than its capacity, i.e., f(v, w)< c(v, w), then there is a directed edge (v, w) in G.

We will discuss this observation only in terms of the bound for dense graphs, but mention later the
analogous sparse bounds.
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However, no justification is given in [4] for the correctness of this change, i.e., that
the resulting flow is maximum for Gk+l. We will discuss this point in detail here, as
it will be needed for the correctness of the method in this paper as well.

DEFINITION. Let Gsk be the residual graph for fk and Gk, and let Sk be the set
of nodes which cannot reach via a directed path in Gyk.

LEMMA 1.1. There exists a maximum s, flow in Gk+ where for any VSk,
f+l(S, tg)=fk(S, 1)).

Proof It is well known that if g is some nonmaximum s, flow in any graph G,
then a maximum flow in G can be obtained by superimposing a maximum s, flow
in the residual graph Gg with the flow g. But if v cannot reach in Gg, then in any
maximum s, flow in Gg there can be no flow through v. Hence when this maximum
flow is superimposed with g, the resulting flow on edges incident with v is the same
as in flow g.

Now f is a nonmaximum flow in Gk+, and if v cannot reach in Gy, it also
cannot reach in G+ (the residual graph for the k flow in the (k + 1)st graph), since
the only possible edges in G{% but not G are edges out of s. Then, by the observation
in the first paragraph, the flow in fk+ incident with such a node v S can be assumed
to be the same as in fk. [-1

If flow is never pushed on edge (s, v) in the computation of fk+l, then the effect
is the same as if the capacity of edge (s, v) were set to fk(S, V) rather than Ck+I(S, V).
With this interpretation, edge (s, v) is saturated at the start of the (k+ 1)st flow
computationan initial condition of the GT algorithm. This justifies the detail in the
GGT algorithm, that in computing fk+l starting with the initial flow fk, no additional
flow is pushed on the edge (s, v) if d(v)_->IV[.

When the GT algorithm is used for the parametric flow problem, then at the end
of the flow for Gk, the node labels are valid for fk, and any node v with label greater
than V[- 1 is disconnected from in Gy. To compute fk+l (in Gk+) from fk, the flow
in each edge (s, v) is initially set to Ck+(S, V) if V can reach in GY; else it is left at
fk(S, V) (as justified by Lemma 1.1). Flow in all other edges is initially left as in fk. At
this point, the last node labels in Gk are valid for this initial preflow in Gk+I. Hence,
the initial conditions for starting the GT algorithm on Gk+I have been met, and fk+
can be computed by the GT algorithm starting from this preflow and node labeling.
Note that the node labels at this point are the same as at the end of the kth flow.

In the analysis of the GT algorithm for a single flow, the time is divided into time
for nonsaturating pushes and all other work. A bound of O([ V[ [El) for all other work
is shown, and its derivation depends only on the fact that the node labels never decrease
and each label is bounded by O(] V]). In the parametric flow problem, node labels also
never decrease and are bounded by O(I V]), so this bound on the work other than for
nonsaturating pushes also holds for the parametric problem. Close examination of the
bounding argument for nonsaturating pushes in the GT algorithm shows that for the
parametric problem, each time the capacities of the edges out of s are increased, the
total number of permitted nonsaturating pushes increases by no more than O([ V]2).
Hence, over a sequence of O(]V]) flow problems, the total time needed for the
parametric flow problem is O(]V]3)the worst case bound for just a single flow
computation. This method and analysis has a dramatic affect on established running
times for the relevant applications.

For sparse graphs the bound obtained in [4] for O(]VI) flows is
o(I vl IEI log (I Vl2/IEI)), the same as for a single maximum flow. We should note that
the model considered in [4] also permits nonincreasing changes in the capacities of
edges incident with t. The paper also contains a second general model and result on
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parametric flow, and many applications of these two general results. We note also that
it was subsequently shown [14] that the dense-case bound of the GGT method can be
obtained with a version of the Dinic flow algorithm in place of the GT algorithm.

2. Computing r(G) in O(IVI31E[) time. Cunningham’s method to compute the
strength of a graph involves a sequence of wl IEI flows, where edge capacities are
changed between each flow. We would like to use the ideas in [4] to speed up
Cunningham’s solution. However, we do not see a way to use his original solution to
achieve a running time for these vl IEI flows faster than by executing each flow from
scratch. The difficulties are that the changing capacities (y values) are on interior edges
of the network used in step 4 of the polymatroid greedy algorithm, and that the changes
are not monotonic, even for the vl flow problems associated with a fixed edge j.

Instead, we modify the polymatroid greedy algorithm of 1.1, and also use a
different network to solve step 4 of the greedy algorithm. The resulting method to
compute the strength of G will then be viewed as Itl interleaved parametric flow
problems, each involving V[ parameter changes, where the parametric capacities are
only on edges incident with the source node s, and where the capacities are presented
in nondecreasing order. The details of these two modifications appear in 2.1 and 2.2.

With the above modifications, the IEI interleaved parametric flow problems at
first seem to fit the requirements of the GGT model. Unfortunately, the new network
we use in step 4 of the polymatroid greedy algorithm may have 19(I VI 2) nodes rather
than O(I VI) nodes of the network used in [3], and this naively increases all the required
time bounds by a square. However, we will show that a modified version of the GT
algorithm, when run on this larger network, runs in O(I VI3) time, and this bound also
applies to a parametric flow problem of O(I VI) flows. The details of the modification
for a single network flow computation appear in 2.3; its analysis appears in 2.4;
and its use for the parametric flow problem appears in 2.5.

With these modifications to the polymatroid greedy algorithm, to the network
used in step 4 of the greedy algorithm, and to the GT algorithm itself, the resulting
method computes r(G) in O(1 vI31l) worst case time, improving the dense time bound
in [3] by a factor of vl. A time bound of O( V IEI 2 log (I VI2/IEI)) for computing the
strength of a graph can be obtained by applying dynamic trees to the method in this
paper. This improves the sparse case bound by a factor oriel over the sparse case
bound in [3]. Note that dynamic trees need not be employed to improve the sparse
case bound of [3] since the bound of O(]VI3IEI) is superior even to the sparse case
bound on Cunningham’s original method, O(I VIIEI 2 log (I VI2/IEI)), although the gap
is small when G is extremely sparse. However, the O(I VI31EI) method is considerably
simpler than the dynamic trees approach used to obtain any of the above sparse bounds.

2.1. Bipartite network GB. Recall that in each execution of step 4 of the poly-
matroid greedy algorithm, j is a fixed edge of G. We solve step 4 of the polymatroid
greedy algorithm (for a fixed edge j) on the following directed bipartite network GB
with IVI + I/1 + 2 nodes. GB consists of a source node s, a sink node t, and two sets
of nodes S and T. Node set S contains one node for every edge in G, and node set T
contains one node for every node of G. The names for the nodes of S will be the same
as the corresponding edges in G, and the names of the nodes of T will be the same
as the corresponding nodes of G; this double naming should cause no confusion. A
node e in S is connected to a node v in T if and only if v is an endpoint of the edge
in G that e represents; each edge from S to T has infinite capacity. Node s is attached
to each node e in S and edge (s, e) has infinite capacity if e=j; otherwise it has
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capacity y(e). For each node v in T, there is a directed edge (v, t) with capacity 1 (see
Fig. 1).

LEMMA 2.1. The value ofa minimum s, cut C in (3B is min [IBI + y(T(B)): j e T(B),
B
_

V]. Hence a minimum s, cut in GB solves step 4 of the greedy algorithm.
Proof. For a minimum s, cut C in GB, define B to be the nodes v e T which

are endpoints of edges (v, t) crossing C. We will show that the capacity of C is
[]B]+y(T(B))] and that j T(B). Since there is an s, cut of finite capacity in GB, C
cannot contain edge (s, j) nor any edges from S to T, since these edges have infinite
capacity. Hence, edge j of G must be in y(B), else there would be an uncut s, path
in GB through node j. By definition of B, the contribution of the edges in C from T
to is exactly IB]. Now, by the optimality of cut C, if e is an edge of G in y(B), then
the edge (s, e) in GB cannot cross C. Conversely, if e is not in y(B), then edge (s, e)
must cross C, else there would be an uncut path in GB from s to through node e
(recalling that no edges from S to T can cross C). Hence the value of cut C is exactly
[IBl+y(y(B))] and j T(B).

Now for any subset B
_
V such that j y(B), let C’ be the set composed of all

edges in GB from nodes in B of GB to t, and all edges from s to y(B). It is easy to
verify that C’ is an s, cut, hence its capacity cannot be less than that of C. Then,
since the capacity of C’ is exactly []B]+y(T(B))], it follows that the capacity of the
minimum cut C is min [IBl+y(y(B)): j y(B), B

_
V]. l-1

The advantage of network GB is that, when used in Cunningham’s solution to
the strength problem, all edge capacities are fixed except those of edges incident with
node s, as required by the GGT model.
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2.2. The modified greedy algorithm. We assume that step 4 of the greedy algorithm
is solved by using network GB, as above. Now for a fixed edge j in G, consider the
sequence of (at most) IV[ flow computations in GB, when edge j is selected in step 4
of the greedy algorithm. Note that each of these flows is separated by [E I- 1 other
flow computations. Let GB(j) denote the sequence of networks used to compute these
(at most) [V[ flows. For each fixed j, we will use the ideas of GGT to speed up the
flow computations done on the sequence of networks GB(j). However, these networks
do not yet satisfy all the requirements of the GGT model. In GB(j) only edges incident
with s have changing capacity (as required by the GGT model), but other than the
edge (s,j), the capacities of edges incident with s may change in a nonmonotonic way.
To handle this problem, we will modify step 1 of the polymatroid greedy algorithm
so that, for fixed j, the edge capacities of two successive networks in GB(j) are
nondecreasing.

LEMMA 2.2. The polymatroid greedy algorithm remains correct if step 1 is executed
only for the first attack problem, and thereafter, each execution of the greedy algorithm
begins with step 2.

Proof First, it is known (and implicit in the correctness proof of the polymatroid
greedy algorithm given in [3]) that y can be set in step 1 to any value in P(G) such
that y <-x. Now in the proposed modification, y is not set back to the zero vector at
the start of each attack problem, but is changed only in step 6. Hence the final y vector
in the solution of the ith attack problem is used as the starting y vector in the solution
of the + 1st attack problem. So to see that the greedy algorithm still works, it is enough
to note that the space P(G) remains unchanged over the entire computation, and that
vector x increases componentwise between each instance of the attack problem. Hence
for every execution of the greedy algorithm the starting y vector is less than or equal
to x (componentwise) and is in P(G). Since the algorithm then changes each component
of y maximally while observing the constraints that y <= x and y P(G), the ending y
vector is a maximal y-<_ x in P(G). 7

The modified greedy algorithm can be sped up in practice with the following
observation" since the y vector is never set back to zero (as suggested above), if e is
removed from A in any attack problem, it will again be removed from A in the solution
to all successive attack problems. Hence step 2 need be executed only in the first attack
problem, and step 3 should be modified to read: "For j in A do steps 4, 5, and 6."

Summarizing these modifications, the resulting algorithm is as follows.

MODiFiED POLYMATROID GREEDY ALGORITHM.
Input" graph G, vector x, set A

_
V, and vector y.

Ouput: vector y, which is maximal with respect to x and P(G), and a set A_ E,
which minimizes [x(A)+ r(A)" A E].

1. Forj in A do steps 2, 3, and 4.
2. Find ej=min[IBl-l-y(7(B))’j 7(B),B V].
3. If y + e -<_ x then set A A\y(B).
4. Set y to min [xj, y + e].

The first time the algorithm is called, set y--0 and A E. Thereafter, the input y
and A are inherited from the previous execution of the algorithm.

2.3. Modified GT algorithm for network GB. Note that with the use of network
GB, only edges incident with s have changing capacities. Further, with the modified
greedy algorithm, the y vector is nondecreasing over the entire set of lVI IEI flows. So
for each sequence of networks GB(j), edge (s, j) always has infinite capacity, the



COMPUTING THE STRENGTH OF A GRAPH 647

capacities of the other edges incident with s are nondecreasing, and all other capacities
are constant. Hence for each j, the IVI flows in GB(j) are of the correct form for the
GGT model. So we now have a solution to the strength problem consisting of lWl [El
flows, which can be considered as IE[ interleaved parametric flow problems of the
correct form. However, we cannot yet conclude that each of these IEI parametric
problems can be solved in O(I VI3) amortized time, since the network that they are
solved on has IEI /IVI nodes, and I1 could be as large as (R)(I VI2) In order to get the
O(I VI 3) bound, we will modify the GT algorithm, and prove that for the networks
GB(j), the modified algorithm solves the flows on GB(j) in O(I Wl3) total time. In this
and the next two sections, we assume familiarity with details and analysis of the GT
algorithm [6].

We will modify the GT algorithm in a way similar to the way that the MKM
algorithm was modified for bipartite flow in [13]. However, in the applications con-
sidered in [13] we have the freedom to flow from the side of the network with the
fewest nodes to the side with the most nodes, making the analysis easier. In the present
application, the capacities on the edges incident with s are presented in nondecreasing
order, hence in order to use the parametric GT method, flow must go from the larger
side S to the smaller side T.

The idea for the modified GT algorithm is very simple. Only nodes in s t0 T will
be given a label, and all pushes will start at a node in s T and will never end at a
node in S. Further, all pushes will traverse a path of length two, unless the push is to
from a node v T, in which case the push goes along the single edge (v, t). Essentially,

we modify the GT algorithm to look ahead one more edge than does the original
algorithm.

To start the algorithm we execute the following.
For each node e S let v be one of the two nodes in T that is adjacent to e in

GB. In GB push c(s, e) (the capacity of edge (s, e)) units of flow from s to v through
node e. This is always possible because c(e, v)= .

After these steps have been executed, all the edges out of s are saturated, but no
nodes in S have any excess. From this point on, all pushes start from nodes in T. A
push from a node v in T is a movement of flow from v to along the single edge
(v, t), or a movement of flow from v through a node e in S to a node v’ s T.

Immediately after the saturating pushes out of s are made, we label the nodes as
follows: d(s)=lVI, d(t)=0, and for v T, d(v)=l; node labels are undefined for
nodes in S. For a preflow f in GB, let GBy be the residual graph for f Validity of
node labels is now defined as follows: for every node v T, d(v)= 1 if edge (v, t) is
in GBY, and for every ordered pair of nodes (v, y) such that v T and y {s t.J T}, and
such that v reaches y by a path of length two in GBy, d(v)=< d (y)+ 1. Further, when
the label of node v is updated, it is set to the minimum of d (w)+ 1, where w and
edge (v, t) is in GBy, or where w is in s t_J T, and v reaches w by a path of length two
in GBY.

A push from v T to v’ T through node e S is permitted only when d(v)=
d (v’)+ 1, and when directed edges (v, e) and (e, v’) both exist in GBy. When such a
push is made, the amount pushed is the minimum of the excess at v and the residual
capacity on the edge (v, e) (recall that the residual capacity of (e, v’) is infinite).
Similarly, a push from v T to source s can be made through a node e in S only when
d (v)= IV + 2 and when edges (v, e) and (e, s) both exist in GBy. The amount pushed
is the minimum of the residual capacities on those two edges, and the excess at v. A
push from v T to sink node is possible only when d(v)= 1 and edge (v, t) exists
in GBY.
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As in the original GT algorithm, to implement the pushes from a node v in T, we
keep a list Iv containing all the edges incident with v in GB. Note, however, that such
lists are kept only for nodes in T. As in the original GT algorithm, when considering
pushes from v, we cycle through Iv, but when (v, e) is the current edge we consider
two pushes: a push from v to s through e, and also a push from v to the unique v’
such that the node e is adjacent both to v and v’ (i.e., such that e (v, v’) in G). We
can consider these two pushes from v in either order, but must update the capacity
of the edge (v, e) after the first push (if possible) is done. Clearly, these pushes leave
no excess at a node in S. A push from v is considered a saturating push if v still has
excess after the push.

All other details of the modified GT algorithm are the same as in the original
algorithm [6]. In particular, d (v) is updated when a scan through Iv has been completed;
a queue is kept of active nodes from which the current active node is selected (but
note that the queue only contains T nodes, since no other nodes are ever active); a
node v is kept as the current active node until either d(v) is changed, or until v has
no excess; and the algorithm terminates when no node is active.

2.4. Analysis of the modified algorithm. To prove that the modified algorithm finds
a maximum flow and a minimum cut in GB we need to prove that node label validity
is maintained throughout the algorithm, that a label update at the end of Iv increases
d, that the algorithm terminates, and that the cut defined by the set of nodes that can
reach in the final GB separates s from t, and that this cut is saturated. These proofs
are straightforward but require examination of a few more cases than in the original
GT algorithm. We will examine label validity and label increase in this section; the
proof of termination will follow from the discussion of complexity in the next section,
and the proof of the s- cut will be given after the discussion of complexity.

LEMMA 2.3. After the initial saturation of the edges out of s, the node labels are
valid throughout the algorithm.

Proof Just after saturating the edges from s, the labels are clearly valid for the
preflow. Thereafter, label updates and pushes to clearly maintain validity. So the
interesting cases are pushes from a node v in T either to another node v’ in T or to s.

Consider a push from v T to v’ T through node e S. Then d(v)= d(v’)+ 1
and if, as a result of the push, a path from v’ to v is created in the residual graph, the
labels are still valid since d(v’) d(v)- 1 < d(v)+ 1. If edge (e, s) exists before the v
to v’ push, then d (v) -<_ VI + 1, and so d (v’) <_- VI d (s), so if a v’ to s path is created
by the v to v’ push, the labels are still valid. The push could also create a path from
s to v, but since the algorithm begins by saturating all edges out of s, this could happen
only if there previously had been a push to s through node e. Such a push could come
only from v or v’. If the push to s came from v, then at that instant d(v) was VI + 1.
Now node labels never decrease and d(s) is always IVI, so after the v to v’ push the
s to v path in the residual graph does not violate the validity requirement that
d (s) _-< d (v) + 1. Alternately, suppose that the push to s came from v’, so d (v’) >_- VI + 1
and d(v)>= IV]+2 at the time of the v to v’ push. Hence, again the resulting s to v
path does not violate the requirement for validity. No other new paths can be created
by a v to v’ push, since e is adjacent only with s and with v and v’.

Now consider a push from node v T to node s through node e in S. This push
will create a path from s to each of v and v’. The first case cannot affect validity, for
d (v) V + 1 > d (s). For the second case, note that d (v) vI / 1 <_-- d (v’) + 1, since
there is an edge in the residual graph from v to e and one from e to v’. Hence
d(v’)>-Ivl, so d(s)<=d(v)+ 1, and d(s)<=d(v’)+ 1, as required for validity. The v to
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s push could also create a path from v’ through e to v. In that case d(v)=lVl+ 1
(since we pushed from v to s), d(v’)<=d(s)+l=lVl+l (by validity), and d(v’)<=
VI + 2 d (v) + 1, so validity is again maintained.

LEMMA 2.4. The value of node label d v) strictly increases every time it is updated
at the end of a scan through

Proof Let Gf be the residual graph at the moment that d (v) is updated. The only
nodes which are considered in updating d(v) are those in s T which v reaches by
a path of length two in Gy, or if the edge (v, t) is in Gy. We first show that edge
(v, t) is not in GBf at that moment, and then show that for all other relevant nodes
w, d (v) < d (w) + 1, so that an update does increase d (v).

Suppose, at the moment of update, there is an edge in GBy from v to t. Then it
must have been in Gy when (v, t) was last considered in Iv (since there are no pushes
from t), but no flow was pushed on it. It follows that at the time (v, t) was considered,
d (v) < d (t) + 1 1; this is impossible, hence (v, t) is not in GBs when d (v) is updated.

Now consider node s. If, at the update of d (v) there is a path from v to s through
e in GBy, then there are two cases to consider: either it was there the last time edge
(v, e) was examined in the scan through Iv, or it was not there but was subsequently
created by a push from a node v’ in T to v through e. In the first case, d (v) < d (s)+ 1
when (v, e) was examined in Iv, and this continues to hold to the point when d(v) is
updated. In the second case, d(v’)=d(v)+l and d(v’)<=d(s)+l at the time of the
v’ to v push, so d(v)<= d(s) at that point, and this continues to hold until d(v) is
updated.

Now consider a path from v to v’ T through e which exists at the moment of
updating d(v). If that path was in GB when (v, e) was examined in Iv, but no push
was sent along it, then d(v) < d(v’)+ 1, and this continues to hold until d(v) is updated.
If that path was not there when (v, e) was examined, then it was subsequently created
by a push through e to v (creating edge (v, e)). Note that edge (e, v) is always in the
residual graph since it has infinite capacity. But that push must have come from node
v’, since node e is adjacent only to nodes s, v, and v’. Hence at the point of that push,
d(v’)=d(v)+l, so d(v)<d(v’)+l, and this holds until d(v) is updated. The only
other case is that the path from v to v’ was there and was used in a push saturating
the edge (v, e), but then a push from v’ to v subsequently restored edge (v, e). As in
the preceding case, at the time of the v’ to v push, d(v)< d(v’)+ 1, and this holds
until d (v) is updated.

Hence when d(v) is updated, d(v)< d(w)+ 1, where w is any relevant node that
is considered in updating d(v). So d(v) strictly increases when it is updated.

LEMMA 2.5. When executed on network GB, the modified GT algorithm terminates
in O(I VI3) time.

Proof First, from the definition of valid labeling, it follows that d (v) is bounded
by the number of T nodes in the shortest path from v to t, and by IV plus the number
of T nodes in the shortest path from v to s, in any residual graph GBy. Since any such
path must alternate between a T node and an S node, d(v)<= 2[ V[ for any labeled
node. This bounds the number of complete scans of any Iv by O(I V[), since by Lemma
2.4 each complete scan of Iv results in an increase in d(v). Now IIvl is one plus the
degree of node v in G, and the cost of scanning an entry in it is still O(1), even though
each such scan generates two push attempts, and each push attempt examines (at most)
two edges. Hence, as in the original GT algorithm and analysis, ignoring the cost for
nonsaturating pushes, the cost of all other work is O(I V] IEI).

To bound the cost of the nonsaturating pushes, note that each one is done in O(1)
time, and that since d (v) O(1V]) in GB, vr d(v) O(1VI2) at any given moment.
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Note also that only the labels of T nodes change. With these observations, the analysis
of the nonsaturating pushes is exactly the same as in the original GT algorithm. Hence
the time needed for the nonsaturating pushes is O([ via), and the modified algorithm
terminates in this time bound. [3

LEMMA 2.6. At termination of the modified GT algorithm, the preflow in GB is a
maximum s, flow.

Proof At termination, we partition the nodes into those that can reach by a
path in the final GBs and those that cannot. We first show that s cannot reach t.
Consider a node e in S, and let v and v’ be the two nodes in T to which e is adjacent.
Suppose edge (s, e) is in the final GB. Since (s, e) was saturated at the start of the
algorithm, (s, e) must have been restored by a push to s through e from node v (say)
in T. At the time of that push, d(v)= d(s)+ 1 IV[ + 1, and since edge (e, v’) has
infinite capacity, there was a path in the residual graph from v to v’, so d (v) <_- d (v’) + 1,
hence d(v’)>_-IV] at that moment. Node labels never decrease, so in the final GB
either edge (s, e) is not present, or both v and v’ are disconnected from t, hence s

cannot reach through e. Repeating for all e in S proves that s cannot reach t.
Clearly the algorithm has maintained a preflow throughout its execution. At

termination no node has any excess, hence the final preflow f is a flow. As in the GT
algorithm, it is easy to verify that the flow saturates the s, cut above. Hence the
modified algorithm finds a maximum flow and a minimum cut. [3

2.5. Parametric flow in network GB. We now consider using the modified GT
algorithm to solve the parametric flow problem on GB(j), i.e., to compute
flows when the capacities on the edges out of s are nondecreasing. As discussed in

1.3, if d (v) ->-]Vl at the end of the kth flow on GB(j), then the edge capacity of edge
(s, v) is not set to Ck+I(S, V), but rather to fk(S, V). Hence, after the capacities of edges
out of s are set, and all edges out of s are saturated, the existing node labels are valid
for the resulting preflow, and so the starting conditions for the modified GT algorithm
have been met without decreasing any node labels.

THEOREM 2.1. The modified GT algorithm on network GB solves the strength
problem in time O([ vlalEI).

Proof By the definition of the s, cut, when edge capacities in GB are increased,
additional flow from s to will be possible as long as at least one parameterized edge
crosses the cut. Suppose there are such flow computations before no further flow
increase is possible. The time needed for these flows is divided into time for
nonsaturating pushes, and all other work. Recall from the proof of Lemma 2.5 that
the time for all work besides the nonsaturating pushes was bounded by O(I V[ IEI) in
the modified GT algorithm running on GB, and that this bound followed only from
the fact that labels never decrease and are bounded by O([V[). In the parametric
application of the algorithm, these conditions again hold, and so the time bound holds
as well.

As for the time needed for the nonsaturating pushes, recall that in the analysis of
the original GT algorithm, the algorithm is divided into passes, where in each pass,
one nonsaturating push per node is possible. The number of passes is bounded by

Y d(v)= O(IVl2) so the number of nonsaturating pushes is O([V[3). In [4] it was
shown that increasing the capacities of edges out of s times, increases the bound on
the number of passes by x max d (v) ]. By exactly the same arguments, in the modified
GT algorithm each pass allows one nonsaturating push per T node, and the number
of passes is again bounded by x max [d (v)] for capacity changes. In GB, TI IV],
and max [d(v)] O(I VI), so at most O(I V[3) time is added by increasing the capacities
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IV] times. Hence the modified GT algorithm solves the parametric problem in each
GB(j) in O(1VI3) time, and so the strength of a graph can be computed in O(]
total time.

2.6. Dynamic trees. The GT flow algorithm for general networks can be imple-
mented by using dynamic trees to obtain a worst case time bound of
O( V[ IEI 2 log ([ VI2/[E[)) for a single network flow computation. This bound was also
obtained in [4] for the parametric problem when the number ofchanges ofthe parameter
is O(I VI). Our modified GT algorithm for flow on bipartite graph GB can also be
implemented with dynamic trees to obtain the bound of O([ VI [El 2) log (I V[2/IEI) for
computing for a single network flow, where GB has wl nodes on one side and IEI
nodes on the other. This bound extends directly to the parametric problem, and yields
a resulting bound of O(I VI IEI 2) log (I VI2/]EI) for computing the strength of a network.
As in the dense case, this bound is a factor of lVl smaller than the sparse case bound
presented in [3].

We will not give the details of how to use dynamic trees in our modified GT
algorithm, but instead refer the reader to a more general discussion on the use of
dynamic trees in the parametric flow problem on bipartite graphs [1]. That paper
examines many algorithms including the modified GT algorithm presented here. Some
initial details of that work are written in [16], and also stated in the final version of [4].

3. Space and other practical considerations. While the results presented in this
paper are primarily of methodological importance--a significant step in the direction
of obtaining a truly fast and practical solution--it is worthwhile to show that the
method is presently practical for graphs of nontrivial size. To do this, we must discuss
space as well as time, and show how to manage the space needs of the algorithm.

First, in terms of the time requirement, the algorithm presented in this paper
should be practical for graphs of nontrivial size, even if the algorithm runs as badly
as l)(] VI3IE]) or l)(I VI I12 log (I VI2/IEI)), i.e., as badly as the worst case upper bounds
permit. To calculate the range of practicality, we assume that each step of the algorithm
counted in the upper bound translates into five machine instructions, and we assume
a machine with the performance characteristics of a current high-end workstation.
With these assumptions, the worst case running time of the algorithm (using the best
of the sparse or dense bounds) for a graph of 100 nodes and a density of 0.1 (average
node degree 10) is 1.25 minutes; for 100 nodes and density 0.5 the time is 21 minutes;
for 100 nodes and density 0.9 it is 38 minutes. The corresponding worst case times for
the method in [3] are 2 hours, 34 hours, and 2.6 days. For 200 nodes and a density
of 0.1, the time is 50 minutes, and for density 0.2 it is 3.2 hours; the times from [3]
are 6.9 days and 25 days. For a graph of 500 nodes and a density of 0.01, the worst
case running time is 1 hour; for a density of 0.03 it is 8.8 hours; the corresponding
times from [3] are 20.8 days and 180 days.

These numbers illustrate that in terms of worst case time, the method in this paper
can be considered practical, and a substantial improvement over the earlier method
in [3], for a useful range of graphs--extremely dense graphs of up to 100 nodes,
extremely sparse graphs of more than 500 nodes, and various combinations in between
these two extremes.

3.1. Managing space. We now consider the space needs of the algorithm. For a
graph with [El edges, the worst-case space needed is 12(IEI2). In each of the particular
cases mentioned above, the main memory available on current high-end work stations
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is sufficient or nearly sufficient (so it will be sufficient by the time this paper appears)
to implement the algorithm. However, in the above cases we assumed a practical time
limit of a few hours. If we consider larger or more dense problems which require (in
worst case) much more time, then the space required may be well beyond currently
available main memory space on typical machines (about 10 million words). Hence
the (IEI2) space requirement would seem at first to make the method unusable for
large graphs, even if we are willing to use large amounts of time. In this section we
show that on real machines this space need is not a constraint.

The key observation we exploit to manage space is that the algorithm’s space use
is extremely local. There are IEI sequences of networks, GB(1) through GB(]E]), that
the algorithm successively returns to, and for each sequence the most recent flow and
label information must be stored. So each sequence requires (]E]) space. However,
the algorithm returns to these sequences in a predetermined, cyclic order, completely
processing the current network in a sequence GB(i) before it moves on to the current
network in GB(i + 1). Hence at any given time the algorithm needs only one network
in main memory (along with the current y values which only take O(]E[) space). After
the current network is processed, that network will not be needed again until the
current networks in all the other ]El- 1 sequences are processed.

Suppose that the main (fast) memory of the system has room to store only k < [E
networks. When a flow has been computed on the current network in GB(i), that
network can be sent to a disk and the current network in sequence GB(i+k)
(i+ k mod ]E]) can be read in. In that way we always have in memory the next k
needed networks. Now disk accesses and transfer is very slow but is done in parallel
with the main algorithm execution, so the question is whether this use of a disk will
cause a bottleneck in the running of the algorithm. That is, is the access and transfer
time for a network of size ]E] greater than the worst-case processing time of the
algorithm for k networks of size ]E]? If so, then the use of a disk makes the worst-case
time bound of the method invalid; on the other hand, if the disk transfer time is not
a bottleneck (and disk space is sufficient) then the algorithm can be implemented on
a real system so that computation within the worst-case time bound is assured.

The question above can be resolved by some calculations, again assuming typical
numbers for currently available high-end workstations. Without giving all the details
ofthe assumed speeds and calculations, the end result is that for all problems considered
(densities up to 0.9 for graphs up to 200 nodes, up to 0.5 for graphs up to 400 nodes,
and up to 0.2 for graphs up to 600 nodes) the disk transfer time from an ordinary disk
is at least three hundred times faster than the time to process the networks in main
memory; for many of the problems the transfer time is several thousand times faster.

One additional observation can be exploited to reduce space in practice. In the
modified polymatroid greedy algorithm, once an edge e--(u, v) is removed from A,
the sequence of networks associated with e is no longer needed. Further, the edges
(s, e), (e, u), (e, v), (u, t), (v, t) can be removed from all networks. The effect of
removing these edges is to decrease the flow in any network by exactly two units
compared to the flow before the edge removals. So all future computations can be
done on smaller networks. The result is that every time an edge is removed from A,
the number of networks that need to be stored decreases, as does the size of all the
stored networks. Since the size of A decreases to zero during the execution of the
algorithm, so does the space requirement of the algorithm. In practice this means that
space use can be significantly reduced by starting with a "good" initial solution. For
example, we could set the first b to be the weight of the minimum weight cut in (3

(which can be calculated in O(] gl4) time).
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4. Additional problems. Below, we discuss two additional applications of the
original GGT method, and the method of this paper. An additional application of the
modified method is discussed in [7], and more complex applications are discussed in
[11] and [10].

A parametric problem needing the modified GT algorithm.
Network reliability testing [12]. In a communication network G, each node v can

test one incident line per day, and each line e must be tested at least once. The problem
is to find a schedule to minimize the number of days to finish the tests. This problem
can be solved as a parametric network flow problem in a network identical to GB, but
where each edge (s, e) has a capacity of one, and each edge (v, t) has a capacity of
A. Then the problem is to find the minimum integer value of , such that there is a
flow saturating the edges out of s. Clearly, , --<IVI, so these VI flows can be computed
in O([ VI 3) or O(I V IEI log (I VI2/IEI)) time.

In [11] the problem is generalized so that each node v can test k(v) nodes per
day, and each line e must be tested t(e) times. By a generalization of the GGT method
that allows the parameter changes to be given in unsorted order, we can solve this
more general testing problem in time O(I VI IEI log (I vIZ/IE[) / IEI log ([ VI2/IE[) log T)
time, where T= Ze t(e).

A parametric problem not needing the modified GT algorithm. An open question
posed in [4] is to find additional applications of their parametric flow methodology.
We mention here an immediate application of their methodology; in this application
the flow is on a nonbipartite graph, and the original parametric GT algorithm can be
used.

The rectilinear layout problem. Given m fixed points on a line, n new points must
be added to that line. For each pair (i,j) of the m / n points there is a given weight
w(i,j). The objective is to place the new points on the line to minimize i,j [w(i,j)
d(i,j)], where d(i,j) is the distance between points and j on the line. Since the
original m points have fixed location, the objective function could also be expressed
over the pairs consisting of two new points, and pairs of one new and one fixed point.
A t-dimensional version of the problem can be defined where the points are to be
placed on a t-dimensional grid, and the distance d (i, j) is the t-dimensional rectilinear
distance. This t-dimensional version of the problem reduces to line problems, one
in each dimension.

The layout problem can be solved by solving m- 1 minimum cut problems on a
dense network with n nodes, and hence in time O(mn3). This solution was discovered
independently at least three times [15], [2], [17]. In this solution, each successive cut
problem differs from the previous one in that the capacities of the edges incident with
s increase and the capacities of the edges incident with decrease and all other
capacities remain fixed. Hence the previous GGT method can be applied, yielding a
time bound of O(n3+ mn2), improving the original bound of O(mn3).

In general, m > n (m >> n is likely) and yet it is easy to see that over the m 1 cut
problems the solution changes as most n-1 times. This suggests that the problem
might be solved with only n cut computations instead of m. With this intuition, and
by extending the GGT algorithm to handle changes of the parameter in unsorted order,
we show in [11] how to solve the layout problem in O(n log m) time; this is further
reduced in [9] to O(n3+ n2 log m).

It is interesting to compare the approaches to the rectilinear layout problem of
[15] and [2] in light of the results in [4]. The method in [2] differs from that in [15]
primarily in that it uses the solution to a P(k) problem as the starting point of the
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P(k+ 1) problem, while in [15], each such problem is solved from scratch. It was
claimed in [3] that the method is faster than that in [15]; the results in [4] prove that
to be true, at least by worst case measure when the GT flow algorithm is used.
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Abstract. Let W
_
R be scale-invariant and rationally dispersed, i.e., Y W implies h: W for all real

h > 0; and the rationals are dense in both W and Rn- W. It is shown that, in the algebraic computation
tree model, the problem of deciding whether an input Y R with integer coordinates is a member of W
has complexity O(log2/(W)-2n), where/(W) is the number of connected components of W that are not
of measure 0. This theorem can be used to prove tight lower bounds for the integral-constrained form of
many basic problems, such as Element Distinctness, Set Disjointness, Finding Convex Hull, etc. Through
further transformations, it leads to lower bounds for problems such as Integer Max Gap and Closest Pair
of a simple polygon. The proof involves a nontrivial extension of the Milnor-Thom techniques for finding
upper bounds on the Betti numbers of algebraic varieties.

Key words, algebraic computation trees, closest pair, integer element distinctness, lower bounds, topo-
logical approach
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1. Introduction. The algebraic decision tree and the algebraic computation tree
are two standard models for studying the complexity of computational problems which
involve continuous variables. For example, given n real numbers xl, x2,""", xn, what
is the intrinsic complexity of deciding whether they are all distinct? An interesting
topological approach for proving lower bounds in these models was developed in
[DL], [SY], [Y], [St], [B], [LW], [R], and [Se]. A very useful theorem along this line,
shown by Ben-Or [B], is C(W) 12(log/3(W) n), where C(W) is the complexity of
the membership problem for W R in the algebraic computation tree model and
/3(W) is the number of connected components of W. (A similar theorem holds in the
bounded-degree algebraic decision tree model.) In particular, this theorem shows that
the above Element Distinctness Problem has complexity l-l(n log n) in these models.

When the inputs are known to satisfy certain restrictions, such as the inputs being
integers, the topological arguments used for proving lower bounds are no longer valid.
For example, given n integers ml, m2,"" ", m, no nonlinear lower bound is known
for deciding whether they are all distinct. The integral-constrained case, aside from
being a natural problem in itself, can also be used to provide lower bounds to the
complexity of other problems. As noted by Aggarwal [AW] (see also Aggarwal,
Edelsbrunner, Raghavan, and Tiwari [AERT]), an 12(n log n) lower bound to the
integer version of some problems such as Element Distinctness will imply an 12(n log n)
lower bound to the problem of finding the closest pair of vertices of a simple polygon.
In general, it is an intriguing question in computational geometry to find out the effect
of the simplicity assumption, i.e., when the input points are assumed to form the ordered
vertices of a simple polygon (see [AGSS], [GY], and [TV]). It is hoped that the results
of the present paper will help resolve this question in other instances.

For any W___ R ", let/(W) be the number of connected components of W that
are not of measure 0. We will prove a general theorem which shows that, for certain
sets W, a topological lower bound C(W)= l)(log/3(W)-2n) is valid in the algebraic
computation tree model, even if the inputs are restricted to be integers. In particular,
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this can be applied to show that the Element Distinctness Problem given above has
complexity f(n log n) for integer inputs. The proof involves extending the Milnor-
Thom techniques [M], [Th] for bounding the Betti numbers of algebraic varieties. By
comparison, in previous complexity results, the Milnor-Thom theorem has always
been applied in a fairly direct fashion.

We will state the general theorem in 2, and give a list of applications of the
theorem in 3. After giving some preliminary facts in 4, we prove the theorem in

5. The general theorem and all the applications mentioned are also valid in the
bounded-degree algebraic decision tree model, and will be discussed in 6.

2. The main theorem. An algebraic computation tree models a program in which
each step performs either an arithmetic operation z - u op w with op {+, -, ,/} or
a branching operation z :0. This model was developed in [St], [Y], and [B], and we
will follow the convention used in [B]. For any D Rn, let o be the family of
algebraic computation trees which are well defined when the inputs are restricted to
D. A tree T o is said to solve the membership problem for W, if, for every input

D, the leaf reached by has output 1 if W, and 0 otherwise. Let 9O,W
denote the family of algebraic computation trees for solving the membership problem
for W. Let CD(W) denote the minimum of cost(T) for any T D,W. We will be
especially interested in the case D In, where I is the set of all n-tuples of integers.

DEFINITION 1. For W Rn, let /3(W) denote the number of connected com-
ponents of W. A component is said to be primary if it is not of measure 0. Let/(W)
denote the number of primary connected components of W.

DEFINITION 2. A set W
_
R is said to be scale-invariant if W implies h W

for all A > 0.
DEFINITION 3. A set W

_
R is said to be rationally dispersed if, for every

and e > 0, there exists a rational point such that II - ll and

((W)^(W))v((W)^(W))=I.

Let Cl 1/(1 +2 log2 3) and c2 1 + (log2 3)/(1 +2 log2 3).
THEOREM 1. Let W R be scale-invariant and rationally dispersed. Then Cxn( W) >-

Cl(lOg2 fl( W)- 1)- c2n.
COROLLARY 1. Let W, W’_ R n. If W f’l W’ is scale-invariant and rationally dis-

persed, then Cx.(W) >- c1(log2 fl( W W’)- 1) c2n Cin(W’).

3. Applications. We give below a partial list ofproblems. The topological approach
has given nontrivial lower bounds to the complexity of these problems when the inputs
are not restricted. We will apply Theorem 1 and Corollary 1 to derive lower bounds
for the integer-input formulation of these problems. In most cases,/(W) are clearly
equal to/3 (W), and we will only indicate the references where estimates of/3 (W) are
given.

Example 1. Integer Element Distinctness. Given n integers ml, m2,... mn, decide
whether they are all distinct.

In this case W={,lRn, IIij(xi-xj)O}, and /(W)=n! (see [SY],[B]).
Theorem 1 gives CIn(W) 12(n log n).

Example 2. Integer Set Disjointness. Given two sets of integers A=
G{ml, mE," ", mn} and B {m, m_,. , m’}, decide whether Afq B =0.

In this case W={(, 37)1, 37 R",n,(x,-y)O}, and /( W) _-> (n !)2 (see [a]).
Theorem 1 gives Cin(W)=fl(n log n).

Example 3. Integer Convex Hull. Given n points with integer coordinates in the
plane, decide whether the convex hull of these points has exactly n vertices.



ALGEBRAIC COMPUTATION TREES 657

In this case W R2n is the set of all points (Xo, Yo, Xl, Yl, Xn-1, Y,,-1) for
which there exist permutations r of (0, 1, , n 1) such that, for all 0_-< =< n 1,

1 x,
det 1 Xo-(i+l)mod yo-(i+)mod > O.

1 x(,+2> Yr(i+2)

It is known that/(W)_-> (n-1)! (see [SY]). Theorem 1 gives Cf.(W)=O(n log n).
Example 4. Integer Knapsack. Given n + 1 integers ml, m2," ", m,, t, decide

whether there exists some A
_

{1, 2, , n} such that EiAmi t.
In this case, W={(Y, b)[(Y, b)Rn+l, I-[A(EiAXi b) O}. It is known that

/(W) >= 2n2/2 (see [DL]). Theorem 1 gives CI.(W) (n2).
Example 5. Sign of Permutations. Given n integers ml,m2,...,mn, decide

whether there exists an odd permutation r such that m < m<... < m..
In this case W {Y[Y R", x, < x <. < x. for some odd permutation r}, and

/3(W) n!/2 (see [B]). Theorem 1 gives C.(W)=(n log n).
Example 6. Integer Max Gap. Given n+l integers ml, m2,’’’, mn, t, decide

-<m.+t for all 1-<i<n.whether there exists a permutation o- such that m., _-< m.+,,
< x, + b forIn this case, W= {(Y, b)l(Y, b)e R"+1, there exists r such that xi+l=

all i}. Let e, (4n)-1 and let W’ be the set of all (Y, b)e R"+1 such that

xi, b>0 for all 1-<_i=<n,

b
Z xi<-n(n+l)+be,,

2 b2
E xi>--n(n+l)(2n+l)-

Then Ctn(W’)= O(n). It can also be shown that/(Wf3 W’)>= n! (see Appendix). An
application of Corollary 1 gives C-(W)= f(n log n).

Remarks. The (noninteger) Max Gap Problem was proved in [LW] and [R] to
have f(n log n) complexity. The integer version was formulated by Aggarwal [AW].

Example 7. Integer Measure. Given 2n+l integers ml, m2," mn m’I,
m., , m M, decide whether the set Ul__<i<__, [m, m’i] has Lebesque measure M.

The Integer Max Gap Problem is reducible to this problem. Given input
ml,mz,’’’,m,,t for Integer Max Gap, we can compute in O(n) steps M=
+ maxi mi mini mj, m’i m + for 1 _<- -< n, then solve the Measure Problem for input

ml, m2," ", mn, m, m,..., m’n, M. It is clear that this also gives the answer
to the Integer Max Gap Problem. It follows that the Integer Measure Problem also
has f(n log n) complexity.

4. Notations and preparatory lemmas.
4.1. A lemma of Milnor and Thom. Let R[Xl, X2, Xn] denote the set of poly-

nomials in xi with real coefficients. We write R[Y] for R[xl, x,..., x,] when the
number of variables is clear from the context. For any p R[Y], let deg (p) denote the
largest degree of any monomials in p. A hypersurface in R is a set H of the form
{]f() 0, R"} where f R[]. We say that H is nonsingular if El__<i__<(0y/o,)2>o
at all points H; otherwise H is singular. The following result was due to Milnor
[M] and Thom [Th]. Let f be a polynomial of degree 2k and in n variables with real
coefficients. Let H {[f() 0, R"} and W {1f() =< 0, e R"}.

LEMMA 1. If H is nonsingular and if both H and W are compact sets, then
/3(W)<k(2k-1) "-1.
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Remarks We refer to [M] for a proof of Lemma 1. Roughly, the sum of the Betti
numbers of H is, by Morse’s theory, related to the number of critical points of a certain
kind of function defined on H, which can be upper bounded by an expression of the
form given in the lemma. Using Alexander’s duality theorem, one can relate the Betti
numbers of W to the Betti numbers of H, which leads to the conclusion of the lemma.
This lemma is a basic tool for deriving the Milnor-Thom theorem, which gives upper
bounds to the number of components of algebraic varieties and semialgebraic sets
[M], [Th]. A useful version by Ben-Or [B] states that, if W is the set of Y R satisfying
fl()--0, f2(3)-0,"" ",fs()=0, g()>0, g2()>0,’.’,g,,(Y)>0, then fl(W)<=
k(2k- 1) "+m-, where k=max {2, deg (f), deg (g)}. Let us call it Lemma 1’.

4.2. Notations for algebraic decision trees. An algebraic decision tree in R is a
decision tree whose internal nodes contain comparisons ofthe formf(xl, x2, , x,) :0
wheref is a polynomial with real coefficients. As the algebraic decision tree is a familiar
concept, we refer to the literature (e.g., [SY]) for a detailed description.

Let , denote the family of algebraic decision trees in R". Let T n. For any
leaf T, let r,l denote the path in T from the root to /. Let Sr, stand for the set of
input Y R" that will follow the path

4.3. Basic properties of algebraic computation trees. Let T .. An internal node
of T is an arithmetic node if an assignment z <-- u op w is performed; it is a branching
node if a branching operation z:0 is performed. For any leaf T, let T,l denote the
path in T from the root to I. For a {0, 1}, let L be the set of leaves such that the
output of is a and such that :r.t traverses no edges labeled by "=." Let Sr. stand
for the set of R that will trace the path T,l if input into T.

For each arithmetic node v of T, let r p/q be the rational function computed
at v, where p, q R[] are in their natural form (obtained from processes such as
p q s (pt qs)/qt). More precisely, suppose that the assignment at v is z <- u op w.
For a {u, w}, let s, t R[] be defined as follows: if a is a variable evaluated at an
ancestor node v’ of v, then (s, t) is the pair of polynomials associated with v’; if
a =x, then s =xi and t--1; if u c is a constant, then s c and t 1. We now
define p and q. If op {+,-}, then q ttw and p Stw op Swt. If op { x }, then
q ttw and p SSw. If op {/}, then q tSw and p s,tw.

Let d stand for deg (p) deg (q), and let dr 1 + max {deg (p) + deg (q)}.
Let AT=max {[al, 1/la[]a Er}, where Er is the set of all nonzero coefficients in
polynomials p, q for nodes v in T.

DEFINITION 4. Let p()R[]. Define q,(p())=limx_oASp(/A) where s=
deg (p). That is, q,(p) is the sum of monomials in p of leading degree. For any rational
function r:p/q where p, q R[], let q,(r())=q,(p())/b(q()).

DEFINITION 5. A tree T i is said to be normal if, for every leaf l, the sequence
of operations from the root to is of the form

Z1 <’- //10pl Wl,

z rel O,

Z2 (’- //2 op2 W2,

z rel 0,

Zm <’- llm Opm Wm,

Z, relm 0,
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where m>-n; furthermore, (a) for l<=i<-m, opi e {+,-, x,/}, relic{<, =, >}, and u,
w, and either constants or elements of {Zl, z2, , z_l} U {xl, x2. , xn}, and (b)
for l<-j<-n, uj=xg, opg= x, and wg=l.

DEFINITION 6. A tree Te Mr- is said to be irredundant if every node u can be
traversed by some input e I and every internal node v satisfies deg (Pv) + deg (%) > 0.

DEFINITION 7. A tree T e MI- is said to be regular if T is normal and irredundant.
LEMMA 2. IfT M, w, then there exists a regular T’ i,w such that cost (T’) -<_ 2

cost (T) + 2 n.

Proofi Add the sequence of instructions z xi x 1, 1 <_- _-< n, to the tree at the root.
Expand each internal node into a computation node with z u op w followed immedi-
ately by a branching node z’0. Now prune away all the branches in the tree that are
not traversed by any input

DEFINITION 8. For any regular T Mi-,w, let b(T)e Nn denote the tree obtained
from T as described below. For each branching node v in T, group the pair
(parent[v], v), consider it as one node b(v) in 4(T), and associate the pair with
4’(Pv()))" q,(q(2))’0; each leaf of T will be a leaf 4(1) in b(T), with the same
output. The parent-child relation in b(T) is the natural one induced by T, with the
<, =, > labels on the corresponding edges.

5. Proof of Theorem 1o From the discussions in the last section, we can focus our
attention on algorithms that are regular.

THEOREM 2. Let W_ R
sd,,,w be regular. Then there exists a set A

_
R of measure 0 such that

W-A U $4,(T,4,() W,
leL(T)

and
Rn W-A

_
U S4(T,+(1) - Rn W.

le Lo( T)

THEOREM 3. Let W_ Rn, and let T e M,,w be regular. Then, for any leaf
Lo(T)U LI(T), fl(S,(r),,l))<-2 3 n+2", where m =cost (T)/2.

We first show that Theorem 1 follows from Theorems 2 and 3. Let T Mi,,w be
any regular algebraic computation tree for the membership problem with integer inputs
for W. Let W1, W,..., W be the primary components of W, where t=fl(W).
Let A be the set of measure 0 given in Theorem 2. Then W/- A are nonempty for all
1 _-< <_-t. Theorems 2 and 3 imply that

[LI(T)I2" 3 "+2m

2m+l 3 n+2m.

It follows that

m >_- c1(log2/3( W)- 1)- (c- 1)n.

We have thus proved that, for any regular T

cost (T) _-> 2c1(log2/3( W)- 1)- 2(c- 1)n.

Theorem 1 follows then from Lemma 2.
To prove Theorem 1, we only need to establish Theorems 2 and 3.
LEMMA 3. Suppose Lo( T) L1 (T) and S,(r),4,l). Then L1 (T) if and only

if: W.
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Proof Let sign (c) be 1, 0, -1 depending on whether the real number c is positive,
zero, or negative. As W is rationally dispersed, we can choose a rational point such
that

() (( w) ^( w)) v (( w) ^ ( w)) ,
and for all v e y,l,

(2) sign (0(r(F))) sign (q(r(2))).

Now, choose a positive integer N such that NF is an integer point and such that, for
all v

(3) sign - r(NY.) sign (0(r(ff))).

From (2) and (3), we obtain that, for all v

(4) sign r(NY.) =sign

It follows from (4) that, if input into T, Nff will follow the path scr, l. Since T has to
give the correct output for any integer input, we conclude that has output 1 if and
only if Nff W. Lemma 3 follows then from (1) and the fact that W is scale-
invariant.

Let A denote the set of all Y e R" that satisfy O(p(Y)). 0(q(Y)) =0 for some
branching node v in T. Then A is of measure 0 as no 0(P) 0(%) is identically zero
in an irredundant T. Theorem 2 now follows from Lemma 3.

It remains to prove Theorem 3.
Remarks. This is where we need to extend the Milnor-Thom techniques. Let

Zl, z2," ", zm be the variables along the path T,l as in Definition 5. Let X be the set
of all (x, x2, , x,, Zl, 22, Zm) R"+" satisfying Z U opi W and z rel 0 for
all 1_-< i_-< m. Then ST, is the projection of X on the first n coordinates, and thus
(ST,I)<--(X). Since fl(X)_-<2 3 "+2" by Lemma 1’ (see Remarks after Lemma 1),
the same upper bound applies to fl(ST,l). However, it is fl(S(T),+()) that needs to be
estimated. We cannot apply Lemma 1’, as S(T),(1) is related to X in a less direct way.

Without loss of generality, we can assume m > n. Furthermore, we can assume
that in the ith assignment, where n < i_-< m, u, w are nonzero constants or elements
of {z, z2, , zi-1}. Let L0(T) U Ll(T). We first introduce two new sets, V, and
V ,a, which are approximations to the set S(r),(l> Let v, v, v v,..., Vm, v’
be the sequence of nodes, alternately arithmetic and branching, on the path r,l, and
let 6i 1 or -1 depending on whether the edge out of v’i along this path is labeled by
">" or "<." Let p()?), q(27), r()?) stand for pi(Y), %(Y), r,(Y); and let
P,o(Y), qi,o(Y), ri,o(Y) stand for q(pv, (2)), 0(% (Y)), q(r (2)). We will also write d instead
of dr,. Then
(5) Sch(T),ch(l {YltiPi.o(:)qi,o(Y) > O, 1 <-- <-- m}.

For any e, B > 0, let V.n denote the set of all 9 R" such that, for all 1 _-< -< m,

(6)

(7)

and

(8)

pi())2 _> e, q(y)2 >_ e,

Pi,o()2
8, q,0(2)2

6, iri,o(,) = 8,

IIll =+ E (ri,o())2< B.
l<im
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Let h be any positive real number. For each 1-< =< m, define a polynomial f, of
m + n variables xl, x2,’’ ", xn, yl, Y2,""", ym, as described below. Suppose that the
instruction at the ith computational node on SCT, is Zg -- U op W. For s {u, w}, let

Y if s= z, l <=j < i,
gs c if s c where c is a constant,

xk/ A ifs=xk.

Then f,x is Yi--(gu op gw) if op {+,-, x} and yg. gw-gu if op {/}. For example, if
the instruction is z5 z2 x8, then fs, is the polynomial y5 (Y2- Xs/A).

For any positive real numbers A, e, B, let us consider the following polynomial
in n+2m+l variablesx,x2,...,x,,y,y2,...,y,,,u,u2,...,u,n,b:

-e)+ + (yiAd)+b-BFa,, fia + (iYiA di U

For any a>0, let V,,B,, be the set of all YR" for which there exist
(Y, Y2," ",Y,,, Ul, u2, , u,,, b) satisfying F,,s(Y, 37, t, b) -< a. A 16(’+l)a. (Recall
that dT= 1 + max {deg (p) + deg (q)}.)

We will now choose the values ofthe parameters e, B, A, and a. Let W, We, , W,
be the connected components of S+(T,+(, where (S+(T),+(I)). Choose any points
Y(J W such that Pi,o(Y()) qg,o(Y(J) 0 for 1 <= =< rn, 1 _-<j <_- t. Define e and B by

e min {(100m)-, pi(Y(), qi(y())2, 6iri,o(y(), Pi,o(y(j))2, qi,o(y())zli, j},

B=100m+ ([1112+ Z (ri,o(2(J)))2).l<_jNt l<__i<=m

Let A ’ 103(re+n), where r/= e/(IO3ATB). The following fact can be verified easily.
FACT 1. There exists a 0 < I0 < A such that, for all 0 < A < Ao,

(9) IAdiri(:/A)- ri,o(:)l < e/20,

for all V,B, l <=i<-m.
We further define

(10) e’= e/5,

(11) B’=5B.

For any polynomial f, a constant c is called a critical value of f, if the hypersurface
{Y]f(Y)-c 0} is singular. It is well known from Sard’s theorem that the set of critical
values of any f is of measure 0 on the real line. For each 0 < A < Ao, we choose an
1/2-< a <-1 such that a. A6m+ld is not a critical value of F,,,n,.

The following two lemmas are the central properties of the approximations V,n
and Va,, ,, that are needed for proving Theorem 3.

LEMMA 4. (Sch(T),ch(I)) = [3( Ve,B).
Proof It is easy to verify that 9() V,n for all 1 <-j<-_ t, Since V,n

this proves the lemma.
LZMMA 5. Let 0 < A < Ao. Then V,n

_
Va,,,n,, c_ S6T),6t.

For the moment, assume that Lemma 5 is true. We shall prove Theorem 3. Let
0 < A < o. From Lemmas 4 and 5, it follows that

(12) [3 Scb T d [ VA, B

However, from Lemma 1, we have

/3(V’) -<_ 2.3
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where V’= {(, )7, t, b)]Fa,,,B, <- aa. 16(m+l)dT}. Since Va,,,B,,, is the projection of the
set V’ in the coordinates, we have

(13) /3(Va,,,n,,a)-< 2 3 "+2".

Theorem 3 follows from (12) and (13).
It remains to prove Lemma 5.
Proof of Lemma 5. Let 0 < A < Ao. We prove

(14) V, V,,,,,.
Let e V,. To prove Y Va,,,,,, we need to show that for some (, , b)e R2m+l,
the following is true:

(15) Fa,,,n, a 16(m+l)dT.

Define f= (y, yz,. , Ym) by y r(Y/). To prove the existence of (a, b) satisfying
(15), it is clearly sufficient to prove that

(16) f,a(Y, )7) 0

(17) iYiA ai E

and

(18) II;ll =+ E (Y,Aa’)2 <- B’.
li--m

It is easy to see that (16) is true, and (17) follows from (7), (9), and (10). To
prove (18), observe that, from (8) and (9), we have

11;ll2+ E (yiAdi)2<B+ E ((yiAdi)2--(ri,o(;))2)
l<=i--m l_im

<=B+ Z IA air,(;/ A ri,o( ;)[ IA a’ri(.Vc/ A -+- ri,o()l

<=B+e E
li<"

<-_B+me2+e ((r,.o())2+l)
l_im

<--_ B + me2 + me + Be.

From the definitions of e and B we obtain (18). This proves (14).
It remains to prove

(19) VA,e,,B,,aa
____

S(T),dp(I).

Let Y (xa, x2,""", x.) V,, ,.. We need to show

(20) a,p,,o(;) q,o(;) > 0.

By the definition of Va,, ,,, there exists a (y, Y2,""", Y) R such that

(21)

(22) 6iYiA e’/2,

(23) I1 11
lim

for all 1 m. We will use the above inequalities to establish the next claim. Let
si deg (pi) and ti deg (qi).

CLAIM. For 1 m,
(A) si<2+: ti<2+2"
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(B) IA"q,(Y/A)I> (F-’/AT) 4i+2m, and Iq,,o()l> (F,/mT)4i+2m;
(C) ri(Y/A) exists, and lYe- r,(Y/X)[ < 4-,+)a;

4i+2m and [p,,o()l> (SLAT)4i+2"(D) IA’p,(/A)I > (/a
(E) ri,o() exists, and Ir,,o()-xa’r,(/X)l<e’/8.
We first prove that the Claim implies (20), and hence (19). By Claims (C) and

(E) we have

,r,,o()- 8iAa’y,I < X(4(m-i)+z)dT + Et/8
< e’/4.

Together with (22), we then have

8,ri,o() > e’/2 e ’/4
>0,

which is (20).
To complete the proof of Lemma 5, it remains to prove the Claim. For notational

convenience, we introduce polynomials p, q R[] for negative i, and let s deg (p),
t =deg (q), d= s-t, as in the case of positive i. Let o, ,"" ", , be the set of
nonzero constants used in the assignments along the path r,i. Clearly, m’< 2m. For
0j m’, define p_ , q_s 1", then s_s t_ d_ 0. For each 0<j= < m, define
the constant y_s and the rational function r_s p_s/q_. We will now prove Claims
(A)-(E) for all -m’ m.

It is obvious that Claims (A)-(E) are true when -m’iO. Suppose 1i n. It
follows easily from the definitions that p() P,o() x, and q() q,o()= 1. Thus,
s=d= 1, t=0, and r(/A)=x/A, r,o() xi exist. Now, by (21), we have

(24) lYi- xi//l =< /4(m+l)dT,
which implies

(25) [x,[ > ]Ayi]- i4(m+l)dT-1

From (22) and (25), we obtain

(26) ]xi] > e’/4.
Using (24) and (26), one can readily verify Claims (A)-(E).

We now consider the case when is in the range n < =< m. Inductively, assume
that Claims (A)-(E) are true for all smaller values of i, and we will establish the claims
for i.

We need the following simple fact.
FACT 2. Let <, r, u> 0 and let g R[Y] be a polynomial in n variables with

deg (g)= u. If all the coefficients a of the monomial terms in g satisfy lal_-< , then
Ig()l-<_ K. 2n+. r/2 for all with 11112_< ’.

Observe that g(Y) is the sum of no more than (/,-1,-1 monomial terms, where
each term has an absolute value less than or equal to K. 1111 . Fact 2 follows from the
inequalities (v+n--1 2.+ 2

n--1 ) and [];ll <= r.

By definition, the ith assignment is z <-- u op wi. It is easy to verify that f,,, p, q
have the following form for some -m’ =<j, k < i.

Case 1. If op {+,-}, then f,x is given by yi-(y opiy), and

qi qjqk, p pjqk opi qp,
Case 2. If op { }, then f,a is given by Yi-YY, and

q qq P pp,.
Case 3. If op {/}, then f,a is given by yiyk-yj, and

qi qjPk, Pi Pjqk.
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To prove Claim (A) for i, observe that pj, qj have degree at most 2+2" and Pk,

qk have degree at most 2k/2" by inductive hypothesis (A). It follows that deg (Pi) and
deg (qi) are no greater than 2J+2m+ 2 k+2m, which is at most 2 i+2m. This proves Claim

(A) for i.
Note that qi is either qqk or qjPk. Thus, using induction hypotheses (B) and (D)

for j, k, we have

IA"q,(/A)I> (/AT)4j+2m (E/AT)4k+2m

(27) >(e/mT)2.4i-l+2m.
But, by (23), Fact 2, and the bound ti<=2 i+2m just established, we have

IA%(Y/A)- q,,0()l--< Xar" 2"+t’(2B’) ’’/2

(28) =< ,AT" (4B’)2’+2

< AAr (20B) 2’+2m.
It follows from (27), (28), and the definition of A that

(29) qi.o(Y)l > (E/AT) 3"4i-1+2m

By (27) and (29), we have proved Claim (B) for i.

By (27) and (29), ri(:/A and r,0() exist. By induction hypothesis (C), r(Y/A),
rk (Y/A) exist and satisfy

ly- r(Y/x)l <4-+,(30)
and

(31)

(32)
There are three cases.

Case 1. op e {+, -}.
It follows from (21) that

(33)

]yk- rk(Y/A)l < l4(m--k*l)dT"

We now prove Claim (C) for i, i.e., we will establish

[Yi-- ri(/A)] < l4(m--i+l)dT"

lYi (Y opi Y)I <- i4(m/l)dT"

Using (30), (31), and (33), we have

[y- r,(Y/
/ [(r(/A) op, r(/A))- r,(/A)[

A4(m+)a + A4(m-j+l)dr + Aa(m-+)ar

3 A4(m-i+2)dr

A4(m-i+l)dr.

Case 2. opi G { X }.
It follows from (21) that

(34) [Yi-YY[ A4(m+I)aT"

Using (30), (31), and (34), we have

[y,- r,(Y/
(35) A4(m+I)aT

A4+a)a + X4-J+IYI + (lyl + 4(m-j+l)dT)4(m-k+l)dT"

Now, by (23), we have

(36) lyjI, lyl
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From (35) and (36), we obtain

lY- r()/A)l _--<4 t(4m-4i+7)dT

< l.4(m-i+l)dr.

Case 3. opi {/}.
It follows from (21) that

(37) [YkYi Yj[ <= l4(m+ )dT"

Using (30), (31), and (37), we obtain

lyl" ly,- r,(/x)l ly,-y;l+ly- (/x)l
+ I((/h)- r(/X))r,(/x)l+lY- r(/x)l" [r,(/A)l

(38)

a4(m-i+2)dr(2 + [r,(Y/a)l).
Now, by (22), we have

(39) [ygle’aa/2.
From (38) and (39), we have

(40)
[y,- r(/h)[ (2/e’)h-ah4(=-’+2 (2 + [r(/h)[)

a(4m--4i+6)dT( 1 + r,(/a)l).
This implies

(41) Ir,(/A)l ly/[ + a(4m--4i+6)dT(i +lr,(/A)l).
It follows from (23) and (41) that

ly, + (4m--4i+6)dT
,(/)

1 A(4m-ai+6)d

2(ly, + 6dT)
(4) (-,+6)

From (40) and (42), we obtain finally

[Yi- r(/
A4(m-i+l)dw.

Thus, (32) is true in all cases. We have established Claim (C) for i.
We next prove Claim (D) for i. Using (22) and (32), we obtain

(43)
> e’/2- h4(m-g+)a

> e’/4.
It follows from (27) and (43) that

I,p,(/)l > (74). (e’/A)4’-+
(44)

>(e’/A)3"4’-1+.
This proves the first inequality in Claim (D).
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To establish the other inequality in Claim (D), we observe that (23) and Fact 2,
together with the established inequality si =<2

i+2" in Claim (A), imply

IA"P,(Y/A) -P,.o()l--< aAr" 2"+’ (2B’) ’/9
(45) <_ AAr(20B)2
It follows from (44) and (45) that

(46)
Pi’(2)l > (e/Ar)3"4’-’+2" AA(20B)’+

>(e/Ar)4’+2.
This finishes the proof of Claim (D) for i.

Finally, we turn to the proof of Claim (E) for i. Note that

[r,.o(.)_ Aairi(/A)l ]Pi,o(:)q,.o(2) ,’,q, (2/,)
Ipi,o()At’qi(/a)- qi,o(C)A*’pi(c/a)l

Iq,,o()[" [ht’qi(:/

<[p,o(Y)[" ]A "q(Y/ A q,o(YC)[ ]qi,o()[
Iq,,o()l" IAt’qi(/A)[

Using (28) and (45), we then obtain

pi,o(Y)l + qi,o())[
(47) [ri’(’)--Ad’ri(/h)[ < AAT(2OB)2’+2m

Iq,,o()l" I"q,(/h)l"
From (27), (29), and (47), we have

(48) ]ri,o()-Aa’ri(/A)]<AA(2OB)2’+m (Ar/e)5"4’-’+’([pi,o(C)]/[qi,o(YC)]).
Now, Fact 2, (23), and the inequalities si, ti2i+2m established in Claim (A) imply

(49)
P,,o()] + ]qi,o()] <-- 2.2+2’+ (2B’) 2’+2m-

<__ (Sn,)m.
It follows from (48) and (49) that

5"4i-1+2m[rio()-ha’ri(./h)l<=AAr(2OB)2’+2" (Ar/e (5B,)23m

<= A. (lOBAr/e)43(m+1,

< e’/8.
This proves Claim (E) for i.

This completes the inductive proof of the Claim, and establishes Lemma 5.
This also completes the proof of Theorem 1. Corollary 1 follows immediately

from Theorem 1.

Ii. Bounded-degree decision trees. Theorem 1 and its corollary are valid for the
bounded-degree algebraic decision tree model, with cl 1/(1 +log2 (2k-1)) and c2
log2 (2k- 1)/(1 + log2 (2k- 1)), where k => 2 is the maximum degree of test polynomials
allowed. The proof has the same structure as in the algebraic computation tree case
but is much simpler. Define all decision trees to be regular, and modify Theorem 3 to
read ".../3 (S6(r),6())-<-k(2k-1) n+’-I where m =cost (T)." All proofs remain essen-
tially the same, except that Theorem 3 is now trivial by Lemma 1’ (as in [B]).

We learned recently that an O(n log n) lower bound to the Element Distinctness
Problem in the bounded-degree algebraic decision tree model was independently
obtained by Lubiw and Racs [LR].

7. Concluding remarks. In this paper we have shown how to use the topological
method when the input space itself is discrete. There has been considerable interest
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in topics that focus on either one of these aspects ([JMW], [MST], [Sm]) in a decision
tree setting. For example, Mansour, Schieber, and Tiwari [MST] studied the complexity
of finding greatest common divisors of two n-bit integers. Smale [Sm] employed a
topological lower bound technique not based on/3(W) for finding approximate roots
of polynomials. Much work remains to be done before we can have a thorough
understanding of the interplay between these two facets.

Appendix: Proof of inequality in Example 6. We will prove the inequality/3 (W (q

W’) >= n! in Example 6. Let be the set of all permutations of {1, 2,..., n}. Let
a (100n)-1, and let @ Rn+l be the set of all points of the form P,,b (b(1- a)o-,
b(1-c)o’2,"" ", b(1-c)trn, b), where o-= (r, o’2," ", trn) and b>0. Let A=
o(lll-p,ll < b}, It is easy to verify that, for each o-,A Wf’) W’ and A
is an open set (and hence of nonzero measure). Thus, each A is contained in a primary
component of W (3 W’. It remains to prove that distinct A’s are contained in distinct
components. It suffices to show that, if 8 Ao and ti’ Ao, where p p’, then they must
not be in the same component of W fq W’.

Suppose otherwise. Let d (a, a2,..., an, an+), d’= (a, a,..., a’,, an+l) be
in the same component P. We will show that it leads to a contradiction. Let s < t-< n

Clearly, there exists a point (cl c2 cn, b) Pbe such thatas<a, andas>a,.
such that c.=ct; otherwise P would be the disjoint union of two open sets
{(Xl, X2," ", Xn+l)lX ( Xt} (-] P and {(Xl, X2," ", Xn+l)lX > Xt} (’ P. We will prove that

(A1) Z c<b n(n+l)(2n+l)-en

Clearly, (A1) contradicts the assumption that P c_c_ W W’.
Let r be a permutation of { 1, 2, , n } such that % _-< c -<. _-< c._, with s rt

and t- o’n where 1-< < n. Then % c. and, as t7 e W fl W’, we have

c,b>0 for all l_<-i<_-n,

Y ci<b -n(n+l)+e,
I%+,-%1 -<b for all l_-<i_-<n-2.

It follows that

2nb2 n(n+l)(2n+l)-nn
This immediately implies (A1).
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Abstract. Rational functions from a free monoid into another are characterized by the finiteness of the
index of some congruence naturally associated with the function. A sequential bimachine is constructed
computing the function, which is completely canonical, and in some sense minimal. This generalizes the
Nerode criterion and the minimal automaton of a rational language, and similar results for sequential
functions.

Key words, rational function, sequential bimachine
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1. Introduction. Sequential machines appear as a ubiquitous tool in data process-
ing and in basic software, since they constitute the most general algorithm between
words that can be executed in real time by a finite device. Their theory is one of the
earliest well-developed chapters of Automata Theory [8], and their natural generaliza-
tion, i.e., the rational functions from a free monoid A* (set of input words) to another
B* (output words) plays a basic role in the study of context-free languages and
compilation [1]. The present paper is a contribution to the understanding of rational
functions.

Here and in the sequel, we follow Eilenberg’s terminology as used in his treatise
[7]. In particular, by function we mean a partial mapping, and we recall that a rational
function c from a semigroup S into a semigroup T is a function such that its graph
{(s, cr (s)) s dom (c)} is a rational subset of the product semigroup S T. This
definition is not the most convenient for our present purposes, and we shall use other
equivalent definitions, by means of automata and machines. In order to understand
the concepts which motivate the study of these objects, we begin with an informal
presentation of the topic.

Recall that a sequential automaton is a two-tape machine reading the input tape
from left to right, and writing on the output tape from left to right; no left move, nor
e-move, is allowed. A sequential function is by definition a function a: A* B* which
is realized by some sequential automaton. Sequential functions are closed under
functional composition.

Strictly speaking, what we have just described are left sequential objects and one
could consider right sequential ones in a symmetric way (read and write from right to
left). However, the associated functions are quite different. For instance, in a fixed
integer base, multiplication by a given integer can be carried out by a sequential
automaton if and only if it reads from right to left, while it is the reverse that is true
for the division.

This leads to a more intuitive definition of rational function as the closure under
composition of left and right sequential functions. An early theorem of Elgot and
Mezei on general rational relations (see 1, Chap. 4, Thm. 5.2]) shows that any rational
function can be obtained by composing one left and one right sequential function.
This is expressed in more compact fashion by the concept of a bimachine 12] according
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to Eilenberg’s terminology [7]. A further basic property that we shall make use of is
that if a is an injective rational function of its domain, its inverse a -1 is again a
rational function. For instance, morphisms q" A*- B* may be the simplest rational
functions. They are both left and right sequential functions. Another way of stating
that a morphism q is injective is the condition that the image q(A) of the input
alphabet is a code, and in this case the decoding function q-i has been intensively
studied (see [2]).

The main result of this paper is a characterization of rational functions, which
extends to functions the classical definition of recognizable languages in terms of
finiteness of the index of a certain congruence (Theorem 1). As a byproduct, this
shortens considerably the proof of a Hankel-like characterization of rational functions
[13]. The second main result (Theorem 2) shows that it is possible to associate to a
rational function a a bimachine that is completely canonical, up to the choice of a
certain left congruence on A* which must be compatible with the left adjacency relation
of a. Among these congruences, there is one, the syntactic congruence, which is
canonical. When a is a total function, the bimachine that we construct is minimal in
the following sense" it has the minimum number of left states among all bimachines
computing a and having the set of right states corresponding to the given congruence.
In general, it is not true that a has a unique minimal device realizing it (see, for
instance, [3] for the case of decoding functions) but our result is the first step in this
direction. The existence of a canonical machine is far from being trivial because, in
view of the two-sided action, there is an unbounded number of ways by which one
can realize the necessary trade-off between the spaces of left and right states.

Of course, the construction of a canonical bimachine gives a decision procedure
for the equivalence of two rational functions (the fact that this is decidable was already
known, see 1 ]). One can expect that, similar to the close relation between combinatorial
aspects of rational languages and algebraic properties of their syntactic monoid, there
should exist connections between properties of a rational function and its canonical
bimachine (see the open problems at the end of this paper).

2. Preliminary results. Recall that a subset of a monoid M is called rational if it
may be obtained from the finite subsets of M by a finite sequence of the following
three operations: union K tA L, product KL, star K* tA ,=>o K" the submonoid gener-
ated by K (see [1], [6]).

We prefer the terminology "rational" to "regular," because the former emphasizes
the analogy with the theory of rational functions of classical analysis and of rational
power series in noncommuting variables.

We consider here partial functions from a finitely generated free monoid into
another. If a :A*-> B* is such a function, then it is called rational if its graph
#a={(u,v)A*xB*[udom(a),v=a(u)} is a rational subset of the product
monoid A* x B*.

In the sequel, we identify each word w and the subset {w}. We write a(w)=,
if w is not in the domain of a.

A more effective characterization is the following: the function a is rational if
and only if there exists a matrix representation (monoid homomorphism) /z:A*-
(2B*)nn, where 2 s* is the boolean semiring of subsets of B* (with union and product),
a row vector A, and a column vector p of length n with entries in the same semiring,
such that for any word w, one has a(w)--A(w)p ((see [1, Chap. 3, Prop. 7.3]); the
fact that a is a function forces each entry of/z, A, p to be empty or a singleton, once
the unnecessary states have been removed). The latter characterization shows that a
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rational function has the following property, which is called the Hankel property,
because it concerns the Hankel matrix (a(UV))u.va*.

LEMMA 1 (Hankel property). For any rational function a, there exists an integer
n and 2n functions ill, ",fin, 3/1, , "gn" A* --> B* such that for any words x, y in A*

a(xy)= U fl,(x)yi(y).
li<_n

Here and in the sequel, we consider each word, and , to be embedded in the boolean
semiring 2 B*, with union and product; thus the previous equation means that for each
with x e dom (fli), y e dom (yi), one has a(xy)= i(x)yi(y), and that a(xy)=fg if

for no one has x dom (i) and y e dom (’)/i).
Proof Let/x, A, p be as in the characterization before the lemma. Then

a(xy) hft(xy)p htxxtxyp U (AftX)i(l.typ) U i(X)3/i(y).
l<=i<_n

To conclude, note that if [/3i(x)[ _-> 2 for some x (in case/3 is not a function), one must
have yi , because a is a function; so this index can be omitted (the case is similar
if some yi is not a function).

A result of Schiitzenberger shows that the converse also holds [13]. We shall give
a new proof of it in the next section. For the moment, let us point out what this Hankel
property means in the case of characteristic functions, i.e., functions whose image is
contained in {, 1} (we denote by 1 the empty word).

LEMMA 2. Let a" A*-> B* be the characteristic function of its domain L. The
following conditions are equivalent"

a has the Hankel property.
(ii) c(L) is a finite union U Hi Ki, where c(w) U w=y (x, y) A* A*.
(iii) L is a rational language.

Note that (ii) is a Hopf-algebra-like characterization of rational languages.
Proof. (i)(ii)" Let Hi--dom(fli) and Ki=dom(Ti), where i and yi satisfy

a(xy) U l<=i_<n fli(X)3/i(y ). Then clearly c(L) U Hi X

(ii) =>(iii)" this is evident by "Nerode’s criterion"" if the set {x-LIx A*} is finite,
then L is rational, where x-lL {ylxy L}. Now, x-L is the union of the Ki’s for
which x e Hi. Hence the x-lL are finite in number.

(iii) :=> (i) is a particular case of Lemma 1.
The next lemma shows the functorial properties of the Hankel property.

LEMMA 3. (i) If a and a’ satisfy the Hankel property, then so does a’ a.

(ii) If a satisfies the Hankel property, then dom (a) is rational.
(iii) If a satisfies the Hankel property, then a -1 preserves rationality.
Proof. (i) We have

a’oa(xy)= a’(U i(x)i(y)) Ui a’(fli(x)Ti(y))

U U i,(i(X))Ti,(’)/i(y))-- U (i, i)(X)(Ti, "yi)(y).
i’ i,i’

(ii) In this case, the characteristic function of dom (a) satisfies the Hankel
property, so it is rational by Lemma 2.

(iii) Let L be a rational language in B*, and let a" A*--> B* satisfy the Hankel
property. Let a’ be the characteristic function of L. Then by Lemma 2 and (i),
satisfies the Hankel property, hence by (ii), dom (a’ a) is rational. But dom (a’ a)

-1 (L).
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This lemma will enable us to prove the following implication: if a has the Hankel
property, then a is a rational function. Proving it is much more difficult than in the
case of characteristic functions (Lemma 2). It depends on a Nerode-like characterization
of rational functions (the main result of 3), and on Choffrut’s theorem, which
characterizes subsequential functions, and which is itself a generalization of the
Ginsburg-Rose theorem on sequential functions. In order to state this theorem, define
the left distance between two words by

where lul is the length of u and u ^ v the longest common left factor of u and v. In
other words, Ilu, ll-lsl/ltl where u=ps, v=pt, and p=uv. This can also be
expressed by the equality Ilu, vii length of the reduced word (in the free group) u-iv,
or equivalently v- u. From this last fact, it is immediate that Ilu, vii satisfies the triangular
inequality. Hence, it is a distance (see also [1, Chap. 4, 2, p. 104]).

A function a:A* B* will be said to be uniformly bounded if for any integer k,
there exists an integer K such that for all x, y dom (a), Ilx, yll kII(x), a(Y)]l g.
The terminology stems from the fact that such a function maps each bounded subset
of dom (a) into a bounded subset of B*, in a uniform way. Thus we do not use the
terminology "bounded variation" of [4].

We shall give a formal definition of subsequential functions in 4, but it seems
advisable to recall now the following result.

THEOREM (Choffrut [4] or [1, Chap. 4, Thm. 2.7]). A function a is subsequential
if and only if it is uniformly bounded and a- preserves rationality.

We say that two functions a, fl :A* B* are adjacent if

sup{llo(f),(f)ll,fdom (a)f’l dom (/3)} < c.

The next result is a decidability result, which will imply that every construction in this
paper is effective.

PROPOSITION 1. Ifa, a’:A* B* are rationalfunctions, then one can decide if they
are adjacent. In this case, the function a ^ a’ defined by: (a ^ a’)(f) equals the longest
common left factor of a(f) and a’(f) when f dom (a) (’1 dom (a’), and otherwise,
(a ^ a’)(f) a(f) kJ a’(f), is rational and can be computed effectively.

Remark 1. If al, a2 are rational but not adjacent, then cel^ a2 is not rational, in
general. Define them, indeed, to be the homomorphisms {al, a2}* t* such that
ol.i(ai)-- t, ol.i(aj)--- 1 for j # i.

Then (a ^ a2)(f is equal to "(y), where n(f)=inf(lfla,, [fla2), which implies
that al ^ a2 is not rational (indeed, the inverse image of (t)*, by the pumping lemma
for finite automata, is not rational).

We shall need the following lemma, which is an easy consequence of a theorem
of Fine and Wilf (see [9, Chap. 1, Prop. 3.5]).

LEMMA 4. Let u, v, w, u’, v’, w’ be words such that sup {[]uv"w, u’v
Then one has:
(1) For some word t, either u’= ut and tv’= vt, or u u’t and tv v’t.

One of the referees pointed out that the lemma easily follows from the preliminary
remark that [v[ Iv’l.

Proof of Proposition 1. (1) Without loss of generality, we may assume that a and
a’ have the same domain and that a(1)= a’(1)= . Indeed, we may restrict a and a’
to dom (a) f’l dom (a’)\{1} and test the adjacency of these new functions. In this case,
there exist transducers T and T’ for a and a’, with set of states Q, Q’, initial states
q0, q, and unique final states qy, q) (see [1, Chap. 3, Thm. 7.1]).
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Define the "Kronecker product" of T and T’" it is the "transducer" T, with set
of states Q=QxQ’, inputs in A*, and outputs in B*B*; there is a path

x/u x/u’) q,(p, p,) x/(u,u’) (q, q,) in if and only if there is a path p q in T and p in
T’; moreover, all the unnecessary states of T are removed, so that all states of T are
accessible and coaccessible, with initial state to (qo, q) and final state tb= (qy, q)).

A simple path is a path without repetition of states, and a simple circuit is a closed
path with no repetition of internal states.

We show that a and a’ are adjacent if and only if T satisfies the following condition:
(C) For any simple path (qo, q) x/(u’’) (q, q’) and any simple circuit

(q, q,) y/(v.,) (q, q,), we have equation (1) of Lemma 4.
Clearly, if a, a’ are adjacent, and with the notations of (C), there exists a path

(q, q,) z/(w,w’) (qf,

Then a(xy"z)= uv"w and a’(xy"z)= u’v’"w’. As a, ce’ are adjacent, Lemma 4 shows
that (1) holds.

Conversely, suppose that (C) holds. Then, for each long enough word m in
dom (a) =dom (a’), there is a factorization m xyz, a simple path and a simple circuit
as in (C) above, and a path (q, q’) z/w.w, (co, q,y).

Then a (m) uvw, a’(m) u’v’w’. By (1), we have, e.g., u’ ut and tv’ vt. Then
u’v’w’= utv’w’: uvtw’, hence II(m), c’(m)ll Iluvw, uvtw’ll IIw, tw’ll Iluw, utw’ll
Iluw, u’w’ll- II(xz), ’(xz)ll, which allows us to conclude by induction on the length
of m.

Clearly, condition (C) is decidable, which completes the first part of the proof.
(2) We construct now a transducer for ce ^ a’, which will imply that it is a rational

function. This construction is a rather classical covering construction, so we shall not
be very formal.

We call a path in T elementary if it starts from (qo, q) and if only the last vertex
is allowed to appear more than once, and in this case, only twice. Hence, such a path
is either a simple path, or the concatenation of a simple path with a simple circuit, as
in condition (C).

Denote by u ^ v the longest common left factor of the words u and v. We construct
a tree T* having the set of elementary paths in ’ as a set of nodes; there is an edge
from 7r to 7r’ in T* if 7r’= 7re, with e an edge in . Note that 7r, 7r’ correspond to paths
(qo, q) /’’)’ (P, P’) and (qo, q) ,a/(v.,) (q, q,), with u (respectively, u’) a left factor
of v (respectively, v’); so we have an equation v ^ v’= (u ^ u’)s, for some word s in
B*" then the previously created edge in T* will be labelled by a/s.

Call an elementary path complete if its last state is repeated. Now, in T*, merge
the node corresponding to such a state with its first occurrence in the path: in this
way, we obtain a transducer S; let/3 be the function computed by S.

We show that/3 a ^ a’. Clearly, fl(m)= (a ^ a’)(m) for any word m such that
there is in an elementary path (qo, q) -,L..- (off, q)).

It follows that this equality is true for each short enough word m. Now, let m be
such that there is a nonelementary path (qo, q) (off, q)). Then this path may be
decomposed as

(qo, q) x/(,,,’), (q, q,) y/<,’), (q, q,) z/(w,w’)-, (qf, qf),

where the first two factors form an elementary path, for some factorizations m--xyz,
a(m) uvw, a’(m)= u’v’w’. Moreover, a(xz)= uw and a’(xz)= u’w’.
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This corresponds in S to a path

(qo, q’o) / y/ ,) z/(q, q’) (q, q (qf, qf).
By construction, we have t7 u ^ u’, t73 uv ^ u’v’. By induction on Iml, we also have
(a ^ cr’)(xz)=(xz)=ftff. Now, condition (C) holds, so we have, e.g., u’=ut and
tv’= vt. Hence, tT uw ^ u’w’= uw ^ utw’= u(w ^ tw’). As t7 u ^ u’= u, we obtain
ff w ^ tw’. Moreover, a(m) ^ a’(m)= uvw ^ u’v’w’= uvw ^ uvtw’= uv(w ^ tw’)= uvff.
Now, we have also =uv^u’v’=uv^uvt=uv, so that a(m)^a’(m)=uvw=
fl(xyz) =/3(m), which had to be shown. [3

3. A characterization of rational functions. We give a characterization of rational
functions, which has some formal analogy with the Nerode criteriort for rational
languages and which is related to Chotirut’s theorem (see 2).

As we consider partial functions, it will be convenient to use symbol , and the
distance will be extended by setting

0, oo

for any word u. By convention, we have n < oo for any number n and n + oo oo. Then,
the triangular inequality remains valid. Now, let a be a fixed (partial) function A* B*,
where A, B are finite alphabets. Define a relation

on A* by the condition

sup {llc(fu), a(fv)ll,fe*}<.
Note that, by the above conventions, u---v implies that a(fu)= if and only if

a(fv) . This implies, by the triangular inequality, that is transitive. Moreover,
it is clearly reflexive and symmetric and it is not difficult to show that is left
compatible, i.e., u--. vxu .--xv for any word x. Hence is a left congruence of A*.

We call it the syntatic left congruence of or. The terminology is justified by the
following observation" if a is the characteristic partial function of a language L (i.e.,
a(w) 1 if w L, = if w L), then its syntactic left congruence is the usual syntactic
left congruence of L. One could, of course, also define the right syntactic congruence
in a symmetric way.

The main result of this section is given in the following theorem.
THEOREM 1. A partial function or" A*- B* is rational if and only if its syntactic

left congruence is offinite index and ifa-l(L) is rationalfor any rational language L B*.
A consequence of this result is a new proof of the Hankel-like characterization

of [13].
COROLLARY. A partialfunction or" A*- B* is rational if and only if there exists an

integer n and partial functions fl, %" A*- B*, 1 <= <-_ n, such that for any words x, y

(2) a(xy)= /3i(x)%(y).
<.i<_<_n

Proof We prove the theorem and its corollary at the same time by showing that
a rationala satisfies the Hankel property=>---of finite index and cr -1 preserves
rationalitya rational. The first implication is Lemma 1 and one-half of the second
is Lemma 3. So, assuming (2), we show that the syntactic congruence--- of a is of finite
index.

We show that the condition

(3) Vi, l <_ <_ n %(u) s iff %(v) S
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implies u---v: this will imply that the index of--- is less than or equal to 2". So, let
(3) be satisfied and define N to be some integer greater than the lengths of the words
3"i(u), 3"i(v)#, l<-i<-n. Let f be any word; we show that [la(fu),a(fv)l[<2N.
Indeed, if a(fu)=, then by (2), for any i, either i(f)-- or 3"i(u)--. By (3) we
obtain: for all i, fli(f) or 3’(v)=, and again by (2), a(fv)=. In this case,
II(fu), (fv)ll =0<2N. On the other hand, if a(fu)# , then there exists by (2) an
such that a(fu) i(f)3"i(u) and/3(f) # # 3"i(u). Hence, by (3), we have 3’i(v) ,

which implies by (2) that a(fv)=,8(f)3"i(v). Hence

(fu), (fv)ll- ll/3i(f)3"i(u),/3(f)3,(v)jJ 3’(u), 3"i(v)ll <2N,

Finally, we have sup {[[a(fu), a(fv)l],fz A*} < and thus u v.
We now show the last implication: if--- is of finite index and if a

rationality, then a is a rational function.
Since is a left congruence of finite index on A*, the set

Q=A*/

-1 preserves

by

3’’ A* (A x Q)*

3’(a, a,)= (a,, q,_,)... (a2, q,)(al, qo),

where ai A, qo is the class of 1 mod and where q aiqi-1 for 1, , n 1. This
function 3’ is clearly sequential from right to left, and hence a rational function (see
[1, Chap. 4, Cor. 2.3]). Clearly, 3’ is injective, hence 3’-1 is a partial function. Actually,

--1
3’ 7rllm (3’), where 7r is the canonical projection

.n" (A Q)*- A*.

Define /3 a 3’-1. (A Q)*- B*. We have a =/3 3’ since 3’ is a total function. We
show that /3 is a subsequential function, hence it is rational (see [1, Chap. 4, Prop.
2.4]); this will imply that a is rational, as a product of rational functions. (See [1,
Chap. 3, Thm. 4.4 and Def., 1].)

We use Choffrut’s theorem, stated in 2. As /3 -1 clearly preserves rationality
(because/3-= 3’ a -1 and 3’ and a -1 both preserve rationality), it is enough to show
that/3 is uniformly bounded.

CLAIM. If FU Is(y) with F 1, then the last letter of F is of the form (a, uqo)
where u 7r( U).

This is immediate from the definition of 3’.
Let k be an integer. Define K to be some integer greater than a(fu), a(fv)[[ for

any word f and any words u, v such that u---v and [ul+[vl<_-k, and greater than
[[(X),fl(Y)]] for [X[+IY[<-k and X, Y dom (/3).

This is possible by the definition of--- and the fact that the words u, v with
]u] + [v] _-< k (respectively, the words X, Y with IX[ +IYI _-< k) are finite in number.

We show that

(4) VX, Y dom (fl), [IX, YI[--< kllfl(X), ( Y)[[ =< K,

which will imply that/3 is uniformly bounded. By the definition of K, it is enough to
prove (4) for IX +lVl > k.

is a finite set with a left action (w, q)- wq of A* on Q. Consider the finite alphabet
A Q and define a length-preserving function



676 C. REUTENAUER AND M. P. SCHUTZENBERGER

So, let X, Y with X, Y dom (/3), IXI +IYI > k, x, YII --< k. We may write X FU,
Y FV, where F is the longest common left factor of X and Y. Since IIx, YII--< k, we
have uI /lvI <- Since Ixl /IYI > k, we also have F 1.

Let u 7r(U), v=Tr(V),f=Tr(F). Since X, Ydom (/3), we have X, YIm (y);
hence, by the claim, the last letter of F is (a, uqo) (a, vqo), and thus uqo vqo, which
implies u---v. By the definition of/3, we have/3(X) (fu) and/3(Y) a(fv). Since
lul/l l-lul/lwl<-_k, we have by the definition of K, Ila(fu),a(fv)ll<=K, i.e.,

Y)II =< K, which proves (4).

4. A canonical bimachine. We modify slightly the definition of a generalized
bimachine, as given in [1] and [7]. One of the reasons for this is that we want to give
an arbitrary image to the empty word under the function computed by the bimachine.

A bimachine is given by
A finite set L of left states, with right action LA* L, (1, w)--lw, and a left

initial state lo.
A finite set R of right states, with a left action A* x R - R, (w, r)- wr, and with

a right initial state ro.
An output function co :L x A x R B*.
A final left function A :R- B* and a final right function p L- B*.

The output function is extended to L x A*x R by the formula

(5) co(l, uv, r)= co(l, u, vr)co(lu, v, r).

In particular, w(l, 1, r)= 1. The function computed by the bimachine is c :A*- B*
defined by

(6) ce(w) A(wro)co(lo, w, ro)p(low).

If w= a... a,(ai A), this may be written more algorithmically (using (5)) as

a(a. a,)=Z(a,.., a,ro)" (I a(loa" ai_,, ai, ai+" a,ro)
i=1

(7) p(loa a,).

When R is reduced to a single element, then a bimachine is simply a subsequential
transducer, as in [1] (a subsequential transducer is sometimes called a generalized
sequential machine with endmarker, see [5, Thm. 2.2]). A bimachine in the sense of
[1], [7] is a bimachine as above, where Z and p are constant functions equal to 1.

Let a :A*- B* be a function. We define on A* a relation, which will be reflexive,
symmetric, compatible with left multiplication, but not transitive in general. We call
it the (left) syntactic adjacency relation of a, denoted by

It is defined by

(8) sup {l[ c(/u), c(fv)ll,f A*, a(fu)

Note that, in view of the definition of adjacent functions ( 2), one has u v if and
only if the two functions fa(fu) and fcr(fv) are adjacent. It is also easy to see
that a is uniformly bounded if and only if u - v for any words u and v. Note,
moreover, that if dom (a)= A*, then is transitive and equal to the left syntactic
congruence of a.

We call a left congruence on A* compatible with if for any words u, v,
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In terms of their graphs, this means that : (---) is contained in : (,--). Recall that when
is a left congruence, then R A*/--- is naturally equipped with a left action

A*RR.
THEOREM 2. Let a: A*- B* be a rational function. Let be a left congruence of

finite index on A* and R A*/--- and ro the class of 1 mod---. The following conditions
are equivalent:

(i) is compatible with the syntactic adjacency relation of a.

(ii) R, together with the natural left action and ro as initial right state, is the set of
right states of some bimachine computing a.

It will turn out that the bimachine that we obtain in the proof is completely canonical,
once is given. Moreover, one may choose for the congruence considered in the
previous section, thus obtaining a completely canonical bimachine. On the other hand,
we shall verify that this bimachine is minimal, in the sense stated in the introduction,
when a is a total function.

Proof of Theorem 2 (first part). (ii)(i): Let R be the set of right states of a
bimachine computing a. We have, by the definition of R,

u--- v uro= vro.

We have to show that u---v implies (8). Suppose that u---v, that is, uro vro =r, for
some r in R. Let N be some integer greater than the lengths of the words (if defined)
w(l, u, ro)p(t’) and w(1, v, ro)p(t’), for l, 1’ in L. We have, by (5) and (6),

Similarly,

o(fu) A(furo)w(lo,fu, ro)p(lofu)

(furo),O(to,f, Uo),O(tof, u, o)p(tofu)

;(f),O(to,f, r)o(tof, u, ro)P(tofU).

(fv) (fr),o(o,f, )oO(tof, v, ro)P(tofV).

If a(fu)# a(fv), then a(fu) and a(fv) have A(fr)w(lo,f r) as a common left
factor, hence

II(/u), (f)l[ <2N.

This shows (8), and thus is compatible with the left adjacency of a.

Before continuing the proof, we need several lemmas.
LEMMA 5. If is a rational function and is a left congruence on A* offinite

index, then there exist nonempty rational functions fl, Yi, 1 n, such that

(ii) Each set dom (y) is contained in a single class mod .
Proof (i) follows from Lemma 1 and its proof, which show that fl, yi may be

chosen rational. Now, note that each class mod is a rational language, and that the
restriction of a rational function to a rational language is still rational. So, replacing
in (i) each % by the union of its restrictions to each class mod , we obtain (ii).

Remark 2. Using this lemma, it is easy to prove that the graph of the syntactic
adjacency relation ofa rationalfunction is a recognizable subset ofA*x A* (in the sense
of [1, Chap. 3, Thm. 1.5] and [7], i.e., a finite union of sets K x L, where K, L are
rational languages).

Indeed, define j if the functions fl, fl; are adjacent. Now, for L J c { 1, , n},
define I J if for any in L j in L one has j. Finally, let I(u) { i[ u dom (%)}.
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Then one shows that u v if and only if I(u) I(v). This implies that the graph
of is equal to

{u6a*lI(u)-I}{va*lI(v)=J},
I--J

which is recognizable.
We need to define the operator "longest common left factor" for sets of words

rather than only pairs of words. For technical reasons, it should also be defined on
the empty set. Each singleton set will be identified with its element. So, for a nonempty
language L, let/ L denote the longest common left factor of the words in L equal to
ifL=.
For xl,’’’,x, A*t3{}, we define Xl^’"^x, to be /k L, where L is the

underlying set of the sequence. So xl ^ ^ xn if and only if at least one xi is not
equal to . Note that if L is a language, then/ L =/k L’ for some sublanguage L’ of
cardinality less than or equal to 2 (indeed, if ILl _-> 2, there exist words u, v in L such
that u ^ v =/ L). If al, a are functions A* - B*, then the function a al ^ ^
an will be defined by a(f) al(f) ^" ^ an(f). Note that dom (a) U lin dom (ai),
in view of the definitions.

We shall use the easily verified identities

for any languages L, I, and
/ (gL)= g(A L)

for any language L and g in A*U {}.
LEMMA 6. Let al , an" A* B* be pairwise adjacent functions such that each

-1 preserves rationality.ol

(i) For any words g, g2 in B*, the language

{f[ 3w B*, al(f wgl, az(f wg2}
is rational

(ii) If the functions ai are, moreover, rational, then al ^... ^ an is rational
Note that this gives an alternative proof of the following: a, a’ rational and adjacent
implies a ^ a’ rational (see Proposition 1).

Remark 3. Let al, a2 be as in Remark 1. Then the language {f A*lal(f) a2(f)}
(this is the case g 1= g2 of the lemma)is equal to {f A*, [f[a [f[2}, and hence
is not rational. This shows that the adjacency hypothesis is not superfluous in Lemma 6.

Proof (i) Let p be an integer such that [gl], [g2] <p and that for anyf in A*, a(f)
and a2(f), if defined, differ only by a right factor of length less than p.

We show that for f in A*, the condition

(a) [wl>-p,
is equivalent to the condition

(b) :lie{0,..., 2p- 1},

Crl(f) wg and C2(f)-- wg2

::] u Bp such that a,(f) Bi(B2p)*ug,
and a2(f) B’(B2p)*ug2.

Suppose that this is proved. Then the language L of the lemma is equal to L U L2,
where L1 {f a*[f satisfies (a)} and L2 {f6 L, [a(f)l<-_Zp or [az(f)[_-< 2p}. By the
hypothesis that the a7 preserve rationality and by (b), L1 is rational. Moreover, if
al(f) is short, then so is a2(f) and vice versa. Hence, L2 is contained in a finite union
of languages of the form Lw={fA*]a(f) wg and az(f) wg2}, which are also
rational; since each Lw is contained in L, we conclude that L is rational.
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It is clear that (a) implies (b). Suppose that (b) holds, that is, al(f) SlUg1,

a2(f) s2ug2 with ISl[, Is21 mod 2p. We must show that sl s2. By adjacency, we
have eel(f)--thl, a2(f)= th2 with [hi], Ih2[ <p. As Ig,[, ]g[ <p, the difference between
[SlU[ and It[ is ess than p. The case is similar for Is2u] and It[. Thus IIsl-ls=ll-
Ils,ul-ls2ull < 2plsl [s=l.

Now, Ihll <--p--< lull, which implies, by sug the, that Is,l-< Itl, hence sl is a left
factor of t. Similarly, s2 is a left factor of t. As they are of equal length, they are equal.

(ii) We have, by a previous formula,

ffl A A a (a A a2) A O3A" A

hence we may assume that n 2, because each ai is adjacent to a A a2.
Without loss of generality, we may assume that dom (al)=dom (a2) D. Then

D is a finite union of languages D(gl, g2), where D(gl, g2)
{f A*IElw B*, al(f) wgl, a2(f)= wg2} and where g and g have no common left
factor. Each ofthese languages is rational by (i), and iff D(g, g), then (a A a2)(f)
al(f)g7 Hence, the restriction of a A a2 to D(gl, g2) is rational, and finally al A

is rational, as the union of a finite number of rational functions.
LEMMA 7. Let a" A* B* be a rational function, and a left congruence on A*

of finite index that is compatible with the left syntactic adjacency relation of a. Let
R A*/-- and define for each r in R a function Ol by

a(f =/ {a(fu) u A*, uro r},
where ro is the class of 1 mud--. Then there exists a finite language L such that

(i) u Lr=r> Uro-- r,
(ii) ar(f /u a(fu).

As a consequence, the function ar is rational.
The point of the lemma is that Lr does not depend onf (otherwise, it is immediate,

using a previous remark on/k L).
Proof. Suppose there exists a finite language Lr such that (i) and (ii) are satisfied.

By (i) and compatibility of--, the words in Lr are pairwise in relation , that is, the
functions fa(fu) are, for u in L, pairwise adjacent. Since these functions are

rational, we obtain by (ii) and Lemma 6(ii) that a is a rational function.
In order to prove that there exists a finite language Lr satisfying (i) and (ii), take

/3i, / as in Lemma 5. By condition (ii) of this lemma, there exists for each a unique
r(i) such that u dom (7)uro r(i). We know that for each i, there exists a finite
language L dom (%) such that/ Ti(A*) --/ Ti(Li). Let L U r(i)=r Li. We thus have
/ {yi(u)[u e dom (7i)} =/ {yi(u)lue L}. Moreover, (i) holds by definition. We have
also

a(f =/ {a(fu) uro r}

=A {,(f)%(u)luro=r, l<=i<-n and u dom (%)}

A {,(f),(u)[r(i) r, u dom

A,)= (A {/,(f)%(u) u dom (y,)})

A(,)= ,8,(f)(A {%(u)[ u 6 dom (,,)})
A,-(,)=r ,8,(f)(A {%(u) u 6 Lr})

=/,(,)=r (A {[3i(f)yi(u)[u Lr})
=/ {i(f)yi(u)]r(i)= r, u6 L}
=/k {a(fu)lu6L} (because u6L and uedom (%)=>r(i)=r)

A,.,Z..r Oe(fu). F!
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LEMMA 8 (Notations of Lemma 7). There exist a function to :A* x A* x R --> B*
and a function p :A* --> B* such that

(i) For any words f, g in A* and state r in R

(ii) For any word f in A*

a(fg) a(f)to(f g, r);

(f)=aro(f)P(f)"

Proof The second assertion is immediate, because by definition, aro(f) is a left
factor of a(f). If a(f) (, we define p(/)= (aro(f))-la(f). If a(/)=, we pose
p(f) . Note that the set

{a(fgu) u a*, uro r}

is contained in the set

{a(fv) v A*, vro gr}.

Hence, by definition, OI.gr(f) is a left factor of ar(fg). If ar(fg)(, we define
to(f,, g, r) (agr(f))-lar(fg). If ar(fg)=, we pose once again to(f, g, r)=. [-!

LEMMA 9 (Notations of Lemma 7). Define a relation =-on A* by

f=-g

if and only if

to(fu, a, r)= to(gu, a, r)

for any word u A*, letter a A, and state r in R, and if
p(fu)=p(gu)

for any word u. Then is a right congruence offinite index.
Proof Recall that when 61," ", 6p are functions A*-> B* such that
(i) Each i(A*) is finite;
(ii) For each g in B* and i, 67,1(g) is a rational language;

then by Nerode’s criterion, the right congruence on A*, defined by f=-g if and only
if 6i(fu)= 6(gu) for any and u, is of finite index.

Hence, it is enough to show that the functions to(., a, r) :f--> to(f, a, r) and p have
finite image and that for any a, r, g in B*, the languages {f A*lto(f, a, r)= g} and
{f A* P (f) g} are rational.

For this, it is enough, in view of Lemma 6(i) and Lemma 7, to show that the
functions f-> ar(fa) and f->aar(f) are adjacent for any a A and r R, and that the
functions a and a are adjacent.

By Lemma 7, we have ar(fa)=/,t a(fau) and aa(f)=/to a(fv).
Note that u Lr and v Lor implies that uro rauro-at, and Vro at. Hence

au v, which implies au - v and the functionsf-. a(fau) andf- a(fv) are adjacent.
Moreover, for w, w’ Lr, one has w--- w’ (by Lemma 7 (i)), hence w - w’ (by compati-
bility of-), hence the functions f- a(fw) andfa(fw’) are adjacent. This shows
that the functions f-ar(fa) and faor(f) are adjacent, because of the following
easily verified fact: if al, , a, (respectively,/31, , tip) are pairwise adjacent, and
if each a is adjacent to each fl, then a ^" ^ a, is adjacent to/31 ^" ^ tip.

Moreover, ao(f)-/o a(fu) and a similar proof shows that this function is
adjacent to a.
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Proofof Theorem 2 (Second part). Let L= A*/=-, where is the right congruence
of Lemma 9. Then L is finite, and equipped with a right action L A*- L. For in
L, a in A, and r in R, we may define to(l, a, r) to(f, a, r) and p(l) p(f), where f is
a representative of mod =.

Let lo be the class of 1 mod -=. Define a function A:R B* by A(r) ar(1).
With these pointed sets (L, lo), (R, ro) and functions to, A, p, we obtain a bimachine

for which we have only to verify that it computes a, that is, formulas (5) and (6). For
this, it is enough to show that the functions to and p of Lemma 8 satisfy

(9) to(f, gh, r)= to(f, g, hr)to(fg, h, r)

and

(10)

But we have, by Lemma 8,

and

a(f) A(fro)to(1,f ro)p(f).

or(fgh Olghr(f)to(f gh, r)

Ogr(fgh Oghr(fg)to(fg h, r)

ag(f)to(f g, hr)to(fg, h, r).

So (9) is true as soon as Oghr(f Q. When Oghr(f --, then or(fgh)= , and by the
definition of to, we have to(fg, h, r)= (g= to(f, gh, r). So, (9) is also true.

For (10), we have, by Lemma 8,

a(f) aro(f)P(f) aro(1 f)P(f) afo(1)to(1,f ro)p(f) A(fro)to(1,f ro)p(f),

which proves (10). 1
Remark 4. (1) Note that when ro in R is replaced by r, and p by the constant

function p’ equal to 1, then this new bimachine computes a. Indeed, by Lemma 8,

ar(f)-- ar(1 f)= afr(1)to(l,f, r)= A(fr)to(lo,f r)p’(lof).

(2) When a is a subsequential function, then its left syntactic adjacency is universal
(i.e., u v for any word u, v), hence a left congruence. If one takes this congruence
for in Theorem 2, then the bimachine constructed in the proof is exactly the minimal
subsequential transducer of a, as constructed by Chottrut [4] (see also [11]).

5. Example, remarks, and open problems. (a) Let A {a, b} and a :A*- A* be
the function which removes odd runs in a word. More formally, if

W ailbj aikbjk

where the exponents are greater than or equal to 1, except possibly and jk, then define

{ ifisiseven
s

otherwise;

j:=js ifjs is even

[o otherwise.

Then a(w)= ai;bs... ai’kb’k. Moreover, a(1)= 1.
We leave to the reader the verification of the following facts.
(1) The left syntactic congruence of a is generated by the relations

a 2,--. 1, b2"-- 1, ab a, ba--- b.
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(2) Identify R =A*/--- with {1, a, b}. The functions al, a, ab are defined by
Og Og, Oe,,(f)= a(fa), oe,(f)= a(fb).

(3) The function p is constant and equal to 1, and

w(f a, 1)= w(f b, 1)= w(f a, b)= w(f b, a)= 1.

Moreover,

i
if the last run off is an even run of a’s or if

oo(f a, a)= f does not end with a.

otherwise;

{12 ifthelastrunoffisanevenrunofb’sorif
oo(f, b, b)= f does not end with b.

otherwise.

(4) The right congruence--is generated by the relations

a2= 1, b2= 1, ab b, ba a.

Actually, it is the right syntactic congruence of a (this is not a general fact, even
for everywhere-defined functions).

(5) The function A is constant equal to 1 and if L=A*/=- is identified with
{1, a, b}, then w is described by the following tables

1 a

1 1 a2

a 1 1

b 1 a2

b2

1 a 1 1 b2

1 b 1 1 1

w(1, a, r) w(l, b, r)

5.1. Minimization. We verify that, when a is a total function, then the bimachine
constructed in the proof of Theorem 2 has the minimum number of left states among
all bimachines computing a, with R as a set of right states (with its natural left action),
with ro as initial right state.

So let a be computed by the bimachine B’ with a set of left states L’, initial left
state l, set of right states R, initial right state ro, output function to’, final left function
A’, and final right function p’.

We show that for any words g,f in A*, the equality l’of l’og implies f= g (where
is the right congruence of Lemma 9). This will imply that L= A*/= has fewer

elements than l’oA*, hence fewer than L’ (because l’oA*c L).
We work in the free group generated by A. With the notations of Lemma 7, we have

(11) ar(f) =/ {a(fu) u A*, uro r}.

By (5) and (6) applied to bimachine B’, we have

a(fu) a’(furo)to’( l’o, f, uro)to’( l’of, u, ro)p’( l’ofu).

This, along with (11), implies that

(12) r(f) a’(fr)w’(l’o,f r)(l’of r)
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where/3" L’x R- B* is the function defined by

fl(l’, r)= A {to’(/’, u, ro)p’(l’u)[uro r}.

From (12) we deduce

(13)
Ogr(fg tt(fgr)(.ot( lto,f r)[( ltofg, r)

A’(fgr)to’(l’o,f, gr)to’(l’of, g, r)fl(l’ofg, r),

where we have used (5) again. From (12) again, we deduce

(14) Ogr(f)to(f g, r)= A’(fgr)to’(l’o,f, gr)fl(l’of, gr)to(f, g, r).

Recall that we have, by Lemma 8(i),

OZr(fg)-- Cegr(f )to(f, g, r).

Using this and comparing (13) and (14), we therefore deduce that

(15) w(f g, r)= fl(l’of gr)-’w’(l’of g, r)(l’ofg, r).

Indeed, a is a total function, so a and %r are total functions as well, and every factor
in (13) and (14) is defined; we thus may simplify by h’(fgr)w’(l’o,f gr), and multiply
(in the free group) by/3(lf, gr)-.

By Lemma 8(ii), we have

a(f)=ao(f)p(f).

As a is computed by/3’, and by (12), we thus obtain

,U(fro)w’( l, f ro)p’( lof A’(fro)w’( l’o, f ro)fl( l’of ro)p(f).

Thus, we deduce

(16) p(f) (t’of ro)-’p’(lof).

Now, let f, g, u, a, r be as in Lemma 9, and suppose that l’of l’og. Then by (15), used
twice (with f-fu, g-. a, and after f gu, g- a), we obtain

w(fu, a, r)= (l’ofu, ar)-lto’(lofu, a, r)fl(l’ofua, r)

(l’ogu, ar)-’to’(l’ogu, a, r)fl(l’ogua, r)= to(gu, a, r).

Moreover, by (16), we have

p(fu) (lofU, ro)-lp’(lofu)

fl(16gu, ro)-’p’(logu)= p(gu).

This shows, by Lemma 9, that f= 8, which was to be shown.

5.2. Counterexample. We show that when a is not a total function, then the
minimization result of 5.1 is no longer valid. This is a mystery which should be
elucidated elsewhere.
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Let a’a*a* be defined by a(a2n) a2n, c(a2"+1)=. Take R=a*/a2"--1 (.---
is the syntactic left congruence) and identify R with {1, a}. Then

c1(1) =/ {o (u), u.1 1}

/k (o(a2n), n l}= l

cl(a) =/ {ce(au), u.1 1}

=/ {a(aa2"), n r}

ca(a) =/ {ce(aZu), u.1 a}

=/ {a(aZa2"+l), n}=

Ol.a(a --/ {ce(au), U. 1 a}

=/{a(aa"+l), n }= a2.

Using Lemma 8, we have aa(a)=cel(1)w(1, a,a) and aa(aZ)=al(a)w(a,a,a).
Hence, w(1, a, a)= a2, and w(a, a, a)= (see the proof of Lemma 8). We deduce, by
Lemma 9, that a 1.

However, the function is subsequential in both directions, hence, it may be
computed with R as a set of right states, and a trivial set of left states (i.e., a singleton).

The reader may find it instructive to compare the previous example to the two
following ones:

{ a2" - a2" {a2la2n+l --> b2n+l a2n+l ---) a"

The first function is not subsequential, in either direction, while the second is subsequen-
tial in both directions.

5.3. Open problem. A theory of morphisms between bimachines computing the
same function c should be developed, keeping in mind the following possible conjec-
ture: there are only a finite number of minimal bimachines computing c (minimal
would mean universally attractive in the category of these bimachines).

One cannot expect a single minimal bimachine: evidence for this is given by the
rational languages; there is no "morphic" relation between the left and the right
minimal automaton.

5.4. Open problem. A bimachine has two sets of states, hence there are two finite
monoids attached to it. Call a bimachine aperiodic such that these monoids are aperiodic
(i.e., with trivial subgroups, or period equal to 1). Characterize the rational functions
c, which are computed by some aperiodic bimachine. A tentative conjecture could be"
c is as above if and only if for any rational language L, the period of c-l(L) divides
that of L (recall that p is a period of L if the cardinality of each cyclic subgroup of
the syntactic monoid of L divides p).

More generally, a theory of varieties of rational functions could be made, as has
been done for rational languages and finite monoids [10]. A first step would be to
study sequential and subsequential functions.

5.5. Open problem. Characterize rational functions which are both left-to-right
and right-to-left subsequential. These functions simultaneously generalize rational
languages (by their characteristic function) and biprefix codes (by their decoding
functions).
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An answer in the case of numerical functions (i.e., with image in a cyclic free
monoid) has been given by Chottrut and Schiitzenberger [6].

Acknowledgments. We want to thank the two referees for many valuable comments
and suggestions.
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THE FAST m-TRANSFORM: A FAST COMPUTATION OF
CROSS-CORRELATIONS WITH BINARY m-SEQUENCES*

ERICH E. SUTTER

Abstract. An algorithm is presented for the fast computation of the m-transform, a Hadamard transform
intimately related to cross-correlation of analog signals with binary m-sequences. It is shown that m-
transforms are in the same Hadamard equivalence class as Walsh-Hadamard transforms and can, thus, be
computed by means of the Fast Walsh Transform (FWT) algorithm, preceded and followed by a permutation.
The FWT is performed in place in the original data array, while the permutations are executed during
loading and reading of this array. Real-time generation of the array addresses for loading and reading adds
little to execution time of the FWT. The implementation described here lends itself particularly well to

applications in linear and nonlinear systems analysis.

Key words, fast cross-correlation, Hadamard transforms, m-sequences, nonlinear systems analysis,
Walsh-Hadamard transforms
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Introduction. The first theoretical work on binary m-sequences was published by
Zierler in 1959 [1]. During the following decades their properties were extensively
studied [2]. Researchers soon found applications in the fields of systems analysis and
identification. The ease and speed with which these pseudorandom sequences could
be generated made them very attractive in situations where random white processes
are called for. In one of the first such applications, Briggs et al. [3] used them for a
linear correlation analysis of process dynamics. Subsequently, numerous applications
in nonlinear systems analysis were explored [4], [5], [6]. It was discovered, however,
that the randomness properties of m-sequences, as exhibited in higher order auto-
correlation functions, are not adequate for emulation of truly random sequences [6],
[7], [8]. Detailed studies of their auto-correlation properties [9] ultimately discredited
binary m-sequences as test inputs for stochastic white noise of nonlinear systems. The
recent introduction of a deterministic technique 10], however, renewed interest in the
application of binary m-sequences to systems analysis problems. In this new approach,
the derivation of the binary kernels of all orders is reduced to a single cross-correlation
of the binary m-sequence test input and the corresponding output. It is necessary,
however, that the test extend over a long, complete m-sequence cycle, and that the
entire cross-correlation cycle be computed. Because of the often very large size of the
arrays, selection of the right algorithm can be very important. Traditionally, such cases
called for application of the convolution theorem, requiring execution of three Fast
Fourier Transforms (FFTs). In this case, however, where one of the arrays is a binary
sequence of a specific class, a much faster computational technique is possible. As
shown below, the computation can be reduced to a single Fast Walsh Transform (FWT).

1. Background.
1.1. Hadamard bases and Walsh-Hadamard transforms. A Hadamard matrix is an

orthogonal rn rn matrix whose elements are binary (+1,-1). The linear transform
mediated by the Hadamard matrix is called a Hadamard transform. Orthogonality
requires that the dimensionality be even. The rows or columns of the matrix are
orthogonal binary vectors in an m-dimensional vector space.

(I) HHT= HTH m. I.

* Received by the editors August 21, 1989; accepted for publication (in revised form) October 30, 1990.
? Smith-Kettlewell Eye Research Institute, 2232 Webster St., San Francisco, California 94115.
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Clearly, multiplication with -1 and permutations of rows and columns cannot
affect this property. Any two Hadamard matrices H1 and H2 are said to be equivalent
if

(2) n- PYHIPc,
where Pc and Pr are permutation matrices for columns and rows, respectively.

The existence of different equivalence classes has been demonstrated by Hall 11
for the special cases m 16 and m 20.

Of special interest here are Hadamard matrices of order 2". For each m 2" there
exists at least one equivalence class that contains the different representations of the
Walsh transform matrix. The Walsh matrices can be defined in various ways leading
to different orderings of the Walsh vectors (see, e.g., [12]). The representation con-
sidered here is called natural, or Hadamard, ordering. It is achieved by means of a

pair of binary registers of length n. These registers, C and R, contain the binary
representation of the row number r and column number c, respectively. Let ri and ci
be the digits of the binary registers C and R, respectively. The Walsh matrix is then
given by

.--1

(3) W(c, r)= (-1)qc’r) where q(c, r)= Y. rici.
i=0

Each matrix element is thus defined as the parity of the bitwise logic AND between
a register r, containing its row number, and a register c, containing the column number.

Example. n 3.
Matrix element W5,6:

(4)
row r=5" {ri}-(101) AND(OO1)-parity- W(5,6)=-1.
column c 6: { ci} - (110) J

The entire matrix is

c 0 1 2 3 4 5 6 7

0 + + + + + + + + fro
1 + -+- + + I’
2 + + + -1-

3 + + + + if3
4 + + -’1- +
5 + + + +
6 + -}- -’1- + 16

7 + + + +
All other Walsh-Hadamard matrix representations of the same order are obtained

by permutation of the row and column numbers, and are, thus, in the same equivalence
class according to equivalence relation (2)"
(6) W’(c, r)= W(p2(c), pl(r)),

where pl and P2 are permutation operators.
The Walsh-Hadamard transform, in its natural ordering as defined by (3), can be

computed by a simple Fast Walsh Transform (FWT) algorithm [13]. Similar fast
algorithms have been developed for various other orderings [12]. According to (2),
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any other transform of this equivalence class can be computed by means of the same
algorithm preceded and followed by a permutation matrix. Techniques of transforma-
tion from one ordering to another have also been developed [14].

1.2. Binary m-sequences. Binary m-sequences, also called maximal length shift
register sequences, can be generated by means of digital shift registers with feedback,
as shown in Fig. 1 [2]. The content of a certain set of register stages is summed modulo
2 and fed back into the input.

n 3 2 1

FIG.

With properly chosen feedback taps, the register cycles through all possible
configurations, except for the all-zero configuration, which is a cycle in itself. For the
larger of the two cycles, the binary sequence of O’s and l’s generated by the output of
the register is called a maximal length shift register sequence or binary m-sequence.
It follows immediately that:

(1) m-sequences have a period of 2"-1, where n is the number of stages in the
generating register.

(2) The number of l’s exceeds the number of O’s by exactly one, i.e.,
2n--1

(7) 2 ai=2"-1

i=0

These sequences have been extensively studied [1], [2], [6], [9].
Let A1 ={al, a2, a3,’" "} be a binary m-sequence with period 2"-1 and Ai

{ai, a+l, a+2, "} be the sequence in all its cyclical shifts. Let Ao {0, 0, 0,. -}.

Ao 0 0 0 0

A1 al a2 a3 aN

A. a. a3 a4 al

(8) A3 a3 a4 a5 a where N 2" 1.

AN aN-1 aN-1

The sequences Ao, At, Az,’’’, Ap form an Abelian group with respect to the
operation of elementwise addition modulo 2. Specifically

(9) A+Ao=A, Ai+A=Ao for anyi and A+Aj=Ak(,j fori#j#0.
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The proof follows directly from the recurrence relation defined by Fig. 1 (see [2, p. 44]).

2. Binary m-transform.
DEFINITION. Let {Mi} be the set of sequences obtained from the sequences {Ai}

by replacing all the O’s by l’s and the l’s by -l’s, and adding a zeroth element of 1
to each A.

Mo 1 1 1 1 1 1

M1 1 ml m2 mN

M2 1 m2 m3 ml

(10) M= M m m4 m2 N=2n-1.

MN mN ml mN-

The transform defined by matrix (10) will be called m-transform.
Through the substitution 0 1, 1 - -1, the operation of addition modulo 2 becomes

multiplication:

0 1 1 -1
0 1

(11) 0 0 1 1 1 -1.
1--1

1 1 0 -1 -1 1

With the completion of the rows with a zeroth element of 1, the zero cycle is included
in each row. With it, the matrix becomes symmetrical. From (7) and (9) it follows that
the rows Mr form an orthogonal basis

(12) Mr" Ms
for iS k,

and that M is a symmetric orthogonal matrix

(13) MTM MM 2n. I where I is the identity.

With the above substitution, the rows Mr now form an Abelian group with respect
to elementwise multiplication.

As a binary orthogonal matrix, M is a Hadamard matrix.
Note that the cross-correlation of a data array of 2 1 real numbers with a binary

m-sequence (elements +1 and -1) is the sequence of elements 1 to 2n-1 of the
m-transform if the data array is supplemented with a zeroth element of 0.

TEOREM. All Walsh and m-transform matrices of dimension 2 are in the same
equivalence class of Hadamard matrices.

Proof Each row Mr of the matrix M can be obtained as the parity of a particular
collection of taps tr on its n stages during a single cycle through the configurations of
the generating register. This can be seen as follows. For the first n rows, tr is just a
single tap on the rth stage. For row Mn+, a single tap on stage n + 1 would be needed.
According to Fig. 1, this tap is equivalent to the configuration tn+ of the feedback
taps (see Fig. 2).

For M,+2, Mn+3, ", the feedback taps have to be shifted left one stage each time.
Whenever a tap is shifted off the left end of the register, it is replaced by the feedback
tap configuration. If, in this process, a new tap coincides with an already existing tap,
this tap position contributes even parity and can, thus, be dropped.
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parity
Mn+l

FIG. 2

The generation of the tap configurations tr derived above can be implemented in
a separate shift register of the same length n. It will be called tap register T. The l’s
in this register signify the position of taps. The tap register is initialized with a
right-justified 1 for the first row and shifted left for consecutive rows. The output of
the register is added (modulo 2) to the stages where the generating register has its
feedback taps (see top of Fig. 3).

The tap configurations sequentially generated by this method will produce consecu-
tive rows of the matrix M. Similarly, for a fixed configuration of the generating register,
the set of all tap configurations yields a column. With each shift of the generating
register, a new column is generated.

So, to get to the matrix element Me, the tap and generating registers are advanced
by (c-1) and (r-1) steps, respectively. Mc, is then the parity of the bitwise logic
AND (tap operation) of the two registers. For the generation of the zeroth row (zeroth
column), the column (row) register is initialized with all O’s.

Note that a row generated by a collection tr of taps is simply the bitwise product
of all the rows generated by the individual taps in the collection. It follows that the
Abelian group of rows is generated by rows M1 through M, in the same way as the
Walsh basis is generated by the Rademacher functions [15].

This derivation of the m-transform matrix serves as another definition of the
m-transform in terms of the generating and tap registers.

n-1

(14) M(r, c)= (--1) q(r’c) where q(r, c)= E t,(r)gi(c),
i=0

where gi(c) and ti(r) are cth and rth bit configurations generated by the registers G
and T, respectively, and gi(0)= ti(O)--O. For the generation of the nontrivial cycle, the
registers G and T can be initialized with any binary number not equal to 0, depending
on the chosen starting point of the m-sequence. In applications to deterministic
nonlinear analysis, the register T takes on a special function that determines the
initialization 10].
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Tap Register T

n 3 2

Generating Register G

FIG. 3

This derivation of the matrix M matches the definition of the natural Walsh
transform matrix W (3), except in the sequence in which the 2n- 1 register configur-
ations are being generated. It, thus, follows that

(15) M(r, c)= W(t(r), g(c)),

i.e., m-transforms and Walsh transforms belong to the same equivalence class of
Hadamard transforms.

2.1. Fast computation of m-transforms. The equivalence between Walsh and m-
transforms makes it possible to compute m-transforms by means of the Fast Walsh
Transform (FWT) algorithm using natural (Hadamard) ordering. The permutations
r-> g(r) and c -> t(c) preceding and following the FWT do not add significantly to the
computation times. This section discusses efficient execution of these permutations.

In matrix notation, (15) can be written as

(16) M er_ tWeg__,c,
where Pc-g is the permutation matrix c-+ g(c) defined by the generating register, and
Pr-,t is the permutation matrix r-> t(r) defined by the tap register.

From the symmetry of the matrices M and W, it follows that

(17) MT PLWTpr-,, PgWPr, M,
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i.e., the roles of the tap and generating registers can be interchanged. The sequence
of operations chosen here has important advantages in applications to nonlinear systems
analysis 10].

Fig. 4 illustrates the relationship between the registers and matrices for the case
n=3.

The permutation Peg is equivalent to loading data point number c at the cth
binary array address generated by register G. The permutation Pr_t, after execution
of FWT, is equivalent to reading point number r of the m-transform from the rth
binary array address generated by the tap register T.

It is, of course, possible to compute the two address arrays for a particular
m-transform ahead of time. However, the generation of the addresses is considerably
faster than loading from a conventional storage medium, particularly if the instruction
set of processors contains the register operation of bitwise exclusive OR (EXOR).
Consecutive configurations ofthe register T (addresses for retrieval ofthe m-transform)
can be generated at high speed using the following simple operations. (1) Shift register
T left by one. (2) If bit n+l of register T is set, then T= T EXOR C, where the
register C contains l’s bit position (n + 1), as well as the position of feedback taps
and O’s everywhere else.

Since each bit of register T cycles through the m-sequence, the same code can be
used to generate consecutive addresses for loading of the data points. The output of
T is simply shifted from the left through the n least significant bit positions of another
register G.

3. Discussion and conclusions. Among the Hadamard sets, the m-sequence bases
are unique in that they share the following two important properties. First, all m-
sequence basis vectors are related to one another by cyclical shifts of the elements 1
through 2n- 1. Second, the basis vectors form an Abelian group with respect to
elementwise multiplication. These properties make them extremely valuable as test
inputs for the analysis of nonlinear systems. They make it possible to reduce the data
analysis to a single cross-correlation between the system response and the m-sequence
input [10]. Since these two arrays can be very large, efficient computation of the
cross-correlation cycle is of great importance. The technique presented here reduces
the computation to a single Fast Walsh Transform that is performed in-place. The
reduction in computation time, compared to the traditional method employing FFTs
and the convolution theorem, is considerable. Three FFTs and an array multiplication
are replaced by a single Fast Walsh Transform (FWT) preceded and followed by
simple and highly efficient routines for loading and unloading of the data array. The
loading and unloading routines require little or no overhead, depending on the
application. The FWT algorithm is basically an abbreviated FFT, requiring no sine
table and no multiplications. An exact quantitative measure of the speed advantage
of the FWT over the FFT cannot be given, since it depends on the available hardware.
In most cases, it can easily be implemented in integer, rather than floating point format
without loss of accuracy. In a test on a Macintosh II computer using the 68081 math
co-processor, the FWT was faster than a real FFT by a factor of six. Both transforms
used in the comparison were based on the Cooley-Tukey algorithm. Since the computa-
tion of the cross-correlation cycle requires only one FWT, one can expect an overall
speed advantage of a factor between 15 and 30. On systems without hardware multiplier,
the savings are significantly larger.

Consider also that the Fast m-transform makes use of the fact that the m-sequence
is completely determined by the length of the generating register and the configuration
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Tap Register T Generating Register G

r tt (r) t

0 ---> 000 ---> 0

001 --2 010 2
3 -- 100 -- 4
4 011 3
5 110 ---) 6
6 111 7
7 -- 101 5

zero cycle

m-sequence cycle

c gt ic) g

0 000 - 0

1 001 -- 1
2 100 4
3 010 -- 2
4 -- 101 5
5 110 6
6 111 -- 7
7---- 011 --> 3

10000000
01000000
00100000
00001000
00010000
00000010
00000001
00000100

+ + + + + + + +
+ + 4- 4-

+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

[w’r]

10000000
01000000
00010000
00000001
00100000
00001000
00000100
00000010

+ + + + + + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + +
+ + + +

FIG. 4
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of the feedback taps. No memory allocation is necessary for storage of the m-sequence.
This greatly facilitates implementation of the cross-correlation of large arrays on
microcomputers.
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ON COUNTING LATI’ICE POINTS IN POLYHEDRA*

MARTIN DYERt

Abstract. Some reductions of the computational problem of counting all the integer lattice points in
an arbitrary convex polyhedron in a fixed number of dimensions d are considered. It is shown that only
odd d need to be studied. In three dimensions the problem is reduced to the computation of Dedekind
sums. Hence it is shown that the counting problem in three or four dimensions is in polynomial time. A
corresponding reduction of the five-dimensional problem is also examined, but is not shown to lead to
polynomial-time algorithms.

Key words, lattice points, polynomial time, Dedekind sums, convex polyhedron
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1. Introduction. Questions concerning the existence of integer lattice points in
convex polyhedra have been well studied. The problem of determining whether the
polyhedron contains any lattice points is the problem of integer programming. This
is well known to be NP-complete in general [7], but it is an equally well-known result
of Lenstra [14] that this can be done in polynomial time in any fixed dimension. (See
also Kannan [10] for subsequent improvements.)

Counting all lattice points in a polyhedron is : P-complete, in general [24], but
the status of the problem in fixed dimension is less clear. In three and four dimensions,
Mordell [15] proved results concerning the numbers of lattice points in the simplex
formed by cutting an orthant with a hyperplane. In the special case of pairwise coprime
edge lengths (for the orthogonal sides), he established a close connection with the
Dedekind sums [19]. Though his concerns were not principally computational, Mor-
dell’s paper is one of the main inspirations for the results here. Zamanskii and
Cherkaskii [25], [26], [27], [28] also examined the counting problem. They were able
to show that it is in polynomial time in R2. They analysed extensions to R3 but were
unable to find a polynomial-time algorithm for the general three-dimensional case.
Cook, Hartmann, Kannan, and McDiarmid [4] examined the problem of approximately
counting and showed that this is polynomial-time solvable in any fixed dimension.
They also showed that, in variable dimension, it is even NP-hard to approximate to
within exponential factors.

There has also been interest in counting the numbers of vertices of the convex
hull of all the lattice points in a polyhedron [23], [9], [17], [4], [2]. It has been shown
that this number is bounded by a polynomial in the size of description when the
dimension is fixed. This important fact is vital to the development here. Hartmann [8]
describes a polynomial-time algorithm for listing all vertices of this convex hull when
the dimension is fixed.

There is a wealth of related material, and the reader should note that the literature
review here is in no way comprehensive, nor is it intended to be.

The main contribution of this paper is to show that there is a polynomial-time
algorithm for the general lattice point counting problem for polyhedra in both three
and four dimensions. The method is based on reduction to counting a particular type
of simplex. This reduction is quite general. The problem of counting in even dimensions

* Received by the editors August 31, 1990; accepted for publication (in revised form) November 28, 1990.
t School of Computer Studies, University of Leeds, Leeds, United Kingdom.
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is further reduced to that in lower odd dimensions. The three-dimensional problem is
then shown to rest on the computation of Dedekind sums, which can be evaluated in
polynomial time.

2. Definitions and notation. Throughout, [n]={1,2,...,n}, and [m,n]=
{m, m + 1, , n}. A sign means an element of {-1, 1}. If n -> m -> 0 are integers, we
write rt (m) for n(n- 1)... (n-m + 1) (= 1 if m 0). For S

_
Ea, int S, cl S, aft S, and

cony S denote the interior, closure, affine hull, and convex hull of S.
We use simplicial decompositions of (convex) polyhedra. Now any closed polyhe-

dron has a unique partition into relatively open faces. We will call P
___
Ea a polyhedron

if it is any union of relatively open faces of the closed polyhedron cl P. We write the
implied relation as P=_cl P. The adjectives open or closed will be used if we wish to
be more specific. We use the term simplex similarly. If P is a polyhedron, any face of
cl P will be called a face of P, but it will be called included or excluded, depending
on whether or not it actually belongs to P. In particular, vert P denotes the vertex set
of P. We must, of course, assume that this list of open faces is supplied as part of the
description of P. We observe that the maximum number of such faces is polynomial
in the number of facets or vertices of P in any fixed dimension, so the list cannot be
too large. A polyhedron P

_
Rd will be called full if int P . For any S

_
d, we

denote by ]S] the number of integer lattice points belonging to S (i.e., IS[ %f IS
Counting S means evaluating ]S]. For any convex S, the integer hull of S is the set
SI =conv (S f’lT]d). A polyhedron P is integral if cl P P, i.e., P has only integer
vertices.

We use vector notation in a rather sloppy fashion. Whether a row or column
vector is intended will be clear from the context. A vector may also be regarded as
the ordered sequence of its coordinates or as the corresponding linked list of its
coordinates. We are correspondingly sloppy about the use of the notation "dim," which
simply means "dimension." Again, we believe the meaning should be clear from the
context. (The multiple usage of the term "dimension" is, perhaps unfortunately,
common in mathematics.)

Throughout, e is the ith unit vector and e a vector of all l’s. If a
the notation a > c (and similar) means a > ce. We will write a ^ b for gcd (a, b). It is
well known that the operation "^" is then associative and commutative. If x N, we
use the (nonstandard) notation tx} x- Ix] to denote the "fractional part." We use
this principally in 6, when considering Dedekind sums. It is traditional in this setting
to use the "sawtooth" function (x)=x-1/2([xJ + Ix]). (See, for example, [19], [13].)
This function has some nice properties for dealing with Dedekind sums and their
relatives but gives no simplification of our results. Consequently, we will not use it.

3. Preliminary observations. Let P be a polyhedron such that cl P-
{x Ea. Ax <= b}, where A is an m d integer matrix and b an m-vector. We consider
the computational problem of determining ]PI when the dimension d is fixed. We call
this the d-dimensional counting problem. Our objective is to perform the computation
in polynomial time. When we use the term polynomial in this paper, we will usually
mean polynomial in the size of the input A, b, as measured in [22]. Observe that we
may equally suppose that cl P is given as a list of rational vertices, since (in fixed
dimension) there is no difficulty in moving between these representations in polynomial
time. Similarly, any reasonable representation of the list of included faces will suffice.
We may also observe here that we lose little generality in restricting to the integer
lattice since, for any lattice with rational generators, we can reduce to this case by
finding a basis (in polynomial time) and then making substitutions. (See [22].)
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We consider reductions of the general counting problem to that for "simpler"
classes of polyhedra. Thus let us use the following terminology. If is any class of
polyhedra, let a {C : dim (C) -<_ d}. If @ is some other class, let us say that a
reduces to a if counting any C a is achievable in polynomial time using an oracle
that counts arbitrary D @a. We will say that c reduces to @ if a reduces to @a for
all (fixed) d.

We use to denote the class of all polyhedra. Thus if the counting problem is
polynomial-time solvable in all fixed dimensions, reduces to . Clearly reduces
to the class of full polyhedra, since if P is not full, we may reduce dimension by
making a suitable substitution in the inequality system. The same is true for open
polyhedra, since all open faces of a polyhedron P are lower dimensional open
polyhedra. Note that, in variable dimension, it is a nontrivial task [5] to determine in
polynomial time the affine hull of a polyhedron in some presentations. However, in
fixed dimension, this computation is clearly polynomial-time equivalent to finding the
affine hull of its (explicitly presented) vertex set, a more straightforward task.

A much deeper fact is that sq reduces to the class of open integral simplices. This
may be seen as follows. First, determine the integer hull P1 of P. Because PI has only
polynomially many vertices, this can be done in polynomial time using fixed-
dimensional integer programming [14], [10]. See Cook, Hartmann, Kannan, and
McDiarmid [4] and Hartmann [8]. We may then triangulate PI into a simplicial
complex, such that all simplices have vertices which are also vertices of P. Hence we
can partition P1 into open simplices ofvarious dimensions. The conclusion now follows.

4. Reduction to a standard integral simplex. In this section we show that reduces
to a certain "nice" class of open simplices. For reasons discussed in 1, it is more
convenient to prove the reduction using general simplices. The proof is based on the
following lemma.

LEMMA 1. LetA be a nonsingular d d integer matrix; then there exists a unimodular
matrix U such that every element in the first row of UA is ce, for some integer ce O. The
matrix U can be determined in polynomial time (even when d is not fixed).

Proof Let a (det A)eA-1. Then a is clearly an integral vector. Reduction of a
to Hermite normal form (see [22, Chap. 4]) shows that there is a unimodular matrix
V such that aV--Be1, for some integer /3 S0. Now if U V-1, with first row ul,

a--/3u. Thus u--/3-a, and we have uA= ce, a constant vector, with c (det A/B).
Clearly c is an integer, since ul, A are integral. Thus U has the required property. It
can be determined in polynomial time using a suitable Hermite normal form algorithm.
(See [22, Chap. 5].)

We will need the following lemma on decomposition of simplices.
LEMMA 2. Let Sa be a full simplex with vertex set V= {p0, p, pa}, and

let pa be any point. Let F be the facet of S with vert Fi=(V\{pi}), and let Si--
conv (vert Fi t_J {p}). Then there exist full simplices S’Si, (i I [0, d]) and signs
such that

Proof Define

il

if aft Fi strictly separates p, pi,

0 if aft F contains p,

+1 otherwise.
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Let I={i’o-i#0}, I+={iI’o-i=+l}, and I-=I\I+. Then, letting S’=
conv (SU {p}), it is straightforward to show that int Si (i I+) are the d-dimensional
simplices of a simplicial complex that triangulates S’, and int Si (i I-) are the
d-dimensional simplices of a similar triangulation of S’\S. Therefore we may choose
full simplices S=__Si (i I) to partition S’ and S’\S. Since IS[ =[S’[-[S’\S[, the lemma
follows.

Let

(1) vert Sd(a)= {0, ajej (k [d])}.j=l

We will always assume, below, that a > O. This involves no real loss of generality since
we are interested only in full simplices, and reflection in a coordinate hyperplane is a
unimodular transformation.

We now observe that Sd (a) has the following nice description by facets.

(2) Sd(a)={xd" l > Xl/al> x2/a_ > Xd/ad >O}.

TO see this, note first that all the vertices of Sd (a) are in the closure of the set defined
by the inequalities in (2), and only the kth vertex in (1) fails to satisfy the kth inequality
as equality. (We are defining the 0th vertex in (1) to be 0, and numbering the (d + 1)
inequalities in (2) 0, 1,. ., d.)

We now prove the reduction theorem.
THEOREM 1. Let S _d be a full integral simplex. Then there exist simplices

A1, A2, At, where r <- d !, and signs O" (i [r]) such that
(a) int Ai OWd,
(b) Isl i=, trilAi[.

For fixed d, a description of {m i" [r]} can be computed in polynomial time.

Proof We assume by induction that, for a given [0, d], there are full integral
A with r, <= d (i [r,]) such thatsimplices al, a2," r,, ’>, and corresponding signs ri

(a) verta can be ordered as (pO, pl,... ,pd), for instance, so that, for some
integers aj,

p aj (j6 [1, t], k [j, d])

=0(k[0, t], j [k+ l, d]).

(b) Isl 2i=1 ,lal.
The theorem is the case d of the induction hypothesis. Since S can always be

translated onto a full simplex a, which has its first ordered vertex at 0, the hypothesis
holds for 0 with r 1 and o- 1. Assume, then, that it holds for any [0, d- 1].
Consider a particular a with vertex ordering satisfying (a) of the induction hypothesis.
The last (d-t) coordinates of pO,...,p, are all zero, by induction, and those of
p’+,..., p form the columns of a (d-t)x (d-t) integer matrix A. Singularity of
this matrix would imply dim a < d, contradicting the assumption that a is full. Hence,
by Lemma 1, we can determine a unimodular transformation U for A which will make
its first row constant. We apply this transformation to the last (d- t) coordinates of
d, leaving the first invariant (i.e., we augment U by a x identity matrix). This
transformation preserves the integer lattice, and hence leaves Ia[ unaltered. Now,
however, p’+l,... pd all have their (t + 1)st component equal to a, for some integer
a. Let p (al, a2, , a,, a, 0, , 0). We now apply Lemma 2 to (Ai, p) to conclude
that A can be replaced by a set of full simplices {A-j J [0, d]}, where vert A
(vert A\{pJ})U {p}. Thus IJ[-< (d + 1), but we may bound it more tightly as follows.
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Note that p has its first (t-k-1) coordinates equal to those of pt+l,..., pal. Thus, for
j [0, t], A has a set of (d + 1) vertices which lie in (t + 1) common hyperplanes,
i.e., in an affine subspace of dimension (d-t-1). Thus we can find a hyperplane
which includes all the vertices of A. Hence we may assume J

_
+ 1, d], and hence

t+lNow {Ai i [rt+l]} is formed by replacing each Ai by the set A (j J), derived
as above. Then r,+ <-_ (d t)r, <= (d t)d <t> d<t+>, using the induction hypothesis and
the bound on IJI. The vertex ordering for A may be any having (p, p,..., p,, p) as
an initial subsequence. Then part (a) of the induction hypothesis for the A[+1 is obvious
from the specification of p. Part (b) follows from the final identity of Lemma 2 and
(b) of the induction hypothesis for the A[. This completes the induction. There is
clearly a polynomial-time algorithm for the decomposition which directly mirrors the
method of proof. [3

Thus s4 reduces to {P: int P }. Now 4 will reduce to 5f immediately if 0 is
closed under the operation of taking subfaces. We prove this next. Let pi (i [0, d])
be the ith ordered vertex of Sd (a). Let F be any face of Sd (a), with vert F {p i: Iv }.
Consider the following procedure applied to the d-vector a, viewed as a formal list.

function b( a, F)
(1) for i6[d-1] do

if i_ IF then insert the (g.c.d.) operation ^ between ai and ai+l.
(2) Evaluate all the ^ operations to give the reduced vector b, for instance.
(3) if 0 IF then delete the first element of b.

if d

_
IF then delete the last element of b.

(4) b(a, F)- b.

Clearly b(a, F) is a vector with dim b =dim F. Call b b(a, F) a face-vector of
a. Clearly any face-vector can be obtained in polynomial time. Now we have the
following lemma.

LEMMA 3. If F is an open face Of Sd(a) with dim F= k, then IFI=[S(b)I, where
b=b(a,F).

Proof Since the g.c.d, operator is associative, it is clearly sufficient to prove this
for F a facet and to use induction. If 0 IF, then we must have xl/al 1 on F, and
the lemma follows directly. Similarly if d IF, we have Xd/ad --0. If : IF (i 6 d 1]),
we have xi/a Xi+l/ai+ on F. Let A ai A ai+l, a--tli/A, / ai+l/A. It follows from
simple divisibility considerations that we must have xi x’a, xi+ x’ for x’ [A- 1]
at integer points on F. Thus xi/ai-- Xi+l/ai+l X’/A at all such points. The lemma now
follows.

COROLLARY 1. reduces to 5.
Remark 1. The simplices, {Md(a)}, considered by Mordell [15], were

Md(a):{X"d" xj/a<l, Xl/al>O, x/a>O," ",xd/ad>O},
j:l

so vert Md(a)=conv {0, aje (k [d])}. For d _-<2, d and 5d are essentially the same,
but this is not true for d _-> 3. The class may appear simpler than 0, but we do not
know whether

5. Even dimensions. The main result of this section is to show that, if d is even,
Md reduces to Md-1.

If y [3] d-l, consider the following algorithm applied to a 7/d+.
function th y, a)
(1) for i6[d-1] do
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if Yi 1 then split the list between ai and a+l.
if % 2, then insert the operation ^ between a and ai+l.

(2) Evaluate all the g.c.d, operations in the sublists.
Let bj (j [r]) be the resulting reduced sublists (i.e., vectors).
Let kj dim b and t=l{/: ’)/i 1}l.

(3)

Then we have the following theorem.
THEOREM 2. Let d be even, and let F=[3]d-l\{3e}. Then

Let

1
ISa(a)l =- _, oh(y, a).

Proof The method is "inclusion-exclusion," using a natural symmetry of Sa(a).

Ra(a)=[al- 1] x [a2-1] x x [a- 1].

If x Rd(a) (which we will abbreviate to R) then, from (2), under the bijection
x -- (a- x) on R,

(3) ]Sd(a)l=l{x6R:Xl/al<x2/a2<. "<Xd/ad}[.
For i[d-1], let us write A(x)=(xi/a-x+l/a+l). For pc{<, =,>}, let 6f be the
indicator function of A(x) p 0. Then, from (2) and (3),

d-1 d-I

(4) ]Sd(a)l= E 1-[ 6(x)= E I-[ 6(x).
xR i=1 xR i=1

However, we have 6(x)= 1- 6(x)-67;-(x). Thus the last expression of (4) implies

d-1

(5) ]Sd(a)l= . H (1-672(x)-6(x)).
xR i=1

Expanding the product in (5), we obtain IS(a)l as the sum of 3 d-1 terms, each
of the form

d-1

(6) cr E H ’,(y),
yR i=1

where r is a sign, and ’ {6 6i 1}. Each ’ is an indicator function, so the product
in (6) is the indicator of an intersection of sets. For each there are three possibilities.
The case ’ 1 is equivalent to deleting the (i+ 1)st inequality in (2), so the inequality
system "decomposes" on R into

{xl/al >’’" > xi/ai} x {xi+l/ai+l >’’" > xa/aa}.

This corresponds to "splitting" the vector a, i.e., to yi 1 in the computation of 4(Y, a).
Having ’i 6 corresponds to replacing the (i + 1)st inequality in (2) by an equality.
This is equivalent to inserting the g.c.d, operation in a, i.e., to yi 2 in the computation
of b(y, a) (cf. Lemma 3). Finally, sr 6 corresponds to imposing the (i+ 1)st
inequality in (2), i.e., to Yi 3 in the computation of b(y, a). The sign o- is clearly
(-1) a-l-,, where is the number of for which ’i 1. This corresponds to the sign in
the computation of b(y, a). Thus each of the 3 a-1 sums is equal to a unique b(y, a).
However, using (4), we have &(3e, a) (--1)d-llSd(a)[-- --ISd(a)[, since d is even. The
theorem now follows from (5).

THEOREM 3. S reduces to o {Sa (a) (d odd)}.
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Proof For even d, the computation of b(% a) for y 3e involves only determina-
tion of I&(b)l for k< d, and b a face-vector of a with dim b= k. The result follows
by induction on d. [3

COROLLARY 2. Sa(p)=p-1, IS(p, q)l=1/2((p-1)(q-1)-(p ^ q-l)).
Proof The first assertion is obvious. The second follows from this and

Theorem 2. [3

COROLLARY 3.

p-1

E [qx/pJ=1/2((p-1)(q-1)+(p^q-1)),
x=l

p--1

2 [qx/p] =1/2(pq+p-q-p^ q).

Proof Using Lemma 3,

p--1

Y [qx/p] =l{O< y/q<=x/p<l}l=lS2(q,p)l+lS,(p ^ q)l,
x=l

p--1

2 [qx/p]=I{O<-y/q<x/p<I}I=IS2(q,P)I+IS(P)I
x=l

The results now follow from these and Corollary 2.
COROLLARY 4. Two-dimensional counting can be done in polynomial time.

Proof The proof follows from Corollary 2 and Theorem 3.
Remark 2. The result of Corollary 4 was previously obtained, using different

methods, by Zamanskii and Cherkaskii (see [25]-[28]).
Remark 3. For any suitably defined convex body K in Nd the feasibility question

IK]-? 0 can be answered in polynomial time by fixed-dimensional integer programming.
(See Kannan 10, p. 434]. By "suitably defined" here, we mean "given by a (polynomial
time) separation oracle.") Hence the integer hull KI of such a body could be determined
in polynomial time by the "gift wrapping" idea (see [18, p. 125]) provided K has only
polynomially many vertices. Since K is a polyhedron, counting K could then be
achieved as above. We might therefore hope that Corollary 4 would generalise.
However, it appears to fail for very simple convex sets in 2. To see this, consider

K(n)= {(x, y)62: xy>- n, l <-(x, y)<- n}.

It is easy to see that IK(n+l)l-lK(n)l=2n-1 if and only if n is prime. A
polynomial-time algorithm for counting K(n) therefore implies a similar algorithm
for primality testing. Thus we might guess that K (n) can have nonpolynomially many
vertices. It is easy to see that this can happen. Let rn _-> 114, and n be the product of
the first [m/In rn] primes. Each prime is at most m by a form of the Prime Number
Theorem [21]. Thus n <3m, say, so rn measures the input size of K(n). However, n
has at least 2m/nm (ordered) two-term factorizations, i.e., nonpolynomially many. Each
gives a vertex of K(n). Thus the approach to counting K (n) used here is doomed at
the outset. (See Remark 8 below for an even worse example.)

Remark 4. The proof of Theorem 2 leads to a closed formula for Sct(a). Note
that -1 <,i(x) < 1 on R, and thus 6(x) [hi(x)]. Thus, from (4),

al--1 a--I ad--l[’-’ll 2] [22 111 [sct(a)l 2 2 2
X x2 x2 X Xd Xa-i

act act

Unfortunately, this expression is not directly computable in polynomial time.
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We prove one further general reduction, that the elements of a need have no
common divisor. We place it here since it has some superficial similarities to Theorem
2. For this, it is convenient to use

S’d(a) ={1 > xa/aa >’’" > x,/a,-->O},
rather than Sa(a). Let y [2] a-l, a ;e a+, and h 7/+. Consider

function r y, a, h)
(1) for i[d-1] do

if yi 1 then split the list between ai and a+l.
(2) Let bj (j [r]) be the resulting sublists of a, kj dim b.
(3) st(y, a, A)(r) I]j:, Is.(b)l.
Then we have the following lemma.

LEMMA 4. ]S/(Aa)l--2,[2]d-1 ’(/, a, A).
Proof Partition the xS’d(Aa) into boxes according to [x/aiJ si-1. A box

corresponds to a nonincreasing sequence s (sl,..., Sd) such that si [A]. Any such
s splits into maximal subsequences for which si has the same value. Suppose there are
r distinct si. There are exactly (r) ways of choosing these distinct values. For each
choice, the possible s can then be formed by splitting a d-sequence into r nonempty
parts, and then assigning the r values, in decreasing order, to the successive parts. Any
split into r parts corresponds to choosing a 3’. For a given split, suppose s S+k-
(=Sc- 1) is any part, and let b (a,..., aj+k_) be the corresponding part of a. In
S’d(a), we must have

(+ 1)> x/aj> >
But this set has a bijection x (x+_l- Ca+t_) (l e [k]) with S’k(b). The lemma now
follows.

Remark 5. This lemma is closely related to the theorem that the number of lattice
points in a polyhedron varies polynomially under the operation of subdivision of the
lattice. (See, for example, [16].) Unfortunately, it does not seem that we can apply
this result directly to get our conclusion here.

THEOREM 4. reduces to 5*= {Sd(a)G o: al ^" ^ ad 1}.
Proof By induction on d, the result follows from Theorem 3, Lemma 4, and the

equation [SS(a)] ISu(a)l+[Su_l(a’)] (where a’=(a,,..., ad_l)), which follows from
Lemma 3.

6. Dedekind sums and three dimensions. From Theorem 4, three-dimensional
counting clearly reduces to counting S3(r,p, q), where p ^ q ^ r= 1. Then, however,
using Lemma 3 and Corollary 2,

}S3(r, P, q)l N-IS2(r, p ^ q)l N-1/2(p ^ q- 1)(r- 1),
where, if (z, x, y) is the typical point of N3,
(7) N I{0 < y/q <= x/p < z/r < 1}1.
It clearly suffices to determine N. But since, for any integer 0 < x < p, there are [qx/p]
values of y, and (r-1- [rx/pJ) values of z in (7),

p--1

N= E [qx/pJ(r-1- [rx/pJ),
x=l

p--1 p--1

(8) (r- 1) Y [qx/p] Y [qx/pJ [rx/p],
x=l x=l

1 p-1

=(r-1)((p-1)(q-1)-(p^q-1))- 2 [qx/pJ[rx/pJ,
X-----1
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using Corollary 2. It thus suffices to determine yp_l [qx/pJ [rx/p]. Now let

p--1

D,r a&f {qx/p}}{rx/p,
x=l

p--1

(9) D, %f D," ., (x/p){qx/p}},
x=l

p--1

Dp 2 (x/P)2= (P- 1)(2p- 1)/6p.
x=l

The order of superscipts in Dg’r is clearly immaterial. Now, using the above notation,

p--1 p-1

Y [qx/p] [rx/p] 2 (qx/p-{qx/p}})(rx/p-{rx/p}})
x=l x=l

rqDp qDrp- rDqp + Dg’r.

Thus we have only to evaluate the sum Dpq’ in polynomial time in order to have
a polynomial-time algorithm for three-dimensional counting. Since Dpq’ has (p-1)
terms, it is not obvious that this is possible. However, sums of this type have been
well studied, since the Dpq are (essentially) the "Dedekind sums" [19]. We first show
that Dpq’" can be determined using only a polynomial-time algorithm for evaluating Dpq
in the special case p ^ q 1. We need the following simple lemma. This lemma is well
known in relation to Dedekind sums, as is some of the other content of this section,
but we give proofs, since they are all fairly short.

LEMMA 5. If 0 R and p ^ q 1 then Ep-1x=o{(qx+O)/P}}={O}}+1/2(p-1).
Proof Substitute x q-x mod p into the sum. (Because p ^ q 1, q- exists and

the mapping is bijective.) The sum is then P-x=o {(x + O)/p}}. With a further variable
change x (x-[0J)mod p, this is 2Px210 (X +{O})/p, giving the result.

We now prove the claimed reduction.
LEMMA 6. Ifp^q^r=l, h=p^q, (a, fl)=(p,q)/h, then

Dg’= D’r +(A-1)(ce-1).
Proof. Putting x =/xa + , (/x [0, A 1 ], u [0, a 1 ]),

ce--1 A--1

Dqp’r-- Z Z
t,=O

Using Lemma 5 on the inner sum gives

{r/cr]}+ (X- 1)

Applying Lemma 5 again (with 0=0) on the second term in this sum gives the
conclusion. [3

Therefore we may suppose that p ^ q 1.
Remark 6. The assumption p ^ q ^ r 1 is not entirely necessary, since if A =p ^ q ^/3,/r and (a, , ) (p, q, r)/A, we can easily show that Dp’ AD,
LEMMA 7. Ifp ^ q l, then Dg" Dp, where =- rq -1 (mod p).
Proof Change variable x - q-ix mod p (cf. proof of Lemma 5).
We have thus reduced to evaluating Dpq But, by Lemma 6, we may assume p ^ q 1

are coprime. All the work required so far can be done in polynomial time using only
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the Euclidean algorithm. It remains only to show how to evaluate Dpq in polynomial
time in the case p ^ q 1. That this can be done is a direct consequence of the famous
"reciprocity relation" of Dedekind. Many proofs of this identity, and generalizations,
are known (see [19], [13]). Since we have the machinery available, we give a short
proof for completeness.

LEMMA 8. Ifp ^ q 1, then

Dpq +D 1/4(p + q 3)+(p/q + q/p + 1/pq).

Proof The variable change x q-ix mod p implies Dqp’q= Dp. Thus
p--1 p--1

(10) , [qx/pJ 2= . (qx/p-t{qx/p}})2=(q2+ 1)Dp-2qD.
x=l x=l

Since qx/p, py/q are not integral for x[p-1], y[q-1],
p--1

[qx/p] 2 2 (2y 1)
x=l O<y/q<x/p<l

2 (2(q-y)- 1)
O<x/p<y/q<l

(11) q--1

Z ((2q-1)-2y)[py/q],
y=l

1 q--1

=-(2q-1)(p-1)(q-1)-2 Z Y(PY/q-t{PY/q}})
y=l

(p 3) qDq 2qDPqq,
where the first line involves an elementary sum, the second follows by making the
variable change x - (p-x), y (q-y), the fourth by using Corollary 3, and the fifth
by using (9). The lemma now follows by equating (10) and (11), using (9), and
simplifying. [3

COROeeARY 5. D"r can be evaluated in polynomial time.

Proof We need only consider Deq with p ^ q 1. If q > p, then clearly D Dpq’,
where q’=q mod p. This, with Lemma 8, implies an algorithm whose behaviour and
analysis closely parallel those of the Euclidean algorithm. (Note, since p ^ q 1, we
finally reach Dp 0.) F1

Remark 7. Lemma 8 is clearly elementary, but was discovered by Dedekind in
the context of modular function theory. (See [1, Chap. 3] for an introduction.) The
book by Rademacher and Grosswald [19] is an exhaustive account of the known facts
on Dedekind sums at the time of publication (1972). The algorithm for the calculation
of the sums was probably known from Dedekind onwards, as was its "computational
efficiency." More recently, explicitly algorithmic treatments have been given, for
example, by Knuth [12], [13].

In consequence of the results of this section, we have Theorem 5.
THEOREM 5. Three-dimensional counting can be done in polynomial time. [3

From Theorem 3, we can therefore conclude with Theorem 6.
THEOREM 6. Four-dimensional counting can be done in polynomial time. [3

Remark 8. In N4, counting more general convex bodies appears even harder than
was implied for N by Remark 3. The following observation is due to Kannan 11]. Let

B4(n) {X 4: 2 2 2< n}Xl.qt- Xz-- X-- X4__

It is a classical result of Jacobi (see, for example, [6]) that

rn(n) ]B4(n)]-]Bg(n 1)1 8 2 m.
4Xmln
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Thus if n is the product of distinct odd primes p, q, then ra(n)= 8(1 +p + q + n).
This, together with n pq, is sufficient to determine p and q. Therefore (this type of)
factorization can be done in polynomial time given a counting oracle for Bn(n). In
particular, a polynomial-time algorithm for counting Bn(n) would imply a similar
algorithm for breaking the RSA cryptosystem [20]. All r4(n) points are vertices of the
integer hull of Ba(n), i.e., "exponentially" many.

7. Beyond four dimensions. It is not clear how to extend the result of 6 to higher
dimensions, since we have no polynomial-time algorithm for evaluating sums analogous

q,rto the Dp i.e., of the form

p--1

(12) Dgl,,q- y {qlx/p}}{q2x/p}} {qd-lX/p}}.

It is even unclear to what extent the problem can be reduced to the computation of
such sums. The reader may check that such sums are sufficient if and only if s reduces
to the class of d-pyramids {Pal(a): d odd}, where

Pd(a)--{O<xi/ai<xd/ad <1 (i [d -1])}.

We are unable to prove this in general. However, we are able to show that ’6 reduces
to 5. To establish this, it clearly suffices to show that 55 reduces to 5. We will
briefly outline this reduction below, leaving the interested reader to supply some of
the details. Note that the converse implication is true, however. If we could solve the
counting problem in d dimensions, then, by counting polyhedra in the class Pal(a),
we could certainly evaluate sums of the form (12).

For a 25 let a+, =(al,’’’, ai) (i[5]), and, for given a i,

f(Y) I{1 > x1/al >... > Xi_l/ai_a > y/a}l.

Let

Y(a)= {1 > xl/al> x2/a2> x3/a3> (x4/a4, xs/as)>O},

X(a)= {1 > (xl/al,x2/a2)> x3/a3> (x4/a4, xs/as)>O}.

We first reduce Ss(a) to Y(a), then to X(a). Simple counting gives

(13) [Ss(a)l+lSs(a3, as, a4)l=lY(a)l-lS4(a3, a4A a)[.

Letting g(x)= (Ix]- 1), we can also show easily that

a4--1
IS(a)l- E g(asy/a4)fa(y)

y=l

4-1 4-1(14)
[a/a4J yf4(y)+ E g({as/a4]Y)f4(y)

y=l y=l

[as/a4J([Ss(a4, a4)l+[S4(a4)l)+lS(a4, a5 mod a4)[,
a3--1 1

[Ss(a4, a4)l y=-l g(a4y/a3)(g(a4y/a3)+ 1)f3(y)

(15)
1 1= IY(a4, a4)l+-lS4(a4)l.

From (13), (14), and (15) we can construct a "Euclidean" algorithm which reduces
counting Ss(a) to counting a polynomial number of Y’s. Essentially the same method,
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after using the bijection x (a -x), reduces counting Y(a) to counting a polynomial
number of X’s. Thus we need only to count X(a). But IX(a)l can be expressed as a
single sum over x3, by a similar argument to that leading from (7) to (8). This sum
can then be manipulated into the required form. With a little further work, we can
show the following lemma.

LEMMA 9. Five-dimensional counting is polynomial-time (Turing) equivalent to

computing the sums
p--1

DT;r’L’t= qx/p}}rx/p}}sx/ptx/p,
x=l

where q lP and q ^ r^ s ^ 1.
Remark 9. The difficulty of computing these "generalized" Dedekind sums (i.e.,

sums like (12) with odd d ->_ 5) is that the "reciprocity relations" which can be obtained
(analogously to Lemma 8) are in terms of three or more such sums. (See, for example,
[3].) The "Euclidean algorithm" approach therefore leads to branching (and nonpoly-
nomial behaviour) when the number of "parameters" is greater than two. Thus, it is
not clear whether these reciprocity relationships are actually useful from a computa-
tional viewpoint. (See, for example, the pitfall in the main idea of [28].)

8. Concluding remarks. By reducing to Dedekind sums, we have shown that
counting in up to four dimensions can be done in polynomial time. We have been
somewhat vague about the complexity of the algorithm, but the reader may check
(using [4], [12], [22] for the necessary estimates) that the running time is dominated
by the O((mch)2a) time needed to determine the integer hull PI. (Here d 2, 3, or 4
is the dimension of P, m is the number of inequalities in the system defining P, and

b is the maximum size of any inequality. See [22].)
Obviously, the major question left unresolved is whether a similar result holds in

five dimensions (and hence six). A polynomial-time algorithm for evaluating the sums
of Lemma 9 would, of course, settle the counting problem for six dimensions. More
generally, we might hope that the corresponding result is true for any fixed number
of dimensions, as with integer programming. We conjecture that this is the case, though
a solution seems to require some new techniques.

Of course, it may be that d-dimensional counting is not in polynomial time for
some d >4. Proving 4P-completeness, or even NP-hardness, seems likely to be
extremely difficult (even if true). It might be possible to reduce some difficult number
theoretic problem like factorization to counting, as was done for B4(n) in Remark 8.
However, this also appears tricky, since there is no apparent relationship between
linear inequalities and nonlinear problems like factorization.

A less ambitious aim is to establish whether s reduces to any "nice" classes of
polyhedra other than 5, for example, the pyramids or the Mordell simplices .
Reduction to would be interesting, since it would imply the equivalence of counting
to evaluating sums like (12).
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informative discussions. I am grateful also to Alan Frieze and David Applegate for
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PARALLEL TRANSITIVE CLOSURE AND
POINT LOCATION IN PLANAR STRUCTURES*
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Abstract. Parallel algorithms for several graph and geometric problems are presented, including

transitive closure and topological sorting in planar st-graphs, preprocessing planar subdivisions for
point location queries, and construction of visibility representations and drawings of planar graphs.
Most of these algorithms achieve optimal O(logn) running time using n/logn processors in the
EREW PRAM model, n being the number of vertices.

Key words, parallel algorithms, parallel computation, graph algorithms, planar st-graphs,
transitive closure, reachability, planar point location, computational geometry, fractional cascading,
graph drawing, visibility
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1. Introduction. Planar st-graphs, which include series-parallel graphs as a
special case, were first introduced by Lempel, Even, and Cederbaum [34] in con-
nection with a planarity testing algorithm, and they have subsequently been used in
a host of applications, dealing with partial orders [30]; planar graph embedding [6],
[14], [49]; graph planarization [37]; graph drawing [13], [15]; floor planning [57]; planar
point location [19], [39]; visibility [36], [42], [52], [54], [58], [59]; motion planning [41];
and VLSI layout compaction [57].

In this paper, we present a new technique for constructing in parallel an implicit
representation of the transitive closure of a planar st-graph. This technique is further
applied to obtain optimal parallel algorithms for the following problems:

(1) transitive closure, reachability, and topological sorting in planar st-graphs;
(2) preprocessing planar subdivisions for point location queries;
(3) construction of visibility representations and drawings of planar graphs.
We adopt the standard parallel random-access machine (PRAM) model of compu-

tation, in which processors concurrently access a shared memory [29]. Communication
costs are not taken into account by this model; the time to access a memory loca-
tion is constant for each processor. An exclusive-read exclusive-write (EREW) PRAM
prohibits concurrent access to the same location of the shared memory. A concurrent-
read exclusive-write (CREW) PRAM allows concurrency for reads but not for writes.
A concurrent-read concurrent-write (CRCW) PRAM allows concurrent reading and
concurrent writing, under various conventions for concurrent writing. Our algorithms
use the most restrictive EREW PRAM.

Computing the transitive closure of a digraph G with n vertices can be done
sequentially in linear time, but the best known parallel algorithms require O(log2 n)
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time on an EREW PRAM and O(log n) time on a CREW PRAM with M(n) proces-
sors [29], where the best known upper bound on M(n) is currently M(n) O(n2"376)
[10]. Transitive closure is a fundamental problem, and as a result much attention is
given to reducing the required number of processors. The best previous results on the
related problems of deciding the reachability of a vertex v from a vertex u (transitive
closure query) and of computing a topological ordering of the vertices of an acyclic
digraph G have the same time/processor bounds as transitive closure.

In the next section we discuss some important properties of planar st-graphs.
In particular, we recall that a planar st-graph G admits two total orders on the
set V t E U F, where V, E, and F are the sets of vertices, edges, and faces of G,
respectively. Such total orders, denoted <L and <, provide an implicit representation
of the transitive closure of G. Also, any such order yields a topological ordering of
the vertices when restricted to V [51].

In 3 we give an optimal O(log n)-time, (n/log n)-processor algorithm for con-
structing the orders <L and < of an n-vertex planar st-graph G. This algorithm can
be used as a preprocessing step to set up an O(n)-space data structure that supports
transitive closure queries in O(1) sequential time. Alternatively, we can construct
within the same bounds a fully dynamic data structure that supports queries and up-
dates (insertions/deletions of vertices and edges) in O(logn) sequential time. Using
a different data structure, updates take O(1) time with n processors and queries take
O(1) time with one processor. Since the publication of the conference version of this
paper, Kao and Klein [28] have developed a transitive closure algorithm for general
planar graphs that runs in O(log3 n) time using n processors on a CRCW PRAM.

Section 4 considers the classical problem of point location in a planar subdivision,
a fundamental-searching primitive for a variety of geometric algorithms. We show
how to preprocess a monotone subdivision in O(log n) time with n/log n processors
on an EREW PRAM to obtain an O(n)-space data structure (the bridged separator
tree [19], [33]) that supports point location queries in O(logn) time. Our technique
can also be extended to construct a fully dynamic data structure for point location.
Queries in the bridged separator tree can be done in optimal O((log n)/logp) time
using a p-processor CREW PRAM [56]. Nonmonotone subdivisions can be handled
by our techniques by first applying a triangulation step, which takes O(logn) time
using an n-processor CREW PRAM [3], [60].

Our results improve certain aspects of the previous best results [3], [9], [11],
[12]. Atallah, Cole, and Goodrich [3] give an algorithm to construct a suboptimal
O(n log n)-space point location data structure in O(log n) time with n processors on
a CREW PRAM. Dadoun and Kirkpatrick [11] show that the O(n)-space hierarchical
point location data structure of Kirkpatrick [31] for triangulations can be constructed
in O(lognlog* n) worst-case time and O(logn) expected time on a CREW PRAM
with n processors. A recent result of Cole and Zajicek [9] shows that the worst-
case time can be reduced to O(log n) with n/log n processors at the expense of large
constant factors. The hierarchical data structure can be modified so that it can
process point location queries in O((logn)/logp) time, but the required preprocessing
takes O(log2 n) time using O(n3) processors on a CREW PRAM [12]. An empirical
analysis of the performance of several point-location data structures shows that the
hierarchical point location data structure does not perform well in practice since the
constant factors hidden behind the big-oh notation are large, whereas the bridged
separator-tree constructed by our algorithm is very efficient [18].

In 5, we investigate the problem of constructing visibility representations of
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planar graphs, where the vertices are represented by horizontal segments and the
edges by vertical segments. Such representations find applications in VLSI layout,
motion planning, and graph drawing, and their combinatorial properties have been
extensively investigated [16], [42], [52], [54], [58], [59]. We give algorithms for con-
structing visibility representations of planar st-graphs and undirected planar graphs
in O(log n) time with n/log n processors. Also, we show that algorithms for drawing
planar graphs that are based on the intermediate construction of visibility represen-
tations can be efficiently parallelized. We present algorithms that construct planar
drawings with vertices placed at integer coordinates and asymptotically optimal area
in O(log n) time with n/log n processors. This improves substantially over the algo-
rithm of Ja’Ja’ and Simon [26], which uses M(n) processors to construct in O(log2 n)
time a planar drawing with vertices placed at real coordinates and no known bound
on the area.

As a final remark, our parallel algorithms appear to be simple to implement and
eminently practical.

2. Planar st-graphs.
DEFINITION 2.1. A planar st-graph G is a planar acyclic directed graph G with

exactly one source vertex s and exactly one sink vertex t, which is embedded in the
plane such that s and t are on the boundary of the external face.

An example is pictured in Fig. 1. We assume in this paper, as stated in Defini-
tion 2.1, that the input graph representation is embedded, that is, for each vertex the
cyclical ordering of its neighbors is given. The embedding is represented in standard
form by doubly-connected edge lists [38]. If the embedding information is not avail-
able, but a planar straight-line drawing is given, the embedding can be determined on
an EREW PRAM in O(log d) time with n processors by sorting, where d is the maxi-
mum vertex degree [7]. This is optimal in the worst case, since sorting can be reduced
to computing the embedding. If neither the embedding nor a drawing is given, the
embedding can be determined as follows: We first add the directed edge (s, t) to G if
it does not already exist. Let G be the undirected planar graph corresponding to G.
We can compute an embedding of G on a CRCW PRAM in O(log n) time using the
same number of processors needed to determine graph connectivity and to do bucket
sorting in O(log n) time [40] the best known processor bound for this uses n log log n
processors deterministically [8], [24]. The resulting embedding is consistent with hav-
ing any particular edge of G appear on the external face, so we can assume that the
edge (s, t), and thus vertices s and t, are on the external face. If the edge (s, t) was
added in our construction earlier, it can be removed from G, and the orientations of
the edges can be reintroduced to get an embedding of the planar st-graph G.

Following the development of Tamassia and Preparata [51], we will consider a
planar embedding of G with s as the lowest vertex and t as the highest vertex, and with
all edges directed upwards. Planar st-graphs have the following important properties
[4], []"

(1) Every vertex is on a directed path from s to t.
(2) The incoming edges for each vertex appear consecutively around the vertex,

and so do the outgoing edges. The face separating the incoming and outgoing
edges of vertex v in the clockwise direction is called left(v), and the face
separating them in the counterclockwise direction is called right(v). (See
Fig. 2(a).)

(3) The boundary of each face f consists of two directed paths enclosing f, each
starting from the unique lowest vertex low(f) and ending at the unique high-
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FIG. 1. A planar st-graph G (solid lines) and its dual graph G* (dashed lines).

est vertex high(f). (See Fig. 2(b).)
The terminology can be extended by defining vertices low(x) and high(x) and

faces left(x) and right(x) for all elements in V t_J E U F, where V is the set of vertices,
E is the set of edges, and F is the set of faces of G. For each vertex v, we define
low(v) high(v) v and left(v) and right(v) as above. For each edge e (u, v), we
define low(e) u, high(e) v, and we define left(e) to be the face to the left of e and
right(e) to be the face to the right of e. For each face f, we define low(f) and high(f)
as above and left(f)= right(f)= f.

DEFINITION 2.2. The dual graph G* of a planar st,graph G is the directed graph
formed as follows: For each face of G, there is a vertex of G*. In addition, the external
face of G corresponds to two vertices s* and t* of G*, which represent the "left" and
"right" external faces of G. For each edge e in G, there is an edge (left(e), right(e))
in G*. (See Fig. 1.)

It is easy to show that the dual graph G* is also a planar st-graph. Partial orders
T and can be defined on V t_J E t3 F as follows.

DEFINITION 2.3. We say x is below y (denoted x T y) if there is a path from
high(x) to low(y) in G, and we say x is to the left of y (denoted x y) if there is a
path from right(x) to left(y) in the dual graph G*.

For example, in Fig. 1, we have e2 T f3 T t and el f3 v2. For each
x, y E V t3 E t.J F, exactly one of the following relations holds: x T y, y T x, x ---, y,
or y x [51]. This allows us to define the following two total orders.

DEFINITION 2.4. The total orders <, and <rt are defined as

X <L y ==> x T y or x y;

X <rt y x T y or y- x.

We define the left sequence of G to be the sequence of elements of V t.J E t_J F sorted
with respect to <L, and the right sequence of G to be the sequence of elements of
V t3 E t.J F sorted with respect to <R.
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FIG. 2. Parallel construction of the left sequence. (a) The order relations el <L V <L e2 formed
by rule 1. (b) The order relations el <L f <L e2 formed by rule 2. (c) The left sequence in list
form shown for the graph G in Fig. 1.

For example, the left and right sequences for the graph in Fig. 1 are, respectively,

and

f voez A e. v ea ves fze vzeTveofe:evev fo.

This left sequence is also pictured as a path in Fig. 2(c). The formal underpinning of
the orders <L and <r can be found in the theory of planar lattices [27], [30].

The importance of the total orders <L and <rt is that they can be used to answer
transitive closure queries.

THEOREM 2.5 ([51]). There is a path from vertex u to vertex v in a planar
st-graph G if and only if u precedes v in both the left and right sequences of G.

3. Transitive closure. The transitive closure query problem for a digraph G
consists of answering queries of the form, "Is there a path from vertex u to ver-
tex v in G?" In the dynamic problem, the digraph can be updated by insertions
and deletions, and the queries can be interspersed with the updates. In this sec-
tion, we exploit the properties of planar st-graphs and give EREW PRAM algo-
rithms for constructing the fully dynamic (sequential) data structure of Tamassia and
Preparata [51] in O(log n) time with n/log n processors. The data structure consists
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of a pair of balanced trees associated with the left and right sequences and requires
O(n) space. When used sequentially, it is fully dynamic and handles queries and
updates in O(log n) time. We also give parallel algorithms for dynamic queries and
updates.

THEOREM 3.1. Let G be a planar st-graph with n vertices. A fully dynamic
data structure ]or the transitive closure query problem ]or G can be constructed by an
EREW PRAM in O(log n) time using n/ log n processors, which is optimal.

Proof. Our algorithm constructs the data structure of Tamassia and Preparata
[51] based on the left and right sequences of G. By Theorem 2.5, we can determine if
there is a path from u to v in G by checking whether u is before v in both sequences.
Each sequence is stored in the leaves of a balanced red-black tree [22]. Dynamic
updates require a sequence of splits and splices in the tree.

Without loss of generality, let us restrict our attention to computing the left se-
quence of G. First we construct the dual graph G*. The edges on the right boundary
(respectively, left boundary) of each face f can identify a common representative
vertex, say vertex low(f), in parallel simultaneously for each face f, as follows: We
construct a local order relation among the edges. If an edge is the leftmost (right-
most) edge incoming into a vertex, its successor is defined as the leftmost (rightmost)
edge outgoing from that vertex. This order relation induces a set of ordered paths,
corresponding to the right boundaries (left boundaries) of the faces. By list ranking
[2, 8], the edges in the right boundary (left boundary) of each face can simultaneously
identify a common vertex in O(log n) time with O(n/log n) processors.

To construct the left sequence of G, we note that, except for the very beginning
and very end of the sequence, every other element in the sequence is an edge. We
can form the sequence in O(log n) time with O(n/log n) processors by creating the
following local order relations:

(1) Each vertex v - s, t constructs the order relations el < v < e2, where el is
the rightmost incoming edge of v, and e2 is the leftmost outgoing edge of v.
(See Fig. 2(a).)

(2) Each interior face f constructs the two order relations el < f < e2, where
el is the topmost left edge of f, and e2 is the bottommost right edge of f.
(See Fig. 2(b).)

The source vertex s constructs the order relations s* < s < e2, where e2 is the
leftmost outgoing edge of s, and t forms the order relations e < t < t*, where e
is the rightmost incoming edge of t. List ranking is then done to combine the order
relations into a fully ordered sequence, as shown in Fig. 2(c). Lemma 3.2 below shows
that this sequence is the left sequence of G. The right sequence can be constructed
analogously.

Given the left and right sequences of G, the dynamic data structure of Tamassia
and Preparata [51] can be constructed easily in parallel. It consists of two balanced
search trees, whose leaves consist of the elements of V U E t2 F. In one tree the leaves
are ordered from left to right according to the left sequence, and in the other tree the
leaves are ordered according to the right sequence. [

LEMMA 3.2. List ranking of the above local order relations produces the left
sequence of G.

Proo]. The local order relations produced above do not induce any cycles, since
each order relation is consistent with the total order <. The rest of the proof consists
of showing by contradiction that the order relations induce a linear order on VEt2F.
Suppose, during the application of the above two rules, that some edge e is chosen
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twice as the head of two different subsequences. One of the subsequences must be
formed by rule 1 above, and the other subsequence by rule 2, since two different
vertices cannot have the same outgoing left edge, and two different faces cannot have
the same bottommost right edge. Let us denote these two subsequences by e v e and
ef e, for some vertex v : s and some interior face f. By rule 1, e is the leftmost
outgoing edge of v. By rule 2, e is the bottommost right edge of an interior face f,
which implies that low(f) v. This means that e is to the right of f, but there are
no edges to the left of f, and hence f is not an interior faceMa contradiction. We
can show in a similar way that an edge cannot be chosen as the tail of two different
subsequences.

The fact that the total order <L is an extension of the partial order T imposed
by the directed edges of the graph gives us the following corollary.

COROLLARY 3.3. A topological ordering of the n vertices of a planar st-graph G
can be computed in O(logn) time using n/ logn processors on an EREW PRAM,
which is optimal. Specifically, we can compute the rank of each vertex in the vertex
subsequence of the left or right sequence of G.

Proof. First we compute the left-sequence (or right-sequence) of G, and then we
extract the subsequence consisting of all the vertices by list ranking.

Series-parallel graphs are a subclass of planar st-graphs, and thus we get the
following corollary, which is an improvement over the O(log2 n)-time, n-processor
CREW PRAM algorithm given by Afrati, Goldin, and Kanellakis [1].

COROLLARY 3.4. Reachability in series-parallel graphs can be computed on an
EREW PRAM in O(log n) time with n/ log n processors.

Our technique can be extended to solve the following problem posed by Kao in
[28]: Given a planar st-graph G, compute for each vertex v the number of vertices
reachable from v by paths in G. By associating each vertex v with a point p(v) in
the plane whose x- and y-coordinates are given by the ranks of v in the left and right
sequences, respectively, we find that a vertex w is reachable from v if and only if the
x- and y-coordinates of p(w) are both greater than the corresponding ones of p(v).
Hence, we can apply the algorithm of Atallah, Cole, and Goodrich [3] for two-set
dominance counting and obtain the following theorem.

THEOREM 3.5. Given a planar st-graph G with n vertices, the number of vertices
reachable from each vertex can be computed by an EREW PRAM in O(logn) time
using n processors.

The contact chain query problem for a convex subdivision and a direction con-
sists of questions of the form: "If region r is pushed in direction , will region r be
moved?" [5]. Without loss of generality, assume that is the horizontal direction. By
orienting the edges of the convex subdivision from bottom to top, and denoting by s
and t the lowest and highest vertices, respectively, we get a planar st-graph G. (The
subdivision is perturbed slightly if necessary to ensure that there are no horizontal
edges.) It is easy to see that pushing r will cause r to be moved if and only if there
is a path from r to r in the dual graph G*. By Theorem 3.1 for the dual graph G*,
we get the following corollary.

COROLLARY 3.6. A fully dynamic O(n)-space O(logn)-sequential time data
structure for the contact chain query problem along a fixed direction in an n-vertex
convex subdivision can be constructed by an EREW PRAM in O(logn) time using
n/ logn processors, which is optimal.

An alternate simple data structure for parallel use stores the left and right se-
quences as linear arrays. In array form, the shifts and swaps needed for dynamic
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maintenance can clearly be done in constant time using n processors. If n processors
are available for updates, where 0 < e < 1, the arrays can be replaced by B-trees
[4] with nodes of degree O(n) and hence O(1/e) height. This gives us the following
result.

THEOREM 3.7. Let G be a planar st-graph with n vertices. For any constant
0 <

_
1, a data structure for the transitive closure query problem for G can be

constructed by an EREW PRAM in O(log n) time using n/ log n processors, such that
a transitive closure query can be answered on an EREW PRAM in O(1/e) time with
one processor, and dynamic updates can be done in O(1/e) time with n processors.

COROLLARY 3.8. Let G be a planar st-graph with n vertices. After the prepro-
cessing of Theorem 3.7, the subgraph H consisting of all paths from a vertex u to a
vertex v can be generated in O(logn) time using n/ logn processors on an EREW
PRAM, and in constant time with n processors on a CREW PRAM.

Proof. We assign one processor to each vertex and edge in the graph and broadcast
the positions of u and v in <L and <R to all the processors. We form the desired
subgraph H by including all the vertices and edges such that there is a path from u
to v using that vertex or edge. This can be done using Theorem 2.5, by including all
vertices and edges that come between u and v with respect to both <L and <R.

The shorter of the leftmost and rightmost paths from u to v can be generated in
O(log n) time on an EREW PRAM, and in O(log k) time on a CREW PRAM, where
k is the length of the path. We form the dual graph H* of H. For each edge e in H,
we test to see if it is on the leftmost (respectively, rightmost) path in H by checking
if left(e) (respectively, right(e)) is not between u and v in either < or <. This
identifies the edges along the two paths. The shorter of the two paths can then be
found by doing list ranking in parallel for each path.

4. Planar point location. In this section, we present fast parallel algorithms
for constructing data structures to handle point location queries. The queries them-
selves can be done either serially or in parallel using concurrent read. The reader is
referred to the book of Preparata and Shamos [38] for the geometric terminology used
in this section and a description of various point location techniques. Our approach
is based on the separator-method for point location [19], [33].

DEFINITION 4.1. A monotone chain is a polygonal chain such that each hori-
zontal line intersects it in at most one point. A polygon is monotone if its boundary
is partitionable into two monotone chains. A (planar) subdivision S is a partition
of the entire plane into polygons, called the regions of S. We assume a standard
representation for the subdivision S and its embedding, such as a doubly-connected
edge list representation [38]. A monotone subdivision is such that all its regions are
monotone polygons.

A monotone subdivision S is therefore associated with a planar st-graph G, where
each edge is directed according to increasing ordinate, and s and t are associated with
the vertices at - and + of S. That is, an upward (respectively, downward) ray
of S originating at vertex v corresponds to edge (v, t) (respectively, (s, v)) of G.

DEFINITION 4.2. Given a monotone subdivision S, a separator a of S is a mono-
tone chain of S between vertices at infinity, that is, a directed path of G from s to t.
Given separators rl and a2, we say that rl is to the left of a2 if every horizontal line
intersects a at or to the left of a2.

Let r, r2, ..., rp be the regions of S, sorted according to some total order
compatible with relation 4, that is, ri rj implies < j. The common boundary
of the regions with index _< and of the regions with index > is a separator of S,
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Fro. 3. onstreton of the separator tree for a regular sbdivison. () Regular sbdvision
with the chains of proper edges visualized. (b) Separator tree for S.

which we denote ai. Clearly, cri is to the left of aj, for < j.
One approach to point location is to perform a type of binary search on the set of

separators E {al,..., ap_l }, where each separator cri is assigned to a node (called
node cri) of a balanced binary tree T (called the separator tree), whose leaves are the
regions of S [33]. The sequence of the nodes of T in symmetric order is rl, al, r2,

a2, ap-1, rp. An edge (u, v) of S belongs to the interval of separators cri, cri+l,

ak such that ri left(u,v) and rk+l right(u,v); but for reasons of space
efficiency (u,v) is stored only once, at node crj lca(r,rk+l), the lowest common
ancestor of leaves ri and rk+l. The edges stored at a node ai, which are a subset of
the edges of separator ai, are called the proper edges of ai. An example is shown in
Fig. 3.

The separator tree uses O(n) space and supports point location queries in
O(log2 n) time, where n is the number of vertices of S [33]. To perform a query,
we trace a path in the separator tree from the root to the leaf ri containing the query
point q. At each internal node cri we discriminate q against separator ai and branch
left or right according to whether q is to the left or right of ai. The discrimination
of q against cri is performed by searching for the smallest value > y(q) in the catalog
of ai. The catalog consists of the y-coordinates of the proper edges of ai, along with
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the dummy value +oc. Each catalog entry is associated with the proper edge e (if
it exists) whose top vertex has that y-coordinate. If the search for y(q) returns the
y-coordinate associated with edge e, then e is horizontally visible from q; we branch
left if q is to the left of e, and right otherwise. When there is no edge associated with
the y-coordinate returned, then y(q) is in a "gap" between two proper edges of hi.
In this case, the branching direction is determined as follows: If y(q) is immediately
above (respectively, below) proper edge e of a, let rk be the ancestor of a in the
separator tree that stores the first nonproper edge of ai above (respectively, below) e.
We branch left if ai is to the left of ak, and right otherwise. This information can be
precomputed and stored in the catalog. Thus, the necessary branching can always be
determined in constant time from the information associated with the y-coordinate
returned as a result of the search in the catalog. Point location in this context consists
merely of a sequence of catalog searches.

By applying the fractional cascading technique to the catalogs of the separator
tree, we obtain a bridged separator tree (also called layered dag), which still uses O(n)
space and supports queries in O(logn) time, which is optimal [19]. (Our method
in the previous paragraph for determining the branching in "gaps" yields a slight
simplification of the algorithm.)

DEFINITION 4.3. A regular subdivision is a monotone subdivision having no pair
of regions r and r such that r T r’. (See Fig. 3.)

It follows that in a regular subdivision the relation is a total order. Below,
we show how to efficiently construct in parallel the bridged separator tree for a reg-
ular monotone subdivision, and then we extend the technique to arbitrary monotone
subdivisions and general nonmonotone subdivisions.

LEMMA 4.4. Each vertex of a regular subdivision has either indegree 1 or outde-
gree 1.

Proof. If some vertex v of a regular subdivision has indeg(v)
2, then there are regions r and r’ such that v high(r) low(r’), which implies
r T r, a contradiction.

The following algorithm constructs a bridged separator tree for a regular subdivi-
sion S. Without loss of generality, we assume that the number of regions p is a power
of two.

(1) Construct the planar st-graph G associated with S, and compute its left and
right sequences. Also, compute indeg(v) and outdeg(v) for each vertex v, and
store with each edge (u, v) the indices and j of the regions ri left(u, v)
and rj right(u, v).

(2) Form a complete binary tree T whose leaves are associated with the regions
of S (the faces of G), sorted from left to right according to their order in
the left sequence of G. Hence, region ri is the ith leaf from left to right.
Also, construct an array of pointers to the internal nodes of T such that the
ith element of the array points to the internal node of T associated with
separator

(3) Form the sets of proper edges of the internal nodes of T, as follows:

foreach edge (v, w) do begin
if indeg(v) 1

then begin
let (u, v) be v’s only incoming edge;
if lca(left(u, v), right(u, v)) lca(left(v, w), right(v, w))

then connect (u, v)to (v, w)bidirectionally
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end;
if outdeg(w)= 1

then begin
let (w, z) be w’s only outgoing edge;
if Ice(left(w, z), right(w, z)) lca(left(v, w), right(v, w))

then connect (w, z) to (v, w) bidirectionally
end

end;

(4) Store each doubly-connected list of edges obtained in step 3 into the node
of T that is the lowest common ancestor of the regions to the left and right
of all the edges in the list. Each list is the set of proper edges of that node,
sorted from bottom to top.

(5) Convert the lists of proper edges into arrays, called catalogs, by means of list
ranking. Establish bridges between the catalogs stored in adjacent nodes of T,
according to the fractional cascading scheme of Atallah, Cole, and Goodrich

The correctness of the algorithm follows from Lemma 4.4. Step 1 is performed
using the techniques developed in the previous section. Step 2 can be easily done
in O(logn) time with n/logn processors. In step 3, we use a simple technique for
computing in O(1) time the inorder rank of the lowest common ancestor of two leaves
of a complete binary tree, given the ranks of such leaves in their left-to-right order
[19]. Hence, the test

lca(left(u, v), right(u, v)) lca(left(v, w), right(v, w))

can be done in O(1) time using only the indices of the regions to the left and right
of (u, v) and (v, w). By step 1, such indices are stored locally at the edges (u, v)
and (v, w). Since the iterations of the for-loop are independent, we conclude that
we can allocate one processor per group of log n edges and perform the computation
of step 3 in O(logn) time with n/logn processors. In step 4, the assignment of
the lists of proper edges to the corresponding internal nodes of T is done as follows.
First, we pick any edge (u, v) of the list and compute in O(1) time the rank of node
lca(left(u, v), right(u, v)) in the symmetric order [19]. Next, from the rank, we access
the node using the array constructed in step 2. Such computation can be performed
in O(log n) time with n/logn processors.

The parallel fractional cascading technique of Atallah, Cole, and Goodrich [3]
takes O(logn) time with n/logn processors to complete the construction of the
bridged separator tree. This technique can be applied because, as described earlier,
point location consists precisely of a series of catalog searches, where each node ai in
the separator tree contains a catalog of y-coordinate values. One property of a regular
subdivision is that the proper edges of each separator in the separator tree are con-
nected, so that there are no "gaps" in the middle of a separator, but only at the top
and bottom [39]. Thus, all but the first and last catalog entries are associated with a
proper edge e of hi, and this simplifies the algorithm. This proves the following.

LEMMA 4.5. Let S be a regular subdivision with n vertices. The bridged separator
tree for point location in S can be constructed by an EREW PRAM in O(log n) time
using n/ log n processors, which is optimal.

DEFINITION 4.6. We call two regions r and r vertically consecutive if r T r
and there is no region r with r <L r <L r. It can be shown that there is a unique
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(b)

FzG. 4. (a) A monotone subdivision S and (b) the corresponding regular subdivision S*. Notice
the clusters of regions r4 U r5 and rs U rg.

monotone chain from high(r’) to low(r"), called a channel, and that all channels are
vertex disjoint [39].

If the subdivision S is monotone, but not regular, we transform S into an equiva-
lent regular subdivision by duplicating some edges [39]. Given two vertically consec-
utive regions r and r, we can imagine duplicating the channel from r to r, viewing
the measure-zero region delimited by the two replicas as a degenerate polygon joim
ing r and r and merging them into a new region r U r. By merging all sequences
of vertically consecutive pairs in this way, we obtain a regular subdivision S* whose
regions are clusters of regions of S. (See Fig. 4.)

The algorithm for constructing subdivision S* is as follows:

(1) Construct the planar st-graph G associated with S, and compute its left and
right sequences.

(2) Extract the subsequence rz, r2, ..., rp of regions from the left sequence and
determine the vertically consecutive pairs.

(3) For each vertically consecutive pair (ri,ri+z), mark the vertices and edges
that are between high(ri) and low(r+) in the left sequence.

(4) Duplicate all the vertices and edges that are marked and update the subdi-
vision accordingly.
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The transitive closure algorithm referred to in Theorem 3.1 is used for the prepro-
cessing in step 1. The subsequence of regions can be formed using a standard binary
tree communication scheme. We can verify whether two regions r and r+l are ver-
tically consecutive by comparing the y-coordinates of vertices high(r) and low(r+).
The remaining computations in the algorithm can be done easily in parallel. This
proves the following.

LEMMA 4.7. The regular subdivision S* associated with a monotone subdivision S
with n vertices can be computed by an EREW PRAM in O(log n) time with n/ log n
processors.

The complete algorithm for preprocessing a monotone subdivision S consists of
constructing S* from S, and then building the bridged separator tree T* for S. In
practice, step 1 for constructing the bridged separator tree can be bypassed, since the
ordered list of regions in S*, sorted according to the left sequence, can be obtained
directly from the corresponding list in S by contracting regions that are merged
together into a cluster. The indegrees and outdegrees can be obtained directly also.
Each leaf X of T* corresponds to a region of S*, which in turn consists of some cluster
of regions r, r, ..., r of S. We add to each leaf X of T* a pointer to a balanced
search tree that stores the regions r, r,..., r, sorted from bottom to top.

To perform point location in S, we first determine the cluster X containing the
query point q by searching in T*. Next, we search in the balanced tree pointed to by
leaf X in order to determine which region r of X contains q. Hence, by combining the
results of Lemmas 4.5 and 4.7, we obtain the following theorem.

THEOREM 4.8. Let S be a monotone subdivision with n vertices. An O(n)-space
data structure supporting O(log n)-time point location queries in S can be constructed
by an EREW PRAM in O(logn) time using n/ logn processors, which is optimal.

The algorithm used in Theorem 4.8 can be modified to construct the fully dy-
namic point location data structure of Preparata and Tamassia [39] within the same
time/processor bounds.

For subdivisions that are represented without embedding information (e.g., by
unsorted lists of vertices and edges), we need a preliminary step to compute its em-
bedding, which consists of sorting the neighbors of each vertex v in clockwise order
around v. This can be done in O(log n) time using n processors [7]. Note that if the
embedding of S is not given as part of the input, there is an gt(n log n) lower bound
on the amount of work needed to compute the embedding in the worst case [32].

For nonmonotone subdivisions we perform a preliminary triangulation step and
then apply the technique for monotone subdivisions. Triangulation can be performed
by a CREW PRAM in O(log n) time with n processors [3], [60].

We get the following theorem.
THEOREM 4.9. Let S be a subdivision with n vertices. An O(n)-space data

structure supporting O(log n)-time point location queries in S can be constructed by a
CREW PRAM in O(log n) time using n processors.

The bridged separator tree data structure can also be used to process the queries
in parallel. We show in a companion paper [56] that an O(n)-space data structure
can be constructed with an EREW PRAM in O(log n) time using n/log n processors
such that, for any 2 _< p _< n, point location queries can be done in O((logn)/logp)
time using a CREW PRAM with p processors. This algorithm improves upon the one
of Dadoun and Kirkpatrick [12]. It achieves the same query time, but it is simpler
and uses less preprocessing. The query time of O((logn)/logp) is optimal since we
can reduce the problem of dictionary searching to planar point location, and thus the



PARALLEL TRANSITIVE CLOSURE 721

F--F--

F’--I- "1- r
L.r--- -:’--I

.I

(e)

FIG. 5. (a) Visibility representation ]or a planar st-graph G. (b) A planar upward polyline grid
drawing o.f G. (c) A planar orthogonal grid drawing o] an undirected graph.

lower bound of Snir [46] applies.

5. Visibility representations and graph drawing. The concept of visibility
plays a fundamental role in a variety of geometric problems and applications, such as
art gallery problems [35]; VLSI layout [25], [44], [57]; motion planning [23], [41]; and
graph drawing [13], [53].

DEFINITION 5.1. Given a collection H of horizontal segments in the plane, the
(vertical) visibility graph of H is the graph G whose vertices are the segments of H
and whose edges are pairs of segments that see each other in the vertical direction.
The edges of G can be oriented from bottom to top to yield an acyclic digraph.

DEFINITION 5.2. A visibility representation F for a directed graph G maps each
vertex v of G to a horizontal segment F(v) and each edge (u, v) to a vertical segment
F(u, v) that has its lower endpoint on F(u), its upper endpoint on F(v), and does
not intersect any other horizontal segment. (See Fig. 5(a).) If G is an undirected
planar graph, a visibility representation for G is defined as a visibility representation
for some orientation of G.

Besides having many applications, visibility graphs and representations are also of
intrinsic theoretical interest, and their combinatorial properties have been extensively
investigated [16], [52], [54], [58], [59].

The visibility graph of a set of n segments can be computed in O(n log n) sequen-
tial time and O(n) space [44], which is optimal. It can also be constructed in parallel
by an EREW PRAM in O(log n) time and O(n log n) space with n processors [3], or
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in O(log2 n) time and O(n) space with n/log n processors [43]. As regards visibility
representations, there are sequential O(n)-time algorithms for their construction [13],
[42], [52].

THEOREM 5.3. Let G be a planar st-graph with n vertices. A visibility represen-
tation for G with integer coordinates and O(n2) area can be computed by an EREW
PRAM in O(logn) time using n/ logn processors, which is optimal.

Proof. A visibility representation for G can be constructed by the following vari-
ation of previous algorithms [13], [42], [52].

(1) Compute a topological ordering Y(v) of the vertices of G.
(2) Compute a topological ordering X(f) of the vertices of G*, the dual graph

of G.
(3) Draw each vertex-segment F(v) at ordinate Y(v) and between abscissae

X(left(v)) and X(right(v))- 1.
(4) Draw each edge-segment F(e) at abscissa X(left(e)) and between ordinates

Y(low(e)) and Y(high(e)).
By Corollary 3.3, steps 1 and 2 take O(logn) time using n log n processors. The
parallel computation of steps 3 and 4 within the same bounds is straightforward.

Given a 2-connected embedded undirected planar graph G, we choose s and t
to be two adjacent vertices (which we can assume to be on the external face) and
orient the edges of G so that the resulting digraph is a planar st-graph, and then we
apply the previous theorem. Such an orientation of G can be computed by an EREW
PRAM in O(log n) time with n log n processors using the st-numbering algorithm of
Gazit [21].

THEOREM 5.4. Let G be a 2-connected embedded (undirected) planar graph with
n vertices. A visibility representation for G with integer coordinates and O(n2) area
can be computed by an EREW PRAM in O(log n) time using n/ log n processors.

A number of data presentation problems involve drawing graphs so that they
are easy to read and understand. Examples include circuit schematics, algorithm
animation, and diagrams for information systems analysis and design. The literature
on graph drawing algorithms is spread over the broad spectrum of computer science
[17], [50]. This problem has received increasing theoretical interest in recent years (cf.
[15], [20], [45] ).

DEFINITION 5.5. A drawing of a graph maps each vertex into a point of the plane,
and each edge (u, v) into a simple open curve between the points associated with the
vertices u and v. A planar drawing has no crossing edges. A straight-line drawing is
such that every edge is drawn as a line segment. In a polyline drawing, every edge
is drawn as a polygonal chain. An orthogonal drawing is a polyline drawing whose
edges are chains of horizontal and vertical segments. A grid drawing is a polyline
drawing such that the vertices and the bends of the edges have integer coordinates.
An upward drawing for an acyclic digraph G is such that every edge (u, v) is a curve
monotonically increasing in the vertical direction. (See examples in Figs. 5(b), (c).)

An edge (u, v) of a digraph is said to be transitive if there exists a directed path
from u to v that does not contain the edge (u, v). A digraph is said to be reduced
if it has no transitive edges. A reduced planar st-graph G admits a planar upward
straight-line drawing such that the x- and y-coordinates of a vertex v are the ranks
of v in the restriction to the vertices of the left- and right-sequence of G, respectively
[15]. Hence, a reduced planar st-graph can be efficiently drawn in parallel from the
result of Corollary 3.3.
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To draw a nonreduced planar st-graph we insert a new dummy vertex v along each
transitive edge (u, w) and draw the resulting reduced planar st-graph G considering
the dummy vertices as bends. To identify transitive edges in parallel we use the
following lemma, where we say that edge (u, v) is the long edge of face f if u low(f)
and v high(f).

LEMMA 5.6. An edge e of a planar st-graph is transitive if and only if it is the
long edge of either left(e) or right(e).

By Euler’s formula a planar graph has at most 2n- 5 interior faces, so that
Lemma 5.6 implies that a planar st-graph has at most 2n- 5 transitive edges.

Hence, we have the following theorem.
THEOREM 5.7. Let G be a planar st-graph with n vertices. A planar upward

polyline grid drawing for G with 2n- 5 bends and O(n2) area can be computed by an
EREW PRAM in O(log n) time using n/ log n processors, which is optimal.

Now, we consider planar orthogonal drawings of undirected graphs. Such drawings
are typical of circuit layout, and are widely used in data presentation applications
because of their regularity. Sequential algorithms for planar orthogonal drawings are
given by Storer [47], Wamassia [48], and Tamassia and Tollis [53].

THEOREM 5.8. Let G be a 2-connected embedded (undirected) planar graph with
n vertices, each of degree at most four. A planar orthogonal grid drawing for G with
O(n) bends and O(n2) area can be computed by an EREW PRAM in O(logn) time
using n/ log n processors.

Proof. As shown by Tamassia and Tollis [53], a planar orthogonal grid drawing
can be constructed from a visibility representation by local replacements performed
at each vertex. Because of its locality, this transformation can be easily parallelized.
Hence, the result follows from Theorem 5.4. [:l

The bounds on the area and the number of bends are asymptotically optimal
[47]. The bound on the number of bends can be improved to the exact worst-case
optimal 2n + 4 and the algorithm can be extended to 1-connected graphs [55].

Our results improve upon the previous parallel drawing algorithm presented by
Ja’Ja’ and Simon [26], which constructs a straight-line planar drawing in O(log2 n)
time with M(n) processors, using real arithmetic for the computation of the coor-
dinates of the vertices. It is not known whether this algorithm can be modified to
construct grid drawings with area bounded by a polynomial in n.

Acknowledgments. We would like to thank the referees for several useful com-
ments and suggestions.
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Abstract. In a recent paper, Melen and Turner [SIAM J. Comput., 18 (1989), pp. 301-313]
determined sufficient conditions for multirate interconnection networks to be strictly nonblocking
and rearrangeable. They considered the continuous bandwidth case, which permits the bandwidth
of a connection to take an arbitrary value in a given closed interval. In this paper, simple necessary
and sufficient conditions for multirate interconnection networks to be strictly nonblocking for both
discrete and continuous bandwidth cases are determined. New results for rearrangeable multirate
networks with discrete bandwidth requirements are also given.

Key words, interconnection networks, telecommunications, Clos network, Beneg network, Can-
tor network
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1. Introduction. In a recent paper, Melen and Turner [1] introduced an elegant
model for interconnection networks that carry multirate traffic. The impetus of such
a model comes from the current interest in designing telecommunication switches that
handle traffic with a wide range of bandwidth requirements (voice, facsimile, video,
etc.) Their continuous bandwidth case permits the bandwidth of a connection to
take an arbitrary value in a given closed interval. Their single path model requires
that the entire bandwidth of a connection be routed through a single path in the
interconnection network. Melen and Turner give sufficient conditions for their model
to be strictly nonblocking and rearrangeable. For example, generalizing the well-
known result of Clos [5], they determine the number of middle-stage switches in a
three-stage multirate network that would ensure strictly nonblocking operation. In
another recent paper, Niestegge [9] determines sufficient conditions for a Clos network
to be strictly nonblocking for the discrete bandwidth case, i.e., for the bandwidth of
all connections to belong to a given finite set.

In this paper we determine simple necessary and sufficient conditions for multirate
interconnection networks to be strictly nonblocking. We do this for the continuous
bandwidth case as well as for a discrete bandwidth case. We also consider rearrange-
able multirate networks for the discrete case.

In 3 we consider three-stage Clos networks. The minimum number of middle-
stage switches for strictly nonblocking operation is determined for the discrete case.
The continuous case is studied under the condition that the maximum bandwidth
requirement of a connection is equal to the capacity of the edges in the interconnection
network. Again, the minimum number of middle-stage switches is obtained.

In 4 we consider Cantor networks. Employing polymatroid theory, we determine
the minimum number of subnetworks required for nonblocking operation for both
discrete and continuous cases. We show for both Clos and Cantor networks that the
sufficient conditions of [1] can be loose in many circumstances.

In 5 we consider rearrangeable networks. We establish that the Bene network
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remains rearrangeable if the bandwidth requirements of the connections are the same,
but less than the capacity of the edges in the network. We also show by way of coun-
terexamples that the Beneg network is not generally rearrangeable for multirate traf-
fic. More complex networks are then constructed that are rearrangeable for multirate
traffic.

2. Model description. For the sake of presentation, we recapitulate the mul-
tirate interconnection network model of Melen and Turner. We then formally define
the continuous and discrete bandwidth cases.

The interconnection network shall be viewed as a directed graph G (V, E) which
includes a set of input nodes I and output nodes O, where each input node has one
outgoing edge and no incoming edge, and each output node has one incoming edge
and no outgoing edge. Only networks that can be divided into a sequence of stages
shall be considered. Input ports are in stage 0 and for > 0, a node v is in stage if
for all links (u, v), u is in stage i- 1. A link (u, v) is said to be in stage if u is in
stage i. In the networks considered here, all output ports are in the same stage, and
no other nodes are in this stage. When referring to a k-stage network, we generally
neglect the stages containing the input and output ports.

A connection in a network is a triple (x, y, w), where x E I, y E O, and 0 _< w _< 1.
The weight w represents the bandwidth required by the connection. A route is a path
joining an input node to an output node, with intermediate nodes in V- (I U 0),
together with a weight. A route r realizes a connection (x, y,w), if x and y are the
input and output nodes joined by r and the weight of r equals w.

A set of connections is said to be compatible if for all nodes x I U O, the sum of
the weights of all connections involving x is _< 1. A configuration for a network G is
a set of routes. The weight on an edge in a particular configuration is the sum of the
weights of all the routes passing through that edge. A configuration is compatible if
for all edges (u, v) E, the weight on (u, v) is _< 1. A set of connections is said to be
realizable if there is a compatible configuration that realizes that set of,connections.

If we are attempting to add a connection (x, y, w) to an existing configuration, we say
that a node u is accessible from x if there is a path from x to u, all of whose edges
have a weight of no more than 1- w.

A network is said to be rearrangeable if for every set C of compatible connec-
tions, there exists a compatible configuration that realizes C. A network is strictly
nonblocking if for compatible configuration R, realizing a set of connections C, and
every connection c compatible with C, there exists a route r that realizes c and is
compatible with R. We will consider two cases

Discrete bandwidth case. The weight of all connections belongs to a given
finite set {bl,...,bg}, where bl is a divisor of bk, k 2,...,K. Denote
b := bl and B "= max {bk k 1,...,K}.
Continuous bandwidth case. The weight of all connections belongs to a closed
interval [b, B], where 0 <_ b <_ B _< 1.

In order to simplify notation, we shall always suppose that lib is an integer for
the discrete bandwidth case. (If lib is not an integer, then the analysis to follow for
the discrete bandwidth case can be modified with little effort.) However, we will not
impose this restriction for the continuous bandwidth case.

Suppose that b is a divisor of B. If a given interconnection network is strictly
nonblocking for the continuous bandwidth case, then it will be strictly nonblocking for
any discrete bandwidth case with b b and B max {bk k 1,..., K}. Note that
the classical circuit switching case corresponds to b 1 for the discrete bandwidth
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FIG. 1. Clos network CN,L,M.

case and b > 1/2 for the continuous bandwidth case.

3. Three-stage Clos networks. A three-stage Clos network with N input
ports and N output ports is depicted in Fig. 1. Note that there are L input ports
(respectively, output ports) for each first-stage node (respectively, last-stage node).
Also note that there are M middle-stage nodes. The three-stage Clos network shall
be denoted by CN,L,M. Let M* be the minimum number of middle-stage nodes for
CN,L,M to be strictly nonblocking (with N and L held fixed). It is well known [3]
that M* 2L- 1 for classical circuit switching. In 3.1-3.3 we determine M* for
the multirate model for both the discrete and continuous bandwidth cases.

3.1. The discrete bandwidth case.
THEOREM 1. For the discrete bandwidth case,

(1) M*=2
1-B+b

+1.

Proof. Let M* be given by (1). Suppose we want to add a connection (x, y, w)
to an arbitrary configuration. The divisibility condition implies that the minimun
weight on an edge needed to block this connection is s(w) 1-w + b. The argument
in the proof of Proposition 3.1 of [1] and the argument in [9] show that the maximun
number of inaccessible middle-stage nodes from either x or y is

which is maximized at w B. Therefore, since M* is given by (1), there must be
at least one middle-stage node that is accessible from both x and y, implying that
CN,L,M* is strictly nonblocking.

It remains to show that if M M* 1, then the Clos network CN,L,M is not
strictly nonblocking. Consider the following configuration with 2(L- B)/b connec-
tions, each with weight b. (L- B)/b of these connections employ the same first-stage
node u and the same last-stage node z, but they contribute a weight of at least 1-B+b
to each of [(L B)/(1 B + b)] middle-stage nodes. The remaining (L- B)/b con-
nections employ the same first-stage node w = u and the same last-stage node v - z,
but they contribute a weight of at least 1 B + b to [(L B)/(1 B + b)J middle-
stage nodes. Define the configuration so that the two sets of middle-stage nodes are
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disjoint (this is possible since M 2 [(L- B)/(1 B + b)J). Then for a compatible
connection (x, y, B) with x adjacent to u and y adjacent to v, a middle-stage node
would not be available and the connection would be blocked. Thus, CN,L,M is not
strictly nonblocking.

3.2. The continuous bandwidth case.
THEOREM 2. For the continuous bandwidth case with B 1,

(2) M* 2l/bJ(L- 1)+ 1.

In order to prove Theorem 2, consider a network with one node (in V- (I u O))
with L input ports and kl/bJL output ports. Suppose that the connections for this
network have arbitrary weights in [b, 1] (i.e., the continuous bandwidth case). Note
that this network is strictly nonblocking. Fix w E [b, 1], and let 9Z be the set of
all configurations such that the first input edge has a weight _< 1- w. Let J(w, L)
be the maximum number of output edges that has a weight > 1- w, where the
maximization is over all configurations in ?Z. The proof of Theorem 2 hinges on the
following technical result.

LEMMA 1. (i) J(w, L) <_ [1/bJ (L 1);
(ii) J(1, L) [1/bJ (L 1).
Proof. (i) Let R be a configuration in 7. For each route r E R, denote ar for

its weight. Let Gl be the set of routes in R that pass through the /th input edge.
Thus, {G1,..., GL} is a partition of R. Let be the set of all output edges that have
weight > 1- w and let J 1ST I. Let Hj be the set of routes in R that pass through
the jth edge in ,. Then at, r R, must satisfy

(3) E ar _< l-w,
r6Gi

(4) Ear _< 1, l=2,...,n,
r6G

(5) E ar > l--w, je,
r6Hj

(6) ar 6 [b, 1], r 6 R.

Let G := U=2 Gl, we have

(7)

Otherwise, for some j e J, Hj C_ G1, and thus from (3),

(8)
rEHj rEGi

contradicting (5). From (7) we have

(9) J -< E IHJ n GI < IGI.
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From (4) and (6) we have IG, <_ l/b3, - 2,... ,L so that

(lO) _< L1/bJ (L 1).

Combining (9) and (10) gives the desired result.
(ii) Consider a configuration R consisting of [1/bJ(L- 1) routes of weight b,

where each route passes through a different output edge. Further define R so that
l/bJ routes pass through the /th input edge, 2,...,L. If w 1, then each
of the [l/bJ(L-1) edges utilized by R have a weight > 1- w. Hence, J(1, L)
L1/bJ(L- 1).

Proof of Theorem 2. We first show that CN,L,M* is strictly nonblocking with M*
given by (2). Suppose we want to add a connection (x, y,w) to an arbitrary config-
uration R. It follows from Lemma 2 that at most [1/bJ(L- 1) middle-stage nodes
are inaccessible from x and at most l/bJ(L- 1) middle-stage nodes are inaccessible
from y. Thus, there is at least one middle-stage node accessible from both x and y.

It remains to show that if M M* 1, then the Clos network CN,L,M is not
strictly nonblocking. The argument is similar to that in the proof of Theorem 1.

With a minor change in the proof, it can be shown that Theorem 2 continues to
hold if B E (1- b, 1]. If b 0 and B is arbitrary, then a straightforward analysis gives
M* M, where

M=lim2[ L-B J+l$0 1-B+e

Unfortunately, we have not been able to determine M* for the case 0 < b < B <_ 1- b.
However, from Theorem 1 and the above observation, we have the following bounds.

COROLLARY 1. Suppose B is an integer multiple orb and 1/b is an integer. Then
for the continuous bandwidth case

2
1-B+b

+1_< <_2
1 B

We may be tempted to conjecture that M* M for the case where 0 < b <
B _< 1- b. However, this is not generally true, as can be seen by considering a Clos
network with L 5, b 0.1, and B 0.8. In this case M 41 and it can be shown
that M* 39.

3.3. Comparison with the sufficient condition of Melen and Turner.
Melen and Turner [1] obtained an upper bound for M* for the continuous bandwidth
case. We compare their upper bound with the results of 3.2. Assume throughout
the discussion that b <_ 1/2.

For the case B 1, the sufficient condition in [1] for CN,L,M to be strictly
nonblocking is

b
+3.
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FIe,. 2. Beneg network Bs,2.

(Put 1, B 1, andw 1-binthe formula in [1].) For the same case, the
necessary and sufficient condition (see Theorem 2) is

M _> 2[1/bJ(L- 1)+ 1 M*.

Thus, the sufficient condition in [1] calls for at least two unnecessary middle-stage
nodes. For example, if b 0.255 and L 5, then the sufficient condition calls for 33
middle-stage nodes when only 25 are needed.

As another example, consider the case B b with lib >_ 2 an integer. Then it
follows from Theorem 1 that M* 2(L- 1) / 1. The sufficient condition in [1] is

M>2[L-b]1-b
+1,

which calls for (approximately) 2b(L- 1)/(1- b) additional middle-stage nodes. In
particular, if B b 1/2, then the number of middle-stage nodes called for by the
sufficient condition is approximately twice that needed.

4. Cantor networks. A Beneg network with N inputs consisting of L L square
arrays (where logL N is an integer) shall be denoted by BN,L. Recall that (i) BL,L is
simply an L L square array; (ii) BN,L is constructed by stacking L Bene networks
BN/L,L on top of each other, adding a column of NIL square arrays of dimension
L L to both the input and output, and making appropriate connections (see [1], [3]
for a more formal definition). Note that the Bene network BN,L has 2H- 1 stages,
where H :- logL N. The Beneg network Bs,2 is given in Fig. 2.

The Cantor network KN,L,Q can be constructed by stacking Q Bene networks
BN,L; adding a column of N, 1 Q arrays at the input; adding a column of N, Q 1
arrays at the output; and making the appropriate connections. The Cantor network
K8,2,3 is given in Fig. 3.

Note that the Cantor network KN,L,Q has 2H + 1 stages with stage H + 1 being
the middle stage. Further note that between a given input port x and a given middle-
stage node u there is exactly one path. Thus each input port x generates a directed
tree with root node x and with the set of leaves being the nodes in the middle stage.

Let Q* be the minimum Q such that KN,L,Q is strictly nonblocking. It is well
known that Q* log2 N for L 2 for classical circuit switching [4]. In 4.1-4.3 we
determine M* for the multirate model for both the discrete and continuous bandwidth
cases.
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FIG. 3. Cantor network Ks,2,3.

4.1. The discrete bandwidth case. Let

s(w) LH-h
w w

1-w+b 1-w+b
h--2

THEOREM 3. For the discrete bandwidth case,

(11)
L s(B)J + 1Q*= 2K

Proof. We first show that KN,L,Q* is strictly nonblocking with Q* given by
(11). Suppose we want to establish a compatible connection (x,y,w) to some existing
configuration. Denote T for the directed tree generated by x, and denote Th for the set
of nodes in T that are in the hth stage, h 1,..., H+ 1. Note that a node in T is either
accessible or inaccessible from x depending on the existing configuration. Say that a
node u E T is inaccessible from x for the first time if (i) node u is inaccessible from x;
and (ii) the predecessor of u in the tree T is accessible from x. Since there are L output
links from each node in each stage, h 1,..., H, if a node in stage h is inaccessible
for the first time, it will cause LH+l-h middle-stage nodes to be inaccessible from x.
Denote Ch for the number of nodes in stage h that are inaccessible from x for the first
time, h 3,..., H + 1. Then the number of middle-stage nodes that are inaccessible
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from x is

H+I

E LH+l-hoth"
h-3

Let Pj be the set of nodes in stage 1 such that there is a path in the original graph
G (V, E) to some node in Tj. It is easily seen that IPjl- Lj-1.

For a node u 6 Tj to be inaccessible for the first time, the incoming edge to u in
T must have a weight _> 1- w + b. The total amount of weight available to edges in
T incoming to the nodes in [.J=3 Th is IPj_ll- w. Thus,

h <
h--3

1-w+b
j-3,"’,H+I.

Therefore, the number of inaccessible middle-stage nodes from x can be no more than
t(w), where

H+I
t(w) max E LH+l-hah

h=3

J

klL -=- Jl-w+bs.t. ah <_ j 3,
h=3

,H+I,

integer, h 3,..., H + 1.

From polymatroid theory (see [2, Thm. 2, 18.4]) we know that the optimal solution
to the above integer program is the greedy solution, namely,

ah= 1-w+b 1-w+b
h=3,...,H+l.

Thus t(w) s(w). It is not diNcult to show that s(w) _< s(B) for all w e [b, 1].
Thus the maximum number of middle-stage nodes that are inaccessible from :c is
s(B). Similarly, the maximum number of middle-stage nodes that are inaccessible
from is s(B). Thus, there are at most 2s(B) inaccessible middle-stage nodes. Since
KN,L,Q* has at least 2s(B) + 1 middle-stage nodes, it follows that KN,L,Q* is strictly
nonblocking.

It remains to show that if Q Q* 1, then KN,L,Q is not strictly nonblocking.
This is done by working the above argument backwards, as in the proof of Theorem
1.

4.2. The continuous bandwidth case.
THEOREM 4. For the continuous bandwidth case with B 1,

(12) Q*= [2[1/bJ L-1n (H-l)+1.

Proof. We first show that KN,L,Q* is strictly nonblocking with Q* given by
(12). Suppose we want to establish a compatible connection (x, y,w) to some existing
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configuration. As in the proof of Theorem 4, let ah be the number of nodes in stage
h that are inaccessible from x for the first time, h 3,..., H + 1. Note that

ah g J(w, LJ-2),
h--3

j=3,...,H+I,

where J(., .) is defined in 3.2. Thus, the number of inaccessible middle-stage nodes
can be no more than t(w), where

H+I

t(w) "= max nH+l-hah
h=3

J
LJ_2s.t. ah < J(w, ), j 3,...,H + 1,

h=3

ah integer, h 3,...,H + 1.

Note that J(w,Lj-) < J(w, LJ), j 2,... ,H. It therefore follows from polymatroid
theory (see [2]) that the optimal solution to the above integer program is

Lh-2 Lh-3) h 3 H + 1ah J(w, )- J(w,

so that

H+I
(13) t(w) LH+-h [J(w, Lh-2) J(w, Lh-3)].

h--3

From Lemma 1 we have

(14) J(w,Lh-2) < J(1, Lh-2) kl/bJ (Lh-2 1), h 2,...,H + 1.

Combining (13)and (14) gives

H+I

t(w) < t(1)- L1/bJ LH+I-h(Lh-2- Lh-3)
h--3

N L- I(H_ 1).--L1/b] n
Since KN,L,Q. has at least 2t(1)+ 1 middle-stage nodes it follows that KN,L,Q. is
strictly nonblocking.

It remains to show that if Q Q* 1, then KN,L,Q is not strictly nonblocking.
This is done by working the above argument backwards as in the proof of Theorem
1. rl

With a minor change in the proof, it can be shown that Theorem 4 continues to
hold if B 6 (1 b, 1]. If b 0 and B is arbitrary, then it can be shown that Q* Q’,
where

(15) Q’= lim 2 L-h + 1.
$o 1-: 1-B+e

h--2
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As in the case of the Clos network, we have not been able to determine Q* for the
case 0 < b < B _< 1- b. However, from Theorem 3 and the above observation we
have the following bounds.

COROLLARY 2. Suppose B is an integer multiple of b and lib is an integer. Then
for the continuous bandwidth case

Ls(B)1 +I<Q*<Q’
4.3. Comparison with the sufficient condition of MeleE and Turner. For

the continuous bandwidth case with B 1, the sufficient condition of [1] for KN,L,Q
to be strictly nonblocking is

1
Q >_ 2-(1 / (L- 1)(H- 1)).

For the same case, the necessary and sufficient condition (see Theorem 4) is

Q >_ [2l/bJ LL-I(H- 1)J +1- Q*.

Thus, the sufficient condition of [1] calls for (approximately) 21/b (L- 1)/L unnec-
essary Beneg networks BN,L. For example, if b 0.255, L 2, and N 32, then the
sufficient condition calls for 20 Beneg networks when only 13 are needed.

For the case b B

_
1/2 with lib an integer, the sufficient condition of [1] becomes

1
Q _> 2

L(1-b(1 + (L- 1)(H- 1)).

For the same case, the necessary and sufficient condition is

Q>- [2L-I(H-1)JL +i=Q*.

In particular, if B b 1/2, then the number of Beneg networks BN,L called for by
the sufficient condition is (approximately) twice what is necessary.

5. Rearrangeable networks. Recall that for all N and L the Beneg network
BN,L is rearrangeable for classical circuit switching (i.e., b 1). Unfortunately the
Bene network is not generally rearrangeable when multirate traffic is present.

Counterexample 1. Consider BE,2 supporting connections with weights 1 and b
(with b <_ ). Suppose there are five compatible connections" (1,1,1), (3,3,1),
(5,4, 1), (4,2,6), (6,2,6). It is easily seen that there does not exist a compatible
configuration that realizes these connections.

Counterexample 2. Consider B9,3 supporting connections with weights 1 and b
(with b <_ 1/2). Suppose there are seven compatible connections" (1, 1, 1), (2, 2, 1),
(4, 4, 1), (5, 5, 1), (7, 6, 1), (6, 3, 6), (9, 3, 6). Again, there does not exist a compatible
connection that realizes these connections.

However, we do have the following positive result.
THEOREM 5. Let G be a network that is rearrangeable for the classical circuit

switching. Then G is also rearrangeable if all connections have the same weight b.
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Proof. Let C be a set of compatible connections. Construct a bipartite graph
with one node for each input port, one node for each output port, and one edge
from node x to node y for each connection (x, y, b) in C. Note that each node in the
graph can have a degree of at most 1lb. Therefore, by the graph coloring theorem
(e.g., see [8]), we can color the edges in the graph with lib different colors so that
no two connections involving the same input or output port are assigned the same
color. Given the coloring, we route like colored connections so that no two share a
common link (which we can do since the network is rearrangeable for classical circuit
switching). We can do this for all colors and since each link can have at most one
connection of each color, we are guaranteed not to have exceeded the capacity of any
link. Thus, there is a compatible configuration that realizes C. D

Now suppose that all connections have weight of either b or 1. We know from
Counterexamples 1 and 2 that Beneg network is not generally rearrangeable for this
case. Thus, we need to consider networks that are more complex. To this end,
consider a network G that is strictly nonblocking for classical circuit switching. For
this network we can first route all connections with weight 1 to their destination
ports. If we then remove all links that have a weight of 1, including those adjacent
to input and output ports, the network remains strictly nonblocking for classical
circuit switching, and hence rearrangeable for classical circuit switching. Thus, from
Theorem 5 we can route all the connections of weight b along the remaining links.
Summarizing, we have the following result.

COROLLARY 3. Suppose G is strictly nonblocking for classical circuit switching.
Then G is rearrangeable if all connections have weight of either b or 1.

It would be of interest to show that Corollary 3 holds for the general discrete
bandwidth case with K distinct rates. We have not succeeded in establishing this re-
sult, nor at constructing a counterexample. Now consider the network KN,L,K, which
contains K Bene networks. Suppose that all connections of weight bk are routed to
the kth Beneg network. From Theorem 5 it follows that each of the Beneg networks
can rearrange their single-rate connections. We therefore obtain the following result.

COROLLARY 4. KN,L,K i8 rearrangeable for the discrete bandwidth case.
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INTERSECTING LINE SEGMENTS IN PARALLEL WITH AN
OUTPUT-SENSITIVE NUMBER OF PROCESSORS*

MICHAEL T. GOODRICHt
Abstract. An efficient parallel algorithm is given for constructing the arrangement of n line

segments in the plane, i.e., the planar graph determined by the segment endpoints and intersections.
This algorithm is efficient relative to three efficiency measures--it is an NC algorithm, it has a small
time-processor product, and it is output-size sensitive. In particular, it runs in O(logn) time using
O(n log n / k) processors, where k is the size of the output (which is (n2) in the worst case). The
algorithm does not receive the value of k as input, it determines it on-line. A method for solving an
important special case of the segment arrangement problem is also shown, namely, when each input
segment is parallel to one of the coordinate axes (i.e., iso-oriented). The algorithm for this problem
runs in O(log n) time using an optimal O(n + k/log n) processors. The model of computation is the
CREW PRAM model, where processor allocation must be explicit and global.

Key words, computational geometry, line-segment intersection, parallel algorithms, parallel
data structures, PRAM model

AMS(MOS) subject classifications. 68E05, 68C05, 68C25

1. Introduction. One of the major thrusts of computational geometry research
has been to show that we can solve many geometric construction problems with a
running time that is proportional to the input size plus the output size (times loga-
rithmic factors in some cases); see, for example, [6], [11], [12], [20], [25], [27], [31], [39].
This is significant, because most of these problems have trivial (n2) lower bounds,
which are based on constructing examples that have a large output size. These worst-
case examples seldom arise in practice, however. Thus, an algorithm whose running
time is essentially linear in the size of the output will perform much better than the
worst-case time on most inputs.

1.1. The problem. One of the most studied of these problems is the problem
of constructing the planar graph determined by the pairwise intersections of a set
of line segments in the plane, i.e., the segment arrangement problem (see [6], [11],
[12], [16], [30], [34]). This problem has several applications in computer graphics, for
example, [21], [33], [37]. One of the oldest algorithms solving the segment arrangement
problem is an elegant method by Bentley and Ottmann [6] published in 1979 that
uses the now-famous "plane-sweeping" paradigm [16], [30], [34]. The running time of
their algorithm is sensitive to the size of the output, as it runs in O((n / k)logn)
time for the general case, and in O(n log n + k) time if the input segments are iso-
oriented (i.e., if each segment is parallel to one of the coordinate axes), where k is
the size of the output. Since k is (n2) in the worst case, the existence of an optimal
algorithm, running in O(n log n / k) time, became an open problem. This gave rise to
a considerable amount of research done to resolve this question (e.g., [12], [13], [19]),
and Chazelle and Edelsbrunner showed in 1988 that we can in fact solve this problem
in O(n log n + k) time.
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posium on Parallel Algorithms and Architectures, Association for Computing Machinery, New York,
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In this paper we investigate how efficiently we can solve this problem in parallel.
Our primary goal is to design a parallel algorithm that runs as fast as possible. Given
that, our secondary goal is to design an algorithm that has a time-processor product
that is as small as possible. Our motivation for this is that we desire an algorithm that
can be simulated on a real machine, with a fixed constant number of processors, so
as to maximize the speedup over the best-known sequential algorithms. The product
of the time bound and processor bound characterizes the work that such a simulation
would perform, and provides a simple measure of the algorithm’s efficiency relative to
the best known sequential algorithms. Thus, for the segment arrangement problem,
we desire an algorithm that runs in O(logn) time and has an output-sensitive work
bound.

1.2. Previous work. Prior to a preliminary announcement of this research [22],
we knew of no previous work for solving this problem in parallel, other than the trivial
brute-force method based on sorting that runs in O(log n) time using O(n2) processors
(e.g., using Cole’s sorting method [15]). The only known results were for solving
special cases of the segment arrangement problem in parallel. For example, Atallah,
Cole, and Goodrich [3] addressed the decision version of this problem, i.e., determining
if any two segments intersect, deriving a method running in O(log n) time using O(n)
processors. In [14] Chow studied a restricted version of the problem: namely, she
showed how to determine all the pairwise intersections of n iso-oriented segments.
Her algorithm runs in O((1/)logn/ kmax) time using O(nTM) processors [14], where
e > 0 is a small constant and kmax is the maximum, taken over all input segments s,
of the number of intersections on s. Note that this does not give an NC algorithm,
since kmax is gt(n) in the worst case, nor does it balance the computational burden
for the case when only a few segments cause the majority of intersections. Neither of
these approaches seem to extend to the general segment arrangement problem.

Following the preliminary announcement of this research, however, there have
been a number of results that apply to this problem. In particular, Anderson, Beame,
and Brisson [2] and Hagerup, Jung, and Welzl [26] have studied the related problem
of constructing the arrangement of n lines in the plane (which, of course, always has
(n2) size), a problem that can be solved sequentially in O(n2) time [13], [17], [19].
The method of Anderson, Beame, and Brisson builds upon the methods presented in
[22] to derive a parallel algorithm running in O(log n log* n) time using O(n2/log n)
processors in the CREW PRAM model. The method of Hagerup, Jung, and Welzl is a
randomized method running in O(log n) expected time using O(n2/log n) processors
in the CRCW PRAM model. Subsequentially, Goodrich has improved upon these
methods to derive a deterministic method running in O(log n) time using an optimal
O(n2/logn) processors in the CREW PRAM model [23], solving an open problem
posed in the preliminary version of this paper [22]. Of course, if we apply these
methods to the segment arrangement problem, then these methods are efficient only
if k, the number of intersections, is large.

In addition to these algorithms for the line arrangement problem, Riib (see [36])
has independently shown that one can solve the segment arrangement problem in
O(lognlog log n) time using O(n + k) processors in the CREW PRAM model. Her
method improves upon the line arrangement algorithms, then, for instances when k
is not too large (e.g., k << n2/log n log log n).

1.3. Our results. The main result of this paper is an output-sensitive paral-
lel algorithm for solving the segment arrangement problem. Our algorithm runs in
O(log n) time using O(n log n / k) processors, where k is the size of the output. Note
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that the work performed by our algorithm matches the time-processor product of the
brute-force approach when the output size is large, i.e., when k is gt(n2), and is smaller
than the method of Riib for k >> n log n/ log log n. We also give an algorithm for
the case when the segments are iso-oriented that runs in O(log n) time using an opti-
mal O(n / k/log n) number of processors. Our model of computation is the CREW
PRAM model, where processor allocation must be explicit and global.

The main obstacle to designing an output-sensitive parallel algorithm for the
general segment arrangement problem is that paradigms that led to efficient sequen-
tial algorithms, such as plane-sweeping [16], [34], topological sweeping [12], [17], and
incremental construction [16], [34], seem inherently sequential. Moreover, parallel
techniques that worked well for parallelizing fast plane-sweeping algorithms, such as
the plane-sweep tree [1], [3], cascading divide-and-conquer [3], and parallel sequence-
evaluation [4], cannot be directly applied, for they require one to know a priori all
the places where a sweeping line would need to stop. Such a requirement "begs the
question" in the case of constructing a segment arrangement, for a sweep-line would
need to stop at each intersection point.

Our algorithm, instead, is based on a number of new parallel algorithmic tech-
niques, as well as a new geometric characterization of the types of intersections that
can occur. The new parallel-techniques include a "truncated" version of the zone
lemma of [11]-[13], [18], and [19] and a method for reusing processors created for
enumerating intersections of one type to then discover intersections of another type.
The new geometric characterization is a "hierarchical" extension of a characteriza-
tion due to Chazelle [11]. Our algorithm achieves its output-sensitivity by computing
the size of the output while it is computing the answer, and dynamically allocates
new processors accordingly. Our algorithm for the special case when the input seg-
ments are iso-oriented also uses this dynamic-allocation paradigm, in addition to the
use of a "compressed" version of the array-of-trees parallel data structure of Atallah,
Goodrich, and Kosaraju [4].

In the next section we discuss dynamic processor allocation in more detail, and
show how to solve an important dominance reporting problem using this paradigm
in 3. This problem arises as a natural subproblem in our segment arrangement
algorithm, which we describe at a high level in 4. We give the details of our method
in 5 and 6. In 7 we present our algorithm for the iso-oriented case, and we conclude
in 8.

2. A word about the computational model. The computational model we
use in this paper is the Parallel Random Access Machine, or PRAM. Processors in
this model act in a synchronous fashion and use a shared memory space. This model
is divided into three types based on how memory can be accessed: the Exclusive-
Read, Exclusive-Write (or EREW) model, the Concurrent-Read, Exclusive-Write (or
CREW) model, and the Concurrent-Read, Concurrent-Write (or CRCW) model. All
of our algorithms are for the CREW PRAM model.

Given an input of size n, the traditional way of utilizing this model is that we
simply allocate, once and for all, a number of processors that depends on n (e.g., n2,
n log n, etc.). Of course, a real parallel machine has a constant number of processors,
c, not a number that is a function of n. Thus, the c real processors must simulate the
"virtual" processors in the algorithm in order to implement it. Since we wish to solve
a problem in an output-sensitive manner, in order to achieve the maximum speedup
possible we allow the set of virtual processors to grow dynamically.

There are essentially two different ways to allow for a dynamically growing pool of
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virtual processors. One approach, as outlined by Reif and Sen [35], is that of allowing a
new virtual processor to be created by having some existing virtual processor execute a
spawning operation. Such an operation is issued by an existing processor specifying the
task that a new processor is to perform. Then, in the next time step, a new processor
is created and begins executing that task. This is also similar to a model used by
Bhatt and Cai [8]. This model does not specify how to implement the processor
assignment should a number of different virtual processors simultaneously perform
spawning operations, however.

The model we use in this paper does not allow for the spawning operation. In-
stead, we insist that for r new virtual processors to be allocated in time t we must
have already constructed an r-element array that stores pointers to the r tasks these
processors are to begin performing in step t / 1. We refer to this as a global allocation
scheme. This is essentially the same as the traditional PRAM model, in that every
PRAM algorithm does such an allocation as its first step, usually to allocate a number
of virtual processors that is a function of the input size.

It is beyond the scope of this paper to address all the relative strengths of the
various dynamic processor allocation schemes. Nevertheless, we would like to mention
that, in spite of its apparent weakness, the global allocation CREW PRAM model
can simulate any algorithm designed for the spawning CREW PRAM model in a
work-optimal fashion.

LEMMA 2.1. If an algorithm A runs in t steps using p processors in the CREW
PRAM model with local spawning of processors allowed, then A can be implemented in
O(t logp) steps using O(p/ logp) processors in the CREW PRAM model with global
processor allocation.

Proof. Let p denote the number of processors used in the spawning PRAM model
in step i, and let T denote the list of tasks to be performed in step i, with T[j] being
the task to be performed by processor j. The main idea of the proof is to simulate
step of the spawning PRAM algorithm in O(logp) time using [p/logp] processors
in the global-allocation PRAM model. We begin by performing all the nonspawning
operations of step i. This can easily be done in O(logp) time using [p/logp]
processors, by a simple application of Brent’s theorem [10]. We then perform a parallel
prefix computation to determine p+ -p, the number of new processors that
are to be spawned in step i, and to which tasks they are to be assigned. (Recall that
a parallel prefix computation is one in which we redube a problem to the problem of
computing all prefix sums sk -.k= a of a list of numbers (al, a2,..., a,,).) This
gives us T+I and takes O(logp) time using [p/logp] processors [28], [29]. We
complete the processing for step by requesting [p+/logp+] [p/logp] new
processors, bringing the total to [p+/logp+]. This prepares us to simulate the
next step in A. Thus, the entire algorithm can be implemented in O(tlogp) time
using O(p/logp) processors in the global-allocation PRAM model, where p Pt.

In the next section we illustrate the power of dynamic processor allocation by
describing a simple, efficient parallel method for solving an important dominance
reporting problem, which arises naturally in our segment arrangement algorithm.

Recall that a parallel prefix computation is a reduction to the problem of computing all prefix

Esums sk i= ai for n numbers (a, a2,..., an), where + is any associative operation. Also recall
that this problem can be solved in O(logn) time using O(n/log n) processors [28], [29].
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3. Dominance reporting. Suppose we are given two point sets A and B, con-
sisting of n and m points, respectively. Moreover, suppose the points in A and B are
sorted by increasing x-coordinates. We wish to construct, for each point p in B, a list
that contains each point q in A such that x(q) < x(p) and y(q) < y(p), i.e., each point
in A that p dominates. We let Dom(A, p) denote this set, and refer to this problem
as the two-set dominance reporting problem.

We do not know of any previous work for this problem. Atallah, Cole, and
Goodrich [3] address the counting version of this problem (where one is simply in-
terested in determining the value of IDom(A,p)l, the number of points of A that p
dominates), deriving an algorithm that runs in O(log N) time using O(N) processors,
where N max{n, m}. In this section we show how to construct Dom(A, p) for each
p in B in O(log N) time using O(N/log N + l) processors, where/is the total number
of answers (1- -peS IDm(A,P)I) Our method uses a different approach than that
taken by Atallah, Cole, and Goodrich.

3.1. A simple data structuring approach. We first describe a solution based
on the use of a simple data structure and global processor allocation. This method
runs in O(log N) using O(N / l) processors. We then show how to reduce the number
of processors to O(N/log N + l) by some processing steps.

The approach is to build a data structure for the points of A and then query this
structure for each point in B in parallel. In particular, the data structure, D, consists
of a complete binary tree T with the points of A stored in its leaves in left-to-right
order. Let v be an internal node of T; and let z, u, and w be, respectively, the parent,
left child, and right child of v. For each such v we store a list A(v), which contains
all the points stored in descendants of v sorted by their y-coordinates. In addition,
we augment each element p of A(v) with pointers to p’s predecessor in A(z), A(u),
and A(w) (recall that p’s predecessor in a list A(.) is the largest element in A(.)
smaller than p), using y-coordinates as comparison keys. Such a structure is easily
constructed by Cole’s parallel mergesort method [15] in O(logN) time using O(N)
processors.

We then perform two queries for each point p in B. The first query is to determine
the size of Dom(A, p), and the second query is to construct Dom(A, p). The first query
is answered by searching for the leaf position of x in T, starting at the root, while
simultaneously locating the position of y in each A(v) list such that v is on the
left fringe of the search path (i.e., v is the left child of a node on the search path
but is, itself, not on the search path). The elements less than y in each such A(v)
constitute the set of answers for p. Thus, we can perform this counting query for
any p in O(log N) time, using a single processor, simply by adding up the ranks of
the predecessor of p in each of these lists. Given the sizes of all the Dom(A, p) lists
we can then perform a parallel prefix computation to determine the total number of
answers and allocate the space for a global array Dom that will store all the Dom(A, p)
lists as subarrays. We can then perform a global allocation of processors that then
collectively enumerate the answers in O(log N) time, filling in all the "slots" in the
Dom array. Thus, the total procedure can be implemented in O(log N) time using
O(N + l) processors.

3.2. Improving the processor bounds. The method described above suffers
from two inefficiencies: (1) it builds the data structure D using every point in A,
including points that will not be included in any Dom(A,p) list, and (2) it performs
a dominance reporting query for each point p in B, even if Dom(A,p) may turn out
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to be empty. We can easily remove both of these inefficiencies by performing the
following preprocessing steps, however:

(1) In this step we remove from B each point p such that Dom(A,p) is empty.
We can determine, for each p in B, whether or not Dom(A,p) is empty by
performing a parallel prefix computation on A to determine, for each q in A,
the value MinY(q) minq, eA{y(q’):x(q’) <_ x(q)}, and then performing a
merge of A and B by increasing x-coordinates. Both of these operations, of
course, take advantage of A and B being presorted. For any point p in B,
it is easy to see that Dom(A,p) : if and only if MinY(q) < y(p), where q
is the immediate predecessor of p in A. Given the merging of A and B, we
can easily test this condition for each p in B in O(1) time, and then perform
a parallel prefix data compression procedure to remove any p’s from B such
that Dom(A,p) . This step can be easily implemented in O(log N) time
using O(N/log N) processors [9], [28], [29], [38].

(2) In this step we remove from A each point q that is not contained in any
Dom(A,p) list. We do this using a method very similar to that used in
Step 1. The time and processor bounds are as in Step 1.

Clearly, the total number of remaining points in A and B is dominated by l,
the number of answers. Thus, by following this preprocessing step by the dominance
reporting procedure described in the previous subsection, we derive the following
lemma.

LEMMA 3.1. Given two point sets A and B, with n and m points, respectively,
sorted by increasing x-coordinates, we can construct Dom(A,p) for each p in B in
O(log N) time using O(N/ log N + l) processors in the CREW PRAM model, where
N n + m and pes IDom(A,

We make considerable use of this lemma in our method for constructing the
arrangement of a collection of line segments. In fact, we usually need to solve a
collection of 2-set dominance reporting problems in parallel. This presents no real
problems, however, as we show in the following lemma.

LEMMA 3.2. Given h instances of the 2-set dominance reporting problem, spec-
ified by h pairs of points sets (A1,B1), (A2,B2), ..., (Ah, Bh), we can construct
Dom(A, p) for each point p E B, 1,..., h, in O(log N) time using O(N/ log N +
l) processors in the CREW PRAM model, where g ,h= IAI + IBI and

hYi= Ype IDm(Ai, P) I.
Proof. The proof follows from a straightforward implementation of the method

used to prove Lemma 3.1. The only modification necessary is that each place in
the algorithm where a parallel prefix computation is performed (as a precursor to
an allocation of new virtual processors), we must now coordinate h simultaneous
parallel prefix computations. This is due to the requirement that dynamic processor
allocation be global. As it does not raise any real difficulties, we leave the details of
this implementation to the reader.

Having discussed our computational model, and how it can be used for dominance
reporting, we now give an overview of our method for constructing the arrangement
of a collection of line segments.

4. An overview of our algorithm. Suppose we are given a set S of n line
segments in the plane. We define the upper (respectively, lower) vertical shadow in S
of a point p to be the point on the first segment in S that is intersected by the vertical
ray emanating upward (respectively, downward) from p, if such a point exists. The
segment arrangement of S is defined to be the planar graph determined by the pairwise
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FIG. 1. An example segment arrangement.

intersections in S as well as all the vertical shadows of the endpoints of segments in
S (see Fig. 1). The edges in this graph are determined by adjacent intersections
(along some segment s) and by segment endpoints and their vertical shadows. For
simplicity, we assume that at most two segments meet at any intersection point. We
can easily modify our method to allow for multiple segments intersecting in the same
point (using an appropriate definition of the "multiplicity" of an intersection point).

4.1. Characterizing intersections. Before we give our algorithm overview, we
review an observation by Chazelle [11] for characterizing segment intersections in
terms of a segment tree data structure [7]. Let T be the complete binary tree whose
at most 2n + 1 leaves, in left-to-right order, correspond to the regions, called slabs,
determined by placing a vertical line through each endpoint of each segment in S.
For each v in T we use Hv to denote the union of all the slabs associated with the
descendents of v (including v itself, if v is a leaf). A segment s spans a slab Hv if s
intersects both the left and right boundary of II. A segment si covers a node v E T
if it spans II but not IIparent(v). Clearly, no segment covers more than two nodes on
any level of T; hence, each segment covers at most O(log n) nodes of T. A segment
ends in Hv if si does not span H, but has an endpoint in Hr. For each node v E T
we define the following sets (see Fig. 2):

Cover(v) (s e Sis covers v},
End(v)-(seSI sendsin

We can characterize the intersections in S as follows.
OBSERVATION 4.1 ([11]). Let S be a set of line segments in the plane, and let

s and s2 be two segments in S that intersect at a point p. In addition, let T be a
segment tree for S. Then there is a (unique) node v T such that p Hv and one of
the following is true:

e Cove ( ),
(2) sl e End(v) and s2 e Cover(v),
(3) s2 e End(v) and s e Cover(v).
We call intersections of type 1 CC-intersections and intersections of types 2 and

3 EC-intersections.

4.2. The method. Our method, which we describe below, is based on finding
all the CC-intersections first, and then using those intersections to help determine all
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U V W

FIG. 2. The segment s is in Cover(u) and Cover(v), as well as End(t), End(w), End(x), End(y),
and End(z).

the EC-intersections.
Step 1. In this step we construct a segment tree T for the segments in S, including

the lists End(v) and Cover(v) for each v E T. In addition, for each v in T, we sort
the segments in Cover(v), where comparisons are based on the y-coordinates of the
intersections of the segments with the left boundary of Hr. This step can be easily
implemented in O(log n) time using O(n log n) processors in the CREW PRAM model,
by using the method of Aggarwal et al. [1] to construct T and the method of Cole [15]
to sort each Cover(v) list (since the total size of all the Cover(v)’s is O(n log n)).

Step 2. In this step we determine all the CC-intersections in S. Our method
is based on the simple observation that if two segments in Cover(v) intersect, then
their relative order would be reversed if we were to base comparisons on segment
intersections along Hv’s right boundary rather than basing comparisons on segments
intersections along H’s left boundary. We implement this step via a reduction to
the dominance reporting problem, constructing, for each v in parallel, and for each
segment s in Cover(v), a list of the other segments in Cover(v) that intersect s. We use
these lists to construct the arrangement of the segments in Cover(v), which, following
the convention of [11] and [12], we call the hammock. This step requires O(log n) time
using O(n log n + a) processors, where a is the total number of CC-intersections in S.

Step 3. In this our most involved step we compute all the EC-intersections in S.
We implement it in two phases. In the first phase we find, for each s E End(v), all the
EC-intersections of s with segments in Cover(v), so long as there are fewer than c log n
such intersections (c is a constant parameter), or, alternatively, we determine if there
are at least c log n such intersections. This requires O(log n) time using a processor
per segment in End(v), for all v in T, and is based on a "truncated" version of the
zone lemma of [11]-[13], [18], and [19]. In the second phase, then, we find, for each
s End(v), all the EC-intersections of s with segments in Cover(v), provided s has at
least c log n such intersections. We restrict this phase to such segments, because our
second phase requires at least O(log n) processors for each segment involved, and we
wish to "charge" the cost of these processors to the intersections found. Our method
runs in O(logn) time and takes advantage of a characterization similar to that of
Observation 4.1. We conclude the construction by determining all the adjacencies
between the intersection points and endpoints in the segment arrangement. This
entire step requires O(log n) time using O(n log n + a + g/) processors, where fl is the
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number of EC-intersections in S.
So, assuming we can implement each of the above steps in the stated bounds,

then we can enumerate all the pairwise intersections in S in O(logn) time using
O(n log n / k) processors, where k c / is the size of the output. Let us now
give the details for performing each of the above steps. The details for Step 1 should
already be apparent, so we begin our detailed description with Step 2.

5. Computing CC-intersections. In Step 2 we compute all the CC-inter-
sections in S. Let us concentrate on the problem of finding all the CC-intersections
for a specific node v in T; we perform this computation for each v in parallel. Recall
that in Step 1 we constructed all the Cover(v) lists for the nodes in T. For each
segment s in Cover(v), let yl(s) (respectively, y2(8)) denote the y-coordinate of the
intersection of s with the left (respectively, right) boundary of Hr. The following
observation characterizes all CC-intersections in terms of these labels.

OBSERVATION 5.1. Two segments r and s in Cover(v) have a CC-intersection
intersection in IIv if and only if one of the following is true:

(1) y(r) < y(s) but y2(r) > y2(s),
(2) yl(r) > y(s) but y2(r) < y2(8).
For each segment s in Cover(v), if we define a point ps (y(s),y2(s)), then we

can interpret Observation 5.1 in terms of dominance relationships. Namely, a segment
r has a CC-intersection with s if and only if Pr is (i) above and to the left of ps, or (ii)
below and to the right of ps. Thus, determining all CC-intersections in some slab YIv
can be reduced to two instances of the 2-set dominance reporting problem, where the
set Cover(v) plays the roles of both sets A and B of Lemma 3.2. Of course, we must
also re-orient the x- and y-axes so that the dominance relation of interest is downward
and to the left. Note that the condition of Lemma 3.1 requiring that the points in
A and B be presorted by their first coordinates is immediately satisfied, since the
segments in each Cover(v) list are sorted by the y-coordinates of their intersections
with the left boundary of Hr. Of course, since we must implement this step for all
nodes v in parallel, we must apply Lemma 3.2. Therefore, since the total size of all the
Cover(v) lists is O(n log n), this entire computation can be implemented in O(log n)
time using O(n / ) processors, where c is the total number of CC-intersections.

5.1. Constructing the hammock. To complete Step 2 we have only to con-
struct the adjacency information for the hammock. That is, for each intersection
point p of segments r and s we must determine the other intersection points on r and
s, respectively, to which p is adjacent. We do this by sorting, for each s in parallel,
the intersections along s (which were just computed) by x-coordinates. Then for each
intersection point p of a segment s with a segment r we locate the position of p in
the list for r by a binary search. From this we then construct a representation of the
planar graph induced by the adjacencies of the CC-intersections for Cover(v) (e.g.,
[5], [24], [32], [34]). We finish the construction by augmenting the graph, as Chazelle
does [11], by adding two pointers for each edge e that point to the leftmost and right-
most vertex, respectively, of each face in the hammock to which e belongs. Since this
computation requires the sorting of O(nlogn / ) elements, it takes O(logn) time
using O(n log n / c) processors [15], which dominates the complexity of Step 2.

Thus, we have shown how to efficiently find all the CC-intersections in S and
construct the hammock for each Cover(v) list. In the next section we address the
problem of finding the EC-intersections in S.
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FIG. 3. An example walk in the hammock. The traversed edges are numbered in the order they
would appear in the walk in the hammock for s.

6. Computing EC-intersections. To complete the algorithm we must imple-
ment Step 3, the finding of all the EC-intersections for each v in T. As mentioned
earlier, this is the most involved step in the construction. It consists of two phases"
one that finds the intersections along segments that have few EC-intersections, and
the other that finds the intersections along segments that have many EC-intersections.

6.1. Segments with few intersections. Let us concentrate on the compu-
tations for a particular v in T. We begin by constructing a planar point location
data structure for the hammock for v, e.g., using the method of Atallah, Cole, and
Goodrich [3], which takes O(logn) time using O(ICover(v)l + v) processors, where
(v is the number of CC-intersection determined by the segments in Cover(v). This
requires O(nlogn / ) processors for all v E T, and allows point locations to be
performed in the hammock for a particular Cover(v) in O(log n) time using a single
processor.

Suppose we are given a query segment s in End(v). We wish to find all the EC-
intersections between s and segments in Cover(v), so long as there are fewer than
c log n such intersections (where c >_ 1 is a constant parameter). We use the point
location structure for Cover(v) to locate the two faces fa and fb that contain s’s two
endpoints a and b, respectively (with a being to the left of b). We then mimic the
method of Chazelle [11] for walking through the hammock from fa to fb, except that
we cut the walk short as soon as it traverses 4c log n edges. We show below that if the
walk is terminated early because of this restriction, then s must have at least c log n
intersections with segments in Cover(v).

So let us review the method of Chazelle [11]. If fa fb, then we are done, so let
us assume fa lb. We begin by jumping to the rightmost vertex vl in fl fa. We
then traverse the edges of f until we find the edge el of fl that intersects s. If v is
above the line supporting s, then this traversal is clockwise, and is counterclockwise,
otherwise. Upon reaching e, we use the adjacency information for el to "hop" over
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el into the next face, f2, which is adjacent to s. We then use the extra pointer for el
to jump to the rightmost vertex v2 in f., going from face to face along s, provided
that for each edge e traversed, the line supporting e intersects s. (See Fig. 3.) If
we are about to traverse an edge whose supporting line does not intersect s, then we
suspend the traversal from fa at this point, and begin a symmetric traversal from fb
(using the rule that if vi is above the line supporting s, then the traversal must be
counterclockwise, and must be clockwise, otherwise). We continue this traversal until
all the intersections along s have been discovered or, as in our case, we traverse at
least 4c log n edges. Chazelle [11] proves an important "zone" lemma for his scheme,
establishing that if one uses his search strategy (without our extra stopping criterion,
of course), then one will eventually discover all the intersections along s and the
total time spent will be proportional to the number of intersections. The next lemma
establishes a "truncated" version of this zone property.

LEMMA 6.1. Suppose we have traversed at least 45 edges in performing the walk
for a segment s. Then there are at least 5 intersections along s in the hammock.

Proof. Since this is a slightly stronger version of a lemma proved by Chazelle [11],
we use the proof technique of Chazelle, Guibas, and Lee [13] to prove it. Namely,
we use an accounting scheme, where for each edge traversed, we charge one of the
intersections along s for the cost of this traversal. Let f be a face traversed, and let
si be the subsegment of s contained in f. The traversed edges of f can be divided
into three groups: left-hanging edges, which intersect s left of s, right-hanging edges,
which intersect s right of s, and anchored edges, which are adjacent to s. These
groups suffice, because the line supporting each traversed edge intersects s and each

f is convex. Hence, for any face f, all the nonanchored edges we traverse in f will
be either left-hanging or right-hanging, but not both. The accounting scheme is that
each left-hanging edge e charges the intersection of s with the line supporting e’s
successor in a clockwise traversal around f, and each right-hanging edge e charges the
intersection of s with the line supporting e’s successor in a counterclockwise traversal
around f. Each anchored edge e simply charges its intersection with s. It is easy
to see that each intersection point can be charged by at most one left-hanging edge,
one right-hanging edge, and at most twice by its anchored edge. So each intersection
point can be charged at most four times. Therefore, if we have traversed at least 45
edges, then we must have charged at least 5 intersection points. D

Thus, by this truncated zone lemma, if in traversing the hammock for a segment
s we stopped by reaching the other endpoint of s, then we have discovered all the
EC-intersections for s; and if we terminated the traversal early, then there must be
at least c log n intersections of s with segments in Cover(v). Note, however, that the
c log n intersection points need not be consecutive intersections along s.

Let Ev be the list of all segments in End(v) that have at least c logn EC-
intersections, and let Sv denote the set of segment "pieces" in the hammock for v,
i.e., the segments resulting from cutting each s in Cover(v) at its CC-intersections.
Note that EvET lEvi is at most O(n log n) and EvET ISvl is at most O(n log n + a).

6.2. Segments with many intersections. We have yet to find all the EC-
intersections for the segments in E. Our method resembles a "recursive" application
of the first two steps in our algorithm. Let us, then, concentrate on the computation
for a specific node v in T, with the understanding that we perform this computation
for all v in T in parallel.

We begin by building a segment tree Tv for the segments in Sv. To avoid confusion,
let us denote the sets and slabs for each node w in Tv using lowercase letters. Thus,
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FIG. 4. An example w. The segments in end(w) are shown dotted and the segments in cover(v)
are shown solid.

for each w in Tv we define lists cover(w) and end(w) in terms of the slab rw associated
with w. (See Fig. 4.) For each w in Tv we have cover(w) stored in sorted order by the
segment intersections with the left vertical boundary of r. Let us also define a list
left(w), which consists of all segments in end(w) that intersect the left boundary of, and let us also store the left(w) lists sorted by the segment intersections with the
left vertical boundary. Since the subsegments in Sv do not intersect, except at their
endpoints, we can use the method of Atallah, Cole, and Goodrich [3] to build T. We
use this method because it gives us the left(w) lists in sorted order without our having
to explicitly perform a sorting operation. Note: the tree in the Atallah, Cole, and
Goodrich construction is built on every [log nth x-coordinate; so that the end(w) list
stored in a leaf has O(log n) size rather than O(1) size. This will not affect the running
time of our implementation by more than a constant factor, however. Their method
runs in O(logm) time using O(m) processors, where m is the number of segments.
In our case m ICover(v)l + a. Thus, we can use the processors created in Step 2
(to enumerate CC-intersections) to now help construct T for each v in T in parallel.
This requires O(log n) time using a total of O(n log n + a) processors.

For each w in T, we let inter(w) denote the set of segments in Cover(v) that have
an intersection point in . Recall that the segments in S are all pieces of segments
in Cover(v) that span Hr. We exploit this property to characterize EC-intersections
in the following lemma, in a manner analogous to that of Observation 4.1.

LEMMA 6.2. Given a node v in T, let s be a segment in E and t be a segment
in Cover(v), and suppose s and t intersect at a point p. In addition, let Tv and S be
as above, and let be the portion of t in Sv that contains p. Then there is a (unique)
node w E Tv such that p rw and one of the following is true:

(1) cover(w) (a "type 1" intersection),
(2) t inter(w) and s covers w (a "type 2" intersection),
(3) t inter(w) and s ends in r, where w is a leaf (a "type 3" intersection).
Proof. Let z be the leaf in T that contains p. There are two cases:

(1) s ends inrz. Ifdoes not span z, thent inter(z); hence, pis atype 3
intersection. If spans z, then there must be an ancestor w of z that covers;
hence, p is a type 1 intersection.

(2) s spans z. Let w be the ancestor of z that s covers. If also covers w, then
p is again a type 1 intersection. Otherwise, if has an endpoint in r, then
t E inter(w); hence, p is a type 2 intersection. D
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We implement Step 3, then, by searching for each type of intersection.

Type 1 intersections. For each segment s in Ev, we allocate O(log n) processors to
s and perform the following query at each node w in Tv such that s has an endpoint
in r or s covers w:

We locate the two endpoints of the segment snarly (i.e., s "clipped"
to v) in cover(w), by two binary searches. Note that this is possible,
because the segments in cover(w) do not intersect, hence, are linearly
ordered by the "above" relationship. All the segments in cover(w)
between these two positions in the list must intersect s.

After performing this query, each processor assigned to s has determined some number
of type 1 intersections for s, and, in fact, has an implicit representation of a list of
these intersections. By performing a parallel prefix computation, then, we can allocate
enough processors to enumerate all these type 1 intersections. This can easily be done
in O(logn) time using O(vET lEvi logn //1) processors (for all v in T), where/1
is the total number of type 1 intersections.

Type 2 intersections. Our method is based on the observation that a type 2
intersection between s E Ev and t E Cover(v) is determined by a node w in Tv such
that both s and t span v. Therefore, we can determine all such type 2 intersections by
a reduction to the 2-set dominance reporting problem. In particular, we determine,
for each node w in Tv, the set ec(w) containing each segment s Ev such that s
covers w. We also sort each ec(w) list by the y-coordinates of the points formed by
the intersections of the segments in ec(w) and the left boundary of rv. This takes
O(logn) time using O(IEllogn processors. Note that the list left(w) stores a piece
of each segment in inter(w), and these pieces are sorted by the y-coordinates of the
points formed by the intersections of the segments in inter(w) and the left boundary
of rw. We associate a pair (y(s), y2(s)) with each segment s in ec(w) (respectively,
left(w)), where y(s) (respectively, y2(s)) is the y-coordinate of the intersection of the
left (respectively, right) vertical boundary of with s. Thus, if interpreted as points,
the elements of ec(w) and left(w) are sorted by their first coordinates, satisfying the
ordering precondition of Lemma 3.1. Just as in our method of 5, a solution to
two instances of the 2-set dominance reporting problem gives us all the intersections
between the "points" in ec(w) and left(w) for each w in Tv. By Lemma 3.2 this
takes O(logn) time using O(nlogn + vET lEvi + a +/2) processors (for all v in

T), where 2 is the number of type 2 intersections, since the total size of all ec(w)
lists is at most 0(_,T lEvi log n) and the total size of all the left(w) lists is at most
O(nlog2n + a log n). Thus, the total number of processors needed for this step is
O(n log n + ’vT lEvi log n + a + 2).

Type 3 intersections. Each type 3 intersection is determined by a leaf node w in

Tv. Since linter(w)l in this case is O(logn), we can find all type 3 intersections by
assigning a processor to each segment s in Ev and visiting each node w in T such that
s ends in rw. This processor simply tests each segment t with a piece in end(w) to
see if t intersects s. This clearly takes O(logn) time using O(IEvl) processors.

Having determined all three types of intersections completes the computation of
the EC-intersections, giving us all the pairwise intersections of the segments in S.
The total time needed is clearly O(log n). The total number of processors needed is

O(n log n + -vT lEvi log n + a + Z), where fl is the number of EC-intersections.
By construction, however, each segment s in Ev determines at least c logn EC-
intersections; hence, veT levi log n is O(/). Therefore, the total number of pro-
cessors needed is O(n log n + a + ).



750 MICHAEL T. GOODRICH

We complete our algorithm by constructing the segment arrangement, without
vertical shadows, from the intersection points and endpoints, using essentially the
same method we used to construct the hammocks (i.e., by sorting the intersections
along each segment). We then augment this structure with the vertical shadows by
applying the trapezoidal decomposition algorithm of Atallah, Cole, and Goodrich [3]
and the sorting algorithm of Cole [15]. This takes O(logn) time using O(n / k)
processors, where k a + . We summarize as follows.

THEOREM 6.3. Given a set S of n line segments in the plane, we can construct
the segment arrangement for S in O(log n) time using O(n log n + k) processors in the
CREW PRAM model, where k is the size of the output.

Thus, one can construct a segment arrangement efficiently in parallel in an output-
sensitive manner. In the next section we show how to perform this construction
optimally for the important special case when the segments are iso-oriented.

7. Iso-oriented segments. In this section we show how to construct the seg-
ment arrangement when all the segments are parallel to the x- or y-axes. Our method
runs in O(logn) time using O(n / k/log n) processors in the CREW PRAM model,
which is optimal. Since our algorithm is based on a "compressed" version of the array-
of-trees parallel data structure of Atallah, Goodrich, and Kosaraju [4], we begin by
reviewing this structure.

7.1. The array-of-trees. Suppose we are given a sequence a (al, a2,..., an),
of insert(a) and delete(a) operations. Let at denote the argument of the operation
at, and let A be the list of all distinct at values stored in sorted order. Also let At
denote the set of items from A that would be present at "time" t if the operations
(al,..., at) were evaluated sequentially, assuming that the initial set is . A tree query
is any query operation that can be performed on a complete binary tree T with O(n)
nodes in O(log n) time assuming that elements are stored in the leaves of T and each
internal node v of T can store the values of O(1) functions applied to values stored in
v’s children. Examples of such tree queries include the computation of the maximum
y-coordinate of v’s descendents or the computation of the number of v’s descendents.
The array-of-trees data structure allows us to perform any tree query on any given
At in O(log n) time, assuming all the elements of At were stored in the leaves of a
complete binary tree T. In fact, this structure can be viewed as an array of trees
(T,T2,"’,Tn), where Tt is a complete binary tree whose leaves correspond to the
elements of A, one element per leaf, such that the leaves associated with elements of
At are active while all others are in-active (i.e, they store the nil value).

The "skeleton" of the array-of-trees is a complete binary tree T whose leaves are
associated with the elements in A, one per leaf. For each a in A we construct a(a),
the subsequence of a consisting of all operations that have a as their argument. Note:
with each operation in a(a) we store its position in a; in fact, each time we refer to
a at, t denotes its index in a. Using parallel sorting [15], it is easy to construct A, T,
and all the a(a)’s in O(log n) time using O(n) processors.

For each v in T we construct a list B(v) of records (R, R2,"" ,Rt) such that
each R has the following fields:

(1) time, the index (time) when R becomes active.
(2) left, a pointer to the left child of R.
(3) right, a pointer to the right child of R.
(4) val, the value stored at R.
(5) Labels, a list of O(1) labels, each of which is the result of an associative

function applied to the values stored at the children of R.
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Intuitively, each Ri represents a node in a complete binary tree rooted at v whose
leaves (which are the same as those of the subtree rooted at v) and are either active
or nil. The record Ri is active at time R.time and remains active until there is a
change in one of the descendent nodes of R, namely, at time R+l.time.

More formally, suppose v is a leaf node, which, say, is associated with the element
a E A. Also suppose a(a) (al, a2,..., av ). Then B(v) (Ro, R1,..., Rlv), where
the record R is associated with the operation a, for 1, 2,..., lv. Specifically,
givena in a(a), we define the record R so that R.time t, and R.left R.right
nil. If a insert(a), then R.val a, and if a delete(a), then R.val nil. Each
label in the Labels list is initialized based on R.val and the semantics of the function
that defines that label. For example, if the label is "number of active descendents,"
then this label is "1" if R.val a, and this label is 0 if R.val nil. The record R0
represents the initial condition, i.e., R0 (0, nil, nil, nil, L0). Intuitively, each record
in B(v) is the node in a one-node binary tree that stores a "snapshot" of the history
of a with respect to an evaluation of a.

Now suppose v is an internal node with left child u and right child w. In this
case there is a record in B(v) for each record in B(u)U B(w). More formally, let
B(u) (Uo, Ui,.. .,Ul), and B(w) (Wo, Wi,..., Wlw). Also let (to, ti,t2,. ,t)
be the sorted list of time fields from the records in B(u) U B(w), where lv lu +l 1
(we only store one copy of to 0). We define B(v) (R0, Ri,..., R), where the
record R is defined so that R.time t, R.left points to the record Uj with largest
index j such that Uj.time _< t, and R.right points to the record W with largest
index j such that Uj.time <_ t. In addition, R.val nil, and each label in R.Labels
is defined by applying the appropriate function to the corresponding labels stored at
the records that R.left and R.right point to. For example, if the label is "number
of active descendents," then we simply need to add the corresponding labels from
the records R.left and R.right. Intuitively, each record in B(v) is the root of a
binary tree that stores a "snapshot" of the history of the elements associated with
the descendents of v with respect to an evaluation of a.

Atallah, Goodrich, and Kosaraju [4] show that we can exploit the recursive struc-
ture of the B(v) definitions to construct B(v) for each v in T in O(log n) time with
O(n) processors in the CREW PRAM, using the cascading divide-and-conquer tech-
nique of Atallah, Cole, and Goodrich [3].

7.2. The compressed array-of-trees. In our algorithm we use a compressed
version of the array-of-trees data structure. The compressed array-of-trees consists of
T as above, with a list B’(v) of records stored at each node v in T. The main idea of
the compressed array-of-trees is to force each "tree" in B(root(T)) to (1) only store
pointers leading to active elements, and (2) not have any internal nodes that have
only one child. (See Fig. 5.)

Our method for enforcing this property is as follows. If v is a leaf of T, then the
fields of each record in B’ (v) are defined as above, i.e., B’ (v) B(v) in this case. If,
on the other hand, v is an internal node in T (with left child u and right child w),
then we define the structure of the records in B’(v) to be slightly different from the
structure of records in B(v). For each record R in B(v) there is a record R in B’ (v),
with R.time R.time and R.Labels R.Labels. The other fields in R differ from
their corresponding fields in R, however. In particular, let U denote R.left and W
denote Ri.right, and let U’ and W’ denote the records corresponding to U and W
in B’(u) and B’(w), respectively. Also let Desc(R) denote the set of all nonnull val
fields in records reachable from R (by following left and right pointers). We define
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nil nil 5 nil nil

5

2 3

(a) (b)

FIG. 5. An example At represented (a) as a complete binary tree, and (b) as a compressed
binary tree.

the remaining fields of R as follows:
(1) if Desc(Ri) , then R.left R.right nil and R.val nil.
(2) If Desc(Ri) {a}, then R.left R.right nil and R.val a.

(3) If Desc(Ri) but Desc(U) , then R.left W’.left, R.right
W.right, and R.val W.val.
(4) If Desc(Ri) but Desc(W) , then R.left U’.left, R.right
U.right, and R.val U.val.

Note that to construct an R we only need Desc(Ri) if it contains a single element;
otherwise, we need to know only the size of Desc(Ri). This is itself an associative
function. Thus, we can still use the method of Atallah, Goodrich, and Kosaraju [4] to
construct B’(v) for each v in T in O(log n) time with O(n) processors in the CREW
PRAM.

7.3. Determining iso-oriented intersections. Having described the com-
pressed array-of-trees, let us return to the problem at hand, namely, the iso-oriented
segment arrangement problem. Suppose we are given a set S of n iso-oriented line
segments in the plane. We construct the compressed array-of-trees data structure
to represent a horizontal plane-sweep (e.g., that of Bentley and Ottmann [6]) and
use it to perform a range query for every position that corresponds to a vertical
segment. In particular, we use this data structure by sorting the endpoints of the
horizontal segments in S in increasing order by x-coordinates; let Events denote this
list. For each point qt (xt, yt) in Events that is the left endpoint of a segment, we
let at insert(yt), and for each qt (xt, yt) in Events that is the right endpoint of
a segment, we let at delete(yt). The labels we store in the Labels field for each
record R in the compressed array-of-trees are ymax, the maximum y-coordinate in the
descendents of R, and desc, the number of active descendents of R. To perform the
query for a vertical segment s ((x, Yl), (x, Y2)I we first locate the point at (xt, yt)
in Events such that t is the largest index satisfying xt <_ x (by a simple binary search).
This immediately gives us at, the operation associated with qt. Intuitively, at is the
insertion or deletion event that would be encountered just before the query event for
s in a sequential implementation of the plane-sweep. Given at, we locate the record
R in B(root(T)) with R.time t. We then perform a search in the tree rooted at R
to determine the number ks of horizontal segments that have a y-value between yl

and y2 (using the ymax and desc labels). This is easily done in O(log n) time using
a single processor. We then assign [ks/log n] processors to the task of enumerating
these elements and placing them in a single array Hs. The ith processor in this col-
lection is assigned to the task of enumerating the elements in the tree rooted at R
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_1 4,
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FIG. 6. Using list merging to complete the construction of the iso-oriented segment arrangement.
In this case, LVs (6,8), RVs, (10), Hs (1,2,3,4,5,7), Hs, (9,11,12,14,15), HLs,,s
(1,2,3,4,5), and HRs,s, (11,12,14,15).

that are in the interval [yl, y2] and of rank iFlogn, i[log n] + 1,..., (i + 1) [logn] -1.
Since the tree rooted at R is compressed and the elements in its "leaves" are sorted
by y-coordinate, the ith processor can use the ymax and desc labels to locate all its
elements in O(logn) time. Moreover, this also gives us all the vertical adjacencies
in the segment arrangement for these intersection points. Thus, we have yet only to
combine all the H8 lists to construct the segment arrangement.

We begin this combining procedure by using the cascading divide-and-conquer
technique of Atallah, Cole, and Goodrich [3] to determine the horizontal shadows of
each vertical segment s in S, i.e., the point on the first vertical segment intersected
by a horizontal ray emanating out of the endpoints of s. This takes O(log n) time
using O(n) processors [3], and gives us O(n) pairs of segments (s, s’) such that s is
horizontally "visible" from s’. Then, using parallel sorting [15], in O(log n) time we
can construct, for each vertical segment s, two additional lists: LVs, which is the
sorted list all the horizontal shadows hitting s from the left, and RVs, which is the
sorted list of all the horizontal shadows hitting s from the right. These lists give us
all the maximal pieces of s that are visible from another vertical segment in S from
either the left or the right.

The remainder of the computation, which we illustrate in Fig. 6, consists of a
number of list merging steps, where all lists are assumed to be sorted by y-coordinates.
For each s in parallel we merge LV with H, the list of horizontal intersections along
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s. We similarly merge RVs with Hs. This can be implemented in O(log n) time using
O(n / k/log n) processors using the merging methods of [9], and [38]. Let HLs,s, be
the list of horizontal intersections in H that fall on the piece of s that is horizontally
visible from s, where s is to the left of s. Similarly, define HR,,s,. Note that we can
easily determine each HLs,s, and HRs,s, given the merges we have just performed
(even if some of these lists are empty, since we have at least O(n) processors). In
parallel, for each pair of horizontally visible segments (s,s) such that s is to left
of s, we merge HL,,8 with HR,,s,. Performing all these parallel merges gives us
the horizontal adjacencies for each intersection point in H; hence, completes the
construction. Since all these merges can also be performed in O(logn) time using
O(n + k/log n) processors [9], [38], we have the following theorem.

THEOREM 7.1. Given a set S of n iso-oriented segments in the plane, we can
construct the segment arrangement for S in O(logn) time using O(n + k/logn) pro-
cessors in the CREW PRAM model, where k is the size of the output.

8. Conclusion. We have derived a parallel method for constructing the segment
arrangement of a set of line segments in the plane in O(logn) time so that total
work performed is only a log n factor from the sequential lower bound (which is
achievable [12]). Moreover, we have shown how to solve the important iso-oriented
special case of this problem with an optimal work bound. Thus, the obvious open
problem that remains is to construct the segment arrangement in O(log n) time using
only O(n log n + k) work.
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Abstract. An almost uniform NC circuit family for integer division is presented. The circuit
size is O(n6/log(n)). The circuit design is based on modular representation for integers below 2n.
In particular, a very efficient technique is introduced for computing "a b ?" when a and b are in
modular representation. This leads to a uniform NC circuit of O(n2) size for comparison of integers
in modular representation.
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1. Introduction. In this paper we work within the NC computation model
which consists of families of Boolean circuits of O(log(n)) depth and n0() size. Ac-
tually the definition of NC entails uniformity issues. For a discussion of uniformity
notions and their relations to other complexity issues, see [6], [2], and [3]. It is known
that all four arithmetic operations: /, -,/, can be computed by NC circuit fam-
ilies. A discussion of these circuits is contained in [11]. The paper in which division
was first accomplished in O(log(n)) depth is [1]. This circuit family is P-uniform and
has size O(n4 log3(n)). The families for +, -, and are LOGSPACE uniform. How-
ever, the circuit family for division in [1] is not known to be LOGSPACE uniform. We
will henceforth refer to LOGSPACE uniform as simply uniform. By almost uniform
we mean DSPACE(log(n)log log(n)) or smaller. In this paper we show that division
can be computed by an almost uniform NC family of O(n6/log(n)) size. Almost
uniformity is achieved using a method in [5].

Motivation for our circuit design comes from more traditional approaches to the
parallelization of arithmetic operations. In 2 we develop a new approach to modular
(sometimes called residue) representation of integers in order to compute the standard
order < efficiently. In 3 we use modular representation in a division algorithm and
show in 4 that this algorithm can be implemented by an almost uniform NC family.

2. Modular representation. We briefly recapitulate a few basic facts about
modular representation. We will call it Chinese remainder representation or CRR.
For more details consult [4], [8]. Throughout the paper we let ml,...,mr be odd,
pairwise relatively prime positive integers. We define the CRR product modulus to
be M rYIj= mj. Let x be an integer; then we associate with it the vector
(x,... ,xr) where 0 <_ xj < mj and x xj mod mj. Following [8] we will write Ix[a
for x mod a. We will work with nonnegative integers and always take 0 _< Ixla < a.

Next put M M/m and 21)/j ]M?:-[M Note that

1 ifj k,I.lmk= 0 if : k,

which is central in proving the following theorem (see [4]).
THEOREM 2.1 (Chinese remainder theorem). IXlM --I.,rj= XjjlM.
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1990.
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Note that Theorem 2.1 implies that if 0 _< x, y < M, then 7 if and only if
x y. Let o be either +, -, or and let z x o y. As a corollary to the Chinese
remainder theorem we have

which provides an obvious starting point for parallelization. However, it is not clear
how to compute the standard order <, and so overflow detection in the case of /, ,
and detection of negative integers in the case of -, are problems. It is even less clear
how to perform division in modular representation in an efficient manner. Some effort
to confront these difficulties has been made. An interesting approach to handling <
is given in [10]. We give another approach to this problem.

Before commencing with the technical exposition we want to emphasize to the
reader that unless explicitly indicated as a binary representation, all integers, e.g.,
x,y, etc., are represented as CRR vectors. That is, all arithmetic operations and
comparison involving x and y, etc., are carried out in CRR.

We refer to Theorem 2.1 as CRT. CRT in its present form is not quite what we
need. Put cy IxyM-21,. The following equation is easily verified:

mk

Xk.

If 0 _< x < M, then CRT tells us that

(1) ’cyMy J(x)M + x,
j----1

where J(x) is an integer, 0 _< J(x) < r.
starting point for our treatment of CRR:

Dividing through (1) by M, we get the

(2) cy/my J(x) + x/M.
j’-i

We now develop a way to compute < for CRR. Let 0 _< x < M. All CRR-related
quantities are tied to x. Let q be the least positive integer such that

1
(3) r. 2-q <

and let ay be the first q bits in the binary expansion of cy/my approximating it from
below. Note that q O(log r). From (3) and the triangle inequality we get

(4) 0<_ c-A&-a <r.2-<.
y=l my

If a is real and n <_ a < n + 1 where n is an integer, then put LaY n and put
(a} a- [aJ. We abbreviate _,y= aj by a. When we want to indicate explicitly
the association with x we write a(x).

Our principal objective is to compute J(x). To do this we will work with (1),
mod 2. First we collect some basic facts.



758 G.I. DAVIDA AND B. LITOW

LEMMA 2.2. If (a)

_
1/4, then LaJ J(x).

Proof. We can write j=l cj/mj LaJ + (a) + a, where 0 _< a < 1/4 by (4). The
result now follows from (2). 0

3LEMMA 2.3. /f 1/4
_
x/M <_ , then (a) <_ i"

Proof. Following the proof of Lemma 2.2 we have

(a) J(x)- LaJ + x/M-a
but now 0 < x/M- a <_ 1/4. This implies that J(x) LaJ and also the lemma. 0

We would like to compute J(x) since it plays a key role in subsequent computa-
tions. By Lemmas 2.2 and 2.3 we see that if 1/4 <_ x/M < 1 we do have LaJ J(x).
However, if x/M < 1/4, then LaJ may equal J(x)- 1. We give an example. Let
ml, m2, m3 be 3, 5, 7 so M 105. Pick x 2; then we get (cl, c2, a3) (1, 2, 2).
From (3) we pick q 4. This gives al .0101, a2 -.0110, a3 -.0100. Thus we get
a .llll, so LaJ 0. Evaluating (1) we see that J(2) 1. We next develop a way
to obtain J(x) in any case.

We define a tree-type Boolean circuit Tn. In order to simplify the discussion we
will allow each node to process two inputs, each of which is in {0, 1}2 rather than
{0, 1}. An interior node with left input a (el,a2) and right input b (51, 52) will
be assigned"

(1, a2) if al 1,
(1, b2) if al =0andbl 1,
(0, 0) otherwise.

T,, is a binary tree built bottom-up by pairing leaves starting at the left. Leaves
are numbered 0, 1,..., n- 1, consecutively from the left. The following lemma is
immediate.

LEMMA 2.4. If j is least such that leaf j receives an input with the left component
equal to 1, then the root will receive this value within log(n) steps. If no such leaf
exists, then the root receives (0, O) in log(n) steps.

We now apply Tn to computing J(x). Initialize the leaves as follows.

(0,0)
LEAFk (1,112  IMI )

if (a(2kx))> 1/4,
3if <

LEMMA 2.5. If (a) > , then the root of Tn gets the value (1, 0) if and only if
2x<M.

Proof. (=) Let us first examine what happens when x/M < 1/4. That is, for some
2 < h < n,M/2h+l < x < M/2h. Thus for k h-1 we have 1/4 < 2kx/M < -.
Thus Lemma 2.2 implies that {a(2kx))

_ . This means that LEAFk gets the input
(1, 12kXIMI2) but since 12kXlM 2x in this case we see that LEAF gets (1, 0). It
may happen that for some j < k, (a(2Jx)) _< , but again LEAFj gets (1,0). Thus
by Lemma 2.3, the root gets the value (1, 0).

Next let us look at x/M > 1/4. We can write x M-, where y/M < i"
Note that 12xlM IM- 2kylM. By the previous paragraph there must be a k
such that 1/4 < 2ky/M < 1/2. Thus IM- 2kylM 12XlM M- 2y and since

!2 < 12kxlM/M < 1/4, Lemma 2.3 implies that (a(2kx)} _< -. Therefore LEAF gets
3(1, 1) since IM--2kyl2 1. Of course it may happen that for some j < k, (r(2x)) <_

but again we get IM- 2yl. 1.
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(=) Now if 2x < M, then by Lemma 2.3, x/M < 1/4, so that by the first paragraph
of the proof the root gets (1, 0). If 2x > M, then Lemma 2.3 implies that 1/4 < x/M
and by the second paragraph the root gets (1, 1).

We give a method for deciding when 2x < M. We call this method (I)o. Let H be
the least even positive integer such that 2H > M. Put U (M- 1)/2 and assume
that U is odd. This assumption is not really necessary but it simplifies the exposition.

ALGORITHM (I)0.
(I)0.1 Compute
o.2 If (a) > 1/4, GOTO 11

(I)o.3 Compute Ix12 1=1 cjMj / kcrJ
(I)o.4 y *--Ix + HIM
(I)o. 5 Compute

> o o
Con ,ut +

(I)o.8 If Ix12 lYl2, then EXIT(2x < M), ELSE EXIT(2x > M)
(I)o.9 Compute Tn(y)
(I)o.10 If the root gets (1, 1), then EXIT(2x < M), ELSE EXIT (2x > M)
(I)o.ll Compute Tn (x)
o.12 If the root gets (1, 0), then EXIT(2x < M), ELSE EXIT(2x > M)

LEMMA 2.6. If x U, then o is correct.
Proof. First we make the observation that 2x < M if and only if x / H < M,

assuming that x : U. Steps (I)o.3 and (I)o.7 are correct by Lemma 2.2 and (1). Step
(I)o.8 is correct since at that point y x -+- H; otherwise lY12 : x -+- HI2. Step (I)0.10 is
correct since at that point we can use Lemma 2.3. Step (I)o.12 is correct since again
we can use Lemma 2.5.

Remark. Note that U is easy to compute. Furthermore, we can test if g U in
O(log(n)). Also note that if U is even, then we modify (I)0. Now we exclude both U
and U- 1. Again we can easily test for U- 1 in O(log(n)).

It remains to compute J(x). By Lemma 2.2, if (or

_
1/4, then we are done.

Otherwise we use (I)0 to decide whether 2x < M.
LEMMA 2.7. I] 2x > M and Icr) > , then g(x)
Proof. By Lemma 2.3 and hypothesis, x/M > 1/4. From the proof of Lemma 2.3,

we have the result.
3We can now compute J(x). The problem case is where 2x

Put y M- x so that 2y > M. Now in any case we can compute J(y). Thus taking
(1) mod 2 we can obtain lY12. Next use (1) mod 2 to attempt to find Ix12. Call this
value c. Here we use In] in place of J(x) which is still unknown. Now we know that

Ix12 IlY21 + 112. If c IlY12 + 112, then J(x) [aJ; otherwise J(x) [aJ + 1. This
conclusion follows from the proof of Lemma 2.3. We employ these observations in the
following algorithm.

Finally we describe an algorithm for computing <. The inputs are two n bit
integers, x and y.

ALGORITHM (I)1.
(I)1.1 Use Algorithm (I)0. If 2x < M and 2y > M, then EXIT(x < y)
(I).2 Use Algorithm (I)0. If 2y < M and 2x > M, then EXIT(y < x)
(I).3 Put z Ix
(I)1.4 Compute Ixl2, lY12,
(I)1.5 If Iz12 Ilx12 + lYl212, then EXIT(y < x)
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.6 EXIT(x < y)
LEMMA 2.8. (I)1 is correct.
Proof. If y < x, then z x y; otherwise z

3. Division. Let y < x < 2n ( M where 2k-1 <_ y < 2k. We want to compute
[x/yJ. Define the nonnegative integer h by 2n-1 <_ 2hy < 2. Since 2hx/2hy x/y
we will work with Xh *-- 2hx and Yh 2hy Now we have 2n-1 <_ Yh < 2’ and
2n-1 ( Xh < 22n. Let z be the integer, 0 <_ z < 2n-l, such that Yh 2n --z so that
setting/ zf2n,/ < 1/2. We have

j=o

by geometric series summation for (1 )-. Put
n+l

B
j--O j--n+2

and note that B < Xh2-nn+ since / < 1/2. Thus B < 1/2. Put

(5) c x z2(+-)
j=O

and observe that A 2-n(n+2)C. Now since z < 2n-1

n+l n+l

C < 22n y 2nj-j+n(n+)-nj 22n+’(n+) 2-j < 2n(n+3).
j=0 j=0

These ideas lead to algorithm (I)2.

ALGORITHM (I)2. Compute [x/yJ.
(I)2.1 Compute h such that 2n-1 _< 2hy ( 2n

(I)2.2 Xh -- 2hx, Yh -- 2hy, z 2n- Yh
(I)2.3 Compute D [AJ
(I)2.4 If Xh Dyh < Yu, then EXIT(D), ELSE EXIT(D + 1)

From the above discussion it is clear that (I)2 is correct.
It remains to discuss the computation of step 3 of (I)2. The algorithm for step 3

of (I)2 is called 3. Here we will explicitly use the integer C, introduced in (5). We
let M’ > 2n(n+3) be the product modulus of a CRR. All primed symbols refer to that
CRR.

ALGORITHM (I)3. Compute step 3 of
r ’(C)M J’(C)M’I2(+)(1)3.1 E ]CI2,(,+: ’j=l cj

3.2 Compute u such that lu. 2n(n+2)lM, 1
3.3 [(C E). 2-n(n+2)J I(C E) UlM, D

LEMMA 3.1. (I)3 is correct.
Proof. Step 3.1 follows from (1). We use (I)0 to compute J’(C). Step 3.2

is always possible since GCD(2, M’) 1. Step (I)3.3 follows from steps (I)3.1
and (1)3.2.

In this section and in 2 we have not provided any implementation details. In the
following section we will discuss how to break down the steps of the (I) algorithms in
terms of Boolean computations.
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4. Circuits. This section is divided into two parts. In the first part we will
determine the sizes and depths of the basic Boolean subcircuits for division. In the
second part we consider the uniformity issue. We emphasize that the inputs and
outputs of our circuits are binary strings which are assumed to be CRR tuples rather
than binary notation.

4.1. Basic circuits. First we make an observation about CRR.
LEMMA 4.1. If 2J < M < 2J+l, then primes ml < < mr can be uniformly

generated so that mr < J, r < O(J/ log J).
Proof. It is the case that there are O(J/ log(J) primes between J/2 and g (see

[7]). Let k be the largest integer such that 2k < J. Thus we require that 2kr > 2J or
kr > J. That is, we have r E O(J/ log(J)) and mr

Refer to the number C, (5), that is used in 3. The magnitude of C forces us to
use two CRRs. CRR(n) is the CRR we use for inputs and outputs from the division
algorithm. The critical point is that intermediate values will use CRR(2n2 / 1), i.e., a

CRR sufficient for all 0 _< x < 22n Here we choose n large enough so that 2n(n/3)

222. CRR(2n2 / 1) will use the prime moduli ml < "mr < mr+ < .mp. All
moduli are chosen in accordance with Lemma 4.1 and m,... ,mr are the CRR(n)
moduli. We define M’- H’=I mj and M M’/mj for 1 _< j _< p. Thus 22n < M’.
All primed symbols will be understood as coming from CRR(2n2 / 1). Note that by
Lemma 4.1, we may take p e O(n2/log(n)).

Every step of the algorithms ultimately involves computations of the following
kinds. All the numbers occurring in these computations are O(log(n)) bit binary
integers by Lemma 4.1 and (3).
BASIC ARITHMETIC OPERATIONS.
OP.1 Determine whether a b
OP.2 Build binary tree circuits of depth O(log(n)) and size O(n)
OP.3 Compute aj
OP.4 Compute a
OP.5 Compute la o blm for o +, -,
OP.6 Compute lablmj
OP.1 and OP.2 are trivial. We turn next to OP.3 and OP.5.

LEMMA 4.2. OP.3 and OP.5 can be computed by uniform O(log(n)) depth,
O(n log() (n)) size circuits.

Proof. OP.3 amounts to computing a/bJ for O(log(n)) bit integers, a, b. Depth
and size follow from, e.g., [5], [1]. Bounds for OP.5 follow from the same con-
siderations.

We define three tables.
T() is a one-dimensional table where TJ 1) contains z-’, in CRR(2n2 + 1), where

z--IMI2,(+), 1

_
j <_ p + 1 and we put M’= Mp+l.

T(2) is a two-dimensional table where T. contains the binary representation of
Mj mod ink, where 1 _< j <_ r and r + 1 _< k _< p.

T(3) is a two-dimensional table where T contains the binary representation of

f mod mj, where 1 <_ j _< p, 1 _< k < 2n2, and fj is primitive for mj.
LEMMA 4.3.

SIZE(T()) e O(p. rt2) O(n4/log(n)).
SIZE(T(2)) e O(r. p. log(n)) O(n3).
SIZE(T(3)) e O(p. n2. log(n)) O(n4).



762 G.I. DAVIDA AND B. LITOW

Proof. We use Lemma 4.1 and note that in (3) we can pick q log(r) + 3. D
LEMMA 4.4. OP.6 can be computed in O(log(n)) depth and O(n4) size.

Proof. Since fg is primitive mod mg and mg < n, we know that a Ifkglm9
for k < n. Thus we use T(3), indexed first by m, then a to find k. Next compute
bk in binary. Note that bk < n2, so we can again use T(3) to look up Ifbgklm9

Remark 1. If b < n, then Lemma 4.4 can be amended to a size bound of O(n3)
since T(3) need only involve powers of primitive elements no higher than the nth and
so has O(n3) size.

Remark 2. Observe by Lemma 4.4 and Remark 1 following it that for x < 22n

and b < n, IxblM requires O(log(n)) depth and O(n6/log(n)) size since in CaR this
reduces to p parallel instances of OP.6. It also follows that Ix-llM,, when it exists,
requires the same depth and size, since this again reduces to p parallel instances of
OP.6.

The following is probably well known but we give it for completeness. Let
Zl,..., zn be p bit integers and put z j__l zj. We assume that 0 < p <_ log(n).

LEMMA 4.5. There is a Boolean circuit of size O(n.p) and depth O(log(n)) which
computes z.

Proof. Construct p copies of a circuit which can add up to n bits. That is, the
value computed by any such circuit will be an integer requiring at most log(n) bits.
The jth such circuit will add together the values of the jth positions in each of the zk.
Clearly [11, p. 75], each such circuit has depth O(log(n)) and size O(n). The result
is essentially a list of size p consisting of numbers each needing fewer than 2 log(n)
bits. We use here the fact that p <_ log(n) which limits bit size to below log(n) + p.
Notice, for example, that the the sum of all n high-order bits will have to be padded
with p low-order 0s. This accounts for the summand of p. It is now clear that the
sum of this list can be straightforwardly evaluated in O(log log2(n)) depth which is
dominated by O(log(n)). It is also clear that total circuit size is O(pn).

Remark. Lemma 4.5 implies that OP.4 requires depth O(log(n)) and size
O(nlog(n)). We have accounted for all the basic arithmetic operations needed in
the algorithms.

We next give sizes and depths for Boolean circuits for each step in 00. All numbers
are represented by CRR(2n). Refer to the comment following Lemma 4.1 on why this
does not affect the size and depth bounds.

00.1 and 00.5. Depth O(log(n)), SIZE O(nlog(n)) by Lemma 4.5.
00.2 and 00.6. Note that <a> is a q O(log(n)) bit number. DEPTH

O(log log(n)), SIZE O(log(n)).
00.3 and 00.7. Note that IMI2 1 IMj 12 and since a is a q bit binary number

we obtain aj 12 in O(1) depth and q size. Similarly, the cj are O(log(n)) bit numbers.
Finally, the r-fold summation can be done in O(log(n)) depth. DEPTH O(log(n)),
SIZE O(n).

00.4 and 00.8. SIZE O(n), DEPTH O(log(n)) by Lemma 4.1.

o.9-00.12. Clearly, 0o.10 and 0o.12 are trivial. 00.9 and 00.11 are the most
size intensive. In these steps the initialization of the leaves involves T(3). Since we
are working with CRR(n) the size of T(3) drops to O(r. n. log(n)) (see Lemma 4.3),
which gives O(n2) size for that table. Now each entry of T(3) is hard wired to a leaf
of the tree. The kth leaf getting the kth entry. Since table look-up is not required,
only one copy of T(3) is used. Thus we get O(n2) size and O(log(n)) depth.
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THEOREM 4.6. Comparison of O(n) bit CaR tuples can be done by uniform NC
circuits of size O(n2).

Proof. The only steps requiring comment are (I)1.1, (I).2, and (I).4. In these three
steps we are using (I)0. The size and depth claims follow from the above analysis of (I)0.
It is straightforward that T(3) can be produced in LOGSPACE and the uniformity
claim follows from that.

We now give sizes and depths for circuits in (I)2.
(I)2.1. This step uses CaR(n). In parallel for each 0 <_ h < n, test, using (I),

whether or not 2n- _< 2hy. The size is dominated by n copies of the (I)1 comparison
circuit so that by Theorem 4.1 we get O(n3) size and O(log(n)) depth.

02.2. This step uses CaR(n). SIZE- O(nlog()(n)) and DEPTH- O(log(n))
by OP.5.

(I)2.3. This step is complicated, dominates the sizes of all other steps, and uses
CRR(2n2 / 1). We treat the computation of C here and defer computation of D
to the discussion of (I)3. In order to compute C we must convert Xh, Yh, z, and 2"
to CRR(2n2) tuples. This is done using T(2), much as steps 00.3 and (I)0.7 were
computed, except that now we work mod mg rather than mod 2. For example, to
compute ]Xhlmg for some r + 1 _< g

_
p we use

IXhlmg I- cj(xh)Mj J(xh)M
j--1

mg

Note that the cj(xh) and J(xh) are computed in CaR(n) and we use OP.5. This
gives O(log(n)) depth by Lemma 4.5. Size is dominated by the size of T(2) which is
O(n3 log(n)). Next we require zJ for 1 _< j _< n / 1. To do this we appeal to Remark
2 following Lemma 4.4, which gives O(nh/log(n)) size and O(log(n)) depth for each
zJ; hence an overall size of O(n6/log(n)). We can hard wire the 2n(n+-j) using the
O(n4) size version of T(3). The summation size is dominated by the CRR(2n2) for
the O(n) numbers zJ, 2"‘(’‘+-j) which is O(n3). Thus the total size is O(n6/log(n)).

Finally we must perform the n-fold addition to get C. This amounts to computing
Z_j--lX’n+lzJ2n(n+l-J)lma for each 1 _< g _< p. By Lemma 4.5 we get O(log(n)) depth
and O(nlog(n)p) O(n3) size for all these summations. Thus the overall size is
dominated by T(2) which is O(n3 log(n)).

(I)2.4. D is in CRR(2n2 / 1), however, since it is smaller than 2" we can work
in CaR(n) at this point. Now xh, Yh are available in CaR(n). It is trivial to convert
from CRR(2n2 + 1) to CRR(n)--just drop all CaR vector components beyond the
rth. By Theorem 4.1 we get O(log(n)) depth and O(n2) size.

We now give sizes and depths for circuits of (I)3. All tuples are in CRR(2n2).
(1)3.1o We need T() to evaluate the sum and we need to hard wire one copy of the

O(na) size T(3) in order to compute J(C) via (I)0. Size is dominated by T(3), which
is O(na) and depth is O(log(n)) by Lemma 4.5.

(I)3.2. Recall that the computation of C was discussed in step (1)2.2. The other
computations in this step also yield SIZE O(n3), DEPTH O(log(n)) by Lemma
4.4 and the remark following it.

3.3. SIZE O(n2) and DEPTH O(log(n)).
Summarizing the accounting we have done in this section and noting in particular

that step 02.3 dominates the sizes of all other steps, we have Theorem 4.7.
THEOREM 4.7. Division can be done by P uniform NC circuits of size

O(n6/log(n)).
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Remark. With the exception of the three tables it is already clear that all other
circuits can be produced in LOGSPACE. We discuss uniformity considerations for the
tables in the next section.

4.2. Uniformity. The obstacle to uniformity is T(1). It is clear that this table
can be produced in P. However, we can say a little more. We assume that n is a
power of 2. If not, then we multiply each n bit x by the least power of 2 such that
the resulting bit size is a power of 2. This cannot increase bit size by more than a
factor of 2. Referring to A and B used with C, (5), to motivate O2 and 03, we let
the summation for A go from j 0 to 2n- 1. Thus B summation now starts at 2n.
This does not materially affect the analysis of the division circuit. In fact the error
term, B, is made smaller. Now we get

(6) A 2-2n C,

i.e., we are now working with a power of 2 whose exponent, 2n2, is itself a power of 2.
This will make possible an application of a result in [5]. Next we describe a modified
T(1), denoted by T. T is indexed just as was T(1), but its entries are CRR(2n2 + 1)
vectors for the IMj 122n2 +1.

LEMMA 4.8. Assume that an n(1) length binary representation of an integer, x,
is being produced by a transducer in O(log(n)) space. Let m be a log(n) bit number.
Then IXlm can be produced in O(log(n)) space.

Proof. Let h be the integer such that 2h-1 <_ m < 2h. We informally
describe a transducer. As the bits of x arrive, we segment them into length h
blocks. Each segment is treated as the binary representation of a number below 2h.
Clearly, we can reduce this mod m in LOGSPACE. The segments correspond to the
powers 2,2h,22h, .... It is also clear that, given 129hlm, we can obtain
12(g+l)hlm in LOGSPACE. Thus all intermediate results can be written in
LOGSPACE (O(h)).

LEMMA 4.9. T can be produced in DSPACE(log(n)loglog(n)).
Proof. We illustrate the procedure with the production of the CRR(2n2 + 1)

vector for IM’122+1. From [5] there is a uniform n(1) size, O(log(p)loglog(n))
depth circuit that will produce (in binary)

p

V IV’12.n+l, where V’ HvJ
j’-I

and where each vj 22n2 -t- 1- mj, so that each vj needs 2n2 bits. It is clear that
the v can be produced in O(log(n)) depth. We will assume without loss of generality
that p is even. Then we can write Y’ (22n + 1)Y" + M’. Thus V IM’I2. +1" We
now apply Lemma 4.6 to get the CRR(2n2 + 1 + 1) vector for V. The lemma follows
from Theorem 4 of [2].

We show that T will work just as well as T(1). First Lemma 4.1 can be modified
so that GCD(M, 22’ + 1) 1. We must simply omit from the mj all prime divisors

of 22n + 1. This number has fewer than, say, 2 log(n) such divisors, so Lemma 4.1
still goes through. Second we must recover D in step 3 of 2 from [C/(22n + 1)J.
Noting (6), we now have D [AJ [2-2ncJ. Assume that kC/(22n -+ 1)] has been
computed. Now

C/(22n2 + 1) C/22n -6/24n2 nt- C/26n
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and since C < 24n-I it is clear that

1
0 <_ C/22n2 -C/(22n2 -{- 1) <

and so we can determine [C/22nj from C/(22n / 1)J in O(log(n)) depth. Hence
we can obtain D. Finally we can precompute [(22n / 1)-IlM in LOGSPACE by
combining Remark 2 following Lemma 4.4 and Theorem 4 of [2].

We can now establish the division circuit complexity.
THEOREM 4.10. Division of O(n) bit integers in CRR can be done by almost

uniform circuits of O(log(n)) depth and size O(n6/ log(n)).
Proof. The only remaining issue is uniformity. By Theorem 4.7, T is almost

uniform and by Theorem 4.6, T(2), T(3) are uniform. D
We remark that any improvement in the size of T(3) would lead to at least a slight

improvement in the size of the division circuit.
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EQUALITY-TEST AND IF-THEN-ELSE ALGEBRAS:
AXIOMATIZATION AND SPECIFICATION*

DON PIGOZZIt

Abstract. An equality-test algebra has a two-element Boolean sort and an equality-test opera-
tion eq8 for each non-Boolean sort s, where eqs(x,y equals TRUE if x y and FALSE otherwise.
An if-then-else algebra is an equality-test algebra with the if-then-else operations [_,_,-]8 adjoined:
[b,x,y]8 equals x if b TRUE and y if b FALSE. A finite set of axioms for the conditional-
equational (i.e., quasi-equational) theory of equality-test algebras is given. A finite axiomatization
of the equational theory of if-then-else algebras is also given, and it is shown that this also serves as
a basis for the conditional-equational theory of if-then-else algebras. Finite bases for the equational
theories of several classes of algebras closely related to if-then-else algebras were previously known.
The power of conditional and equational specifications of equality-test and if-then-else data types are
investigated and the following results, among others, are obtained. (i) Every equality-test data type
that can be specified in either the initial or final algebra sense by a finite set of universal first-order
sentences can be completely specified (i.e., in both the initial and final algebra senses simultaneously)
by a finite set of conditional equations. (ii) The same as (i) but with "equality-test" and "conditional
equations" replaced, respectively, by "if-then-else" and "equations." (iii) An arbitrary data type that
can be specified in the initial algebra sense by a finite set of universal sentences can be specified in
the same sense by a finite set of conditional equations with the equality-test operations as hidden
operations. (iv) The same as (iii) but with "conditional equations" replaced by "equations," and the
if-then-else operations adjoined as additional hidden operations; this holds however only under the
additional hypothesis that the original specification is complete.
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variety, quasi variety, specification, initial algebra, final algebra, computable, semicomputable
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Introduction. Initial algebra semantics and final algebra semantics have both
proved to be important ways of specifying data types. Many of the data types that
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for each sort; we call these equality-test algebras. The data type may also include
if-then-else operations that select elements of a data domain on the basis of a Boolean
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only equational and conditional-equational axioms are guaranteed to give an initial
specification. The equivalence of a universal first-order formula with its Boolean
transform is circumscribed in important ways, however. For example, when specifying
stacks of natural numbers we might want to include as an axiom the fact that, if you
push the top of a stack on the result of popping the stack, you get the original
stack back, provided it is nonempty. Formalizing this in the most natural way we
get the universal first-order sentence -(s , empty) --, push(pop(s,x)) , s. If a
Boolean sort and equality tests are available the axiom can also be formalized as
a Boolean equation: -eq(s,x)+ eq(push(pop(s,x))) 1. These two sentences are
logically equivalent for equality-test algebras but not for more general algebras. In
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fact there is no class of algebras that includes the equality-test algebras and is defined
exclusively by equations or conditional equations for which the above two sentences
are equivalent. However, if a set of universal sentences is an initial specification of
an equality-test data type, then the corresponding Boolean transforms also give an
initial specification of the data type, provided axioms for the conditional-equational
theory of equality-test algebras are adjoined. Moreover, this conditional-equational
initial specification is complete in the sense that it is both initial and final. This result
reflects an important property of equality-test data types: an initial specification is
almost complete in the sense that it can be extended to a complete specification by
adding only a single conditional equation; so there is very little difference between
initial and final specifications of equality-test data types.

A data type with a recursively enumerable (r.e.) initial, final, or complete spec-
ification is, respectively, semicomputable, cosemicomputable, or computable. Thus
only computable equality-test data types can have a r.e. initial (or final) specifica-
tion, and hence every semicomputable or cosemicomputable equality-test data type
must in fact be computable.

In the remaining part of the Introduction we summarize the main results of the
paper in more detail.

Following Bergstra and Tucker [3] we define a data structure to be a heterogeneous
algebra in which every element is denoted by a ground term, i.e., a term without
variables. A data type is an isomorphism class of a data structure. A set F of
axioms is an initial (final) specification of a data type A if F is a set of sentences
of some formal language describing A, and A is the initial (final or terminal) object
in the category of models of F. Alternatively, F is an initial specification of A if A
is a model of F and every ground identity of A is a logical consequence of F; final
specifications can be similarly characterized. F is an (initial or final) specification of
A with hidden sorts and operations if it is a specification of some enrichment of A
obtained by adjoining new sorts and operations. A specification is called universal,
conditional, or equational if F is, respectively, a set of universal first-order sentences,
conditional equations (quasi equations), or equations. In this paper we axiomatize
the conditional-equational theory of algebras with equality tests and the equational
theory of algebras with equality tests and if-then-else operations. We investigate the
power of conditional and equational specifications of data types with equality tests and
if-then-else operations. We also investigate the power of conditional and equational
specifications of arbitrary data types when the Boolean sort and the equality-tests
and if-then-else operations are hidden.

Our main results on specification are the following. An equality-test algebra is
a heterogeneous algebra with a two-element Boolean sort and an equality-test op-
eration eqs for each non-Boolean sort s: eqs(x y) takes the value TRUE if x y
and FALSE otherwise. The if-then-else algebras are obtained from the equality-test
algebras by adjoining the if-then-else operation [_, _,-Is for each non-Boolean sort s:

[TRUE, x, y]8 x and [FALSE, x, y]8 y. We give a simple algorithm that con-
verts any universal initial or final specification of an equality-test data type A into
a conditional specification of A; moreover the new specification is complete in the
sense that it is both initial and final. (See Theorem 3.14.) As a consequence every
semicomputable or cosemicomputable equality-test data type is computable (Theo-
rem 3.18). If A is an arbitrary data type, essentially the same algorithm can be used
to convert a universal initial specification of A into a conditional specification with the
equality-tests as hidden operations (Theorem 4.6). In this case the new specification



768 DON PIGOZZI

will be complete only if the original one is complete (Theorem 4.7). Thus an arbitrary
data type is computable if and only if its equality-test enrichment is semicomputable
or, equivalently, cosemicomputable (Theorem 4.9). Bergstra and Tucker [1]-[3] have
systematically studied the relationship between the computability of arbitrary data
types and their specification. See 3 for more details.

Many of the above results can be improved in the presence of if-then-else op-
erations. Every universal initial or final specification of an if-then-else data type
can be converted to a complete specification by (unconditional) equations (Theorem
5.9). Also, every universal complete specification gives rise to an equational complete
specification when the equality-test and if-then-else operations are both taken to be
hidden operations (Theorem 5.13). However, as opposed to the equality-test case, ar-
bitrary incomplete initial specifications cannot be converted in this way to equational
specifications by hidden operations.

The main feature of the paper, and the principal tool in obtaining the specifica-
tion results mentioned above, is a detailed analysis of the structure of the algebras in
the quasi variety and variety generated, respectively, by all equality-test and if-then-
else algebras of a fixed but arbitrary finite signature. We call the members of this
quasi variety and variety generalized equality-test (GET) and generalized if-then-else
(GITE) algebras. (In the if-then-else case the generated quasi variety and variety co-
incide.) In the course of this analysis we obtain natural, finite axiom systems AXGET
and AXGITE for the quasi variety of GET algebras and variety of GITE algebras,
respectively (Corollaries 3.8 and 5.7). Axiomatizations of various varieties closely re-
lated to the variety of GITE algebras have previously been obtained by McKenzie [32],
Bloom and Windell [7], Mekler and Nelson [33], Guessarian and Meseguer [18], and
Padawitz [40]. Related axiomatization results in the context of logic programming
can also be found in Paul [36], [37]. The characteristic feature of the present paper
is the almost exclusive use of model-theoretic techniques. In our view the model-
theoretic approach has some distinct advantages in the present context. First of all,
it seems better suited to the study of quasi varieties since the proof-theoretic meth-
ods of conditional-equational logic are not as efficient as those of ordinary equational
logic. Second, it seems better able to exploit the heterogeneous character of the data
types that arise most commonly in practice. In these data types the Boolean part is
always isolated in a separate sort and is connected with the rest of the structure in
a well-defined way via the equality-test and possibly the if-then-else operations. This
proves especially useful in trying to understand the structure theory of GET and
GITE algebras, which can be viewed as natural extensions of the structure theory of
Boolean algebras. In fact our two main structure theorems, Theorems 3.7 and 5.6,
can be viewed as analogues of the Stone representation theorem of Boolean algebra.
As a consequence the axiom systems AXGET and AXGITE divide naturally into a
standard set of axioms for Boolean algebras, and systems of axioms that define the
equality-test and if-then-else operations in their role as the connections between the
Boolean sort and the non-Boolean sorts of the data type.

The paper is divided into five sections. The first section is preliminary. It reviews
the basics of universal algebra, logic, model theory, and Boolean algebra; it also
introduces most of the notation and terminology used later. We have made this
section more detailed than normally expected since model-theoretic techniques are
not so common in the literature of abstract data types, and we wanted to make the
paper as self-contained as possible. Section 2 is an outline of the general theory of
data specification. Most of the results here are known, but they are presented in
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a form most convenient for applications in the later sections. The specification of
equality-test algebras is investigated in 3, and in 4 we study the specification of
arbitrary data types with equality-tests adjoined as hidden operations. The results of
3 and 4 are extended to if-then-else algebras in 5. The last section of the paper
contains some final remarks and a brief discussion of possible directions for future
research.

1. Preliminaries.

1.1. General algebraic preliminaries. Let S be a set of sorts. An S-sorted
signature is an S* S-sorted family (,,s w E S*, s E S/. Each a 5]w,s is called
an operation symbol of arity w and target sort s; we also write a w - s to indicate
that a 5]w,s. For simplicity we assume that ,s r3 v,,s, whenever w w or
s s. Operation symbols with arity A (the empty string) are called constant symbols.
A -algebraA (A,{aA’a e 5]}) consists of an S-sorted set A (As" s e SI,
called the domain set of A, and a fundamental operation aA A As, for each
a E 5],s, where Aw As0 As1 As_l if w sosl...sn-1. Ifa is a constant
symbol with target s, then a" As; aA is called a constant of A. It is always assumed
that Uses As , i.e., As ) for at least one s S; in this paper we further assume
that As - ) for all s S. While this assumption excludes some data structures of
practical interest, it substantially simplifies the metamathematics, in particular the
equational metatheory, of heterogeneous algebras in the sense that with very minor
exceptions all the results for homogeneous algebras carry over mutatis mutandis to
the heterogeneous case.2 A -algebra is trivial if each of its domains contains exactly
one element.

In general, algebras will be denoted by boldface letters and their domain sets
by the corresponding lightface letters. Subalgebras, homomorphisms, isomorphisms,
congruence relations, quotient algebras, and Cartesian products are defined in the
usual way. We write A C_ B to indicate that A is a subalgebra of B. For any S-
sorted subset A of the domain set A of A we denote by (A/A the subalgebra of
A generated by A, i.e., the smallest B C_ A such that A C_ B. By the minimal
subalgebra of A we mean the subalgebra generated by the empty S-sorted set, i.e.,
($ s S/; A itself is called minimal if it coincides with its own minimal subalgebra.
In view of our assumption that As : ) for every -algebra A, in order to ensure that
minimal subalgebras always exist we assume that 5] has the property that there exist
at least one ground term of sort s for each s E S (see below). Let MinA denote the
minimal subalgebra of A, and Min A its domain set. For any class K of -algebras,
MinK {MinA.AeK}.

We write h A B to indicate that h is a homomorphism from A to B;
h is an S-sorted family (h8 s E S) of functions, where hs As Bs for each
s E S. If C is a subalgebra of A, the restriction hlC of h to the domain set of
C is also a homomorphism from (3 to B. We normally write h for hlC when C
is clear from context. The image of C under h, h(C) (h(C)s s e S) where
h(C)8 {h(c) c E Cs}, is closed under the fundamental operations of B, and thus
forms the domain of a subalgebra that we denote by h(C). h is surjective if and only if
h(A) B; it is injective if and only if h’ A h(A) is an isomorphism. If h" A B
is any homomorphism of -algebras, then h MinA - MinB is always a surjective

The equational metatheory of the more general class of heterogeneous algebras is developed in
Goguen and Meseguer [14]; see also Ehrig and Mahr [11]. All the results of the present paper can be
extended in this context with appropriate changes.
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homomorphism. The equivalence relation of isomorphism between algebras is denoted
by

Congruence relations will be represented by the symbol _= and by capital Greek
letters O, , 00, G0,.... Let 0 (Os s E S/be a congruence on A. The fact that
two elements a and b of As are in the relation O can be expressed in any one of the
following ways: (a, b e Os, a b (mod Os), a b (Os), or a --08 b. We often omit
the sort subscript s when no confusion is likely. This applies in all other situations
where a specific sort is appropriate.

Every homomorphism h A --, B induces a congruence 0 on A defined by
Os {(a, bl a,b e As, hs(a) hs(b)} for every s e S; (9 is called the relation
kernel of h. The quotient of A by the congruence O is denoted by A/O. [a]o is
the equivalence class of a As under O, and A/O ((A/O)s s e S), where
(A/O)s {[a]o a e As} for each s e S, is the domain set of A/O. The quotient
map h" A --. A/O such that h(a) [a]o for each element a of A is called the natural
map; it is a surjective homomorphism with O as its relation kernel. If f A --, B is a
surjective homomorphism and 0 is its relation kernel, then A/O B; in fact f o h-1

is an isomorphism between A/O and B, where h is the natural map from A to A/O.
The set of all congruences on A is denoted by Con A. They form a complete

lattice Con A under the relation of set-theoretical inclusion 0 C between S-sorted
sets (i.e., Os C_ Os for all s S). The greatest lower bound of any system 0, for I,
of congruences of A is the sorted set-theoretical intersection ieI Oi (f"]iex Oi,s
s S/. The least upper bound Viex Oi does not in general coincide with the sorted
set-theoretical union. It does, however, when {Oi E I} is directed by inclusion:
for all and j there exists a k such that O U Oj C_ Ok (i.e., O,s U Oj,s C_ Ok,s for
all s S). The smallest congruence, the identity relation on each sort, is denoted by
AA; the largest, the universal relation on each sort, is denoted by VA. A is called
simple if A is nontrivial and AA and VA are its only congruences. Thus A is simple
if and only if it is nontrivial and isomorphic to each of its nontrivial homomorphic
images.

The following correspondence theorem between the congruences on an algebra and
its quotient holds for heterogeneous algebras just as it does for homogeneous algebras:
for any E-algebra A and congruence 0 on A, the mapping {([a]o, [b]o) (a, b/e
} is a lattice isomorphism between the sublattice { O c_ Con A} of ConA
and the lattice Con(A/0).

The Cartesian or direct product of any system (A I) of E-algebras is written

HiI Ai; its domain set is HieI A (YIei A,s. s e S}. If I is the empty set, then
1-[ei A is by definition a trivial algebra. The projection r leI A --, A is a
surjective homomorphism from rIei A onto A. If all the factors A coincide with
the same algebra A, then YIeI A is called a Cartesian or direct power of A, and is
written AI.

B is a subdirect product of a system (A e I} of algebras if B C_ rIei A and
(B) A for each I; symbolically, this is expressed by writing B C_SD 1-Iei A.
It is easy to see that Min(I-Ie A) _SD 1-Ie MinA for every system A, with
e I, of E-algebras. An injective homomorphism h C ---, YIeI A is called a subdirect

representation of C in a class K of algebras if h(C) C_SD rIeI A and A K for all
E I. In this event feI Ac where O is the relation kernel of r o h. To see

this observe that, for any sort s and any co, cl Cs, co c (eI O,s) if and only
if co c(O,s) for all I if and only if r,s(h(co)) r,s(h(c)) for all I if
and only if co c. Conversely, if 0, I, is any system of congruences of C such
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that i’ex ( Ac, then it is easy to check that the mapping h" C ex C/(gi
defined by h(c) ([c]" e I is a subdirect representation of C by the system of
quotient algebras (C/Oi" E I}.

An S-sorted signature E is an enrichment of the S-sorted signature E if S c_ S
and Ew,s C_ E, for allw E S* and s S. IfA is a E’-algebra, then AI is the
E-algebra defined by (Al)s As for s e S, and a"1 a" for a E,s with
w S* and s E S. AI is called the E-reduct of A, and A is called a E-enrichment
of AI. B is a subreduct of A if B c_ AI. For example, Min(Al is always a
subreduct of Min A, but is not in general a reduct.

1.2. Metamathematical preliminaries. The set of all E-terms is denoted by
T. Thus T is the S-sorted set (T,s s S) defined by simultaneous recursion in the
following way: E,s C_ T,s for each s S, and, if a E,s with w sos1 Sn-1, and

ts T,s for each i, then a(tso,’" ,tsn_l) T,s. By our basic assumption about
E, we have T,s for each s S. The E-term algebra T is the E-algebra with
domain set T and fundamental operations aT (tso,’’’, tsn_) (r(tso,’’’, ts_).
Let X (Xs s s) be an S-sorted family of sets of variable symbols such that X
and E have no symbols in common. We define T2(X) T2, where E is the S-sorted
signature with E,s E,s J Xs for all s S, and E,s E,s for w S+ and
s e S. Terms in T2(X) are called (E, X)-terms or just E-terms when X is clear from
context. We usually refer to terms in T as ground E-terms to emphasize the fact that
they contain no variable symbols. The (E, X)-term algebra T(X) has domain set
Try(X) and fundamental operations defined in the usual way. Its minimal subalgebra
is T, the E-algebra of ground terms.

Try(X) is an absolutely free E-algebra in the sense that, for any E-algebra A, and
any S-sorted function f: X - A (i.e., f (fs :s S) where fs Xs As), there
exists a unique homomorphism h: T(X) A such that hslXs fs for each s S.
For each t(x0,... ,xn-1) e T2(X) and each assignment ao,"’,an-1 of elements of A
(of the appropriate sorts) to the variables of t, we define tA(a0, an-l) h(t) where
h T(X) A is any homomorphism such that h(x) a for all i. In particular,
we get a unique homomorphism hA T - A for each E-algebra A, i.e., Tr is initial
in the class of all E-algebras. Clearly the image hA (Try) is the minimal algebra of A.
This gives an alternative and useful characterization of the minimal subalgebra of A
as the set of all elements of A denoted by ground terms, i.e., as {tA :t T}.3

Let E be a fixed but arbitrary signature; we assume from now on that E is always
finite in the sense that S and [.Jes*,ss E,s are finite. X is a fixed S-sorted set of
variable symbols with Xs a countably infinite set for each s E S. We will represent
the variables by x, y, z, x0, Yo,’" "; we do not usually specify their sort, leaving it to be
made clear from context. For each sort s S, the E-equations of sort s, or simply
the s-equations, are the formulas of the form t r, where t, r T,s(X).

The set of first-order E-formulas are constructed in the usual way from the E-
equations by means of the primitive propositional connectives V, A, , and 4, and
the quantifiers 2 and V. We use lower case roman letters t, r,p, q, to, ro,.., for terms,
and lower case Greek letters ,,, 0, 0,"" for first-order formulas. When we
want to indicate the free variables of we write it in the form (x0,xl,.. ",Xn-1);
similarly, writing a term t in the form t(x0,"’,Xn-1) means that the variables of
t are included in the list xo,...,x-l. A formula without free variables is called a

3 This is the basis for several alternate expressions that can be found in the literature for minimal
algebras, such as term-generated and reachable.
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sentence. For any formula (Xo,.. ",Xn-1) with free variables xo,.. ",Xn-1 and any
algebra A and elements co,..., an- of the proper sorts, we write A [ao,..., an-]
to indicate that is true in A when xo,’",Xn- are interpreted, respectively, as
co,..., an-. In particular, if is the equation t(xo,..., Xn-) .. r(xo,..., Xn-),
then h [a0,"" ,an-] if and only if tA(a0, ,an-) rA(a0, ,an-), where
tA(a0, an-) and rA(a0, an-) are the elements of A obtained when the terms
t and r are evaluated in A with x0,..., Xn- interpreted, respectively, as co,..., an-1.
More precisely, tA(ao, ,an-) h(t)where h is a homomorphism from T(X) into
A such that h(xi) ai for 0,..., n- 1. If t is a ground term, i.e., t T, then
t has a unique evaluation tA by means of the unique homomorphism h T. A.
Similarly, if is the conditional equation

A ti(xo,... ,Xn-) .. ri(xo,"" ,Xn-) p(xo,"" ,Xn-) . q(xo,"" ,Xn-1),
i<m

then A [ao,’’’ ,an-] holds if and only if tiA(ao, ,an-) r/A(a0, ,an-) for
at least one < m, or pn(a0,... ,an-) -an(a0," ,an-).

For any sentence , A means is true in A. In this situation we say that
A is a model of or satisfies , or that is valid in A. A F for a set of sentences
F means that A is a model of each sentence in F. We define Modi:F {A
A a E-algebra such that A F }. ModEF is called the model class of F. For any set
F of sentences and any sentence , we write F when is a logical consequence of
F, i.e., is valid in every model of F.

We write F Min to mean that is true in every minimal algebra that is a
model of F. The special consequence relation Min can be obtained from the ordinary
consequence relation by adding the structural induction axiom of Burstall [10] as
a new implicit premise; more precisely, if is the structural induction axiom, then
for any first-order sentence we have F Min 1/) if and only if F, . The
structural induction axiom cannot be formulated in first-order logic, and there is
a great difference between Min and . For example, if E { 0, succ, +,. }, the
signature of the natural numbers with successor, addition, and multiplication, then
the structural induction axiom is equivalent to the usual second-order Peano induction
axiom.

We write F to mean that is formally deducible from F by any one of
the standard set of axioms and rules of inference of first-order predicate logic. By
the Ghdel completeness theorem, and - define the same relation between sets of
sentences and single sentences. Thus is a recursively enumerable (r.e.) relation
(under an appropriate Ghdel numbering), and for any r.e. set F, { F } is
r.e. However, Min is not r.e. If F is the set of first-order Peano axioms, then
{ ( F Min } is the set of all true sentences of arithmetic (i.e., true of the natural
numbers), and is not r.e. (in fact it is hyperarithmetical).

Every formula (x0,... ,x_l) with free variables x0,...,x,_ is logically equiv-
alent to one of the form QoyoQy"" Qm-ym-(xo,..., Xn-, Y0,’" ", Ym-), where

contains no quantifiers; this is called the prenex normal form of , and there is a
simple algorithm for constructing it. A sentence is said to be universal if all quan-
tifier in its prenex form are universal. Two special kinds of universal sentences are
the universally closed equations

Vx0...W_ (t(xo,. ,x_) (xo, ,-)),
and the universally closed conditional equations, or quasi equations,
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When used as axioms, in particular in the specification of data structures, the quan-
tifier are normally omitted to simplify notation, and the sentences referred to simply
as equations and conditional equations, respectively.

Of special interest are equations of the form t r, where t and r are ground terms
(i.e., terms without variables). They are called ground E-equations. Any ground
equation such that A t r, i.e., tA rA, is called a ground identity of A. If A
is a minimal algebra and B is any E-algebra, then there exists a (necessarily unique)
homomorphism from A into B if and only if A t r implies B t , r for each
ground equation t ,, r, i.e., every ground identity of A is a ground identity of B. In
this case the unique homomorphism is given by h(tA) tB for every t E TE.

Let K be any class of E-algebras. K is an elementary class if K Mod F for some
set F of first-order sentences. K is universal if it is the model class of a set of universal
sentences. K is called a variety, respectively, a quasi variety or conditional class, if
it is the model class of a set of equations, respectively, conditional equations or quasi
equations. These three classes of algebras can also be specified by algebraic means.
Let I be any nonempty set. By a filter on I we mean any family F of subsets of I
with the following properties: (1) I E F; (2) if J F and J C K C I, then K F;
(3) if J,K F, then Jr]K F. The following three conditions are equivalent for any
filter F: (4) 0 F; (5} F #: 21; (6) not both X e F and F for every Z C I (
is the complement of X in I). Any filter satisfying these conditions is called proper.
The following two conditions are also equivalent for every proper filter F: (7) there is
no proper filter on I strictly including F; (8) either X F or X F for every X C I.
Any proper filter with these properties is called an ultrafilter. It can be shown with
the aid of Zorn’s lemma that every proper filter can be extended to an ultrafilter; in
fact, given any J C I such that J F, there exists an ultrafilter U such that F C U
and J t U. Thus any proper filter is the intersection of all ultrafilters that include it.

Let (Ai I) be a system of E-algebras and F a filter on I. The S-sorted
binary relation ()F on HiEI Ai is defined by the condition that, for all s E S and all
(ai e I), (bi e I) e HieI Ai,,

((ai’iI), (bi’iEI)) Og, iff {iI’ai=bi} F.

It is easy to check that OF is a congruence. The quotient algebra (l-Iiei Ai)/0, where
F is any proper or improper filter on I, is called a reduced product of (Ai I), and
it is called an ultraproduct if F is an ultrafilter.

THEOREM 1.1. Let p be any first-order sentence.
(i) (Lo [26]) If Ai for each I, and U is an ultrafilter on I, then

(ii) If is a universal sentence, A , and B A, then B .
(iii) If is a conditional equation (in particular, an equation), Ai for each

e I, and F is any filter on I, then (I Ai)/OF .
(iv) If is an equation, A , and B is a homomorphic image of A, then

S O.



774 DON PIGOZZI

Part (i) is commonly referred to as Log’s theorem.
These properties essentially serve to characterize the notions of universal class,

quasi variety, and variety. For any class K of algebras let ]K, H K, $ K, P K, PsDK,
PRK, and PuK, respectively, be the class of all isomorphic images, subalgebras, homo-
morphic images, products, subdirect products, reduced products, and ultraproducts of
members of K. For a single algebra A we write ]A, HA,... instead of ]{A}, H{A},....
Since any product reduced by an improper filter gives a trivial algebra, PR K always
contains the trivial algebras.

The three parts of the following theorem are due, respectively, to Log [26], Mal’cev
[29], and Birkhoff [6]; for the proof, see Gr/itzer [17] and Mal’cev [30].

THEOREM 1.2. Let K be any class of E-algebras closed under isomorphism, i.e.,
IK =K.

(i) K is a universal class if and only if $ K K and PuK K.
(ii) K is a quasi variety if and only if $ K K and PIK K.
(iii) K is a variety if and only if H K K, S K K, and P K K.
Using Log’s theorem we get as a corollary of part (i) that, if K is an elementary

class, then K is universal if and only if it is closed under the formation of subalgebras.
By the universal theory of K we mean the set of all universal sentences true in

K; similarly, the conditional theory and the equational theory are, respectively, the
sets of all conditional equations and equations that hold identically in K. By the
quasi variety and variety generated by K, in symbols Qv K and Va K, we mean the
intersection of all quasi varieties and varieties, respectively, including K; Qv K can
also be characterized as Mod F where F is the conditional theory of K. The variety
generated by K is characterized analogously.

COROLLARY 1.3. Let K be any class of algebras.
(i) QvK ISPRK.
(ii) Va K HSP K.

1.3. Boolean algebra. The class BA of Boolean algebras is the variety of ho-
mogeneous algebras defined by the following equational axioms:

(x + y) + z x + (y + z),
x+yy+x,

x (y + z) .. x y + x z,
x -x ,
x +O.. x,
x+ll,

(x.y).zx.(y.z),
x.y .. y.x,
x +. (x + ). (x + ),
x.--x ,. O,
x.lx,
x.O . O.

We denote the two-element Boolean algebra by B2. Let A (A, +,.,-, 0, 1) be
a Boolean algebra, a g b if and only if a. b a (equivalently, a + b b) defines a
lattice ordering on A, where one is the largest element, zero is the smallest, a / b is
the least upper bound of a and b, and a. b is the greatest lower bound.

By the well-known theorem of Stone [41] every Boolean algebra is isomorphic to
a field of subsets of some set I under set-theoretical union, intersection, and com-
plementation relative to I. An essentially equivalent and more algebraic version of
this result is that every Boolean algebra is isomorphic to a subdirect product of two-
element Boolean algebras, or, in symbolic form, BA IPsDB 2.

Let B be an arbitrary Boolean algebra. By a filter on B we mean a subset F
of B satisfying the following conditions" (1) 1 e F; (2) if a e F and a _< b, then
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b F; (3) ifa, b B, thena.b B. Fisproper ifF : B (equivalently, 0 F,
or F does not contain both a and -a for any a B). F is maximal, or prime, if F
is proper and is included in no strictly larger proper filter (equivalently, F contains
either a or -a for every a B). By Zorn’s lemma every proper filter is included in
a prime filter, and, in fact, is the intersection of all prime filters that include it. The
set of all filters of B forms a complete lattice Fil B under set-theoretical inclusion.
The smallest element is the one-element filter (1}, and the largest is the improper
filter B.

There is a bijection between filters and congruences of B that can be described as
follows. Let Fi [1] for each e Con B, and F { /a, b/ (-a + b). (a + -b) e
F } for each F Fil B. It is easy to check that Fi Fil B and OF Con S. Fi is
monotone (preserves inclusion) and f for each Con B, and Fi F F
for each F Fil B. Thus Fi is a lattice isomorphism between Con B and Fil B with
inverse F F.

Let P be the set of all prime filters of B. Then FeP F (1}. By the lattice
isomorphism FePF AB, and hence B is subdirectly representable in (B/OF
F P }. Since each F P is prime, B/F B2, the two-element Boolean algebra.
Consequently, B is a subdirect power of B 2; this gives the algebraic version of the
Stone representation theorem.

2. Data types and their specification. Following Bergstra and Tucker [3] we
call a minimal E-algebra, where E is a finite signature, a E-data structure. An abstract
E-data type (ADT), or simply a E-data type, is the isomorphism class of a F-data
structure, i.e., a class of algebras of the form ]A for some data structure A. We omit
the subscript when the signature is clear from context. As is customary we will not
be very careful about distinguishing between a data structure and its associated data
type.

DEFINITION 2.1. Let E be any (finite) signature. A E-data type A is com-
putable if the set of all ground identities of A is recursive (under some standard
GSdel numbering). A is semi-computable if its ground identities are recursively
enumerable and cosemicomputable if its ground identities are co-r.e.

A data type whose set of ground identities is recursive is often said to have a
decidable word problem. There are several alternative notions of a computable data
type, but they turn out to all be equivalent. See Bergstra and Tucker [3] for a detailed
discussion of the topic. See also Meseguer and Goguen [34, Thm. 37].

Data types are usually specified by some set F of first-order sentences. The notions
of initial and final algebra, when they exist, provide a natural and convenient way of
associating a uniqe data type with F.

Let K be any class of E-algebras. A E-algebra A is called an initial algebra of K
if A K and there exists a unique homomorphism h" A --. B for every B K. A is
a final algebra of K if A K and there exists a unique homomorphism h" B A for
every B K. Initial and final algebras may not exist, but if they do they are unique
up to isomorphism and thus form a unique data type if minimal. For this reason
we usually speak of the initial and final algebra of K, and denote them by In K and
Fn K, respectively. The initial algebra A of K is called isoinitial (Bertoni, Mauri, and
Mignoli [5]) or prime (Makowsky [28]) if the unique homomorphism h" A B for
each nontrivial B K is injective.

Suppose K and k are classes of E-algebras such that K c_ k. If the initial algebra
of k exists and is contained in K, then it must also be initial in K; this is a trivial
consequence of the definition of initial algebra. The case is similar for final algebras.
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These two facts will be used repeatedly in the sequel without further comment.
A set F of first-order -sentences can be viewed as specifying two usually distinct

(i.e., nonisomorphic) algebras, the initial and final algebras, when they exist, of its
model class K Mod F. The problem is that, for arbitrary F, In K and len K, even
when they exist, may not be minimal and hence not data types. For this reason
we restrict our attention to IVlin(Mod F), the class of minimal subalgebras of models
of F. With this restriction both the initial and final algebras have a very simple
characterization in terms of ground equations.

LEMMA 2.2. Let K be any class of -algebras, and A a -algebra. The following
conditions are equivalent:

(i) A is initial in Min .
(ii) A E IVlin K and there is a homomorphism h" A --, B for each B K.
(iii) A Mi K and, for every ground -equation t , r, A t , r implies

Kt,.r.
If $ K K, then each of the above conditions is equivalent to
(iv) A is initial in .
If K $ K P K, then each of the above conditions is equivalent to
(v) A is minimal and, for each ground -equation t , r, tk t r if and only

ifK #t,r.
Proof. Assume A is initial in Min K. Then A is minimal, and there exists

homomorphism h A --* Min B for each B K. h is also a homomorphism into
B. Thus (i) implies (ii). To see that the implication in the opposite direction holds,
consider any B MinK and let B K such that B MinB. By (ii) there
is a homomorphism from A into B. It is unique since A is minimal, and clearly
h(A) C_ MinB’= B.

To show that (ii) is equivalent to (iii), assume that (ii) holds. Consider any B e K,
and let h" A B. Then for each ground equation t r, A # t r implies tA rA,
which in turn implies tB h(tA) h(r) r, and hence B # t r. So A # t r
implies B # t r for all B e K, i.e., K # t , r. Thus (iii) holds. Conversely, if (iii)
holds, then, for each B e K, h(t) t defines a unique homomorphism from A into
B. So (ii) holds.

If $ K K, then Min K C_ K, and under the hypothesis, it is clear that (i) is
equivalent to (iv) and that (iii)implies (v). To prove that (v)implies (iii)when
K $ K P K, we need only show that (v) implies A Min K. Choose for each

ground t r such that K : t r, a Ci e K such that tc rc. Let B 1-IieI Ci.
Then by (v) we have tA r if and only if tc rc for all e I if and only if
tB rB. Since A is minimal, the map h(tA) t for each t e Ts defines an injective
homomorphism from A into B. Thus A h(A) e lip K K.

An algebra A satisfying condition (iii) of Lemma 2.2 is generic in K for the set
of ground equations according to Makowsky [28, Def. 2.4].

LEMMA 2.3. Let K be a class of E-algebras and A any E-algebra. The following
are equivalent:

(i) A is final in Min K.
(ii) A e MinK, and, for every ground -equation t , r, A & t ,, r implies

K = -(t , r).
Proof. Let B be a minimal -algebra. As in the proof of the equivalence

of Lemma 2.2(ii) and (iii), there exists a (unique) homomorphism h B --, A if
and only if B # t r implies A # t r for every ground equation t r. The equiv-
alence of (i) and (ii) follows immediately from the definitions of the various notions
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involved.
If K contains a trivial algebra, then clearly this is the final algebra of K. Since

the trivial algebra is normally of little interest, we restrict our attention to the class
0 of all nontrivial algebras of K when considering final algebras. In particular, when
considering the final algebra specified by a set F of first-order sentences, we restrict
our attention to the class (Min(Mod ))0 of nontrivial minimal subalgebras of models
of F. The class of models of F that have a nontrivial minimal subalgebra can be
axiomatized relative to F by a finite set of universal sentences, in fact by the negation
of a finite conjunction of ground equations.

Choose for each sort s E S a fixed but arbitrary ground s-term gs; by our basic
assumptions about the signature , such a term always exists. Let t be the finite
set of ground F-equations

l {a.gs:seS, aeF,} U (ago...g,_1,gs aEFs0...s,_l,}.

Let w be the conjunction of all equations in
LEMMA 2.4. For any F-algebra A we have A wE if and only if MinA is

trivial. Hence, for any set F of E-sentences,

(Min(Mod F))o Min(Mod(F U {-w})).

Proof. MinA is trivial if and only if tA g for every ground term t of sort s.
Thus MinA trivial implies A w. Conversely, if A wE, it is easy to prove by
induction on the length of t that tA g for every ground term t.

If F is a set of conditional equations, i.e., Mod F is a quasi variety, then the
initial algebra of Mod F always exists, and it must be minimal and hence a data type
(Thatcher, Wagner, and Wright [43]). This result has a partial converse. A set F
of first-order sentences is said to admit initial algebras if Mod(F U E) has an initial
algebra for every set of ground equations. If F admits initial, minimal models, then F
is equivalent to a set of conditional equations (Mahr and Makowsky [27], [28]). The
final algebra of (Min(Mod F))0 may not exist even when F is a set of equations.

DEFINITION 2.5. Let F be any set of first-order E-sentences, and let A be a
E-data type.

(i) F is a weak initial specification ofA ifA is the initial algebra of Qv(Mod F).
(ii) F is an initial specification of A if A is the initial algebra of Min(Mod F).
(iii) F is a final specification of A if A is the final algebra of (Min(Mod F))0.
(iv) F is a complete specification of A if it is both an initial and final specifi-

cation of A.
Let F be a set of first-order E-sentences where E is any enrichment of E. Then F

is a weak initial, an initial, a final, or a complete specification of A with hidden
sorts and operations if there exists a E-data type B such that F is, respectively,
a weak initial, an initial, a final, or a complete specification of B, and A

If F specifies A in any one of the above senses, we say in addition that F is,
respectively, a universal, a conditional, or an equational specification of A if F is a set
of universal sentences, conditional equations, or equations.

We occasionally speak of a specification (in any one of the above senses) of a data
structure A, meaning of course its associated data type ]A.

It is well known that Qv(ModF) and Va(Mod F) always have the same initial
algebra (see Theorem 2.8 below). Since this initial algebra always exists, every set
F of first-order sentences is a weak initial specification of a unique data type. Weak
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initial specification has a natural characterization in terms of logical consequence (see
Theorem 2.11(i) below).

Note that we define F to be an initial specification of A if A is the initial algebra
of Min(Mod F) rather than Mod F. If F is not universal, then F may be an initial spec-
ification of a data type A without Mod F having an initial algebra. But if Mod F does
have an initial algebra, then F is an initial specification of its minimal subalgebra in
the sense of Definition 2.5 (ii). Makowsky [28] has obtained several different charac-
terizations of those sets of first-order sentences that admit initial (but not necessarily
minimal initial) algebras.

Complete specifications have the following useful model-theoretic characteriza-
tion.

THEOREM 2.6. Let F be any set of first-order E-sentences, and let A be a non-
trivial E-data structure. The following are equivalent:

(i) F is a complete specification of A;
(ii) (Min(Mod F))0 IA, i.e., (Min(Mod F))0 is a data type and contains A;
(iii) A is isoinitial in Mod F.
Proof. Let K (Min(ModF))0. Suppose F completely specifies A, i.e., A is both

initial and final in K. Then, for each B K, there are unique homomorphisms between
A and B in both directions. Since the algebras are minimal, the compositions of the
two homomorphisms must coincide with the identity functions on A and B. Thus
A B. This shows that (i) implies (ii), and the implication in the opposite direction
is obvious. It is also obvious that (ii) implies (iii); the reverse implication follows
easily from the minimality of the algebras of K.

It follows that, under the assumption that F is a set of universal sentences, F
completely specifies A if and only if A is an isoinitial algebra of Mod K.

Recall that an algebra is simple if it is nontrivial and isomorphic to every nontrivial
homomorphic image.

COROLLARY 2.7. Any initial or weak initial specification of a simple data type is
complete.

Proof. Any simple algebra that is initial in a class of algebras is clearly
isoinitial.

The notion of initial algebra specification originated with the ADJ group [15], [16]
and Zilles and Liskov [25], [49], [50]. Final algebra specification can be traced back
to Guttag’s thesis [19] (see also [20]) and was formalized in Giarrantana, Gimona,
and Montanari [12] and Wand [45] (see also [8], [22]-[24], [47]). The notion of final
specification defined in Definition 2.5(iii) is more restrictive and is due to Bergstra
and Tucker [2] (see also [34], [35]). The more general notion of final specification
corresponds roughly to final specification in the sense of Definition 2.5(iii) restricted
to certain specified sorts. For a general discussion of the specification of data types,
see Ehrig and Mahr [11] and Meseguer and Goguen [34].

THEOREM 2.8. Let K be any elementary class of -algebras. If MAn K has an
initial algebra, then MAn K, Qv K, and Va K all have the same initial algebra. Thus
every initial specification of A is also a weak initial specification.

Proof. Let A be an initial algebra of MinK. Since Mink C_ QvK c_ VaK, it
suffices to show that A is also initial in Va K. Let B be an arbitrary member of Va K.
Then by Corollary 1.3(ii), B is isomorphic to a subalgebra of a product quotient
(YiieI Ci)/), where Ci K for each I. Without loss of generality we can
assume B C_ (I-IieI Ci)/. Since A is initial in Min K, there exists a homomorphism
hi A --. Min Ci C_ Ci for each I. Then h(a) (hi(a) I) defines a
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homomorphism h" A --, I-Iie, Ci, and thus n o h" A --* (1]ei C)/f, where n is the
natural map. Since A is minimal, its image (n o h)(A) is also minimal, and hence
included in B. So n o h" A ---, B.

COROLLARY 2.9. F initially specifies A if and only if F weakly initially specifies
A and A E Min(ModF). D

The converse of the theorem fails: there exist sets of first-order, in fact even
universal, sentences that do not initially specify any data type, although such a set is
always a weak initial specification. For any natural number n let

9"=Vx"’Vx"( V x,xj).
i<j_n

An algebra A, of arbitrary homogeneous signature F, satisfies 99,, if and only if A
contains at most n elements. Enrich F to F by adjoining n + 1 new constant symbols
ao,’",an. Let A be the initial algebra of Qv(Mod 9n). For each pair of distinct
constants hi and j there exists a model B of 9n such that B _y: . Thus

for all < j G n. So MinA contains more than n elements, and hence A
Min(Mod 9n). Thus, by the corollary, 9n cannot initially specify any data type.

There is an even stronger correspondence between K and Qv K with regard to
final algebra specification. The following result explains why the notion of weak final
specification does not lead to anything new. Recall that for any class K, K0 is the
subclass of all nontrivial algebras.

THEOREM 2.10. Let K be any elementary class of E-algebras. (MinK)0 has a

final algebra if and only if (Min(QvK))0 has a final algebra; if these final algebras
exist, they are isomorphic.

Proof. Let A be a G-data type. We will show that A is final for (Min K)0 if and
only if it is final for (Min(Qv K))0. Assume first of all that A is final for (Min K)0. Let
B e (Min(QvK))0. We must show B t ,, r implies A t r for every ground
equation t r.

B is nontrivial and isomorphic to the minimal subalgebra of a reduced product
(Hil Ci)/)F with C e K. We can assume that

B Min(Ci)/eF.
It is easy to check that (1-Iiei MinCi)/fgF C_ (1-Iiei Ci)/(R)F, and hence B C_
(l-[ieMinCi)/)F. Then tB [(tMi’c* e I)]e, for every ground term t.
Suppose tB rB. Then J { tMin c rMinC } F, by definition of f. Not
every Min Ci with e F is trivial, since otherwise (1-IieI Min Ci)/fgF and hence B
would be trivial, contrary to the assumption B e (Min(QvK))0. Thus there exists
at least one such that Min Ci (Min K)0 and tMinC rMinCe. This implies
A t r since A is final in (Min K)0. Thus A is final in (Min(Qv K))0.

Now assume A is final in (Min(QvK))0. To show that A is final in (Min K)o it
suffices to show A (Min K)0. By an argument similar to the one used above, we
can assume without loss of generality that A G (YIiei Ci)/(gF with Ci e K and F
a proper filter of I. Choose distinct elements a and b of A. Then a is of the form
[(ai e I)]e withai e C for alli; similarlyb [(b e I)]e. a b implies
J {i I" ai b} F. Let Ube any ultrafilter on I such that F C_ U and
g U. Then h A --, (YIeI c)/(gv where h is the natural homomorphism from

(rIei Ci)/F onto (YIei c)/fv. By Log’s theorem (rIei c)/Ov e K, since
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K is an elementary class. Thus h(A) e Mi, K. Now h(a) [(a e I}]o and
h(b) [(b E I)]o. Thus, since {i E I as #: b} J 9 U by assumption,
h(a) h(b). Thus h(A) (Mi, K)o. But (Mi, K)o C_ (Mi,(Qv K))o, and A is final in
(M](Qv K))o. Thus A h(A), which gives A (M], K)o.

Combining Theorems 2.6, 2.8, and 2.10, we have that, for any elementary class
K, (M] K)o is a data type if and only if (M],(Qv K))o is one, and in this case the two
classes coincide.

The various notions of specification can alternatively be characterized more di-
rectly in terms of the logical consequence relations and ; compare Meseguer and
Goguen [34, Thin. 18].

THEOREM 2.11. Let F be a set of first-order E-sentences, and let A be a E-data
type.

(i) F is a weak initial specification ofA if and only if, for every ground E-equation
tr,

Atr iff Ftr.

(ii) F is an initial specification of A if and only irA M],(ModF), and, for
every ground E-equation t r,

A t r implies F t r.

(iii) F is a final specification of A if and only if A (M]n(ModF))o, and, for
every ground E-equation t r, either A t r implies F,t r w,
or, equivalently,

A t r implies F,w -(t r).

(iv) F is a complete specification of A if and only if A (Mi,(Mod F))o, and, for
every ground E-equation t r, either

F t r or F,w(tr).

Proof. (i) Since any quasi variety is closed under the formation of isomorphic
images, subalgebras, and Cartesian products, we can apply the equivalence of Lemma
2.2(iv) and (v), with Qv(ModF) in place of K, to conclude that A is initial in
Qv(Mod F) if and only if

Atr iff Qv(ModF)tr.

But by definition, Qv(Mod F) satisfies exactly the same conditional equations Mod F
does; in particular

Ov(Modr)tr iff rtr,

for each ground equation t r. Thus (i) holds.
(ii) Under the assumption A e Min(ModF), F t r implies A t r

for every ground equation t r. Part (ii) now follows immediately from (i) and
Corolle-y 2.9.

(iii) Assume F is a final specification of A, i.e., A is final in (Min(ModF))0.
Applying Lemmas 2.3 and 2.4 we get

A is final in (Min(ModF))o iff A is final in Min(Mod(F U {w}))
iff A (Min(Mod F))o and A t r implies F,w (t r).
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Part (iv)is immediate from (ii) and (iii). 0
COROLLARY 2.12. Let A be a F-data type.
(i) If A has a finite, first-order initial or weak initial specification, then it is

semicomputable.
(ii) If A has a finite, first-order final specification, then it is cosemicomputable.
(iii) If A has a finite, first-order complete specification, then it is computable.
Proof. (i) If E is either an initial or weak initial specification of A, then A t r

if and only if F - t r for every ground equation. If F is finite, then {t r F - t r}
is a r.e. set. This gives part (i).

(ii) Let E be a finite set of first-order sentences and generate a list of ground
equations as follows. Recursively enumerate all first-order proofs that use sentences
from E U {t r}, for an arbitrary ground equation t r, as nonlogical axioms. Add
t r to the list whenever a proof of w from E U {t ,, r} appears in the enumeration.
The set of ground equations generated in this way is r.e. and, by Theorem 2.11(iii),
coincides with the set {t ,, r A t , r} whenever F is a final specification of A.
This gives (ii); (iii) follows immediately from (i) and (ii). 0

The corollary also holds for recursive or even r.e. specifications.
Bergstra and Tucker [1]-[3] have obtained surprising and highly significant con-

verses of all three results in Corollary 2.12. They prove that every computable data
type has a finite complete equational specification and every cosemicomputable data
type has a finite final conditional equational specification; both specifications require
hidden operations but not hidden sorts. They also show that every semicomputable
data type has a finite equational initial specification, but in this case a hidden sort is
required as well as hidden operations. For related results, see Bergstra, Broy, Tucker,
and Wirsing [4]; Marongiu and Tulipani [31]; and Moss, Meseguer, and Goguen [35].

Example 2.13. As an application of part (iv) of the theorem we give a
universal complete specification of stacks of natural numbers with errors. Let S
,{ nat, stk } and

E { zero, succ, push, pop, top, empty, naterr, stkerr }.

NATSTK is the E-data structure whose nat domain is the natural numbers with
zero, the successor operation, and a special error element. The stk domain consists
of all finite sequences of natural numbers, together with a special stack error element.
The push operation takes a stack and number as argument; it returns a stack. The
pop and top operations take a stack as single argument and return, respectively, a
stack and number. The operations are defined in the obvious way, with push returning
an error if either of its arguments is an error, and pop and push both returning an
error if the argument is either the empty stack (sequence) or error.

Let A be the following system of universal sentences (we omit universal quantifiers
for simplicity)"

(zero .. naterr),

x
succ(naterr) .. naterr,
-(empty . stkerr),

v x
x)) x V

(s stkerr V x naterr) push(s,x) stkerr,
(s empty V s stkerr) --, (pop(s) , stkerr A top(s) , naterr).
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A is a complete specification of NATSTK. Since NATSTK is a model of A,
and A - w, it suffices to prove that A - t , r or A - -(t r) for every ground
E-equation t r. The proof is straightforward. A nat term t is in canonical form if
t succn(zero) for some natural number n, or t naterr. An stk term t is in canon-
ical form if t= pushk(empty, succn(zero), succ-l(zero)) for natural numbers
k, no,’", nk-1 with k > 0, or t empty, or t stkerr. Using structural induction
we first prove that, for every ground term t, there exists a term t in canonical form
such that E - t t, and then that A - -(t r) for any pair of distinct terms in
canonical form.

Lemma 2.2, on which the last theorem is partly based, can also be used to give
a somewhat different perspective on Theorem 2.8. Let K be any class of E-algebras.
Whether a given data type A E Min K is initial in Min K depends only on the equations,
in particular the ground equations, satisfied by K. Thus A is initial in any one of
the classes Min K, Qv K, and Va K if and only if it is initial in all of them. A similar
observation can be made about Theorem 2.10. Assume A E (Min K)0. Lemma 2.3 can
be used to show that A is final in (Min K)0 if and only if, for every ground equation

A t r iff K t r --. p , q foreverypq.

Thus, whether or not A is final in (Min K)0 depends only on the conditional equations
satisfied by K. Hence A is final in (Min K)0 or (Qv K)0 if and only if it is final in
both of them. This does not, however, express the full content of Theorem 2.10
when K is an elementary class. The theorem asserts, in effect, that a data type A is
final for (Mi, K)0 or (Qv K)0 if and only if it is final for both of them, without the
qualification that A (Min K)0. This stronger result seems to require the model-
theoretic argument using ultraproducts employed in the proof of Theorem 2.10; at
least we can see no convenient way of avoiding it.

The characterizations of the initial and final specifications given in Theorem 2.11
are closely related to the work of Wirsing, Broy, and Pair [47], [48]. For each E-
data type A there is a unique surjective homomorphism h" T A, and a unique
congruence relation --A on T (the relation kernel of h), such that T/-=A A.
Conversely, each congruence on T determines a unique data type. This establishes
a bijection between ConT and the data types of signature a. Wirsing and Broy
[47] essentially identify data types with congruences on T. There is a (necessarily
unique) isomorphism between data types A and B if and only if =-n and B coincide;
thus any categorical property of data types can be reformulated in terms of the partial
ordering on ConT given by set-theoretical inclusion. For any class K of E-algebras
closed under isomorphism let

Con(T { 0 ConT To Min K }.

Initial and final algebras of Mi K exist if and only if Con(T has a least upper bound
and a greatest lower bound, respectively. When K Mod F for some set of first-order
sentences, Wirsing and Broy [47] give sufficient conditions on the structure of the
sentences of K which ensure that these bounds exist.

3. Equality-test algebras and their specification. From the discussion of
the previous section we see that, when specifying a data type A (either initially or

finally) by a set F of first-order sentences, F can always be replaced by a set of
conditional equations, in fact, by any set of conditional equations that axiomatize
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Qv(ModF). The problem is that there is no effective procedure for constructing
such a conditional specification from F in general; Qv(ModF) may not be finitely
axiomatizable, even when F is finite. However, if one of the sorts of the data type
A is the two-element Boolean algebra, and A contains equality tests for each of the
other sorts (i.e., A is an equality-test algebra in the sense of the following definition),
and if F is a finite set of universal sentences, then Qv(Mod F) will always be finitely
axiomatizable, and there is a simple algorithm for converting F into a set of conditional
axioms for it, and hence into a finite conditional initial specification of A. Moreover,
the specification obtained in this way is necessarily complete. Actually, any universal
initial, weak initial, or final specification of A gives rise in this way to a conditional
complete specification of A (Theorem 3.14). An interesting consequence of this fact is
that every semicomputable or cosemicomputable equality-test data type is computable
(Theorem 3.18). The importance of conditional specifications was first recognized by
Thatcher, Wagner, and Wright [43].

DEFINITION 3.1. (i) A signature 5] is called an equality-test signature if it
has a sort bool with operation symbols /,., -, 0, 1, and, for each sort s bool, an
operation symbol eq8 s s bool.

(ii) A 5J-algebra A is an equality-test (ET for short) algebra if 5] is an equality-
test signature, A bool B2 (the two-element Boolean algebra), and, for each
e \ {

1 if a=b,
0 #

The class of all equality-test -algebras is denoted by :T, or simply =T when 5] is
clear from context.

eqs is called the s-equality-test operation. No fundamental equality-test operation
for the Boolean sort is postulated; it can be defined in terms of the Boolean operations.
Specifically, we define

(-x + +
Clearly ’eqbool(a b) equals one if a b, and zero otherwise.

Note that an ET algebra has at least one domain with more than one element (the
Boolean sort); hence every ET algebra is nontrivial. Also, every minimal subalgebra
of an ET algebra is FT. A minimal ET algebra is called an ET data structure or data
type. For the rest of this section Z is assumed to be an equality-test signature except
when otherwise noted.

3.1. Generalized equality-test algebras. We shall investigate in some detail
the quasi variety generated by the class of all ET algebras of a fixed but arbitrary
equality-test signature. Members of this quasi variety are called generalized equality-
test algebras. It turns out that this quasi variety has two properties that make it
especially useful for studying specifications of ET data types: it has a simple, finite
axiomatization, and the structure of an arbitrary generalized ET algebra can be easily
described in terms of ET algebras. In fact, a natural analogue of the algebraic version
of the Stone representation theorem for Boolean algebras holds in which generalized
and ordinary ET algebras, respectively, play the roles of arbitrary and two-element
Boolean algebras.

DEFINITION 3.2. Let 5] be an equality-test signature. A 5J-algebra A is called a
generalized equality-test (GET) algebra if it satisfies the following set of equa-
tions and conditional equations"
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(Axgetl) The equational axioms for Boolean algebras (see 1), and for each s E
\ {

(Axget2) eq(x,x) 1;
(Axget3) eqs(x, y) <_ eqs(y, x);
(Axgeta) eqs(x, y). eq(y, z) <_ eq(x, z);
(Axget5) eqo(XO, yo eq_ (xn-l,yn-) <_ eq(a(xo,...,x-),a(yo,...,yn-)),

for each a E , with w sos...s_;
(Axget6) eqs x y) , 1 --. x , y.
The finite set of conditional axioms (Axgetl)-(Axget6) is denoted by AXGET,

and the quasi variety of all GET -algebras, i.e., Mod(AXGET), is denoted by
GET.

The subscript is normally omitted when there is no possibility of confusion.
Notice that (Axget6) is the only strictly conditional equational axiom; all the others
are equations.

(Axget2)-(Axget6) continue to hold when the sort s is allowed to be bool. More-
over (Axget) continues to hold with a eq for every s e S. In this case (Axget5)
takes the form

eqs(xo, Yo)" eqs(x,Y) < eqbool(eqs(Xo, X), eqs(Yo, Yl)).
This follows from (Axget3) and (Axget4), since, in any Boolean algebra, a. b < c and
a. c g b together imply a g (-b + c). (-c -t- b).

Every ET Z-algebra is a GET algebra. In fact the ET algebras are exactly the
GET algebras A such that A bool B2: it is easy to see that, if Aboo (0A,1
and 0A 1A, then (Axget2) and (Axget6) guarantee that eqsA is the equality-test
function on As for each s S \ (bool}. This gives us Theorem 3.3.

THEOREM 3.3. The class T of all equality-test Z-algebras is a finitely axioma-
tizable universal class. It is defined by the axioms AXGET and the single additional
universal sentence

(Axet) -(0 1) A Vx(x 0 V x . 1). El
We set AXET AXGET U ((Axet)}, so that T Mod(AXET). The

universal axiom (Axet) cannot be replaced by an equation or conditional equation.
GT contains many non-ET algebras. In fact, for every Boolean algebra B we can

find many nonisomorphic A GT such that A boot B. Not even every minimal
GET algebra is ET. Let Ao and A be minimal ET algebras, and t r a ground
equation such that tA rA but tA1 rl; such algebras are easy to find. If
B Ao x A, then

eqs (t, r)B ( eqsAO (tAO rAO ), eqsA (tAl rA )
Thus eqs(t r)B { (0A, 0A), (1A, 1A)} {0, 1}. So MinB is not ET, but it
is obviously GET. We shall show that GI:T Qv(I:T) (see Theorem 3.7 below).

On the other hand, we do have the following useful characterization of the Boolean
part of any minimal GET algebra.

LEMMA 3.4. Let A be a minimal GET algebra. Then A boot is generated by 0,
1A, and elements of the form eq(a, b), where s S \ {bool} and a,b As. Thus
every element of A boot, different from 0A and 1A, can be written in the form

+ +...+

where each of the ei, fj,’",gk is of the form eqA(a, b) or -eqsA(a, b) for some s e
S \ (bool} and a, b e As.
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Proof. Since A is minimal, every element of A bool is of the form tA, where
t is a ground bool-term. But every ground bool-term is either 0, 1, or a Boolean
combination of terms of the form eqs(r,p where s E S\ {bool} and r and p are ground
s-terms. The representation given in the theorem is just the standard conjunctive
normal-form representation of an element of a Boolean algebra in terms of a system of
generators.

As a corollary, for any nontrivial GET algebra A we have A bool B2, i.e.,
h [T, if and only if there exist s S \ (bool} and a, b As such that eq’(a, b)

Let A be an arbitrary GET algebra and (9 (Os s S) a congruence on A.
The quotient A/O is not necessarily a GET algebra since G:T is not closed under
homomorphism (the conditional axioms eqs(x y) .. 1 x y are not in general
preserved in passing to the homomorphic image). We call a GET congruence
if A/O e G:T, or, equivalently, if eq(a,b) =_ l()booZ) implies a b(s) for all
s S \ { bool}. The set of all GET congruences on A is denoted by ConGeTA. Like
the set Con A of all congruences on A, ConGETA forms a complete lattice Con(ETA
under sorted set-theoretical inclusion. The greatest lower bound of any system { Oi
E I } of GET congruences is again the sorted set-theoretical intersection NiEI (i

(NiEI (i,s 8 e S). (ConeTA is closed under intersection since GeT is a quasi
variety.) The least upper bound of {)i I) is not generally the sorted union
of the (9i, and differs from the least upper bound in Con A. (Con(;TA is not
a sublattice of Con A.) But the identity and universal relations AA and VA are
GET congruences, and hence are, respectively, the smallest and largest elements of
Con(;eTA.

The correspondence theorem also holds for GET congruences" for every GET
congruence O, the lattice ConGT(A/O) is isomorphic to the sublattice of Con(;E-,-A
of all GET congruences that include O.

If O is a GET congruence on A, then Oboot is a congruence on the Boolean algebra
A boot. Define Fi Fi Oboot [ln]Oboot; Fi is a mapping from ConGTA into the
set Fil A booZ of filters of A bool.

LEMMA 3.5. Fi is an isomorphism between the lattices ConGTA and Fil A boot

for every GET algebra A.
Proof. To prove that a mapping between lattices is an isomorphism, we only need

to show that it is an order-preserving bijection. Fi is order-preserving since O
implies O boot C_ O boot, which is equivalent to Fi O boot C_ Fi O boot. We show that Fi is
injective. Let s S\ { bool} and a, b As. Using the fact that O is a GET congruence
(and hence preserves the conditional equations eqs(x y) 1 - x .. y), we have
a =_ b(Os) if and only if eq(a, b) --Obool eq(a, a) 1 if and only if eq(a, b) e Fi O.
Thus Os is uniquely determined by Fi 0 for each s S\{bool}; since Oboot is obviously
uniquely determined, so is O. Hence Fi is injective.

Let F be a filter of A bool. For each s S \ { bool} define

(CoF)s { (a,b) e As As eq(a,b) e F };

let (CoF)boot {(a,b) (-a+b). (-b+a) e F}. We show that CoF is a
GET congruence, and that Fi(CoF) F. For all a,b As, eq(a,a) 1 F
implies (a, a) e (Co F)s; (a, b) e (Co F)s if and only if eq(a, b) e F, which implies
eq(b,a) e F and hence (b,a e (CoF)s, since eq(a,b) <_ eq(b,a) by (Axget3).
Similarly, (Axgeta) and (Axgetb) applied for all s S, including s bool, guarantee
that (Co F)s is transitive and Co F is preserved under substitution. Thus Co F is a
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congruence. To show that it is a GET congruence we must show that it preserves the
conditional equations (Axget6).

Suppose s e S\{bool} and eq(a,b) =_ l((CoF)boot). By definition of (Co F)boot,

(-eq(a, b) / 1) (-1 / eq(a, b)) eq(a, b) F.

Thus a =_ b((Co F)s) by definition of (Co F)s. Hence

eq(a, b) =-Co F 1 implies a =-Co F b,

and Co F is a GET congruence.
Finally, a e Fi(Co F) if and only if a =- l((Co F)boot) if and only if (-a + 1)

(-1 + a) a E F. So Fi(Co F) F. Thus Fi is surjective, and hence a lattice
isomorphism.

For a closely related result see Padawitz [40, Lem. 2.3].
Recall that an algebra is simple if and only if it has exactly two congruences. A

GET algebra A is GET-simple if it has exactly two GET congruences, the identity
relation AA, and the universal relation VA. So A is GET-simple if its only proper
homomorphic GET image is the trivial algebra.

Any GET algebra simple in the absolute sense is also GET-simple, but the con-
verse does not hold in general. For example, let 2 be the equality-test signature with
just two sorts s and bool, and no operations other than the eqs. Let A be any ET
-algebra. A is GET-simple by the following theorem, but ()s, Aboo) is a congruence
of A for every equivalence relation (s on As.

THEOREM 3.6. A GET algebra is GET-simple if and only if it is an ET algebra.
Proof. By the lemma, a GET algebra A is GET-simple if and only if A boot has

exactly two filters, {1A} and Aboo. But the only Boolean algebra with exactly two
filters is B 2.

The next theorem is the analogue for GET algebras of the Stone representation
theorem. A subclass of GFT defined, relative to GFT, by a set E of equations, i.e.,
a class of algebras of the form Mod(E U AXGET), is called a relative subvariety of
GET. Every relative subvariety of GET is a quasi variety.

THEOREM 3.7. (i) Let K be any relative subvariety of GET. Every member of K
is subdirectly representable in K ET, i.e., K ]PSD(K CI ET).

(ii) Every GET algebra is subdirectly representable in ET, i.e., GET IPsD(ET).
Proof. (i) Let K Mod(E U AXGET) for some set E of equations. Since K

is defined by equations and conditional equations, it is a quasi variety, and hence
]PSD(K ffl ET) C_ |SD K K. For the reverse inclusion consider any A E K. Then
A E GET since K C_ GET. If A is trivial, it is isomorphic to the empty subdirect
product; so we may assume that it is nontrivial. Let P be the set of all prime filters
of A bool. ’FEpF {1A}. Thus by the lemma, ’FEP CoF AA. Hence A is
subdirectly representable in { A/Co F F E P }. Applying the lemma again, we
conclude from the fact that each F is prime that Co F is a maximal proper GET
congruence, and hence A/Co F is GET-simple, i.e., A/Co F FT. In particular,
A/CoF GET, so h/CoF AXGET. We also have h/CoF EsinceA E
by assumption and E is a set of equations, and hence preserved under surjective
homomorphisms. So A/Co F
P} C_ K FT. Hence A is subdirectly representable in K FT.

(ii) This is a special case of part (i) with E taken to be the empty set of
equations.
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COROLLARY 3.8. Qv(ET) GET Mod(AXGET).
Thus AXGET is a set of conditional axioms for the conditional theory of ET, i.e.,

the set of all conditional equations that are true in every ET algebra.
The last theorem gives rise to a simple characterization of the initial algebra In K,

and also the final algebra Fn K when it exists, for every relative subvariety K of GET.
THEOREM 3.9. Let K be a relative subvariety of GET.
(i) InK Min(YIii hi), where { Ai E I} is any subset of (Min K)F ET

that includes every member of (Min K)F ET up to isomorphism.
(ii) The following are equivalent:

(ii’) Fn (Min K)0 ezists;
(ii") In K E ET;
(iit") In K is isoinitial;
(ii") There is only one algebra in (Min K)O ET up to isomorphism.

If these conditions hold, then (Min K)0 (Min K) F ET Ih, and Fn (Min K)0 ----In K A, where A is the unique data type (Min K)F ET.
Proof. Let K Mod(E U AXGET) for some set E of equations.
(i) Let B E K. By Theorem 3.7(i) there is a injective homomorphism h :B -.

Hjj Cj for some Cj E K F ET. Without loss of generality we can assume B C_

&l-it g Cj. By the assumption on the set { Ai E I }, there exists for each j E J
E I such that Aj, Min (]j. Thus there is a homomorphism fj IIiei Ai -*

Cj that is obtained by composing the projection rj, 1-Iiei Ai - Aj, with the
unique injective homomorphism form Aj, into Cj. Then, by the universal property
of Cartesian products, there is a homomorphism g 1-IieI Ai -* 1-Ijeg Cj. Restricting
to the minimal subalgebra we get

So Min(1-Iiex Ai) is initial in K.
(ii) Suppose that Fn(Min K)0 exists. By Theorem 3.7 it is a subdirect product

of ET algebras in K. So it itself must be an ET algebra since otherwise it would
have a proper homomorphic image in (Min K) 0 FT, contradicting its finality. Thus
Fn(Min K)0 (Min K)FFT. For any other A (Min K)FT there is a homomorphism
h A - Fn(Min K)0. h is surjective because Fn(Min K)0 is minimal, and it is injective
since A is GET-simple. Thus A Fn(Min K)0. This shows that (ii’) implies

For the implication in the opposite direction suppose A is, up to isomorphism, the
only member of (Min K) O FT. Let B be any nontrivial minimal member of K. B is a
subdirect product of members of KFFT (Theorem 3.7), and, since it is minimal, it is a
nonempty subdirect product of members of (Min K)OT. Thus A is a subdirect factor
of B, and the projection onto this factor gives a (necessarily unique) homomorphism
of B onto h. So A is final in (Min K)o, and is also the unique member of (Min K)0
up to isomorphism. Thus (ii) and (ii’") are equivalent, and if these conditions hold,
then (Min K)o (Min K) 0 ET IA.

For each A E (Min K) 13 ET there exists a surjective homomorphism h In K - A.
If In K is an ET algebra, then h must be injective since In K is GET-simple. Thus
In K A for each A E (Min K)ET. This shows that (ii") implies (ii"’), and that
implies (ii""). For the implication from (ii"") to (ii’), observe that, if (Min K)r3 ET
contains only one algebra A up to isomorphism, then In K - A E ET by part (i). In
this case In K - A (Fn K)o.
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Example 3.10. Let S {nat, bool, set} and

E { zero, succ, +,., -, 0, 1, empty, insert, isin, eqnat }.

NATSET is the data structure whose nat and bool domains are the usual ones and
whose set domain is the set of finite sets of natural numbers, empty returns the empty
set. The insert operation takes a number n and a finite set s and returns st2 {n}. isin
takes n and s and returns a Boolean: 1 if n E s and 0 otherwise. The set domain in
NATBAG is the set of bags or multisets of natural numbers. In a bag the multiplicity
of each member is taken into account; thus insert(zero, insert(zero, empty)) and
insert(zero, empty) denote the same set but different bags. Note that NATSET and
NATBAG are not ET data structures because the equality-test for sets and bags,
eqset, is missing.

Let A consist of the equational axioms for Boolean algebras together with the
following universal sentences:
((x) zo),
(x) () - ,
insert (x, insert(y, s)) insert (y, insert(x, s)),
isin(x, empty) O,
isin(x, insert(x, s)) 1,

eqnat(X x) 1,
x),

z) z),

eqnat(X y) 1 x y.
The last six axioms are just the AXGET axioms for the {nat, bool}-reduct of E,

i.e., the signature E- E {empty, insert, isin}. These, together with the first two
axioms of A, constitute a universal complete specification of the natural numbers and
Booleans, which is a reduct of both NATSET and NATBAG. The whole of A
is both an initial specification of NATBAG and a final specification of NATSET.
This is easily shown by using structural induction to verify conditions (ii) and (iii) of
Theorem 2.11: For any nondecreasing string n nn2...nk of naturM numbers let

sn insertk(nl, n2,..., nk, empty),

where ni succn(zero). From A we can prove that every ground set-term is equal
to some Sn. It follows easily from this that NATBAG t . r implies A t r
for every ground equation t r. Since NATBAG E Min(Mod A), we get that A
is an initial specification by Theorem 2.11(ii). On the other hand, A is also a final
specification of NATSET by Theorem 2.11(iii) because NATSET t .. r implies
A - (t r). To show this, it clearly suffices to consider only ground set-terms t, r
in canonical form. Let n n"’nk and m m...m be two nondecreasing strings
of natural numbers. NATSET s s, if and only if some ni is distinct from all
mj (or vice versa); in this case

A isin(n, 8n) ,, 1 and A - isin(mi, sin) , O.

But A - 7(1 0) because A - -(eqnat(succ(zero),zero , 1) and A contains the
axioms of Boolean algebra. Thus A (Sn Sin).
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Let E+ be the ET enrichment of E obtained by adjoining eqset and let NATBAG+
and NATSET+ be the corresponding enriched ET data structures. A and even
A U AXGETr+ fail to be initial specifications of NATBAG+ because, for exam-
ple, A U AXGET+ eqset(soo so) ,. O. Similarly, A U AXGET+ is not a final
specification of NATSET+ because A U AXGET+ (eqset(s00 .so) , 0).

3.2. Transforming universal specifications into conditional specifica-
tions. For each quantifier-free E-formula we define a bool-term *, with the same
variables as , by recursion on the structure of . If is an s-equation t r, then

* eqs(t,r). For the recursion step we take (A)* * .*, (Y)* * +*,
and ()* -(*).

We extend the definition to universal sentences: let be an arbitrary universal
sentence, and let

Vx0Vx... Vx_’(x0,..., x_)

be its prenex normal form; is called the quantifier-free matrix of . We define *to be the universally closed equation Vx0...VX-l*; by convention, the universal
quantifiers are normally omitted. For any universal sentence we define bt to be
the equation * 1; bt is called the Boolean transform of . For any set F of
universal sentences we take bt F { bt E F }.

The following easy lemma is a basic tool of the paper.
LEMMA 3.11. Let A be an ET algebra and a universal sentence. Then A

if and only if A bt .
Proof. Let (x0,’’’ ,Xn-1) be the quantifier-free matrix of . We prove by induc-

tion on the structure of that, for any assignment 5 a0,"’, an-1 of elements of A
to the variables 2 x0,..., Xn-1 of , we have A ’[5] if and only if (’*)A() 1.
Thus, since A if and only if A ’[5] for all , we get A if and only if the
equation bt holds in A for every interpretation of the variables, i.e., if and only if
bt is an identity of A.

We consider the various possibilities for in order.

’= t(2) .. r(2), an s-equation:

A ifl" tA() rA()
iff eqsn(tA(fi),rA()) 1

iff eqs(t,r)A() 1

i (fl/*A()’- 1.

’ =A:
A iff A [] and A

iff *A() 1 and ’0*A() 1

iff ),A(). t,A()
iff (*.#*)A() 1

iff ,,A()._ 1.

’ =V#:
A’[] iff A[] or A[a]
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iff ,A()= 1 or o,A(5) 1

iff ,A(5) + ,A() 1

(* + o*)*(a)
iff ’*A(a)= 1.

’ --: A ’[] if and only if A : ’[] if and only if ,A(fi) : 1 if and only
if ,A() 0 if and only if (_,)A() 1 if and only if ,,A(fi) 1.

COROLLARY 3.12. For any set F of universal sentences, (ModF) N IET,
Mod(bt F) n ET. 13

The conclusion of Lemma 3.11 depends very much on the assumption that A is
an ET algebra, i.e., that A bool B 2 and eq tests actual equality in As for each
s E S. For an arbitrary set F of universal sentences, it is not true in general either that
Mod F Mod(bt F) or that Qv(Mod F) Mod(bt F). Indeed, every E-algebra in which
Abool has only one element is a model of bt F for any set of universal sentences F. We
also cannot conclude from the fact that F is a universal initial or final specification of
an ET data type A that bt F is an equational initial, respectively final, specification
of A. An example is given below, but in the case of final specifications this is easily
seen from the above remarks, since no model of bt F in which AbooZ is a one-element
algebra can have a nontrivial data type as a homomorphic image.

We shall see that every ET data type that has a finite universal specification F
of any kind also has a finite-conditional specification of the same kind. In order to
obtain such a specification we have to adjoin the conditional axioms for GET algebras
to the set of equations bt F.

From the next theorem we see that, if F is any set of universal sentences, then
the quasi variety K generated by the ET models of F can be defined relative to GET
by a set of identities, and thus is a relative subvariety of GET. The initial and final
algebras can then be characterized by Theorem 3.9.

THEOREM 3.13. Let F be an arbitrary set of universal sentences.

Qv(Mod(F U AXET)) Mod(bt F U AXGET).

Proof. If A is an ET algebra such that A F, then A btF by Lemma
3.11. Thus Qv(Mod(F U AXET)) C_ Mod(bt F U AXGET). Conversely, assume A
bt F U AXGET. Since A is a GET algebra, it is subdirectly representable in lET by
Theorem 3.7. Let A C_SD HiEI Si’ with B E lET. Each B is a homomorphic image
of A, and hence B bt F, since the members of bt F are preserved under surjective
homomorphisms. Therefore, B F by Lemma 3.11. So B Mod(F n AXET) for
each i, and hence A Qv(Mod(r U AXET)). [:]

Combining this theorem with Theorem 3.9 we finally get the main result of the
section.

THEOREM 3.14. Let F be any set of universal sentences, and A an ET data type.
If F is either an initial, a weak initial, or a final specification ofA, then bt FUAXGET
is a conditional complete specification of A.

Proof. Assume that F is a weak initial specification of A, i.e., that A is initial in
Qv(Mod F). Then A is also initial in

K Mod(bt F U AXGET) Qv(Mod(F U AXET)),

since this class contains A and is included in Qv(Mod r). A is also final in (Min K)0
by Theorem 3.9(ii). So bt F U AXGET is a complete specification of A.
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Assume now that F is a final specification of A, i.e., A is final in (Min(Mod F))o.
Then A is final in (Min(Qv(Mod F)))0 by Theorem 2.10, and hence also in

(Min(Qv(Mod(r U AXET)))) 0 (Min K)o.
Thus A is also initial in K by Theorem 3.9(ii), and hence bt F U AXGET is a complete
specification of A.

Every ET data type that has a finite universal initial specification also has a finite-
conditional complete specification. (AXGET is finite because of our assumption that
every signature is finite.)

It is easy to see from the above proof that, if F is any (not necessarily universal)
initial or final specification of an ET data type A, then F UAXGET is a complete (but
of course not generally a conditional) specification of A. The adjunction of AXGET is
essential here. It is easy to find universal initial specifications of an ET data type that
are not complete, and similarly for final specifications. Just take F, respectively, to
be the set of all ground equations that hold in A and the set of logical negations of all
ground equations that fail to hold in A. In the first case we get an initial specification
that is not final provided A is not simple (in the absolute sense). In the second case
we get a final specification that is not initial provided A is not isomorphic to the term
algebra.

A more natural example of an initial but incomplete specification of an ET data
type is the following specification of the natural numbers and Booleans.

Example 3.15. The sort set is {nat, bool} and the signature is { succ, zero,-,
0, 1 }. The initial specification is given by the equational axioms of Boolean algebra
and

Canal(X, x) . 1,
eqnat(X, Y). eqnat(Y,X),
eqnat (succ(x), zero) .. O,
eqnat (8UCC(X), 8UCC(y)) . eqnat(X y).

This is not a complete specification since it has a model in which the natural numbers
are as usual but the 0 and 1 in the Boolean domain are identified.

Of course when we adjoin AXGET to these axioms we get a complete specification.
But observe that any minimal model of the axioms that is not isomorphic to the initial
algebra must have 0 1. So we can also get a complete specification by adjoining only
the single conditional equation eqnat (X, y) 1 X y. This is an example of general
phenomenon that leads to another version of Theorem 3.14 for initial specifications.

THEOREM 3.16. Let F be any set of first-order sentences and let A be an ET
data type. If F is an initial specification of A, then F, together with the conditional
equations

(,) eqs(x,y) -.1-, x y for all s e S,

is a complete specification of A.
Proof. It suffices to show that any proper homomorphic image of A that satisfies

these conditional equations must be trivial. Let B be such an image. There is a sort
s and ground s-terms t, r such that t - rn while tB rB. From the inequality
and the fact that F is an initial specification of A we get F t- eqs(t, r) . 0 and hence
eqs(t, r) O. The equality eqs(x, x) 1 is an identity of A, since it is an ET data
type, and hence it is also an identity of its homomorphic image B. Thus from tB rB

we get eqs(t, r)B 1. So 1 0 in B and hence B is trivial because of the conditional
equations (.). [:]
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Results similar to Theorems 3.14 and 3.16 have been obtained in the context of
logic programming. See Hsiang and Dershowitz [21] and Paul [36], [37].

COROLLARY 3.17. Every ET data type that has a finite universal weak initial,
initial, or final specification is computable.

Proof. The proof is obtained using Theorem 3.14 and Corollary 2.12.
More generally, every ET data type with a r.e. universal weak initial specification

is computable.
Every semicomputable data type A has a r.e. equational initial specification; just

take F to be the set of all ground equations that hold in A. By 3.14 btFAXGET is a
r.e. complete specification of A, and thus by Corollary 2.12 and the remark following
it A is actually computable. A similar argument applies to any co-r.e, data type A.
Let F be the set of sentences of the form -(t r) for all ground equations t r
that fail to hold in A. Then F is a r.e. final specification of A. Again, from Corollary
2.12 and Theorem 3.14 we conclude that A is computable. This gives the following
theorem.

THEOREM 3.18. Every semicomputable or cosemicomputable ET data type is
computable.

This theorem also has a very simple direct proof. If the set of ground equations
that hold in an ET data type A is r.e., so is the set of ground equations that fail
to hold since A t r if and only if A ear(t, r) O. Similarly, if the ground
equations that fail to hold are r.e., then so are the ones that hold since A t r if
and only if A = e%(t, r) , O.

4. Conditional specifications with hidden sorts and operations. We ex-
tend the results of the last section to arbitrary data types that are not assumed to
be equality-test algebras. Every data type A of an arbitrary signature can be en-
riched to an ET algebra A+ with enriched equality-test signature +. This is done
in the obvious way by adding the two-element Boolean algebra B 2 as a new, hidden
sort domain, and then adjoining all the equality tests as hidden operations. Given
a universal initial specification F of A in the signature , we can form the set bt+F
of Boolean transforms of F in the enriched signature +. In general, bt+F, together
with the conditional axioms AXGET+ for the GET +-algebras, will be an initial
specification of A+ only when F is a complete specification of A to start with; see
Theorem 4.7. But A will always be isomorphic to the 2-reduct of the initial al-
gebra of Mod(bt+F AXGET+) (Theorem 4.6). This gives us a general method for
converting a finite universal initial specification of an arbitrary data type into a finite-
conditional initial specification with one hidden sort and one hidden operation for each
visible sort.

The key to obtaining specifications with hidden sort and operations is the follow-
ing simple lemma relating the reduct of the initial and final algebras of an arbitrary
class K of algebras to the initial and final algebras of the class of visible reducts of
members of K.

LEMMA 4.1. Let be any signature and Z an arbitrary enrichment of . Let
K be any class of -algebras.

(i) /f InK exists and (In K)l is minimal, then In(Kl exists and In(Kl
(In K)I.

(ii) If Fn(Mi K) exists, then so does Fn(Min(Kl)) and

:Fn(Min(KIr,)) = Min(Fn(Min K)lr, ).



EQUALITY-TEST AND IF-THEN-ELSE ALGEBRAS 793

Proof. (i) Let A (In K)]m. For each B e KIr choose B’ e K such that B’lm B
(in general, B is not unique). Let h be the unique homomorphism h" In K
Then hlA" A - B, and hlA is unique since A is minimal by hypothesis.

(ii) Let A (Fn(Min K))I. For each B e Min(Kl choose B’ e K such that
Min(Bll) B; we may assume B is minimal. Let h" B Fn(Min K). Then
hlB" B A, and since B is minimal, so is its image h(B). Thus biB" B --, Min A;
hlB is unique since B is minimal.

DEFINITION 4.2. Let E be an arbitrary signature with sort set S. We de-
fine an enrichment E+ of E as follows. The enriched sort set is S U {uewbool}.
E+ +
ss,newbool { eqs} for each s E S, {+ .}, +Enewbool2 newbool oo,oo (-}

+ {0, 1}; E+,s Ev,s in all other cases. E+ is called the equality-and E),newbool
test enrichment of E. newbool is called the hidden sort and the eqs the hidden
operations of E+. The sorts and operations of E are called the visible sorts and
visible operations of E+. Let A be an arbitrary E-algebra. The ET enrichment

+A+ of A is the E+-algebra defined as follows" A+I A, Anewboo B2, and eq+

is the equality test operation on the domain A8 for each s E S.
The notion of ET enrichment is closely related to that of equality enrichment

considered in Goguen [13] (see also Meseguer and Goguen [34, 6.7]). However, the
latter notion is proof-theoretic in character rather than model-theoretic.

If E already has Boolean sort bool we allow for the possibility that newbool and
bool are the same; this was the case in Example 3.10. A+ is always nontrivial since its
Boolean part contains two distinct elements. Throughout this section we distinguish
those notions that are defined relative to the enriched type E+ by using the super-
script +. For example, AXGET+ and GET+ are denoted, respectively, by AXGET+
and GET+. Also, for any set F of E-sentences, the set of Boolean transforms of F in
the language of E+ is written bt+F.

The following result, which is the main lemma of the section, connects the models
of a set F of universal 2-sentences with the members of the relative subvariety of GET+
defined by the equations bt+F.

THEOREM 4.3. For any signature E and any set F of universal E-sentences,

Mod(bt+FUAXGET+)NET+ {A+’AModF}.

Proof. If A F, then A+ F since F does not involve any of the hidden
operations. Hence A+ bt+F by Lemma 3.11, and so A+ Mod(bt+Ft2AXGET+)N
:T+. For the inclusion in the reverse direction, consider B Mod(bt+FUAXGET+)
:T+. B bt+F, and hence B F by Lemma 3.11. So BI ModF, and B
(BI)+.

Note that the mapping A A+ is actually a bijection between ModF and
Mod(bt+F U AXGET+) N ET+. A+ is an ET algebra and hence nontrivial even if A
is trivial. But in the latter case Anewbool is the only nontrivial domain and 0 is not in
the range of any equality-test operation (other than eqnboo ). So A+ is nontrivial
only in a technical sense. This causes some problems, such as in Theorem 4.5 below.

One consequence of Theorem 4.3 is a simple characterization of the initial and
final algebras of Mod(bt+F AXGET+) in terms of the models of F.

THEOREM 4.4. Let E be any signature and F any set of universal E-sentences;
let K Mod(bt+F [J AXGET+).

(i) InK Min(YIiA/+), where {A I} is any subset of Mi,(ModF)
that includes every member of Min(Mod F) up to isomorphism.
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(ii) The following are equivalent:
(ii’) Fn (Min K)0 exists;
(ii") In K e FT+;
(ii"’) In K is isoinitial;
(ii’"’) there is only one algebra in Min(Mod F) up to isomorphism.

If these conditions hold, then Fn(MinK)0 InK - A+ where A is the unique
member of Min(Mod F).

Proof. Take, respectively, 2+ and Mod(bt+F U AXGET+) for and K in The-
orem 3.9, and use the fact that (Mod(bt+F U AXGET+)) ET+
Mod F }. El

Another consequence of Theorem 4.3 is a characterization of the quasi variety
generated by Mod F. Part (ii) of the following result is an analogue of Theorem 3.13.

THEOREM 4.5. Let be any signature, and F an arbitrary set of universal
sentences.

(i) ModF (Mod(bt+F U AXGET+)
(ii) Qv(Mod F) Mod(bt+F U AXGET+
Proof. Part (i) is a trivial corollary of Theorem 4.3.
(ii) Let K Mod(bt+F AXGET+). From part (i) we get SP(Modr)

SP(KI $((P K)I); the last equality holds because for any enrichment
any system (Ai I) of 2-algebras, and any filter F on I, it is easy to check that

((n (n
I

In general the formation of subalgebras does not commute with the formation of
reducts, but it does in the present situation since none of the hidden operations of
+ has a visible sort, i.e., a sort of , as target. Thus

SPp(Mod F) C: (SP K)I, K

This gives one of the two inclusions of (ii).
For the reverse inclusion, consider any B K. We can use Theorem 3.7(i) with

+ in place of . B is subdirectly representable in K ET+. So B C_SD HiI Ci,
with Ci K ET+. Thus

iI iI

But Cil Modr by part (i). Hence B I S(Modr)

_
Qv(Modr).

The next two theorems are the main results of the section.
THEOREM 4.6. Let be any signature, F any set of universal -sentences, and A

a Z-data type. If F is an initial specification of A, or, more generally, a weak initial
specification of A, then bt+FUAXGET+ is a conditional initial specification ofA with
hidden sort and operations, i.e., A (In K)I, where K Mod(bt+F AXGET+).

Proof. This is an immediate consequence of the second part of Theorem 4.5,
together with Lemma 4.1. (In K)l is a minimal -algebra since In K is a minimal
+-algebra, and none of the hidden operations have a visible sort as target. Thus
(In K)I is initial in Qv(Mod F) by Lemma 4.1(i) and Theorem 4.5(ii).

Every data type with a finite universal initial specification has a finite-conditional
initial specification with hidden sort and operations. ET enrichments are always
su]ficiently complete in the sense of auttag and Horning [19], [20].
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It is interesting to compare this result with Theorem 3.14. When an initial speci-
fication of an ET data type is relativized to the class of GET algebras by adjoining the
GET axioms, we always obtain a complete specification by Theorem 3.14. However,
when an initial specification of an arbitrary data type is relativized to GET+ algebras
in the same way, one does not ordinarily obtain a complete specification with hidden
sort and operations. Indeed, by the next theorem, this occurs just in case the original
specification is itself complete, provided it has no trivial models.

THEOREM 4.7. Let E be any signature. Let A be a E-data type and let F be a
universal initial specification of A such that F has no trivial models. The following
are equivalent:

(i) bt+FUAXGET+ is a conditional complete specification ofA with hidden sort
and operations;

(ii) bt+F U AXGET+ is a conditional initial specification of A+;
(iii) F is a complete specification of A.
Proof. The equivalence of (i) and (ii) follows easily from Theorem 3.14. We prove

that (ii)and (iii)are equivalent.
Let K Mod(bt+F U AXGET+). (ii) is equivalent to the condition In K - A+,

which in turn is equivalent to (In K)I, ---- A and In K E lET+. Under the assumption
that F has no trivial models, (Min(Mod F))0 Min(Mod F). Thus, by Theorem 4.4(ii),
In K E ET+ if and only if (Min(Mod F))0 contains only one algebra up to isomorphism.
But this is exactly the condition for F to be a complete specification of (In K)l,
(Theorem 2.6).

Any data type A to which Theorem 4.7 applies is necessarily computable, pro-
vided only that F is r.e. A result closely related to Theorem 4.7 but formulated
exclusively in terms of computable data types can be found in Meseguer and Goguen
[34, Tam. 71].

Example 2.13 (continued). Let A be the universal complete specification of the
data type NATSTK of stacks of natural numbers that was given in 2. The set
bt+ A of Boolean transforms is equivalent to the following equations (relative to the
axioms of Boolean algebras):

eqna(Zero naterr) 0,
eqnat (SUCC(X), zero) ,, O,
eqnat (8UCC(X), 8UCC(y))

_
eqnat(X y),

succ(naterr .. naterr
eqstk(empty, stkerr) .. O,

+ 1,
x) +

eqstk(s stkerr) + eqnat(X naterr) <_ eqstk (push(s,x), stkerr),
eqstk(8, e_.mpty) -Jr- qstk(8, 8tke.rr)

_
qstk (pop(8), 8tkrr) e.qnat (top(8), Ttaterr).

For example, the Boolean transform of the third formula of A, the conditional
equation succ(x) succ(y) x ,, y, is equivalent to the Boolean inclusion

eqnat (SUCC(X), SUCC(y)) < eqnat(X, y),

because

= v x =
-eq, at(succ(x),succ(y)) + eqnat(x,y).
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By Theorem 4.7, these equations, together with AXGET+, form an initial speci-
fication of the ET enrichment of NATSTK, and hence a conditional complete spec-
ification of NATSTK with hidden sort and operations.

Example 3.10 (continued). A is an initial specification of NATBAG+ but it is
not complete. Thus by Theorem 4.7 bt+AUAXGET+ cannot be an initial specification
of NATBAG. In Example 3.10 this is shown directly. (Note that AXGET+

AXGET+ and bt+A t2 AXGET+ is logically equivalent to A tJ AXGET+.)
Thatcher, Wagner, and Wright [44] show that conditional specification is more

powerful than equational specification by giving a simple example of a computable
data type with a finite-conditional initial specification but no finite-equational one.
As an application of Theorem 4.6 we construct an example of a GET algebra with
this property. The construction depends on the existence of a finite (homogeneous)
algebra whose identities are not finitely based (i.e., not finitely axiomatizable). Many
algebras with this property are known; see, for instance, Tarski [42].

Example 4.8. Let A {A, ,} be a finite groupoid, i.e., a homogeneous algebra
with a single, binary operation ,. The class I$A of all isomorphic images of sub-
algebras of A is a universal class by Theorem 1.2, and hence can be defined by a
finite set A of universal sentences. We want to enrich the signature of groupoids
to one that includes an infinite set of constants of the underlying groupoid sort. In
order to do this and still keep the enriched signature finite we first adjoin the nat-
ural numbers as a new sort, and then a function that maps the natural numbers
into the groupoid domain. Let S { grp, nat } and E { ,, zero, succ, gen }, where

grpgrp - grp, zero" ; nat, succ nat nat, and gen nat grp.
Let g, gen(succ) for each natural number n. Observe that every ground E-
equation of sort grp is obtained from a pure groupoid equation t(xo,xl,..., x,_l)
r(xo,x,..., x,_) by replacing the variable symbols by constant terms go,’",gn-.

Finally, let K Mod(bt+A U AXGET+). The initial algebra In K of K has a finite-
conditional specification bt+A AXGET+. (In K)I is initial in K[ by Lemma 4.1,
and KIz Qv(Mod A) Qv(,$A) QvA by Theorem 4.5(ii). Hence a ground E+-
equation t(go, g,". ,g-) . r(go, gl,"’, g,-l) is an identity of InK if and only if
the corresponding pure groupoid equation t(xo, x,...,x,_l) .. r(xo,x,...,x,_)
is an identity of A. Thus if we take A to be a finite groupoid whose identities are
not finitely axiomatizable, we get a data type In K with a finite-conditional initial
specification but no finite-equational one.

We do not know of any example of an ET algebra with this property. It is also
open if there exists a data type with a finite universal initial specification, but no
finite-conditional one; the problem is also open for weak initial specifications. If A
is a finite groupoid whose identities are not consequences of a finite subset of the
quasi identities of the infinitely generated free algebra of QvA, then the same data
type In K constructed above would provide a counterexample in the weak initial case.
But it is open if such a groupoid exists. In a personal communication, Wrofiski has
informed me that he has been able to verify the failure of this property for many of
the familiar examples of finite groupoids whose identities are known not to be finitely
axiomatizable (see [38]).

The following companion of Theorem 3.18 is a consequence of Theorem 4.7.
THEOREM 4.9. Let A be a E-data type for an arbitrary signature. A+ is com-

putable (or semicomputable or cosemicomputable) if and only if A is computable.

Proof. Clearly, if A+ is computable, so is A. Assume conversely that A is
computable. Then A has a recursive universal complete specification F. (We can
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take F to be the union of the set of all ground equations that hold in A and the
set of all logical negations of ground equations that fail to hold.) By Theorem 4.7
bt+F U AXGET+ is a recursive conditional complete specification of A+. So A is
computable by Corollary 2.12.

Like Theorem 3.18, this theorem also has a simple direct proof.

4.1. Encoding the universal theory of a data type. For any set F of uni-
versal E-sentences, the Boolean part of the initial algebra of Mod(bt+F [3 AXGET+)
encodes the entire universal theory of Min(Mod F) within its equational theory. As a
consequence the complexity of the structure of the Boolean part of this initial algebra
is in a sense a measure of the degree of completeness of the specification. Under the
condition that it has no trivial models, F is complete if and only if the Boolean part
of the initial algebra is the two-element Boolean algebra.

Recall that for a E-sentence we write F Min to mean that A for every
A E Min(Mod F). Also recall that the Boolean transform bt+ of is a E+-equation
of sort newbool of the form * ,,m 1.

THEOREM 4.10. Assume that E is an arbitrary signature and F is any set of
universal E-sentences. Then, for any universal E-sentence ,

F Min i]) In K bt+,
where K Mod(bt+F U AXGET+).

Proof. By Theorem 4.4(i), InK Min(rliex A+), where { Ai" e I } is any
subset of Min(Mod F) that includes every member of Min(Mod F) up to isomorphism.
Suppose F Min . Then A+ , and hence, by Lemma 3.11, A+ bt+, for all

I. So In K bt+. Conversely, if F ::Min , then A+ bt+ for some i, and
hence In K : bt+. ]

As a special case of this result, we take to be either a ground equation t r,
or the logical negation --(t r) of a ground equation. Then bt+ eqs(t r) , 1
or bt+ -eqs(t,r ,, 1 for some sort s different from newbool. Thus, if K
Mod(bt+F U AXGET+), we have

refer iff InKeqs(t,r),l, and r--(tr) iff InKeq(t,r)O.

(For ground identities, F Min t , r if and only if F t , r.) This gives a way
of characterizing, in terms of the structure of the Boolean part of the initial algebra
of Mod(bt+F U AXGET+), when F is an initial, final, or complete specification of a
particular data type.

Recall the definitions of t and w given just after Lemma 2.3. w is a finite
conjunction of ground E-equations that is satisfied by a E-algebra A if and only if
MinA if trivial. Hence F has no trivial model if and only if F Min -0)E.

By a co-atom of a Boolean algebra B we mean an element b such that b < 1 and
there exists no a such that b < a < 1. b is a co-atom if and only if, for every a B,
either a < b or a + b 1.

COROLLARY 4.11. Let F be any set of universal E-sentences, and let A be a
E-data type. Let K Mod(bt+F AXGET+).

(i) F is a weak initial specification ofA if and only if, for every ground E-equation
tr,

A t r iff InK eqs(t,r) ,, l.
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(ii) F is an initial specification of A if and only if A F and, for every ground
E-equation t , r,

A t r implies InK eqs(t,r) , l.

(iii) F is a final specification of A if and only if A F and, for every ground
E-equation t ,, r,

A t , r implies InK eqs(t r) <_ w.
(iv) F is a complete specification of A if and only if A is nontrivial, A F, and

(w)In( is a co-atom in (In K)newbool.
Proof. Parts (i) and (ii) are immediate consequences of Theorem 2.11(i), (ii).
(iii) By Theorem 2.11(iii), we have that F is a final specification of A if and

only if A is a model of F and, for each ground E-equation, A t r implies
F t2 {t r} w, which is equivalent to F t- t r --, w. But F - t r --, w if and
only if In K (t r w)* 1 if and only if In K eq8 (t, r) <_ w.

(iv) Let B In K, and let b (w). Assume that F is a complete specification
of A. Then A is a nontrivial model of F. To show that b is a co-atom of Bwool it
suffices to prove that, for every a Bnwboot \ {0, 1}, either a _< b or a + b 1. By
Lemma 3.4 we have

a eo...e_ + fo"’f,- + + go"’gp-,

where each of the primitive factors ei, fj, , gk is of the form eqs(t r)B or -eqs(t r).
Let h be any one of these primitive factors. By (ii) and (iii) we have that either
h E {0,1}, or h_ b, or-h

_
b, i.e., h/b- 1. Without loss of generality we can

assume that none of the primitive factors is 0 or 1. If each of the summands of a
contains a primitive factor h such that h <_ b, then a _< b. Otherwise, for all the
primitive factors h of at least one of the summands, we have h / b 1; thus a / b 1,
and so, b must be a co-atom.

Assume now, conversely, that A is a nontrivial model of F and b is a co-atom
of Snewbool. Let t ,, r be any ground s-equation. Since t ,, r holds in every trivial
algebra, b <_ ca(t, r). So either eqs(t r) b or eqs(t r) 1. Suppose A t r.

Then eqs(t r)’+ 1. Since A is nontrivial, (w)’+ 0. Hence eqs(t s) b, and
so eqs(t, r)B 1. This shows that F is an initial specification of A. Now suppose
A t -, r, i.e., eqs(t r)A+ 0. Then eqs(t r) 1; hence eqs(t r) b, and so, a
priori, eqs(t r)B

_
b. Thus F is a final specification of A.

COROLLARY 4.12. Let F and K be as in Corollary 4.11 and assume that A is a
model of F. If F has no trivial models, then F is a universal complete specification of
A with hidden sort and operations if and only if (In K)newboot B2.

Proof. If F has no trivial models, then F -w, and hence B bt+w , O.
From Corollary 4.11(iv) we get that F is a complete specification of A if and only if
A F and zero is a co-atom of (In K)newbool, i.e., (In K)newbool B 2.

Example 3.10 (continued). The fact that A is not a complete specification of
NATBAG is reflected in the fact that NATBAG+, the initial algebra of Mod(bt+ A
AXGET+), has more than two elements in its Boolean part. In particular, the value
of eqset(soo so) in NATBAG+ differs from both zero and one.

5. If-then-else algebras. We now augment the operations of equality-test alge-
bras by adjoining the if-then-else operation [_, _,-]8 corresponding to each non-Boolean
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sort s. [_, _,-Is is an operation of arity bool s s and target sort s. [b, a, c]s equals a if
b--- 1, and c if b--0.

The simplest notion of an if-then-else algebra is a homogeneous algebra with a
4-ary operation [_, _, _, _] where [a, b, c, d]A equals c if a b, and d otherwise. These
algebras (or, more precisely, the algebras polynomially equivalent to them) have been
extensively studied in the literature of universal algebra. The varieties generated
by classes of if-then-else algebras in this sense are called discriminator varieties (see
Werner [46] and Burris and Werner [9]). Various other notions of an if-then-else
algebra, both homogeneous and heterogeneous, have been considered in the literature
of data types (see Bloom and Windell [7], Guessarian and Meseguer [18], and Mekler
and Nelson [33]). The particular notion of if-then-else (or ITE) algebra we consider
here is a natural enrichment of an equality-test algebra.

With a few exceptions the theory of ITE algebras closely parallels that of equality-
test algebras, the main difference being that the quasi variety and the variety gen-
erated by the class of ITE algebras coincide. The members of this variety are called
generalized if-then-else (GITE) algebras. Applying the corresponding results of 3
we easily obtain a simple, finite, equational axiomatization of the variety of GITE
algebras, and prove another analogue of the Stone representation theorem. Axiomati-
zations of the varieties generated by the various other versions of if-then-else algebras
can be found in [7], [18], [33], [32], and [40].

All the results of 3 on the specification of ET algebras also have their analogues
for ITE algebras, but with a significant improvement owing to the fact that the GITE
algebras form a variety rather than just a quasi variety. For example, one of our main
results is a simple algorithm for converting any finite universal initial specification of
an ITE data structure into a finite-equational initial specification. We also discuss
the equational specification of arbitrary data types using hidden sorts and operations.
However, here the results are not so satisfactory. Given any finite universal initial
specification of an arbitrary data structure A, we can always transform it into a
finite-equational initial specification of a GITE data structure B with the property
that A is a subreduct of B. But A is not, in general, the entire reduct of B, so we do
not normally get an equational specification of A with hidden sort and operations in
the usual sense.

DEFINITION 5.1. (i) A signature E is called an if-then-else signature if it is
an equality-test signature and, in addition, there exists an operation symbol [_, _,-Is
bool s s s for each sort s bool.

(ii) A E-algebra A is an if-then-else (ITE) algebra if E is an if-then-else sig-
nature, A is an equality-test algebra, and, for each s E S \ {bool} and all
b AbooZ and a0,al As,

{ if b 1A;
otherwise (i.e., b 0).

The class of all ITE algebras is denoted by IT=, or simply [T:.

Every if-then-else signature is a priori an equality-test signature, and every ITE
algebra is a priori an equality-test algebra. ITE algebras are called consistent equality-
compatible algebras in Padawitz [40].

[-,-,-Is is called the s-if-then-else operation. As in the case of equality-tests, no
fundamental if-then-else operation for the Boolean sort is postulated since it can be
defined in terms of the Boolean operations by

Ix, y, Z]bool x y + -x z.



800 DON PIGOZZI

A simple modification of the GET axioms gives a finite set of equational axioms for
the variety generated by the ITE algebras.

DEFINITION 5.2. Let E be an if-then-else signature, and let AXGITE be the
set of equations obtained from the axioms AXGET for GET E-algebras by replacing
the one conditional axiom,

(Axget6) eq(x, y) ,. 1 x .. y,
by the following two equational axioms for each s S \ { bool}:

(Axgite6a) [1, x, Y]s . x;
(Axgite6b) [eqs(x,y),x,y]s . Y.

Any E-algebra satisfying AXGITE is called a generalized if-then-else (GITE)
algebra. The variety of GITE E-algebras is denoted by GI’I’E.

Let A be an ITE algebra, s any sort (possibly Boolean), and a, b E As. If a b,
then eq(a, b) 1A, and hence [eq(a, b), a, b] a b; otherwise eq(a, b) 0"
and [eqo(a,b),a,b] again equals b. So (Axgite6b) is valid in A, and, clearly, so is
(Axgite6a). Thus every ITE algebra is also a GITE algebra. Conversely, let A be any
GITE algebra such that A bool B2. Then (Axgite6a) and (Axgite6b) together imply
[_, _] is the if-then-else operation. Hence A is an ITE algebra.

THEOREM 5.3. Let E be any if-then-else signature.
(i) 1 c_.
(ii) GITE [q ET ITEm.
Proof. (i) We must verify that the conditional equation eqs(x y) .. 1 --, x .. y

holds in every GITE algebra. Let A E GITF, and consider any a, b As such that
eq(a,b) 1". Then using (Axgite6a) and (Axgite6b) we get a [l’,a,b]
[eq(a, b), a, b]sn b.

(ii) Obviously, ITE C_ GITE t.J ET. Conversely, if A ET, then A ool has exactly
two elements. So, if A is a GITE algebra, it must be an ITE algebra.

Thus ITI= can be axiomatized by adjoining the universal sentence (Axet) to
AXGITE.

Since GITI= is a variety, every homomorphic image of a GITE algebra is again
a GITE and hence a GET algebra. Thus every congruence on a GITE algebra is a
GET congruence. Consequently, we immediately get from Theorems 3.6 and 5.3(ii)
the following theorem.

THEOREM 5.4. A GITE algebra is simple (in the absolute sense) if and only if it
is an ITE algebra.

This gives the following result, which is in striking contrast to the situation for
ET data types; see the remarks following Theorem 3.14, in particular Example 3.15.

COROLLARY 5.5. Let A be an ITE data type. Every initial specification, or more
generally every weak initial specification, of A is complete.

Proof. For the proof, apply Corollary 2.7.
Since GTF is a variety and is included in GFT, every subvariety of G]TF is a

relative subvariety of GFT, and hence all the results of 3 pertaining to relative sub-
varieties of GFT can be automatically applied to these varieties. In particular, we get
the following analogue of the Stone representation theorem.

THEOREM 5.6. (i) K IPsD(K 1 IT’=) for any subvariety K of GITE.
(ii) GITE IPsD(ITE).
Proof. Since K is a subvariety of GITE, it is a priori a relative subvariety of

GFT. Thus, by Theorem 3.7(i), each A K is subdirectly representable in K 1 FT,
which coincides with K 1 ITF by Theorem 5.3(ii). This gives (i), and (ii) is a special
case of (i). E]
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COROLLARY 5.7. Qv(ITE) Va(ITE) GITE Mod(AXGITE).
Theorem 3.9 continues to hold when K is taken to be any subvariety of GITE and

the class ET is replaced everywhere in the statement of the theorem by ITE.
A result very close to Corollary 5.7 can be found in Padawitz [40, Thin. 2.4].
5.1. Transforming the universal specifications into equational complete

specifications. The notion of the Boolean transform of a universal sentence is well
defined for any if-then-else signature since it is a priori an equality-test signature. And
since every ITE algebra A is a priori an ET algebra, it follows trivially from Lemma
3.11 that, for any universal sentence , A if and only if A bt . Combining
this result with 5.6, we get the following analogues of Theorems 3.13 and 3.14 by
essentially the same arguments.

THEOREM 5.8. Let F be an arbitrary set of universal sentences.

V(Mod(F U AXGITE U {(Axet)})) Mod(bt F U AXGITE).

THEOREM 5.9. Let F be any set of universal sentences, and let A be an ITE
data type. If F is either an initial, weak initial, or a final specification of A, then
bt F U AXGITE is an equational complete specification of A. r3

5.2. Equational specifications with hidden sorts and operations. The
enrichments of an arbitrary signature E and E-algebra A to an if-then-else signature
E+ and ITE algebra A+ are defined in the obvious way. In the sequel, the superscript
+ will always mean a notion defined relative to the if-then-else enrichment. Although
the results of 4 can be only partially extended in this context, we do get the following
complete analogue of Theorem 4.3, and by essentially the same proof.

THEOREM 5.10. For any signature E and any set F of universal sentences,

Mod(bt+F U AXGITE+) n ITE+ {A+ A E ModF}. D

Similarly, we get complete analogues of Theorems 4.4 and 4.5(i). In fact, both
results continue to hold as stated when AXGET+ and ET+ are replaced, respectively,
by AXGITE+ and TE+.

On the other hand, the second part of Theorem 4.5, together with Theorem 4.6,
does not carry over completely. The proofs of these results depend on the fact that
none of the hidden operations of the equality-test enrichment of E has a visible sort
as target. This is obviously not a property of the if-then-else enrichment of E, and
consequently if-then-else enrichments are not always sufficiently complete in the sense
of [19] and [20]. The best we can do, in general, is the following.

THEOREM 5.11. Let E be any signature, and let F be an arbitrary set of universal
E-sentences:

Qv(Mod F) $(Mod(bt+F U AXGITE+)Ir.).

THEOREM 5.12. Let F be any set of universal E-sentences, and A a E-data type.
If F is an initial specification, or more generally a weak initial specification, of A,
then A i.((In )1), where K od(bt+r AXGITE+).

Example 3.10 (continued). Let K Mod(bt+ A U AXGITE+). NATBAG
In KI: because

InK[eqset(soo, so), so, lset
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is an element of NATBAG-oo that is not contained in NATBAGbooZ.
Suppose in Theorem 5.12 that In K E ITi:+, i.e, (In K)newboot B 2. Then we will

always get [b, a, c]Isn K E {a, c} since b can only be zero or one. Thus Min((In K)I:
(In K)I2 and so A (In K)I. Hence we do have that bt+F U AXGITE+ is an initial
specification of A with hidden sort and operations in this special case. This allows us
to obtain the following complete analogue of Theorem 4.7.

THEOREM 5.13. Let A be a E-data type, and let F be a universal initial specifi-
cation of A such that F has no trivial models. Let K Mod(bt+FU AXGITE+). The
following are equivalent.

(i) bt+F U AXGITE+ is an equational complete specification of A with hidden
sort and operations;

(ii) bt+F AXGITE+ is an equational initial specification of A+;
(iii) F is a complete specification of A.
Example 2.13 (continued). The equations of bt+ A given in 4, together with

AXGITE+, give an equational complete specification of NATSTK with B2 as a
hidden sort and the equality-test and if-then-else operations as hidden operations.

Finally, we mention that all the results on the encoding of the universal theories in
equational theories obtained at the end of 4 automatically apply to GITE algebras.
In particular, Theorem 4.10 and Corollary 4.11 continue to hold with AXGET+ re-
placed everywhere by AXGITE+. This encoding, together with some of its important
consequences, was first discovered by McKenzie [32] in the context of discriminator
varieties.

6. Conclusions. We have seen that, with regard to equality-test algebras, the
method of initial specification is no more powerful than complete (i.e., simultaneous
initial and final) specification. This can be viewed as evidence of the inherent limita-
tions of initial semantics, or that only the computable data domains of a data type
can be expected to have an equality test. (A particular data domain, of sort s, say,
is computable if the ground s-identities are recursive.) The results of 4 suggest that
one way around this problem may be to consider generalized equality-test algebras

/
with complex Boolean data domains, but with the property that eq is an equality
test, i.e., it takes only the value zero or one, for every computable domain of sort s.
Theorem 4.6 can be easily extended to show that any universal initial specification
of A that is complete (in the obvious sense) on computable data domains can be
converted into a conditional initial specification of a GET enrichment of A with this
property. This leads to an interesting question concerning the results of Bergstra and
Tucker [3] mentioned in 2 (in the remarks following Corollary 2.12). Recall that they
have have shown that every semicomputable data type has a finite-equational initial
specification with a hidden sort and operations, and every computable data type has
a finite-equational complete specification with hidden operations. Can these two re-
sults be combined to show that every semicomputable data type has a finite initial
specification (with hidden sort and operations) that is complete on data domains that
are computable?

In [39] we extend the investigations of this paper to equality-test algebras in which
the equality-tests may take values in a multiple-valued logic different from classical
two-valued logic.

Acknowledgments. The author thanks the members of the Department of
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Abstract. This paper develops two probabilistic methods that allow the analysis of the maximum data
structure size encountered during a sequence of insertions and deletions in data structures such as priority
queues, dictionaries, linear lists, and symbol tables, and in sweepline structures for geometry and Very-Large-
Scale-Integration (VLSI) applications. The notion of the "maximum" is basic to issues of resource prealloca-
tion. The methods here are applied to combinatorial models of file histories and probabilistic models, as

well as to a non-Markovian process (algorithm) for processing sweepline information in an efficient way,
called "hashing with lazy deletion" (HwLD). Expressions are derived for the expected maximum data
structure size that are asymptotically exact, that is, correct up to lower-order terms; in several cases of
interest the expected value of the maximum size is asymptotically equal to the maximum expected size. This
solves several open problems, including longstanding questions in queueing theory. Both of these approaches
are robust and rely upon novel applications of techniques from the analysis of algorithms. At a high level,
the first method isolates the primary contribution to the maximum and bounds the lesser effects. In the
second technique the continuous-time probabilistic model is related to its discrete analog--the maximum

slot occupancy in hashing.

Key words, analysis of algorithms, hashing, lazy deletion, maximum, queueing theory, Markov process,
occupancy distribution, data structures, file histories, priority queues, dictionaries, lists, symbol tables,
sweepline, computational geometry, VLSI

1. Introduction. The size attained by data structures is fundamental to issues of
resource allocation, yet, until recently little was known about analyzing the maximum
size attained over a period of time, which is important for preallocating resources. A
possible explanation of this deficiency is that classical methods of analysis with
generating functions and recurrences cannot be applied readily for the maximum
function. In this paper we develop two asymptotic methods to study the distribution
of the maximum size of data structures. The methods are robust in that they apply to
several different combinatorial and probabilistic models. We also study a non-
Markovian process called hashing with lazy deletion (HwLD), which corresponds to
an efficient way of processing sweepline information in computational geometry and
Very-Large-Scale-Integration (VLSI) layout applications [14].

One of the motivations for our study is the need to develop and analyze practical
space-efficient plane-sweep algorithms. Some work in this area has been done by Van
Wyk and Vitter [14]; Morrison, Shepp, and Van Wyk [11]; Mathieu and Vitter [9];
and Ottmann and Wood [12], but as the latter point out: "Surprisingly there has been
little theoretical investigation of space-economical plane-sweep algorithms even though
such algorithms have significant practical applications." Ottmann and Wood [12] do
not investigate the maximum data structure size (that is, the maximum number of items
cut by the sweepline); they express the running times of their algorithms in terms of
the maximum size. Our approach in this paper is to examine the distribution of the
maximum data structure size, based upon several popular input models, and in addition
to show that the HwLD algorithm introduced is optimum simultaneously for both
average running time and preallocated space.
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abstract of this work appears in [10].
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Data structures process a sequence of items over time; at time the data structure
stores the items that are "living" at time t. Let us think of the ith item as being an
interval [si, ti] in the unit interval, containing a unique key k of supplementary
information. The ith item is "born" at time si, "dies" at time t, and is "living" when

[si, ti]. The data structure also handles dynamic queries over time. Let us denote
the data structure size at time by Size(t). If we think of the items as horizontal
intervals, then Size(t) is just the number of intervals "cut" by the vertical line at
position t. In a typical planesweep application, having to do with VLSI artwork analysis,
we might have 106 intervals in the time range [0, 1], with E(Size)= 103; that is, only
square roots of the total number of items tend to be present at any given time [13].
Thus, for space efficiency, it is important to use a dynamic data structure whose size
follows the growth rate of Size(t).

In HwLD, items are stored in a hash table of H buckets, based upon the hash
value of the key. The distinguishing feature of HwLD is that an item is not deleted as
soon as it dies; the "lazy deletion" strategy deletes a dead item only when a later
insertion accesses the same bucket. The number H of buckets is chosen so that the
expected number of items per bucket is small. HwLD is thus more time-efficient than
dOing "vigilant-deletion," at a cost of storing some dead items.

To model insertions, deletions, and queries, we consider two classes of models:
combinatorial models and probabilistic models. The combinatorial models are the
discrete-time models of file histories introduced in [4], [5] to model the evolution of
several classical types of dynamic data structures, such as priority queues, dictionaries,
stacks, and linear lists. The second class of models consists of probabilisitic continuous-
time models in equilibrium, in which the birthtimes of items are independent and form
a Poisson process with birth rate A. Various models of lifetime are considered. Not
only does our approach work for these models, but it can also be adapted to handle
models in which lifetimes are not independent, such as the M/M/1 probabilistic
model and the non-Markovian models corresponding to HwLD.

We denote by Use(t) the number of items stored at time in the HwLD data
structure. The lazy deletion strategy means that Use(t)>-Size(t). Let t* be any time
that maximizes E(Size(t)). (For the probabilistic models, E(Size(t)) is the same for
all t.) Van Wyk and Vitter [14] compute E(Size(t*)) and show, via generating function
and approximation techniques, that E(Use(t*))---E(Size(t*))+H for the com-
binatorial model of priority queues and for the M/M/ probabilistic model. Big-oh
bounds on E(maxtO.l{Size(t)}) and E(maxtO.ll{Use(t)}) were only recently
obtained by Mathieu and Vitter [9] under certain assumptions for the M/G/o
probabilistic model. Exact formulas were also developed for several combinatorial
and probabilistic models that could be used to compute the distribution of
max,O.l {Size(t)} numerically, but they do not seem to give any asymptotic informa-
tion. However, the fact that the relevant transform in each case was expressed simply
as the ratio of consecutive classical orthogonal polynomials gave informal evidence
that some common asymptotic method(s) might exist to analyze the different models.

In this paper we develop general asymptotic methods using techniques from
analysis of algorithms to settle the open problems posed in [14], [11], and [9].
We derive asymptotically exact expressions for E(maxt[o,1] {Size(t)}) and
E (maxt[o,1] { Use(t)}) for several combinatorial and probabilistic models. In particular
we show that HwLD is asymptotically optimal in terms ofpreallocated storage. The gist
of our first method is to concentrate on the primary contribution to the maximum and
to show via probabilistic techniques that the rest of the contribution is negligible. The
hard part is coping with the inherent lack of independence of the size as a function



MAXIMUM SIZE OF DYNAMIC DATA STRUCTURES 809

of time. We show exactly when the expected maximum size is asymptotically more
than the maximum expected size and when they are equal. The second method we
use, for the continuous-time probabilistic models, is a discrete counterpart having to
do with the maximum slot occupancy in hashing. This approach offers another illustra-
tion of the strong connections between discrete and continuous models in the analysis
of algorithms.

2. Analysis of combinatorial models. File histories, as introduced in [4], [5] model
the evolution of several classical types of dynamic data structures, including priority
queues (PQ), dictionaries (D), symbol tables (ST), stacks (S), and linear lists (LL).
The data structures are treated as combinatorial objects; their performance character-
istics are determined by the relative order of the elements they contain, not by the
actual values of the elements. Thus, we say that there are k+ 1 ways of inserting a
new element into a dictionary of size k, since there are k+ 1 "gaps" where the new
element can fit in, relative to the k elements already present. The evolution of the data
structure is represented as a path in Z2, where the x-coordinate counts the number of
operations, whether they be insertions, deletions, or queries, and the y-coordinate
counts the size. Each step is of the type (a, b)- (a + 1, b + 1) (insertion or deletion)
or (a, b)- (a + 1, b) (positive or negative query). To each step we associate a certain
choice among the possibilities. For example, in priority queues, deletions can be
performed only for the minimum element, so the number of possibilities for a deletion
is one. The probability model is that all possibilities are equally likely, with the
constraint that the data structure is empty initially and at the end. The following table
summarizes the number of possibilities for each type of data structure and operation,
in terms of the current data structure size k:

PQ D LL ST S

Insertions k + k + k + k +
Deletions k k
Positive queries 0 k 0 k 0
Negative queries 0 k + 0 0 0

As an introduction to our first method, let us consider the combinatorial model
of file histories corresponding to the size of priority queues (PQ). An equivalent
formulation, as considered in [14], is to generate the 2n birthtimes and deathtimes of
the n items as independent uniform random variates in the unit interval [0, 1]. The
ith item is born at time min {si, ti} and dies at time max {si, t}. The average priority
queue size E(Size(t))= 2nt(1-t) varies parabolically in the unit interval and attains
its maximum n/2 when t- 1/2, as shown in Fig. 1.

This "peak" in the value of E(Size(t)) suggests that the value max,[o,1] {Size(t)}
should be achieved in a neighborhood of 1/2 and thus should be ---n/2. This was
conjectured in [14]. In this section we introduce our first method and use it to prove
the conjecture. The method will be developed further in the next section for the
probabilistic models, where the expected values in question are fiat and have no peaks
like the ones considered in this section.

THEOREM 2.1. For priority queue and dictionary file histories of length 2n, we have

E(max {Size(t)})--- max {E(Size(t))}
t[0,1] ""
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o,, t, +/-_,z 1/2+’

FIG. 1. Graph of E(Size(t)), as a function of t, for the combinatorial model ofpriority queues considered
in 2. The quantity Size(t) has a geometric interpretation as the number of items (horizontal intervals) "cut"
by the vertical line (sweepline) at position t. (The graph is bell-shaped, and this makes the analysis of
E(maxtEo,1] {Size(t)}) easier; however, this is not the case for the "fiat" distributions of the probabilistic
models in 3.)

THEOREM 2.2. For priority queue and dictionary file histories of length 2n, if
H o(n) we have

E(max {Use(t)}) n

t[0,1] ""Proof of Theorem 2.1. First we prove Theorem 2.1 for priority queues. Since we
have E(maxttO,ll {Size(t)}) >- E(Size(1/2)) n/2, our main problem is to show the other
direction, namely, that E(maxttO,ll {Size(t)}) < E(Size(1/2)).

We consider the neighborhood V= (1/2-e, 1/2+ e) of 1/2, where e n -1/6, as pic-
tured in Fig. 1. We shall prove that with high probability the maximum M of Size(t)
is reached for . Let v denote the number of births and deaths in interval . If the
maximum is reached inside , then its value is at most Size(1/2)+ v; thus we have

(2.1) E(M) <- E(Size(1/2))+ E(v)+ n. Pr {M reached outside 7/’}.

The first two terms are clearly equal to n/2 +4he---n/2. All that remains is to prove
that Pr {M reached outside } o(1). By symmetry, this probability can be bounded
by

(2.2) 2. Pr {:it [0, 1/2- e], Size(t) > Size(1/2)}.

The problem is that the values of Size(t) at two different are clearly not independent.
In order to get around this problem, we divide [0, 1/2-e] into n(1/2-e) equal-sized

1We adopt the notation f(n)< g(n) (as n-) if there is a function h(n) such that h(n)---g(n) (as
n-oo) andf(n)h(n) for all n_->l.
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intervals [ti, ti+l], with endpoints ti=i/n, for O<-i<-l. Let a=n/2-n26/5 and a’=
n/2-2n26/. We have

Pr ::It_-<-- e, Size(t) > Size
2

_-<Pr Size < a + Pr ::lt <__-- e, Size( t) > a
2

(2.3)
<=Pr {Size() <a} + 2o<=i<=l Pr {Size(ti)> a’}

+ Y Pr{xi>a-a’},
o<_i<=l

where X is the number ofbirths in interval ti, ti+]. Since Pr {Size(ti) > a’} is maximized
at ti -e, and since x, x2," are identically distributed, we get

Pr =i _-<-- e, Size(t) > Size
2

(2.4) -<_Pr Size <a +-.Pr Size -e >a’
2

n
+-. Pr {Xo> a a’}.
2

We analyze each term separately. For fixed t, the distribution of Size(t) is well
known. It is binomially distributed with parameter t(1- t)"

Pr {Size( t) k} ( nk) (2t(1-- t))k(1--2t(1-- t))n-k;

E(Size(t)) 2nt(1 t);

Var (Size(t))= 2nt(1 t)(1-2t(1 t)).

Thus Chebyshev’s inequality yields

{ (__) n } 1 --2/50Pr Size < 2n26/50 < n o (1).
2 4

As for the next term, we have

g
M 2,/26/50}

k

2)Pr {Size( ) -- ---]>rl/22g126/50 ()(- 2e2) (+2e "-.
The terms of the sum form a decreasing sequence, and the ratio between two successive
terms is at most

n/2+2n/s 1--2e +2n
-4/ --2n

] <.

The sum can thus be replaced by a geometric sum, and after computing its asymptotics
using Stirling’s formula, we find that

=o(.Pr Size e > a’ < n5/ e-anal3
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The third term is also computed easily, since

Pr {Xo k} (2kn) () " (1 )2n-’.
Using Chebyshev’s inequality, we find again that

_n Pr {Xo > n26/50} o 1 ).
2

Thus the theorem is proved for priority queues.
The proof for dictionaries goes along the same lines. Let Hk,l,n be the number of

histories going from level k to level in n steps. If we consider the size after m steps
of a dictionary history going from level 0 to 0 in n steps, its distribution is given by

Pr {Size(m)= i} H’i’mHi’’n-m
Ho,o,n

We know from [4] that

E Hk,’,, ukv’ Zn-
k,l,n n!

We deduce that

The expected value is

1-z(l+u)(l+v)-uv"

Pr {Size m i}
(7)(".m)

E(Size(m)) n-- 1-

Thus the graph of E(Size(m)), when m goes from 0 to n, describes a parabola, just
as for priority queues. Since we know the distribution of Size(m), we can from then
on work out a proof exactly similar to the priority queue case (further details are

omitted).
Proof of Theorem 2.2. For Theorem 2.2, as in Theorem 2.1, the lower bound n/2

applies. To get an upper bound, we use the bound

where Sizel(t) is the number of living items present in the first bucket of the HwLD
table at time t. The inequality in (2.5) follows from the uniformity of the hash function
in HwLD, and the subsequent equality follows from the fact that the priority queue
is initially empty and thus Use(t) and Size(t) attain the same maxima. Let nl be the
number of living items that hash to bucket 1 in HwLD. We have

(2.6) Pr {n k} ()(-)
k

(1 ----) n-k

We can now use the result of the previous theorem:

(2.7)

E ( max {Size(t)}) < E
t[0,1] k>n/2H

+.Pr
2H
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from which we find, after some elementary calculations, that

(2.8) E max {Size(t)} <.
t[0,1] 2H

By summing on the H buckets, we get E(maxO,l(Use(t)})<n/2. The proof for
dictionaries is similar.

These techniques can also be applied to the combinatorial models for other types
of file histories, namely, linear lists and symbol tables, to get similar results. (Note
that the techniques cannot be used for stacks, because the random variable "maximum
size" is not concentrated enough around its expected value in that case.)

3. Analysis of the probabilistic models. In this section we consider continuous-time
probabilistic models in equilibrium. The birthtimes of items are independent and form
a Poisson process with intensity A; the probability of a birth during a time interval of
length At is ---AAt, as At-0. In the first model we consider, the lifetimes of the items
are independently distributed according to an arbitrary distribution with mean 1/
An important special case is when the lifetimes satisfy the memoryless exponential
distribution. This model and its special case are well known and are referred to as the
stationary MG/ and MM/c models.

The maximum is more difficult to analyze for the probabilistic models, since the
expected value of Size(t) is no longer "peaked" around a certain value of t. An easy
analysis (see Feller [1], for example) shows that for each the distribution of Size(t)
is Poisson with mean A//z. But the maximum value of Size(t) in each case is sufficiently
concentrated about its mean so that our method is applicable.

THEOREM 3.1. In the stationary M/M/ model with birth rate A and average
lifetime 1 //z, we have, assuming either that/z - 0 or that/z 12(1) and A -

A

E(max {Size(t)})--- d a--
t[o,] /z

lnf(a, )

irf(a, ) -, o;

irf(a,/z) - oo,

where f A, /z (In A)/(A//Z) and the constant d >= 1 is defined implicitlyfrom the constant
c by d In d d c- 1. In the more generalMG case, in which the lifetime distribution
can be arbitrary, the asymptotic upper bounds hold; in the first case In A o(A//z), the
corresponding lower bound is trivial, so we get asymptotic equality.

THEOREM 3.2. In the stationary M/G/o model, if In A o(A//z), we have

E(max {Use(t)}) h

t[0,1]

The condition In A o(A//z) is typically met in practice in geometry applications,
as in [13]. Similar results for E(maxto,{Use(t)}) hold as for Cases 2 and 3 of
Theorem 3.1, except that the conditions are more intricate.

Proof of Theorem 3.1. If/z-> O, then h =o(h//z), and

Size(O) <- max {Size(t)} <-_Size(O)+ #[0, 1],
t[0,1]
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where #[0, 1] denotes the number of births in [0, 1]. Taking expectations we get

--=<E max {Size(t)} <---+ A,
].L t[0,1]

and hence E(maxtto,l {Size(t)})--- h/tx.
From now on, we assume that A--> and that/x-> a for some positive constant

a. First we derive the upper bounds for E (maxttO,ll {Size(t)}). We use the basic identity

(3.1) E(maxto,l {Size(t)})=kl Pr{ to,max11 {Size(t)}>-k}"
The probabilites in the sum form a decreasing sequence. We are going to show that
maxto,l {Size(t)} has a distribution concentrated near some value V (to be specified
later). We trivially have

(3.2) E(max {Size(t)})<-_V(l+2e)+ Pr { max {Size( t)} >- k}.t[O,1] k> V(l+2e) t[O,1]

The desired upper bound E(maxtto,11{Size(t)})< V follows if we show, for an
adequate choice of e -->0, that Yk> v(1+2 Pr {maxtto,11 {Size(t)}>= k}= o(1).

In order to evaluate the probabilities, we have to deal with the lack of independence
of the successive values of Size(t), as goes from 0 to 1. We partition [0, 1] into N
intervals of equal size, Io to, t), I1 q, t2),. , / tj, tj+l), . The number of
intervals N will be defined to be A in Case 1 and (A/eV)+ in Cases 2 and 3. The
key point is that maxo,l {Size(t)}> k, where k> V(1 +2e), only if there is an interval
endpoint ti where Size(6)>=(k+ V)/2 or if one of the intervals has at least (k- V)/2
births:

(3.3)

Pr { max,o,, {Size(t)}>-k}<--Pr{]j’Size(t)>=k+

+Pr =lj, #/>=2

where #/ denotes the number of births during time interval/. By (3.2) we get

(3.4)
E(maxt[o,1] {Size(t)})<- V(1 +2e)+2N . Pr{Size(O)>=k}

k> V(l+e)

+2 2 Pr{:lJ,*/=>k}
k>eV

For the MM/c process, the random variables Size(O) and #/ are Poisson distributed
with means Z//x and A/N, respectively. The rest of the proof consists of technical
computations and approximations, with adequate choices for the parameters V, N,
and e.

First we compute

(3.5) S=2 Y Pr{::lj,#I>-k}<-2N Y Pr{#Io->_k}.
k>eV k>eV

The inequality holds because the random variables #/ are identically distributed. The
Poisson probability function of # Io is

(3.6) Pr {, Io k}= e-x/u
(h/N)k

kl
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The ratio between consecutive probabilities is less than A/(NeV)= o(1), for suitable
choices of N, e, and V. By (3.6) we get

Pr{#Io k+l} X h
< o(1),

Pr {#Io= k} N(k+ 1) NeV

for a suitable choice of N and V. Thus we have

Pr {# Io ->_ k} Y Pr {# Io=j}_-<
j>-k

and by (3.5),

2N 2N
S <=l-A/(NeV) k>V" Pr{#I=k}<=

Substituting (3.6), we get for large A

S<__3Ne-/N(A/N)v
(v)!

1-A/(NeV)

(1 -A/(NeV))

Pr {#Io k},

Pr {# Io CV}.

If we pick V so that V>_-(h//x)- , we can choose e 0 so that eV. We now
apply Stirling’s approximation formula to get

(3.7) S < e=xf N

Our choices of N and V for the three cases of Theorem 3.1 are as follows:
Case 1. Assuming that In Z o(Z//z), we fix N=A and V= (Z//x). We find, if

e - 0 slowly enough, that S o(1).
Case 2. Assuming that In A c(A//z), where c is a positive constant, we fix

N and V d--A (1 + /),

where d is the solution of d In d- d c-1. For e0 slowly enough we find that
S= o(1).

Case 3. Assuming that f(A,/x) (ln A)/(A//x)- oo, we fix

N= and V-lnfx.
The analysis works as in Case 2 to show that S o(1).

We now turn our attention to bounding the other sum in (3.4), namely,

(3.8) P N Pr {Size(O) >- k}.
k> V(l+e)

We want to show that P o(1). The random variable Size(O) has the Poisson dis-
tribution:

(3.9) Pr {Size(O)= k} e-/
k!

The ratio between two successive terms is at most (A/tx)/(V(1 + e)) when k> V(1 + e).
Thus we can write

/( }/(3.10) P<=N 1- (V(I+ e)) Pr{Size(O)= Y(l+ e)}.
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By using (3.9), the fact that V => (A/) in all cases, and Stirling’s formula, we get for
large V,

N -h/ (h/)V(l+e) N e-A// ( e,/_E
V(l+e)

<_P<=-e (V(l+e))! e 2 \V(l+e)]

We can now evaluate this expression for all three cases of the theorem, and we find
that, if e goes to 0 slowly enough, we have in all cases P o(1), which concludes the
proof of the upper bound of the theorem.

For the lower bound, let us for clarity restrict ourselves to Case 3 of the theorem,
and assume that A =/x (the proof in Case 2 is similar). The above proof yields
E(maxt[O,l {Size(t)}) <- ((ln h)/ln In h)(1 + e), for some positive e o(1). We shall
now show that the reverse also holds, namely, that E(maxt[o,l{Size(t)})>=
((In A)/ln In A)(1- e), for some positive e o(1). We shall prove this by starting with
(3.1) and showing that

{ } lnh
(3.11) Vr max {Size( t)} >- k 1 fork<(1-s).

t[o, In In

We once again partition [0, 1] into l= h- equal-sized intervals, with endpoints
t ih-, for 0 < < I. We have

Pr max {Size(t)} < k’ Y Pr {Vi, Size(t,)
t[0, 1] J Jl ,’",Jl <k

(3.12)
1] Pr {Size t, j, Size(t,_) j,_l }.

j,...,jl<k lil

The motivation for our choice of interval size is to have enough births and deaths in
each interval so that the values of Size(t) at the endpoints are "sufficiently independent."
Let P,(t) denote Pr{Size(t)=nlSize(O)=j_l}. We define the generating function
P(s, t)= P(t)s", which is equal to

(3.13) P(s, t) e-(1-s)(1-e’)(1 -(1 s) e-It)ji-1

(cf. Feller [1]). The conditional probability term in (3.12) is Pi(1/hl-)
(sJi)P(s, 1/AI-). By extracting the coefficient of sj’ in (3.13) and using asymptotic
approximations, we find that there is "sufficient independence""

(3.14) Pr { maxt[O,l] {Size( t)} < k} ’’(Pr{size(O)<k})x’-’(1)’

for k<=((lnA)/lnlnA)(1-e). By letting e-0 at an appropriate rate, we prove our
goal (3.11), which completes the proof.

Proof of Theorem 3.2. The lower bound here is easy:

E max {Use(t)} >-E(Use(O))=--+H.
te[0,1] ].L

We prove the upper bound when In A o(A/). First, we consider the M/M/ case.
From [13], the stationary distribution of Use(t) is

(3.15) Pr { Use(t)= k}= e-/
(A/I)k-H
(k-H)!"
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We partition the interval [0, 1] into h intervals of equal size, /=[tj, tj+l). Let V=
(h//z) + H. If k > V(1 + 2e), we have, with the same techniques used for the previous
theorem,

Pr max{Use(t)}>-_k _-<1.Pr Use(O)>-
t[o,3 2

(3.6)
+Pr 3j, #/_-->

2

And the same approximations as above show that when In h--o(h/i) we have

E max Use(t) <--+H.
te[0,1]

In order for the proof to work in the MG/oe model, we need only show that
the stationary distribution of Use(t) is the same as in the M/M/oe model. We shall
compute the probability

(3.17) Pm,,( t) Pr {Size(t) m, Use(t) rn + n lSize(O Use(O) 0}

and let oe to get the stationary distribution. We assume for simplicity that H 1.

(3.18) pm,(t) A e-’- Pr {Size(x) m + n 1 and n deaths in (x, t)} dx.

We assume that x > x/7; the lower part of the integral is negligible. We have

(3.19) Pr {Size(x) m + n 1}--- e-"/"
(re+n-I)!"

Let B(x) be the distribution of the service time. The probability that there are n deaths
in (x, t) can be split into two terms, depending on whether the element born at time
x dies before time or not. The probability that a given element, alive at time x, dies
before time is equal to

(l/x) I (B(t-u)-B(x-u)) du
(3.20) p(x)=

1-(l/x) B(x-u) du

Thus we find that Pm,.(t) is asymptotically equal to

A e-- e-/"
(m + n 1)!

((1 B(t x))(m+n-1) p(x)n(1 --p(x))m-
n

n-- 1
p(x)n-(1 -p(x)) dx.

With standard asymptotics, we get

Pr {Use(t)= s}= Y Pm,n(t) e-;t’-x e-;t/"
(A/)s-

m+n=s (S-- 1)!
dx

(3.21)
"e

(s- 1)t

The case for general H is similar. Thus the stationary distribution of Use(t) is the
same for M/G/oo and M/M/oo processes, and Theorem 3.2 is proved.
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It is worthwhile noting that Theorem 3.1 derives results in queueing theory, using
non-queueing theory techniques from the analysis of algorithms. By a simple change
of scale, we can extend the range over which we take the maximum from the unit
interval [0, 1] to [0, T]. The last subcase of Theorem 3.1 says that, if A and /x are
constant, then E(maxto.rl{Size(t)})-ln T/ln In T, which was a longstanding open
problem. Our method also applies to the M/M/1 model: For constants A and/z with
A//x c < 1, we have E(max,t0.rl {Size(t)})--.-ln T/In c, which previously had been
proved only by Brownian motion techniques [2].

THEOREM 3.3. In the stationary M/M/1 model, with birth rate A and average
lifetime 1/tx, we have

1 if/ 0(/./,2/3);

E(max {Size(t)})--- ln_____a if A/ /z -+ c < l
t[0.1] -In c

Proof of Theorem 3.3. Let us restrict ourselves to Case 2 (the more difficult case).
The stationary distribution of the size of an M/M/1 process is well known (see [1]).

(/,)
Pr {Size(t)= k}

1-(/)"

For the upper bound, we divide [0 1] into A intervals Ii=[titi+), with ti=i/A, and
use the same technique as before:

Pr max {Size( t)} >_- k -<A.Pr Size(O)>-
t[0,1l 2

k- ko}+A.Pr 4Io_->
2

Fixing k0 In A/(-ln c), we find after some calculations that

max {Size(t)} < In A
(1 + 0(1)).

t[O,1] ] -ln c

The lower bound proof follows the proof in the M/M/oo case.

4. Time hashing: The discrete analog. In this section we analyze maxo_<_t<__ {Size(t)}
by relating the problem to its discrete version--the maximum slot occupancy in hashing.
The tricky part is handling the lack of independence of slot occupancies.

THEOREM 4.1. In the stationary M/G/oo model, with birth rate A and average
lifetime 1/tx, we have, assuming either that tx-+ 0 or that tx f(1) and A-+ oo,

E(maxt[o.1] {Size(t)})<<. d--

2f(A,/x) a
lnf(A,/x) /z

iff(a,/x)-+ O;

iff(a,/x) c;

iff(a,/x) oo,

wheref(A, /x) (In A)/(A//x) and the constant d >= 1 is defined implicitlyfrom the constant
c by d In d d 2c 1. When f(A, tx) --> O, we have asymptotic equality.
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It is interesting to note the close correspondence between the above formulas and
the formulas for the maximum bucket occupancy in hashing, given in Kolchin,
Sevast’yanov, and Chistyakov [8] (cf. 4). The formulas for cases 2 and 3 of Theorem
4.1 are slightly weaker than the corresponding bounds in Theorem 3.1.

THEOREM 4.2. In the stationary M/G/oo model, with birth rate A and average
lifetime 1/tx, we have, assuming that --> 0 or A o(H) or that tx f(1) and A-+ oo,

--+H iff(a, )- 0;

E(max { Use( t)}) < d
A
--+H iff(A,/x) - c;

t[O,1]

2f(a,/z) A
--+H iff(a,/x) -+ oo,

lnf(a, ,) ,
wheref(a, Ix) (In a)/(a/,) and the constant d >= 1 is defined implicitlyfrom the constant
c by d In d d 2c 1. When f(A, x) - O, we have asymptotic equality.

THEOREM 4.3. In the stationary M/G/oo model, with birth rate a and average
lifetime 1 / tx, assuming that In a o(H),/x f(1), and a - oo, we have

E(maX,to.,l
{Use(t)}- t[0,1]max {Size(t)})--.H.

Results similar to those in cases 2 and 3 of Theorems 4.1 and 4.2 also hold for
E(max,to,11 {Use(t)}-max,to,1 {Size(t)}), except that the conditions are more
complicated.

An approach called "time hashing" was introduced in [9] to give optimum bounds
to within a constant factor for E(max,to.{Size(t)}) when f(a,/z)0 and
E(maxtto, { Use( t)}- max,to,1 {Size(t)}) when H >_- (In A) 1+, for constant e > 0. The
approach we use here to show that the constant factors are in fact 1 is the "inverse"
of the approach used in [9], so a brief explanation of the former technique is called for.

For example, in the analysis of E(maxo__<,<__ {Size(t)}) when In a o(a//x) in [9],
all the items that are alive for at least some time in [0, 1] are considered. There are
stages k 0, 1, 2, , K, and each stage has an associated hash table. For 0_<- k <- K,
all items (intervals) born in (-(1//x)2k, 1] with lifespan in the range ((1//z)2k-l,
(1//x)2k] are put into stage k; in addition, all such items with lifespan <-(1/2/x) are
put into stage 0. Each stage consists of a hash table of/x2-k + 1 slots. The jth slot, for
0<=j -</z2-k, represents the interval of time ((1//x)(j- 1)2k, (1//x)j2k]. An item in stage
k is placed into the slot corresponding to its birthtime. A special stage K + 1 is
constructed to store all the items that do not fit into one of the earlier stages. The
parameter K is chosen large enough so that the number of items in stage K + 1 is
O(A//x). The important link between this discrete version of the problem and the
original continuous one is the following relation:

max {Size(t)}_-<2 Y max_ {Nk(j)},
0t--<l 0_<k___K+l

where Nk(j) denotes the number of items in the jth slot of stage k. The bound
maxo<_,<__{Size(t)}=O(a/l) was proved by showing that maxo<_a<_,,z-k{Nk(j)}
O(a/(2kl,)), under the assumption that In A= O(a//,).

Proof of Theorem 4.1. We shall prove Theorem 4.1 simultaneously for all three
cases, f(a,/,)-+ 0, -+c, and .oo, by showing that E(maxo<__,<__l {Size( t)}) < dA/t,, where
d d(A,/,) is the solution of the equation d In d d 2f- 1. In case 1, for example,
we have d---1, and in case 3 we have d---2f/lnf
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Note that for case 1 this upper bound will prove the asymptotic result claimed in
Theorem 4.1, namely, E(maxo_<_,l {Size(t)}).--(A//x), since E(maxo=t<__l {Size(t)}) >-
Size(O) A/ /x.

If/x- 0, then the result follows immediately, as noted in 3. So we assume that- oe and/x 12(1). We "invert" the process used in [9] to prove the big-oh bound,
as shown in Fig. 2. Instead of letting the stages of time hashing grow coarser and
coarser, we consider the limiting case in which the slots represent smaller and smaller
units of time relative to the item sizes. We use only one stage, but the number of slots
varies with and/x. We use m g/x slots, for any g- oe. (Without loss of generality
we choose g so that g/x is an integer.) The jth slot, for 1 _-<j <-g/x, represents the time
interval ((j-1)/(g/x), j/(g/x)]. For each item we place an entry into each slot whose
associated time interval intersects the item’s lifetime. If we define N(j) to be the slot
occupancy of slot j, it is easy to see that the following upper bound holds.

LEMMA 4.1. We have

max {Size(t)}<- max {N(j)}.
Otl l=j=gp

To prove Theorem 4.1 it suffices to show that E(maxl__<j=g, {N(j)})<dA//X
LEMMA 4.2. The slot occupancies N(j) are Poisson-distributed with mean n/m,

where n A (g + 1) is the average number of items inserted into the hash table of m f/x
slots.

slot 0 slot slot
__1 time

=o Z =1
FIG. 2. Typical items that contribute an entry to slot j in the time hashing table.

Proof The slot occupancy N(j) of the jth slot is equal to the sum of two
independent quantities: the number of items living at time (j- 1)/(g/x) plus the number
of items born during the time interval ((j- 1)/(g/x),j/(g/x)]. These two quantities are
Poisson-distributed with means A//X and A/(g/x), respectively. Hence, N(j) is Poisson-
distributed with mean (A//x)(1 +(l/g))= n/m. D

The following lemma is useful for studying the maximum slot occupancy in time
hashing, because the random variables X are not required to be independent.

LEMMA 4.3 [9]. For random variables X1," , X,,, if we have Pr {X > b}_-<
1 / (nm), for all 1 <=j <- m, where n E(Y X), then

( ) 1 (E max {X} _-<b+-. E max {X}
jtn n ljrn

max {X} > b).ljrn
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Proof We condition the expectation based upon if maxlj__<., {Xj} is -<_b or >b"

E(l<__j__<mmaX {X})-< b Pr{ l<=J<-mmax {X}-< b}
+ E,( max {Xj}

ljm
max {X} > b)

Pr{ lJ<=mmax {X}> b}.
The first probability term is bounded trivially by 1, and the second is bounded by

Pr{l<=j <=mmax {X} > b} <=Pr {X> b}+ Pr {X2> b}+. .+ Pr {X,,> b}<-m
1 1

To apply Lemma 4.3 to prove Theorem 4.1, we use X=N(j), b=
d(A/tx)(l+(1/g)), n=A(g+l), and m=gtz, where g- slowly. (In particular, we
require that g<--(d-1)A/lx.) We have

(n/m) k

nm Pr {N(j) > b} nm e-n/’’

n2 e-n/m(n/m) b

b!(b+l-n/m)

(4.1)
g2

x/27r(A//x)d (1 + 1/g)(d 1)(A//x)(1 + (l/g))

,,2 e(d-1)(A/lx)(l+l/g)
dd(A/ tx)( + l/ g)

A 2 e(d-1)(,x/tz)(+/g)
dd(A/lx)(l+l/g)

for large A, by Stirling’s formula. Taking logarithms of (4.1) and using the definition
of d, we get

(4.2)

In (nm. Pr {N(j)> b})_-<2 In h---
A

1+ (dlnd-d+l)

21nA
-<0.

This implies that the left-hand side of (4.1) is less than or equal to 1 for large A, and
hence the conditions for Lemma 4.3 are satisfied.

Lemma 4.3 gives us

(4.3)

max {N(j)}<=d A- 1+
j fl ]J

1 (+-E max {N(j)}
n ljgtz

max {N(j)}> dh 1+
j gl ].Z
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The random variables N(j) are not independent, but the conditional expectation on
the right-hand side of (4.3) can be bounded by

E max {N(j)}.N(1)>d 1+
<=j gl.x

(4.4)
<_-+ (,(>aa + =o(.

Plugging (4.4) back into (4.3) gives us N(max, {N(j)})d(I/), which proves
Theorem 4.1.

Proofof eorem 4.2. Theorem 4.2 can be proved in an identical way to Theorem
4.1. For each t, Use(t)- H is Poisson-distributed with mean I/ [9]. The techniques
in the proof can then be applied to Use(t)- H instead of to Size(t).

For example, let us define the time hashing as in the proof of Theorem 4.1, except
that we account for lazy deletion. For each item, we place an entry into each slot
whose associated time interval intersects the item’s presence in the HwLD data structure.
We define N(j) to be the slot occupancy of slot j. We have the corresponding versions
of Lemmas 4.1 and 4.2 in Lemma 4.4.

LEMMA 4.4. We have

max {Use(t)}N max {N(j)}.
0Ntl ljNg

To prove Theorem 4.2 it suces to show that (max, {N(j)}) dl/ + H.
LEMMA 4.5. e slot occupancies N(j)- H are Poisson-distributed with mean n/ m,

where n (g + 1) is the average number of items inserted into the hash table of m f
slots.

The rest of the proof proceeds analogously as for Theorem 4.1.
The proof of Theorem 4.3 is more complicated and is omitted for brevity. It uses

the techniques developed in [9]. We bound (maxo,{Use(t)-Size(t)}) using
Lemma 4.3 and an application of ChernoWs bound, which in turn gives us a bound
for (max,o, { Use(t)}-maxo, {Size(t)}), as desired.. Celsis. We have developed two probabilistic methods that are useful for
the analysis of the distribution of the maximum size of data structures. We get the
asymptotic value of the expected maximum of Size(t) and Use(t) for several different
combinatorial and probabilistic models of inseion and deletion. This solves the open
problems from 14], 11 ], and [9] as well as a longstanding open problem from queueing
theory.

In our first method we isolate the primary contribution to the maximum and
bound the lesser effects. Our second technique, which we use for a continuous model,
takes advantage of the close connections between the model and its discrete analog,
namely, the maximum slot occupancy in hashing. These methods can be used to get
estimates of second-order terms and higher moments of the expected maximum, as
well as estimates of the shape of the distribution of the maximum. The techniques also
appear directly applicable to the study of the maximum size of other dynamic data
structures, such as quad trees, k-d trees, and radix-exchange tries.
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TIME COMPLEXITY OF BOOLEAN FUNCTIONS ON CREW PRAMS*

MIROSLAW KUTYLOWSKI?

Abstract. This paper is concerned with parallel random access machines (PRAMs), where each processor
can read from and write into a common random access memory. Different processors may read the same

memory location at a time, but only one processor is allowed to write into it (the CREW model). Suppose
f is a Boolean function of n variables. Let CREW(f) be the number of steps required by CREW PRAMs
to compute function f It has been proved that CREW(f)>= log crit(f), where b 4.79 and crit(f) is the
critical complexity off (see [S. Cook, C. Dwork, and R. Reischuk, SIAM J. Comput., 15 (1986), pp. 87-97]).
It was proved by Parberry and Pei Yuan Yan [SLAM J. Comput., 20 (1991), pp. 88-99] that the same holds
for b 4. It follows that the time required by the logical "or" of n variables is at least log n. This paper
presents an essentially different method of estimating PRAM complexity of Boolean functions. Let ny be
the number of inputs x{0, 1}" for which f(x)= 1. Let iy =max{j: Ulnf}. Then CREW(f)>-Iog (n-if),
where 2.618. Thanks to this result, the time complexity of the logical "or" of n variables is determined
exactly. This in turn allows better estimations of time complexity of the threshold functions to be obtained.
Another corollary is that for sorting n arbitrary keys, PRAMs require time, which can be determined up to

five steps.

Key words, parallel computation, parallel random access machines, time bounds

AMS(MOS) subject classification. 68Q10

1. Introduction. Parallel random access machines (PRAMs) serve as a model of
parallel computers communicating through a shared memory. They seem to be well
suited to the task of the theoretical design of parallel algorithms. Different types of
PRAMs have been already studied. We concern ourselves only with so-called CREW
PRAMs (i.e., with Concurrent Read, Exclusive Write access to the common memory).
We investigate the time required to compute Boolean functions on such devices.

Each PRAM consists of a collection of processors and common memory cells.
Each computation consists of several computation steps. At each step, each processor
can read from at most one memory cell; then it does some computing (arbitrarily long
and deterministic); and finally, it has the possibility to write into a chosen memory
cell. Any number of processors can read from a given memory cell simultaneously,
but only one processor can write into a given memory cell during one computation
step. This means that for the considered machines, write conflict does not occur.
Usually, it requires a very careful design of the algorithm to get this condition fulfilled.
We do not assume that the considered PRAMs are oblivious. In other words, for
different input strings, different processors may write into a given memory cell at a
particular moment of the computation (while for each input there is at most one such
processor by the exclusive write assumption).

If PRAM M computes a function f of n arguments, then the arguments are stored
initially in the first n memory cells (one argument in a cell). The result of a computation
is given at the last moment of computation in some specially chosen memory cell.
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We place no restrictions on the number of processors and memory cells. In each
memory cell we can store an arbitrary amount of data. There are potentially infinitely
many internal states of each processor. More information about this and similar models
of computation could be found, for instance, in [6], [2], [4]. These problems are also
quite completely discussed in [10].

Suppose M is a CREW PRAM computing a Boolean function f: {0, 1}n {0, 1}.
By time complexity of M, CREW(M), we understand the maximal number of steps
required by M to compute f(x) for x{0, 1} n. Let CREW(f)=min {CREW(M): M
computes f}. We consider the following general problem.

PROBLEM 1.1. Given a Boolean function f, determine CREW(f).
It might be said that the PRAMs that we consider are too "unrealistic." For

instance, we should put a restriction on the number of processors and the maximal
size of a word that may be stored by a single cell, if we wish to find any practical
implementation of a PRAM. The reason why we consider PRAMs with such unrestricted
resources is that we can prove the same lower bounds for these powerful machines.
Unexpectedly, for many functions these lower time bounds are equal or very close to
the upper bounds obtained for very restricted "realistic" PRAMs. For instance, it is
true for the logical "or" (see below), PARITY, and many threshold functions ([7]).

A lower bound of CREW(f) was determined in terms of crit(f), the critical
complexity off Recall that crit(f) is the maximal number j such that there is an input
x{0,1}n and J___ {1, 2, n}, lJ[ =j such that

Vi J f(x) # f(I(x, i)),

where I(x, i) is the sequence, which differs from x only at position (see [4], [3],
[10]). For instance, iff is the logical "or" of n variables, then crit(f)-- n. Indeed, if
we change any bit of the input 0, 0, , 0, then the value of the "or" changes. Recall
the following result from [4].

THEOREM 1.2 [4]. Supposef is a Boolean function. Then CREW(f) >-- 1Ogb crit(f ),
where b 1/2(5 +1) 4.79. In particular, iff is the logical "or" of n variables, then
CREW(f) >- 1Ogb n.

This result was improved in [8]. It was shown that the theorem also holds for
b 4. On the other hand, it was already shown in [4] that the theorem does not hold
for b<3.

Recall that the Fibonacci numbers are defined inductively as follows: Fo=0,
FI=I, Fm+2--Fm+l+Fm, for m=>0. Let q(n)=min{j: F2t+l>-n} (then qg(n)lOgb n
for b =1/2(3+x/)). The following upper bound for the logical "or" was presented
in [4].

THEOREM 1.3 [4]. There is a CREW computing logical "or"of n variables in ()
steps.

There is a gap between values (n) 1og2.618 n and 1og4 n denoting the upper and
lower bounds of time complexity of the logical "or" of n variables. In this paper, we
prove that the algorithm invented in [4] to prove Theorem 1.3 is the optimal one, that
is, the time required to compute the logical "or" of n variables is at least (n) (Theorem
3.9). We get this as a corollary of a more general result. Let ns be the number of inputs
for which function f has value 1. Let ns 2iJ u, where u is odd. Then the time needed
to compute f on CREW PRAMs is not smaller than (n-is) (Theorem 3.7). This
conclusion is quite surprising, since we estimate CREW(f) in terms of the number of
inputs x such that f(x)= 1. This approach has no immediate intuitive motivation, but
in many cases it provides better lower bounds than the previous method, based on a
very intuitive notion of variables affecting a cell at a given time. To prove Theorem
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3.7. we connect each state of a cell or processor of a CREW PRAM with a set of
Boolean expressions. This state is reached during computation exactly when one of
the mentioned Boolean expressions holds for the given input. Then we show that the
number of inputs satisfying any of these Boolean expressions is congruent to 0 modulo
a number of the form 2J. Number j decreases after each step. It turns out that after
steps j n- F2t+. Our main result easily follows from this technical fact.

The methods introduced in this paper have been further developed to get the
exact lower time bound for PARITY (Kutytowski and Reischuk [7]). Reischuk ([9])
noticed that our proofs still work for nondeterministic and probabilistic machines.
This is particularly interesting, since no previous proof technique could be used for
such machines. Recently, Dietzfelbinger [5] has shown that there is a common structure
behind all our proofs. We may express each Boolean function f as a polynomial
with integer coefficients. Then, using the same technique as in this paper, it can
be shown that CREW(f)>=(d), where d is the degree of this polynomial. As a

simple corollary of this fact, a lower bound for symmetric functions was obtained.
Perhaps some further results along these lines are possible, since we have obtained a
complete representation of CREW PRAM states in terms of Boolean expressions.
These Boolean expressions are built by using a few simple operations over literals
x,x,x2,-Xz,...,x,,,-x,. So when a Boolean function f over Xl,...,x,, is
given, we should express f by applying these operations to literals
xl,--qx,x2,-Xz,’",x,,,--qx,,. Such a representation of f corresponds to a CREW
PRAM computing function f Its time complexity depends on the depth of the rep-
resentation. The only problem is that one of the mentioned operations is not quite
standard and we do not know how to use it efficiently.

2. Boolean PRAMs. For technical reasons, we introduce Boolean PRAMs, a slight
modification of (CREW) PRAMs. Boolean PRAMs have a nice property that each
state s of a processor (or a cell) is described by a Boolean formula, say, fs. Formula
fs represents the full knowledge of the processor (of the cell) in state s. Moreover,
state s is reached during the computation on input w if and only if the expression fs (w)
has value 1. More precisely, if Sl, s2,..., Sl are all possible states of a processor (a
cell) P at time point t, then during the computation on input w, P reaches state si at
time point if and only iffs, (w) has value 1 (hence fs, fs2," ",fs, are mutually exclusive
and fs, v fs2v.. "vfs,--1). It is convenient to identify each state with the formula
describing it and we shall always do so.

Now let us explain how the knowledge (hence also the states) of the processors
and cells change during a computation of a Boolean PRAM. If a processor P being
in state f reads a cell being in state g, then afterwards P knows that f^ g holds for
the current input. Hence the knowledge of P after the reading is f ^ g, so the state of
P should be f ^ g. Similarly, if a processor in state f writes into cell C in state g, then
assuming that all knowledge of the processor is appended to the previous content of
the cell, the new knowledge of the cell is equal to f^ g. The only remaining case is
when no processor writes into a cell. Suppose that {fl,""" ,f/} is the set of all states

f such that there is a processor Ps that, in state f during step t, writes into cell C. Then
fl,""" ,J are mutually exclusive by the exclusive write assumption. If, during some
computation, no processor writes into C, then nevertheless the knowledge of cell C
increases. Indeed, after the writing phase, cell C knows that for the current input the
expressions fl,""" ,J have value O. Hence -(fl v... v f/) holds. If the previous knowl-
edge of C was g then the new knowledge of C after the writing phase is g^

-(f v... v J). Hence if the states are to express the full knowledge of the cells, we
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must assume that in this particular case the state of cell C changes itself into g ^
(fl v... v f/). All this leads to the following definition of Boolean PRAMs.

DEFINITION 2.1. Each Boolean PRAM B is a PRAM for which there is no
"computation phase" for the processors and with the property that,.if no processor
writes into a memory cell, then it changes its content itself. If B obtains n bits on
input, then each processor state and each state of a memory cell is a Boolean expression
over xl, x_, , xn (xi stands for the ith input bit). Let C, C2, be the cells of B.
The states of the processors and cells change as follows"

(i) Initially, all states are equal to 1, except the states of Ci’s for i_-< n. The state
of Ci (i=< n) is xi if the ith bit of the input is 1 and xi otherwise.

(ii) If processor P in state f reads (writes into) a cell C being in state g, then
the state of P (of C) changes to f ^ g.

(iii) Suppose that {f,. ,f/} is the set of states f for which there is a processor
Py that in state f writes into cell C during step t. If, during step t, no processor writes
into cell C that was in state g, then the state of C changes to g ^ -(f v...v f/).

From the definition, we get the following properties.
LEMMA 2.2. Suppose P is a processor or a cell of a Boolean PRAM and . Let

fl ,f2," ", f be all possible states of P at step t. Then
(i) for each x {0, 1} n, exactly one offl(x),f2(x),’’’ ,f(x) holds,
(ii) for input x {0, 1} n, P reaches state f at moment if and only iff(x) holds.
Proof By the definition, the lemma holds for 0. Assume that it holds for t- 1.

Let P be a processor and f,. ,j be the possible states of P after step t- 1. Suppose
that in state f processor P reads cell C,, and gj,1, gj,2, ", g,,) are the possible states
of C,, after step t-1. Then after the reading, the possible states of P are f ^ g,,
fl A gl,2, ,f ^ gl,t(1),f2 A g2,1, ,f ^ g2,t), ,f ^ gl,1, ,fl A gl, t(1). Ifx 6 {0, 1} ",
then by the induction hypothesis f(x) holds for exactly one i. Similarly, gi, holds for
exactly one j. Hence there is exactly one pair (i, j) such that f/(x)^ g,j(x) holds. To
prove point (ii), note that P reaches state f ^ gi, on input x if and only if, after step
t- 1, processor P is in state f and cell C,,j is in state gi,j. By the induction hypothesis,
it happens if and only if f(x) holds and gi,j(X) holds, that is, f(x)^ gi,j(x)= 1.

Now let P be a cell and gl," "’, g be the possible states of P after step t-1.
Suppose that P,,, Pm:,’’’, P,,, are the processors that may write into cell P during
step and that Pros writes while being in state f (the processors on this list may repeat,
but the states fl,""" ,f are mutually exclusive). Then the possible states of P after
the writing are fl^ g, fl^ g2,’’" ,fl ^ g, f2^ g,’’" ,f:^ g,’’’, f ^ g,’’’,ft ^ gand g^-(fv..-vf), g2^(fv’"vf), "., g^-(fv...vf). Let x{0,1}".
Then by the induction hypothesis, there is exactly one such that gi(x) holds. Hence
only f ^ gi, f2 ^ gi," , ^ gi and g ^ (fl v. v f) can be satisfied for x. Since
fl, ",f, -(fl v v f) are mutually exclusive, exactly one of these expressions holds
for x. Hence point (i) holds. If P is a cell, we can show point (ii), as we did for
processors above. [3

We shall see below that there is a tight connection between Boolean and regular
PRAMs.

DEFINITION 2.3. A Boolean PRAM B simulates a CREW PRAM Q if:
(i) While given the same input, the corresponding processors of B and Q read

and write exactly in the same memory cells at the same moments.
(ii) There is a function Sim with the following property. Let P be a processor (a

cell) of B, g a possible state of P at moment t. If P is in state g at step on input x,
then the corresponding processor (cell) of Q is in state Sire(P, t, g) at step on
input x.
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LEMMA 2.4. For each CREW PRAM Q, there is a Boolean PRAM B simulating Q.
Proof At the initial moment, machine B is determined by Definition 2.1(i).

Sim(P, 0, 1) is the initial state of processor P, Sim(Ci, 0, xi) 1, and Sim(C, O, -qx) -0
for -< n. For > n, Sim(C, 0, 1) is the initial content of cell C.

Assume now that machine B has been described up to step and values of
Sire(..., s,...) have been defined for s <-_ t. We define B and Sire for + 1. Let f be
one of the possible states of processor P of B after step t. Let Sim(P, t, f) q. Suppose
that processor P of machine Q in state q decides to read from cell C. Processor P of
B in state f does the same. Suppose that gl, g2," gu are the possible states of cell
C of machine B after step t. After reading, processor P changes its state to one of the
states f^gl,f^g2,"" ,f^gu. Define Sim(P, t+l,f^gi) to be the state reached by
processor P of machine Q after reading cell C containing Sim (C, t, g), if the previous
state of P was Sim(P, t,f). Note that the above definition is unambiguous. Indeed,
suppose that f ^ gj--f’ ^ g’. But f’ is also a state of processor P of machine B after
step t, so by Lemma 2.2, either f=-f’ or f and f’ are mutually exclusive. Hence f=-f’.
Then g’ must be a state of cell C after step t. Again by Lemma 2.2, g--- g’.

Now consider the phase of writing. Let h be one of the possible states of a
processor P of B. Then we look at processor P of Q in state Sim(P, / 1, h). It writes
to some cell, say C’, or does not write at all. Processor P of machine B in state h at
step / 1 does the same. Then the new state of cell C’ is h ^ g, where g is the previous
state of C’. Define Sim(C’, + 1, h ^ g) to be the content of cell C’ of machine Q that
is reached when processor P, being in state Sim(P, / 1, h), writes into cell C’ containing
Sim(C’, t, g). As above, this definition is unambiguous.

It remains to determine Sim for cell C of machine B when no processor writes
into it. Let h g ^ --q(fl v f2 v. v f,) be the new state of C. We set Sim(C, + 1, h)
Sim (C, t, g), since the content of cell C of machine Q does not change during this step.

It follows immediately from the construction that machine Q is simulated
by B.

3. The time bounds. In this section we look more closely at the Boolean expressions
serving as the states of Boolean PRAMs.

DEFINITION 3.1. Let M be a Boolean PRAM. Then Cell(M, i) is the set of the
states of the cells of M that can be reached at step i. Similarly, Proc(M, i) is the set
of all possible states of processors at step i.

DEFINITION 3.2. Let numbers Kt, Lt be defined inductively as follows" K0=0,
Lo 1, Kt+ Kt + Lt, Lt+ Kt+ / Lt.

Clearly, Kt, Lt are Fibonacci numbers" Kt F2t, L, F2t+l.
DEFINITION 3.3. Iff is a Boolean expression of n variables, then,

Af {x 6 {0, 1 }"" f(x) holds}.

DEFINITION 3.4. Suppose f6 [.-Ji Cell(M, i) U [.-Ji Proc(M, i). We define a
coefficient r(f)aY as follows. Let j be the minimal number such that f
Cell(M,j)UProc(M,j). Then r(f)=Kj if fProc(M,j) and r(f)=Ls if f
Cell(M, j)\Proc(M, j).

Now we are ready to formulate a lemma which is the key to all our results.
LEMMA 3.5. Let fl, f," , fs be Boolean expressions from [_Ji Cell(M, i)

[,.,Ji Proc(M, i). Then

(3.1) IAs, f’l As fl. f’l As, I-= 0 mod 2"-((s,)+(s)+’’’+r(L)).

Proof The proof is by induction on/=max {r(f), r(f2), "’, r(fs)}. If 1=0, then
each f Proc(M, 0), so A {0, 1}. Then IAy (q Ay: ... Ay, 2" and the lemma
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holds. Assume that 1= 1. Then some f’s belong to Cell(M, 0), some to Proc(M, 1),
and the rest to Proc(M, 0). So each f/ has one of the forms" 1, xj, or -nxj for some j.
Hence, without loss of generality, we may assume that Az. {x {0, 1} n" x, ci} for
i<-_u (ei{0, 1}) and Az ={0, 1} for i>u. Then

ASl N..- N A. {x {0 1} n. xl=Cl,X2=Cz,...,xu=cu}.
The above set is empty if there are two contradictory conditions" xj, 0, xi 1, and

Jil =ji. In this case the lemma holds, since IAsl n... n As 0. Otherwise, [As, n... n
A,.[=2 n-p where p is the number of different conditions among xl=cl,x:=
c2," ", xj. c,. But p =< u Z i:1 r(f <= . i= r(f ). So

2 -( r(f )+ r(f2)+.. .+ r(f 2 n--p,
and the lemma holds.

Assume now that > 1. We prove (3.1) by induction on the number of f’s such
that r(f)= I. Suppose that there are k states f such that r(f)= I. If k=0, then
max {r(fl),"" ", r(f,)}< l, and by the induction hypothesis on l, there is nothing to
show. Thus it remains to prove that (3.1) holds for k_-> 1 if it holds for k- 1. Without
loss of generality, we assume that r(fl) I. Put As n As3 n. n As Rest and r(f2) +
r(f3) +" + r(f,) r.

Case 1. r(fl)= K,.
Then fl Proc(M, t) and fl g ^ h for some g Proc(M, t- 1), h Cell(M, t- 1).

So ASl Ag n Ah. Note that r(g) <= K,_I, r(h) <= L,_l. So r(g), r(h) < K, r(f). Among
functions g, h, fz,"" ,f, there are only k-1 functions f such that r(f)= I. So, by the
induction hypothesis,

lAg Ah n Rest[ 0 mod 2 n-(r(g)+r(h)+r).

But r(g) + r(h) <= Kt-1 + L,_I Kt r(fl). So

IAs, N Rest IA NAh n Rest[ 0 mod 2 ni(r(fl)-t-r),
as required.

Case 2. r(f L,.
Then fl Cell(M, t). There are two possibilities. Either fl =g ^ h for some g

Cell(M, t-1), h Proc(M, t) orfl= g ^ (hl v h2 v v h) for some g Cell(M, t-l)
and hi, h2,’’’, hu Proc(M, t) such that the sets Ah,, Ah2,’’’, Ah are disjoint. In
the first case, we proceed as in Case 1. So assume thatf g ^ -(hl v h2 v v h). Then

As, N Rest Ag N (Ahl U Ah2 U" U Ah) n Rest

(Ag n Rest)\(Ag N Rest n Ahl)\(Ag n Rest N Ah2)\ \(Ag n Rest n Ahu).
Since Ahl,Ah2,’’’,Ah. are disjoint, so are (AgnRestnAh,), (AgnRestn
Ah), (Ag n Rest n Ah.). So

IAsl n Rest[ IA n Rest[- IA n Rest n Ahl lAg n Rest N Ahl.
We show that each one of the numbers on the right side is congruent to 0 modulo
2 n-(r(f’)+r). Indeed, r(g) <-_ Lt-1 < Lt r(fl). Then, among functions g, f2, ,f, there
are only k- 1 functions f such that r(f) 1. So, by the induction hypothesis,

lAg n Rest[ 0 mod 2 n-(r(g)+r).

But r(g) < r(f), so

and

2n-(r(f,)+r) 2n-(r(g)+r)

lAg N Rest[ 0 mod 2 n-(r(f’)+r).
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Now consider lAg (q Rest ("1Ahi [. Since r(g) -<_ L,-1, r(hi) <- K,, so r(g), .r(h,) < L, r(f),
and by the induction hypothesis on k,

lAg (’1 Rest (q Ah, =- 0 mod 2 n-(r(g)+r(hi)+r).

Note that r(g)+ r(h,) <= L,_I + K, L, r(f), so

IA Rest (’1Ah, 0 mod 2 n-(r(fl)+r),

as required.
By Lemma 3.5, we immediately get Corollary 3.6.
COROLLARY 3.6. Iff Cell(M, t), then

Now we are ready to prove our main result.
THEORZM 3.7. Supposefis a Booleanfunction ofn variables and Imfl 2 u where

u is odd. Then CREW(f)>=q(n-if).
Proof Suppose a machine Q computes function f and the result is always given

in a cell C at step t. Consider a Boolean PRAM B simulating Q. Let g, g2,"" ", gu
be all states g of B such that Sim(C, t, g) 1. Then Ay Agl U Ag U t_J Ag, and the
sets Ag, Ag2,..., Agu are disjoint. By Corollary 3.6, for each iN u, we have"

IA,I -= 0 mod 2 n-L’.

So

[Ay[-= 0 mod 2 "-’
and 2 "-’ divides IA, I. But [A,[ 2i, u. So 2 "-, 12; that is, n L, <= if. Then n if <- L,
n2 + [-I

COROLLARY 3.8. Each CREW PRAM computing the logical "or" of n variables
requires at least (n) steps.

Proof. Iff is the logical "or" of n variables, then [Ay[ 2" 1. So iy 0. Then we
apply Theorem 3.7. [q

Cook, Dwork, and Reischuk presented, in [4], an algorithm computing the logical
"or" of n variables in q(n) steps. So we get the following result.

THEOREM 3.9. The optimal CREW PRAM computing the logical "or" ofn variables
makes q n steps.

It is known that the algorithm of Cook, Dwork, and Reischuk can be generalized
to the following form.

PROPOSrVION 3.10. For every Boolean function of n variables

CREW(f) <-_ I + q(n).

Proof. For each possible input string w, there is a cluster of n processors, say
P,,,o, P,,,1,""", P,,,-I, and n cells, say C,,,o, , Cw,_, checking if the current input
equals w. We describe in detail one such cluster. To check if w= Xo, Xl,’’’, Xn-1, it
suffices to compute So v s v v S_l where

if W O,
s=

1-x ifwi=l.

During the first step, for i< n, processor P, reads input xi, computes &, and writes

s into cell C,. Starting from the second step, the algorithm of Cook, Dwork, and
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Reischuk is used. For each step t, there are numbers Pt, ct such that after performing
step t, for < n"

processor Pw, knows si v v S+p,_l,
cell C,,i stores s v v s+c,-1

(for j> n, by sj we mean sj,, where j’=j mod n). Then, during step + 1 the following
happens"

for i< n, processor P,, reads from cell C,,, where j i+pt mod n (therefore
P,,i can compute s v v S i+pt+ct_l).

for < n, if s v v S+p,+c,-1 1, then processor P,, writes a 1 into cell Cw,,
where j i-c, mod n. Afterwards, cell C,,, stores s v v sj+,+p,+,)_l (even if
does not write).

It follows that pi+l=pi+ci and C+l=ci+p+l, i.e., p=F:z-l. There are steps,
where =min {j" F2_1->-n} q(n)+ 1. Then after the reading of step t, processor P,,x
knows So v...v Sn-1. If it is 0, then P,,, writes f(w) into the output cell.

The above algorithm uses n. 2 processors and cells. This number can be easily
reduced to n. k < n- 2n- where

k min (l{x: f(x) 1 }1, I{x: f(x) 0}1 ).

Indeed, if, for instance, k I{x" f(x) 1}1, then the output cell is initialized with 0 and
we take only the clusters corresponding to strings w such that f(w)= 1.

COROLLARY 3.11. If the number of inputs x for which f(x) 1 is odd, then

q(n) <= CREW(f) <-_ q(n)+ 1.

Proof. The proof is immediate by Theorem 3.7 and Proposition 3.10.
Theorem 3.9 can be used to estimate time complexity of some other important

functions. For instance, recall that the threshold function Tk is defined as follows"

Tk(x,, x,) l

One of the important cases of the threshold functions is the majority function:

MAJORITY, T/2.
By Theorem 1.2, we get only

Now we get the following easy corollary of Theorem 3.9.
COROLLARY 3.12. For each n and k <-n,

CREW(Tk,)>--()-I (1og2.618 n).

Proof. Since

Tk,(x, ,xn) =1 iff T-k(1--X, ,1-xn)=O,
we have

CREW(T) CREW( T,-k)
and it suffices to prove the lemma under the assumption that k <= (n/2).

Let k =< m. We get the following algorithm for computing the logical "or" of m
variables.

Stel 1. Write k-1 ones and m-k+ 1 zeros into cells C, C+, , C2.
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Step 2. Start a machine computing Tk,, treating the content of the cells
C1," ", C2,, as the input string.

Clearly, for a given input string Xl, x2,... Xm;

XlVX2V’’’VXm=O iff Tzm(X, ’’’,xm,cm+l,’’’,c2m)=O,

where ci is the content of the cell Ci written during the first step. So the algorithm
yields the correct answer. For Step 1, only one PRAM step is required (provided there
are m processors). For Step 2, we need CREW(Tk,,) PRAM steps. So, by Theorem 3.9,

CREW( T,,,)+ I >= q(m).
Now we get the desired inequality by substituting 2m by n. 3

It was proved in [4] that sorting n arbitrary keys requires time between and
+ 5, where is the time required for the logical "or" of n variables. So we get the

following interesting corollary.
COROLLARY 3.13. The optimal PRAM sorting n keys requires T steps where

(n)- Tp(n)+5.

4. Final remarks. The results of [4] and this paper provide two different methods
of getting lower bounds of the time complexity of Boolean functions. For the logical
"or" our method is more precise, but there are many functions (for instance the
PARITY function: xi mod 2) for which the opposite is true. Hence these two methods
are incomparable. In fact, for PARITY we can get almost the same lower bound as
for the logical "or" (see [7], [5]).

In order to get Proposition 3.10 we have used, in the worst case, n 2n-1 processors.
Hence, from the practical point of view, this method is not interesting at all. The same
applies to Corollary 3.13 (compare [4]). The assumption about the exponential
number of processors in Proposition 3.10 cannot be dropped, since almost all Boolean
functions of n arguments require time log n-log log p(n)+ f(1) on CRCW PRAMs
with p(n) processors ([ 1 ]). On the other hand, the algorithm presented in [4] computing
the logical "or" of n variables uses only n processors and n memory cells. So it is
both the quickest and a realistic algorithm.

Acknowledgment. I thank R/idiger Reischuk for presenting me with the considered
problems.

Note added in proof. After the article was completed, references [5] and [7] were
combined and published as [11].
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EMBEDDING OF GRIDS INTO OPTIMAL HYPERCUBES*

MEE YEE CHAN-

Abstract. This paper addresses the following graph-embedding question: given a grid and the smallest
hypercube with at least as many nodes as the grid has grid points, how can grid points be assigned to
hypercube nodes (with at most one grid point per node) so as to keep grid-neighbors as near each other as
possible in the hypercube? For two-dimensional grids, a simple embedding strategy is introduced which
ensures that grid-neighbors are always mapped to hypercube nodes that are within a distance of two edges
of each other. Moreover, this embedding algorithm takes time linear to the number of grid points. Extending
and adding further concepts, an embedding strategy is formulated for d-dimensional grids which ensures
that grid-neighbors are distanced by O(d) edges in the hypercube. This algorithm takes O(d the number
of grid points) time.

Key words, embedding, hypercubes, grids, dilation, simulation
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1. Introduction. One of the key features of the hypercube is a rich interconnection
structure which permits many important network topologies, such as grids, to be
efficiently simulated. A binary hypercube ofdimension n or binary n-cube can be thought
of as an undirected graph of 2 nodes labeled 0 to 2n- 1 in binary; two nodes are
connected by an edge if and only if their labelings differ in exactly one bit position.
To simulate a grid on the hypercube, nodes of the grid must be mapped to hypercube
nodes. The question of interest here is: how can we map the nodes of any grid to the
nodes of its optimal hypercube (the smallest hypercube with at least as many nodes as
the grid), on a one-to-one basis, so that dilation (the worst case distance between
grid-neighbors in the hypercube) is kept to a minimum?

We consider, first of all, two-dimensional grids. A number of researchers have
studied this problem [BMS], [BS], [CC], [G], [HJ], [SS], with the following results.
Over 61 percent of all two-dimensional grids can be embedded into their optimal
hypercubes with a dilation of 1 (i.e., all grid-neighbors are also neighbors in the
hypercube) by using binary-reflected Gray codes [SS]. For the other over 38 percent
of all two-dimensional grids, which have been proven to need at least dilation 2 [BS],
there are the methods proposed in [BMS], [CC], [G], and [HJ]. [BMS], [HJ], and
[CC] have shown that a substantial percentage of these grids (over 70 percent of the
38 percent) can be embedded with dilation 2, while [G] shows that all two-dimensional
grids can be embedded with dilation 5. The long-time conjecture was that all two-
dimensional grids ought to be embeddable in their optimal hypercubes with at most
dilation 2 [LS]. This paper introduces a simple embedding strategy which finally
confirms this conjecture. In addition, this embedding algorithm is optimal in the sense
that it takes O(afl) time to embed an a x/3 grid.

Having obtained the best possible dilation for all two-dimensional grids, the next
question is: how can the technique be extended to higher-dimensional grids? Trivial
extensions to higher dimensions, unfortunately, tend to cause grids to be mapped to
larger-than-optimal-sized hypercubes. The insistence on embedding into optimal
hypercubes makes the problem nontrivial and requires a careful embedding strategy.

* Received by the editors April 8, 1988; accepted for publication (in revised form) December 17, 1990.
Most of this work was carried out while the author was in the Computer Science Program at the University
of Texas at Dallas, Richardson, Texas. The author is also currently associated with James Capel (Far East)
Limited, Hong Kong.

? Department of Computer Science, University of Hong Kong, Hong Kong.
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The best upper bound up to now for the d-dimensional case is dilation d for a restricted
class of grids [BMS]. No lower bound for dilation is known at this time. We give the
following result: all d-dimensional grids can be embedded in their optimal hypercubes
with dilation at most 4d + 1.

The paper is organized in the following manner. Section 2 introduces the two-
dimensional strategy. Section 3 describes the d-dimensional strategy. Section 4
concludes. Brief abstract versions of 2 and 3 appear in [C1] and [C3], respectively.

2. The two-dimensional embedding strategy. Suppose we are given an a /3 grid
G. Let c 2 tlg2j and / 2 tg2j. The binary-reflected Gray code strateg,y of [SS]
already,embeds G into its optimal hypercube with dilation 1 when c/3 > 2c/3, or a

or/3 =/3 (i.e., a or/3 is a power of two). For this reason, we are only interested in
the case where a/3 <= 2c/, a c, and/3 /. For this case, a dilation of at least 2 is
necessary for embedding G into its optimal hypercube [BS].

With a/3-<2c7/3, our objective is to label each node of the grid with a unique
([log2 a + [log2/31 + 1)-bit binary number, which effectively names the node in the
optimal ([log_ a + [log2/3 + 1)-cube to which it is mapped. Since we have dilation
2 in mind, we allow the labels for grid-neighbors to differ in at most two bit positions.
We will use the 11 x 11 grid, whose optimal hypercube is the 7-cube, as a running
example throughout the rest of this section.

We will determine the label for each node of the grid in two stages: (1) the initial
[log2 cr bits of the label for each node, and then (2) the final [log2/3J + 1 bits of the
label. To arrive at the first [log a bits, the nodes of the grid are systematically
partitioned into c groups, which we call "chains," of at most 2/ nodes each. The
partitioning will be done so that grid-neighbors will be assigned to either the same or
adjacent chains. Thus, in the case of an 11 11 grid, we will partition the grid into
eight groups, chains 1 through 8, of less than or equal to sixteen nodes each, and if a
node is assigned to, say, chain 3, then its grid-neighbors can only belong to chains 2,
3, or 4. Nodes belonging to the same chain will be given the same bits as the first
[log a bits of its label. The first [log2 a bits given to nodes of chain will differ
from the first [log2 a bits given to nodes of chain + 1 by exactly one bit. Hence, the
first [log2 aJ bits of the labels assigned to grid-neighbors will differ in at most one bit
position. The last [log2/3 + 1 bits are determined in two substages. The first substage
ensures that (i) the last [log2/3J + 1 bits for nodes within the same chain are unique
and (ii) the last [log2/3J + 1 bits of grid-neighbors differ by no more than two bits;
thus, at this point, labels for grid-neighbors may differ by as much as three bits, namely,
when their first [log a bits differ by one bit and their last [log2/3J + 1 bits differ by
two bits. The second substage makes a small adjustment to the last [log2/3/+ 1 bits
of the labels to force dilation 2.

Both stages rely heavily on a very special partitioning matrix A(a, fl), or simply
A, an integer matrix comprised of l’s and 2’s having d rows and/3 columns. As we
shall see, with regard to the partitioning of the nodes of grid G into groups or
chains, ai.j (i.e., the element in the ith row, jth column of matrix A) essentially indicates
how many nodes from column j of grid G will belong to chain i. Thus, because we
wish to partition G into c7 chains, matrix A has c rows, and because there are /3
columns in grid G, matrix A has/3 columns. The actual partitioning scheme based on
matrix A will be described later. However, one can get some feeling about the scheme
by referring to the example of matrix A for the 11 x 11 grid given on the next page
and the corresponding division of the 11 x 11 grid into eight chains given in Fig. 2.1(b).
For now, let us define matrix A and take note of some of its properties. Matrix A has
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CHAIN

11111111111
12122122121
22223223222
33333333333
44344444443
45445455454
55555556555
66666666666
77677677776
78778778787
88888888888

(a)

chain

chain 2

chain 3

chain 4

chain 5

chain 6

chain 7

chain 8

(b)

FIG. 2.1. An .example of CHAIN assignment for an 11 x 11 grid.

as its first column the vector

al,1

a2,1

/23,1

a4,1

.a&,l

[3a/cJ [2a/cTJ

L(,, 1)/,,J L(,- z),/,J
Precisely, for all 1 <-_ <- , a,,1 [(i 1) a / t [( 2) a/ Hence, for the 11x 11
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grid, the first column vector is

2

Intuitively, this vector is defined in such a way as to evenly space out the 2’s amidst
the l’s when there are more l’s than 2’s (i.e., when a is closer to c) and the l’s amidst
the 2’s when there are more 2’s than l’s (i.e., when a is closer to 2c7). Note that the
first column vector is defined independent of/3. Before we start to prove the properties
of A, let us state the following inequalities which will be useful in proving subsequent
lemmas.

(1) [d/c] <= [(b+ d)/cJ [b/c] <-_ [d/c]
for any integers b, c, and d. (This inequality follows directly from the inequality

[b/el + [d/cJ <- [(b+d)/cJ <- [b/cJ + [d/c].)
(2) [(b+ d)/c] <- [b/el + [d/cq <-_ [(b+ d)/c]
for any integers b, c and d.

We can verify that each element in the first column of A is indeed either 1 or 2.
LEMMA 2.1.1. For all 1 <= <- , 1 <-_ ai,1 <-- 2.
Proof. From (1) and a > c, we have, for all 1 -<_ _-< c,

1 -<_ [a/c] _-< a,,1 [(i- 1)a/t] [(i-2)a/c] -<_ [a/t] _-<2. U

The entire matrix A is based on a cyclic shift of the first column, i.e., for all
1 -<_ < c and 1 -<j </3, ai,j ai+l,j+l and as,j al,j+l. We have for all 1 <-_ i_-< and
1 <-j <- fl, ai, a(i-j)mod&+l,l"

a1,1 al,2" al,/3]
a2,1 a2,2 a2,/3

A= a.3,1 a.3,2 a3.,/31
/

ac,l aa,2 a,j

"al,1 acL1 aa-l,1

a2,1 al,1 a,,l

a.3,1 a.,l a,l

_a&, a_l,1 a_2,1

Thus, for the 11 x 11 grid, matrix A is the following 8 x 11 matrix:

"2 1 2 1 1

1 2 1 2 1

1 1 2 1 2

2 1 1 2 1

1 2 1 1 2
1 1 2 1 1

2 1 1 2 1

1 2 1 1 2

2 1 1 2 1 2"

1 2 1 1 2 1

1 1 2 1 1 2

2 1 1 2 1 1

1 2 1 1 2 1

2 1 2 1 1 2

1 2 1 2 1 1

1 1 2 1 2 1

For kl=< k2, let ROWSUM(i; kl, k2)=k, a,j and let COLSUM(j; kl, k2)=
.,kk, ai.j for k > k2, ROWSUM(i; kl, k) 0 and COLSUM(j; kl, k2) O.
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The cyclic construction and the even distribution of the 2’s along each column
makes possible the following lemmas about properties of the functions COLSUM and
ROWSUM. To provide some insight as to why we are interested in proving the following
two lemmas, remember that ai.j will tell us how many nodes from column j of grid G
will belong to chain i. So, to make sure all of the nodes of each column of G are
assigned to chains, we need COLSUM(j; 1, )= a for all 1 =<j-</3 (Corollary 2.1.1).
Also, because we would like each chain to have at most 2/3 nodes, we need
ROWSUM(i; 1, fl)<-_2fl for all 1 -< i_-< c (see Corollary 2.1.2). In fact, the following
two lemmas state stronger results: the COLSUM(ROWSUM) of any column (row)
from the first to the kth element differs by no more than one from any other.

LEMMA 2.1.2. Forall l<--j<--fl, l<=k<-, [ka/] <=COLSUM(j; 1, k)_< [ka/.].
Proof. With the cyclic property of matrix A and the telescoping series property

of the elements in A, we have

COLSUM(j; 1, k)

k k
. ad+i_j+l, if 1 _--< k <j
i=1

ai4 a(i-j)modS+l,1--’

a+i_j+l, -{- ai_j+l, if 1 <_--j <_-- k
i-=j

[(t -j+ k)a/] [(d-j)a/.]
[(c- 1)a/tJ [(d-j)a/d] + [a/c] + [(k-j)a/d]

When k <j, from (1), we have

lka/] [(cT-j+ k)a/d] [(d.-j)a/d] <- [ka/].

L(k- d)a/dJ -< [(k-j)a/&] L(d-j)a/&] [(k-d)a/&].
With the above inequalities and (2), we have the following"

[ka/d] <-a+ [(k-d)a/dJ <- [(d,- 1)a/d,J + [(d,-j)a/d,J + [(k-j)a/dJ

COROLLARY 2.1.1. For all 1 <=j <- fl, COLSUM(j; 1, ) a.

Proof The proof follows from Lemma 2.1.2.
LEMMA2.1.3. Forall l <-- i<--_, l <- k<-, [kale] <- ROWSUM(i; 1, k)
Proof Let k pc7 + q where p, q are integers and 0 -< q < c. With the cyclic property

of matrix A and the telescoping series property of the elements in A, since
COLSUM( I" 1 ) E’i=1 ai,1 a by Corollary 2.1.1, we have

ROWSUM( i; 1, k)
k p+q p p&+q

2 ai, 2 a(i_)mod +1,1 2 a(i-j)mod +1,1 -[- 2
j=l j=l j=l j=pc+l

a(i_j) mod &+l,1

c q q

P ai,l+ a(i-s)mod c+l,1 pa + , a(i-j)mod c+l,1
i=1 j----1 j-----1

q

pa + ai_j+ l,1
j=--1

q

pa+ Y a-j+,l+ Y
j=l j=i+l

ac+i-j+l,1 if 1 _-< i-<_ q < t

if0_<- q< i_-< c

As for j-<_ k, from (2), we have aN [(c- 1)a/c] + [a/d]<=a, and from (1), we have
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+ [(i-1)a/J [(i-l-q)a/J if0_-<q<i-<_c

=lpoz + t(i-1)a/tJ + [ce/aq+ [(- l)a/J t(-q+ i-1)ce/J
ifl_--< i_--<q<t.

When q < i, from (1),

[k/J =pa+ [qa/J Npa+ [(i- 1)a/J [(i-l-q)a/]

As for iNq, from (2), we have N [a/]+ [(- 1)a/] N, and from (1), we have

L(q-)a/] [(i-1)a/]- t(-q+ i- 1)a/] N [(q-)a/].

From these inequalities and (2), we have the following:

+ [(i- + + q+ i-

Npa+a+ [(q-)a/] [ka/].

COROLLARY 2.1.2. For all 1 N N ,
ROWSUM(i; 1, fl)N [fla/] N2.

Proo Follows from Lemma 2.1.3 and aft N 2fl. U
Armed with matrix A, we are now ready to talk about the embedding strategy.

To make things somewhat easier to understand, we will actually show first how to
embed G into its optimal hypercube with dilation 3, discuss the propeies of the
dilation-3 embedding, and then modify the embedding to produce a dilation-2 embed-
ding. Hencefoh, we use [x, y] to denote the node in row x, column y of the grid G,
1 N x N a and 1 N y N ft. The dilation-3 embedding strategy is outlined below. Explana-
tions for each step of the strategy are found in the paragraphs following the outline.

DILAtIOn-3 EMBEDDING SWWEGY.
(1) Construct A(a, fl).
(2) For each node [x, y of G, compute CHAIN[x, y], (1 N CHAIN[x, y N ), where

CHAIN[x, y] z if and only if COLSUM(y; 1, z 1) < x N COLSUM(y; 1, z).
(3) For each node [x, y] of G, compute NUMBER[x, y], (1N NUMBER[x, y] N2fl),

where NUMBER[x, y] 1 + ROWSUM(CHAIN[x, y]; 1, y- 1)+ [x, y] and

1 if CHAIN[x + 1, y] CHAIN[x, y]
[x,y]

0 otherwise.

(4) For each node Ix, y] of G, compute MARK[x, y] where

MARK x, y CHAIN[x, y COLSUM 1; 1, CHAIN[x, y]) + NUMBER x, y].

(5) Let GY(t,p) denote the ((p-1) mod2’+l)th element of the t-bit binary-
reflected Gray code sequence. (For example, GY(3, 4)010 since 010 is the
fouh element of (000,001,011,010,110,111,101,100).) Let the first [log2 a] bits of
the label given to node Ix, y] of G be GY([log a], CHAIN[x,y]) and the
last [log fl] + 1 bits be GY( [log fl] + 1, MARK[x, y]).

In step (2), the nodes of G are paitioned into chains. CHAIN[x, y] tells us
to which chain the node [x, y] belongs. Since a, essentially tells us how many nodes
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from column j of grid G belong to chain i, there will be either one or two nodes from
any column of G belonging to a chain. In particular, if Ix, y] is the only node from
column y belonging to CHAIN[x, y] z, then a.y 1, COLSUM(y; 1, z) x,
COLSUM(y; 1, z 1) x 1, and COLSUM(y; 1, z / 1) _-> x / 1. Alternatively, if both
Ix, y] and [x + 1, y] belong to CHAIN[x, y] CHAIN[x + 1, y] z, then a.y 2,
COLSUM(y; 1, z) x / 1, COLSUM(y; 1, z- 1) x- 1, and COLSUM(y; 1, z / 1) >-

x+2.
From the way CHAIN[x, y] is defined and from Corollary 2.1.1, clearly 1 _-<

CHAIN[x, y] <-. Since there are a, nodes from column j of grid G belonging to
chain i, the number of nodes in chain is ROWSUM(i; 1,/3) and ROWSUM(i; 1, )<-
2/3 according to Corollary 2.1.2. Figure 2.1(a) gives the 11 x 11 CHAIN values for the
11 x 11 grid. Figure 2.1(b) uses line segments to join together nodes belonging to the
same chain. The convention used in drawing line segments is the following: two nodes
in the same column belonging to the same chain are joined by a line segment, and the
topmost node in column j belonging to chain is joined to the bottommost node in
column j + 1 belonging to the same chain i. The reader can easily verify that in Fig.
2.1, for the 11 x 11 grid, there are less than or equal to 16 nodes belonging to each of
the eight chains, and grid-neighbors are given CHAIN values that differ by at most 1.

Before we proceed further to prove formally that the CHAIN values given to
grid-neighbors will differ by at most 1, we shall introduce some lemmas and corollaries
which will be useful in the proofs of later results. The following lemma states the
relationship between the COLSUMs of adjacent columns and is based on the cyclic
construction of A.

LEMMA 2.1.4. COLSUM(y+ 1; 1, z) COLSUM(y; 1, z)- a.y+ al,y+l.

Proof

i=1 i=2 i=2

al,y+l- az, y / ai, y al,y+l- az, y / COLSUM(y; 1, z).
i-----1

COROLLARY 2.1.3. If COLSUM(y; 1, z) COLSUM(y+ 1; 1, z), then al,y+l

Proof The proof directly follows from Lemma 2.1.4.
COROLLARY 2.1.4. IfCOLSUM(y; 1, z)+ 1 COLSUM(y+ 1; 1, z), thenal.y/l

2 and az, y 1.

Proof The proof follows from Lemmas 2.1.4 and 2.1.1. U
With an argument similar to that used in Lemma 2.1.4, we have a similar statement

concerning ROWSUMs.
LEMMA 2.1.5. ROWSUM(z + 1; 1, y) ROWSUM(z; 1, y) + az+l. az, y.
The following observation can be made concerning the topmost node in column

j belonging to chain and the bottommost node in column j+ 1 belonging also to
chain i. It will be used extensively in the proofs of later lemmas. Based on this
observation, we see that line segments of any chain can only be between horizontal
grid-neighbors (i.e., Ix, y] and Ix, y+ 1]), or vertical grid-neighbors (i.e., Ix, y] and
Ix + 1, y]), or that they slope down at most one row from Ix, y] to Ix + 1, y + 1].

LEMMA 2.1.6. Let Ix, y] be the topmost node in column y belonging to chain z and
Ix’, y+ 1] be the bottommost node in column y+ 1 belonging also to chain z. Then,
O<--x’-x <- 1.
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Proof Since [x,y] is the topmost node in column y belonging to chain z,
COLSUM(y; 1, z)= x + az, y--1. Since Ix’, y+ 1] is the bottommost node in column
y+l belonging also to chain z, COLSUM(y+I; 1, z)=x’. Furthermore, from
Lemma 2.1.4,

COLSUM(y+ 1; 1, z)= COLSUM(y; 1, z)--az, y+ al,y+

X -+- az, y 1 az, y d- al,y+l x 1 -+- al,y+l
Thus, x’--x--al,y+l--1. Since al,y+lE{1,2}, x’E{x,x/l}. [3

Because of the cyclic construction of matrix A and because matrix A is comprised
solely of l’s and 2’s (see Lemma 2.1.1), we have the following lemmas concerning
CHAIN values, i.e., grid-neighbors are either assigned to the same chain or adjacent
chains.

LEMMA 2.2.1. For all 1 <- x < a and 1 <- y <- , 0 <-_ CHAIN[x + 1, y]
CHAIN[x, y] <- 1.

Proof Suppose CHAIN[x, y] z. By definition,

COLSUM(y; 1, z-l) <x<_- COLSUM(y; 1, z).

It can be seen that

COLSUM(y; 1, z- 1) <x + 1 -<_ COLSUM(y; 1, z)+ 1

<- COLSUM(y; 1, z)+ az+l,y COLSUM(y; 1, z + 1).

Thus, z <= CHAIN[x + 1, y <- z + 1.
LEMMA 2.2.2. For all 1 <= x <- a and 1 <= y < fl,

1 <= CHAIN[x, y + 1 CHAIN[x, y <= 1.

Proof Suppose CHAIN[x, y] z. By definition,

COLSUM(y; 1, z 1 < x <= COLSUM(y; 1, z).

From Lemma 2.1.4 and Lemma 2.1.1, we have

COLSUM(y; 1, z- 1) COLSUM(y+ 1; 1, z- 1)+ az-l,y- al,y+l

COLSUM(y+ 1; 1, z-2)+ az-l,y+ d- az_,y--al,y+l

>- COLSUM(y + 1; 1, z 2).

Similarly,

COLSUM(y; 1, z) COLSUM(y+ 1; 1, z)+ az, y-al,y+
COLSUM(y+ 1; 1, z+ 1)-az+l,y+l d- az, y-al,y+l

<-_ COLSUM(y + 1; 1, z + 1).

Thus,

COLSUM(y + 1; 1, z 2) < x <- COLSUM(y + 1; 1, z + 1

and z 1 -< CHAIN[x, y + 1
COROLLARY 2.2.1. The first [log2 a bits of the labels assigned to grid-neighbors

will differ in at most one bit position.
Proof Lemmas 2.2.1 and 2.2.2 show that the CHAIN values of grid-neighbors

differ by at most one. Since the first [log2 a] bits of the label assigned to Ix, y] are
GRAY( [log2 a ], CHAIN[x, y]), the first [log2 a bits of grid-neighbors will differ in
at most one bit position.

Next, in step (3), the nodes of each chain are numbered uniquely and sequentially,
starting at 1 and proceeding along the line segments. NUMBER[x, y] denotes the
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(b) MARK values

FIG. 2.2. Example of NUMBER and MARK values for an 11 x 11 grid.
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number given to node [x, y]. Figure 2.2(a) shows the NUMBER values given to each
node of the 11 11 grid. 6[x, y] is used to account for the case when [x, y] and [x + 1, y]
belong to the same chain and is defined in such a way that NUMBER[x,y]=
NUMBER[x + 1, y] + 1 when CHAIN[x, y] CHAIN[x + 1, y] to be consistent with
the convention that the topmost node in columnj of a chain is joined to the bottommost
node in column j + 1 of the same chain. For example, in Fig. 2.2(a), consider nodes
[2, 4] and [3, 4]" CHAIN[2, 4] CHAIN[3, 4] 2, and NUMBER[2, 4] 6 and
NUMBER[3, 4] 5. In general, if 6[x, y] 1, then aCHAIN[x, y],y-- 2 and 6[x + 1, y] 0
based on the fact that no three nodes from the same column belong to the same chain.

As it turns out, if we were to assign GRAY( [log2/3] + 1, NUMBER[x, y]) as the
last [log2,/3] + 1 bits for the label of node [x, y], we would arrive at a dilation-4
embedding strategy, since it can, in fact, be proved that the numbers assigned to
grid-neighbors differ by at most 3. Close study of Fig. 2.2(a) will reveal that the
difference of 3 occurs when the grid-neighbors are on different chains. For example,
nodes [5,3] and [5, 4] are grid-neighbors which belong to adjacent chains whose
NUMBER values differ by 3. In fact, one can show that the difference is at most 2
for grid-neighbors on the same chain. As it turns out, a simple adjustment or shifting
of this numbering scheme on each chain can ensure that the numbers assigned to all
grid-neighbors differ by at most 2 and thus achieve dilation 3. In Fig. 2.2(a), note that
by subtracting one from each of the NUMBER values associated with nodes of chain
4, chain 4 can be "synchronized" with chain 3 in the sense that if node [x+ 1, y]
belonged to chain 4 and node [x, y] (the node above [x + 1, y]) belonged to chain 3,
they would then have the same NUMBER value. This synchronization allows the
NUMBER values of nodes [5, 3] and [5, 4] to no longer differ by 3 but rather by 2.
In general, we wish to have every chain synchronized with the one above it. The
benefits of synchronization arise when considering horizontal grid-neighbors, [x, y + 1
right of [x, y], that belong to different chains" synchronization limits the possible
scenarios to those shown in Fig. 2.3. Figure 2.3(a) depicts the only scenario possible
for [x, y] belonging to the chain above [x, y + 1 ]’s (Case ii in Lemma 2.3.3), while Fig.
2.3(b) depicts cases where [x, y] belongs to the chain below [x, y+ 1]’s (Case iii of
Lemma 2.3.3). Thus, in step (4), to achieve synchronization, the numbering for chain
z is adjusted or shifted by an offset of z- COLSUM(1; 1, z) to arrive at MARK values.
Figure 2.2(b) gives the MARK values for the 11 11 grid. The reader can easily verify
that, for the 11 11 grid, grid-neighbors have MARK values which differ by at most 2.

We shall show in Lemma 2.3.2 that indeed we have synchronization with the
MARK values; in other words, if node [x + 1, y] belongs to chain z + 1 and node [x, y]
(above [x+l,y]) belongs to chain z, MARK[x+I,y]=MARK[x,y]. Since
NUMBER[x, y] NUMBER[x + 1, y] + 1 when CHAIN[x, y] CHAIN[x + 1, y]

t+2

t+2 t+l

t+l

t+l

t+l

(a) (b)

FIG. 2.3. All possible scenarios for MARK values of horizontal grid-neighbors.
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and MARK values are just shifted NUMBER values, we also expect MARK[x, y]
MARK[x + 1, y] + 1 when CHAIN[x, y] CHAIN[x + 1, y]; this is formally argued
in Lemma 2.3.1. So, Lemma 2.3.1 tells us that vertical grid-neighbors [x, y] and Ix + 1, y]
belonging to the same chain will have MARK values that differ by 1, and Lemma
2.3.2 tells us that vertical grid-neighbors belonging to different chains will have the
same MARK value. Hence, Lemmas 2.3.1 and 2.3.2 combined take care of vertical
grid-neighbors. Lemma 2.3.3 tackles horizontal grid-neighbors.

Finally, since the nodes of chain z received unique NUMBER values ranging
from 1 to ROWSUM(z; 1,/3), the nodes of chain z will receive unique MARK values
ranging from z-COLSUM(1; 1, z)+ 1 to

z- COLSUM(1; 1, z)+ ROWSUM(z; 1, fl) <= z- COLSUM(1; 1, z)+ 2fl
(see Corollary 2.1.2). Thus, nodes of the same chain will receive distinct last [log2 j3] + 1
bits for their labels. Because the last [log/3] + 1 bits for the nodes of the same chain
are unique and nodes of different chains have different first [log a] bits, each node
is given a unique ([log c] + [log/3] + 1)-bit label by the dilation-3 strategy.

Again, because of the cyclic construction of matrix A and because A contains
only l’s and 2’s, we have the following formal proofs for the dilation-3 strategy.

If vertical grid-neighbors [x,y] and [x+ 1, y] belong to the same chain, the
following lemma shows that their MARK values will differ by exactly 1.

LEMMA 2.3.1. For all 1 <= x < a and 1 <= y <-_ such that CHAIN[x, y] z

CHAIN[x + 1, y], MARK[x, y] MARK[x + 1, y] + 1.

Proof Let D=MARK[x,y]-MARK[x+I,y]. As CHAIN[x, y]= z, D=
8[x, y]-[x + 1, y] and 6[x, y]- 1. Since there are at most two grid nodes in each
column belonging to the same chain, [x+2, y] cannot be in the same chain with
[x+ 1, y]. Thus we have 6[x+ 1, y] =0 and D 1.

If vertical grid-neighbors [x, y] and [x+ 1, y] belong to different chains, their
MARK values will be the same as shown in the following lemma.

LEMMA 2.3.2. For all 1 <- x < ce and 1
CHAIN[x + 1, y], MARK[x, y] MARK[x + 1, y].

Proof Since CHAIN[x, y] z CHAIN[x + 1, y], then 8[x, y] 0 and, by
Lemma 2.2.1, CHAIN[x + 1, y] z + 1. Thus, we have

D MARK[x + 1, y] MARK[x, y]

1-COLSUM(1; 1, z+I)+COLSUM(1; 1, z)

+ROWSUM(z+ I; 1, y-1)-ROWSUM(z; 1, y-1)+8[x+ l, y].

Furthermore, we have

COLSUM(1; 1, z+ 1)= COLSUM(1; 1, z)+ az+,
and, by Lemma 2.1.5, we have

ROWSUM(z+ I; 1, y-1)=az+,+ROWSUM(z; 1, y-1)-a,y_.
As CHAIN[x+ 1, y] z, depending on the value of az+,y, Ix + 1, y] and [x+2, y]
may or may not be in the same chain, i.e., 6[x+ 1, y]= az+,y-1 a,y_-1. Thus
D=0.

The following lemma shows that the MARK values of horizontal grid-neighbors
Ix, y] and Ix, y + 1] will never be thesame but that they differ by no more than 2.

LEMMA 2.3.3. For all 1 = x = and 1 y

1 MARK[x, y + 1 MARK[x, y] 2.

Proof. Suppose CHAIN[x, y] z, and let D MARK[x, y + 1]- MARK[x, y].
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Case i. CHAIN[x, y + 1 z.

D= ROWSUM(z; 1, y)-ROWSUM(z; 1, y-1)+6[x, y+ 1]- 6[x, y]

az, y + 6Ix, y + 1 (3[x, y].

If [x, y] 1, Ix, y] and Ix + 1, y] should belong to the same chain z; in other
words, there are 2 nodes in column y of grid G in chain z. Thus, we have az, y 2 and
l__<D_<2.

If [x, y] 0 and az, y 1, then 1 _-< D -< 2.
If 6Ix, y] =0 and az, y 2, then [x, y+ 1] =0. Assume to the contrary that [x, y+

1 1. Since [x, y] 0 and az, y 2, the topmost node in column y belonging to chain
z is Ix- 1, y]; similarly, as [x, y+ 1] 1 and CHAIN[x, y+ 1] z, the bottommost
node in column y+ 1 belonging to chain z is [x+ 1, y+ 1]. This contradicts Lemma
2.1.6. Therefore, we have 6Ix, y+ 1]--0 and D 2.

Case ii. CHAIN[x, y+ 1]= z+ 1 (Fig. 2.3(a)).

D--1-COLSUM(1; 1, z+I)+COLSUM(1; 1, z)+ROWSUM(z+I; 1, y)

-ROWSUM(z; 1, y-1)+6[x,y+l]-[x,y].

We have COLSUM(1;1, z+I)=COLSUM(1;1, z)+a,z+ and ROWSUM(z+I;
1, y) ROWSUM(z; 1, y- 1)+ al,z+ (by Lemma 2.1.5). Thus,

D=l+a[x,y+l]-a{x,y].

Note that 6Ix, y] =0. Assume to the contrary that [x, y] 1. Since [x, y] 1,
the topmost node in column y belonging to chain z is Ix, y]. Since CHAIN[x, y + 1
z + 1, the bottommost node in column y + 1 belonging to chain z is either Ix- 1, y + 1
or Ix-2, y + 1]. In either case, this contradicts Lemma 2.1.6.

Also, [x, y + 1 1. Assume to the contrary that 6[x, y + 1 0. Then, the topmost
node in column y belonging to chain z+l is [x+l,y]. Since 6[x,y+l]=0, the
bottommost node in column y + 1 belonging to chain z + 1 is [x, y + 1 ]. This contradicts
Lemma 2.1.6.

With [x, y] 0 and 3Ix, y + 1] 1, D 2.
Case iii. CHAIN[x, y+ 1] z- 1 (Fig. 2.3(b)).

As COLSUM(1; 1, z) COLSUM(1; 1, z- 1)+ a,, and by Lemma 2.1.5,

ROWSUM(z- 1; 1, y) ROWSUM(z; 1, y) az, + a_,y
ROWSUM(z; 1, y- 1)+ az, y- az, + az, y+ (as az-l,y a,y+l),

we have D=a,y+az,y+l-l+[x,y+l]-[x,y].
Note that 6[x,y+l]=0. Suppose to the contrary that [x,y+l]=l. Since

CHAIN[x, y] z, the topmost node in column y belonging to chain z is either Ix, y]
or Ix- 1, y]. Since 6Ix, y + 1] 1 and CHAIN[x, y + 1 z- 1, the bottommost node
in column y+l belonging to chain z is either [x+2, y+ 1] or [x+3, y+ 1]. This
contradicts Lemma 2.1.6.

Also, note that az, y+l 1. Suppose to the contrary that az, y+l=2. Since
CHAIN[x, y] z, the topmost node in column y belonging to chain z is either Ix, y]
or Ix- 1, y]. Since CHAIN[x, y + 1] z- 1 and az, y+l 2, the bottommost node in
column y + 1 belonging to chain z is [x + 2, y + 1]. This contradicts Lemma 2.1.6.

If 3[x, y] 0, then az, y 1. Suppose to the contrary that az, y 2. Since 3Ix, y] 0
and az, y=2, the topmost node in column y belonging to chain z is Ix-1, y]. If
6[x,y+ 1]=0 and CHAIN[x,y+ 1]= z-l, the bottommost node in column y+ 1
belonging to chain z is either [x + 1, y + 1] or Ix + 2, y + 1]. This contradicts Lemma
2.1.6. Thus, az, y--1. With 6Ix, y+ 1]=0 and az, y+l--1, D---1.
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If [x, y]= 1, then az, y 2. With g[x, y+ 1]=0 and az, y+l--1, D= 1. [3

COROLLARY 2.3.1. The last [log2/3 + 1 bits of the labels assigned to grid-neighbors
will differ in at most two bit positions.

Proof Lemmas 2.3.1, 2.3.2, and 2.3.3 show that the MARK values ofgrid-neighbors
differ by at most two. Since the last [log2/3] + 1 bits of the label assigned to [x, y] is
GRAY([log2 ] + 1, MARK[x, y]), the last [log2/3] + 1 bits of grid-neighbors will
differ in at most two bit positions. [3

Corollaries 2.2.1 and 2.3.1 combined tell us that the dilation-3 embedding strategy
does indeed yield a dilation of at most 3. To achieve a dilation-2 embedding, our
strategy is to modify the last bit. In view of this, we make the following observations
about the first [log2 ce + [log2 flJ bits of the ([log2 ce + [log/3 + 1)-bit label.

LEMMA2.4.1. Thefirst [log2/31 bits ofthe last [log2 flJ + 1 bits ofthe labels assigned
to grid-neighbors will differ in at most one bit position.

Proof Consider any pair of grid-neighbors. If they differ in at most one bit position
in the last [log2/3J + 1 bits of their labels, then clearly the first [log2/3J bits of the last
[logz/3] + 1 bits of their labels will differ in at most one bit position. Otherwise, by
Corollary 2.3.1, it must be the case that the grid-neighbors differ in exactly two bit
positions of the last [log2/3 + 1 bits of their labels, and moreover, their MARK values
differ by exactly two. Since binary-reflected Gray code is used, the grid-neighbors will
have different last bits; thus, the first [log/3] bits of the last [log/3] + 1 bits of the
labels assigned to grid-neighbors will differ in at most one bit position. [3

COROLLARY 2.4.1. The first [log2 ce + [log/3J bits of the labels assigned to grid-
neighbors will differ in at most two bit positions.

Proof By Corollary 2.2.1, the first [log2 ceJ bits of the labels assigned to grid-
neighbors will differ in at most one bit position. With Lemma 2.4.1, the corollary
follows. [3

COROLLARY 2.4.2. If the first [log2 ceJ + [log2/3J bits of the labels assigned to

grid-neighbors differ in exactly two bit positions, the two grid-neighbors must be assigned
to different chains.

Proof Since the first [log2 ceJ bits of the labels must differ in one bit position,
the two grid-neighbors must be assigned to adjacent chains. [3

LEMMA 2.4.2. At most two nodes will have the same first [log2 ce] + [log2 fl] bits

for their labels.
Proof Since each node is given a unique [log2 ce + [log2/3 + 1)-bit label by the

dilation-3 strategy, at most two nodes will have the same first [log2 ce] + [logz/3J bits
for their labels. [3

DILATION-2 EMBEDDING STRATEGY
(1) Assume, without loss of generality, that ce _-<3c/2. (Either ce _-< 3c/2 or/3-<_3//2;

for otherwise, ceil > 9c//4 > 2c/.) Construct A(ce,/3).
(2)-(5) as in the dilation-3 strategy.
(6) Modify the last bit of each node so that

(a) two nodes with the same first [log2 ceJ + [logz/3J bits will differ in their last
bit, and
(b) two grid-neighbors with first [log. ceJ + Llog2/3J bits which differ in exactly
two bit positions will have the same last bit.

By design, this strategy forces a dilation of at most two via step (6). What remains
is to show that step (6) can always be accomplished. To this end, we will construct a
dependency graph G’= (V, E) which has as its nodes the nodes of G, i.e.,

V(G’)={{x,y][l<-x<-ce, 1-<y <-/3}.
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There is an edge between two nodes in G’ if and only if either they have the same
first [log2 a + [log2/3 bits, or they are grid-neighbors whose first [log a + [log/3
bits differ in exactly two bit positions. An edge between nodes Ix, y] and [u, v] indicates
that the last bit assigned to Ix, y] will affect the last bit assigned to [u, v l, and vice
versa, based on the idea that distinct labels are assigned to different nodes and
grid-neighbors are within dilation 2 of each other. Certainly, if G’ is acyclic, then step
(6) can be accomplished. The assumption made in step (1) will help in proving G’ to
be acyclic. Note that some of the claims in the remainder of this section only hold
with this assumption. Figure 2.4 shows G’ for the 11 11 grid.

twins

critical pairs

FIG. 2.4. Dependency graph G’ for an 11 x 11 grid.

We introduce some additional terminology. Nodes [x, y] and [u, v] are said to be
twins if and only if they have the same first [log aJ + [log flJ bits. Nodes Ix, y] and
[u, v] are said to be a critical pair if and only if they are grid-neighbors whose first
[log2 a + [log2/3 bits differ in exactly two bit positions. Thus, the edges of G’, E (G’),
are either between twins or critical pairs. By the definition of twins and Corollary 2.4.2,
twins must belong to the same chain while critical pairs are in different chains. A
distinction is made between edges joining twins and edges joining critical pairs in Fig.
2.4. Note that edges joining critical pairs are all between horizontal grid-neighbors,
i.e., between Ix, y] and Ix, y+ 1], belonging to different chains. This observation is
captured by the following lemma.

LEMMA 2.5.1. If [x, y] and u, v] are a critical pair, then u, v] {[x, y 1 ],
[x, y+ 1]}.

Proof Because [x, y] and [u, v] are a critical pair, by definition they must be
grid-neighbors, i.e.,

[u, vl{[x,y- 1], [x,y+ 1], [x-l,y], [x+l,y]},
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and by Corollary 2.4.2 they must belong to different chains. Assume that [x, y] and
[u, v] are vertical grid-neighbors. By Lemma 2.3.2, their MARK values must be the
same, making it impossible for them to be a critical pair. Therefore, [u, v] and [x, y]
must be horizontal grid-neighbors.

Note also that edges joining twins are line segments of chains, with the exception
of "wraparound" edges. An edge between twins [x, y] and [u, v] in G’ is said to be a
wraparound edge if and only if y- 1 and v fl, i.e., a wraparound edge connects a
node in the first column of G’ with a node in the last. Thus, upon inspecting the edges
shown in Fig. 2.4, we find that, apart from wraparound edges, the edges in G’ are
either between horizontal grid-neighbors (i.e., [x, y] and [x, y+ 1]) or vertical grid-
neighbors (i.e., Ix, y] and Ix + 1, y]), or that they slope down from Ix, y] to [x + 1, y + 1].
This observation is captured by the following lemma.

LEMMA 2.5.2. If edge {Ix, y], [u, v]} E(G’) is not a wraparound edge, then

[u, v] {Ix, y- 1], Ix, y+ 1], [x-l,y- 1], Ix- 1, y], [x+ 1, y], [x+ 1, y+ 1]}.

Proof If edge {[x, y], [u, v]} E(G’), then either [x, y] and [u, v] are twins, or
Ix, y] and [u, v] are critical pairs. If Ix, y] and [u, v] are critical pairs, then, by Lemma
2.5.1, [u, v] {Ix, y 1], [x, y + 1]}. What remains is to consider the case when Ix, y]
and [u, v] are twins and the edge between them is not a wraparound edge. Thus,
CHAIN[x, y] CHAIN[u, v], and MARK[x, y] and MARK[u, v] differ by 1. From
the way in which nodes are given MARK values, Ix, y] and [u, v] must be joined by
a line segment of CHAIN[x, y]. Thus [u,v] can neither be [x-l,y+l] nor
[x+l,y-1]. El

There are various useful properties associated with a wraparound edge joining
twins Ix, 1 and u,/3 ]"

(i) ROWSUM(CHAIN[x, 1]; 1, fl)-2/ because Ix, 1] and [u,3] must be the
two end-nodes of the same chain and must be exactly 2-1 apart in order to have
the first [log: aJ + [log: flJ bits of their labels be the same.

(ii) If 1 <-x < , CHAIN[x+ 1, 1] CHAIN[x, 1]- CHAIN[u, fl] by the same
argument as in (i), thus we must have 8[x, 1]- 0 in order that NUMBER[x, 1]-- 1.

(iii) If 1 u <- , CHAIN[x, 1] CHAIN[u, fl] CHAIN[u 1, fl] by the same
argument as in (i); thus we must have 8[u-1, fl]=0 in order that NUMBER[u, fl]
be the largest among all nodes in the chain.

In Fig. 2.4, there is only one wraparound edge" {[2, 1], [1, 11]}. The reader can
easily check, by looking back at Fig. 2.1(b), that the chain for [2, 1] and [1, 11], i.e.
chain 1, does indeed have 16 nodes in it and node [3, 1] does not belong to chain 1.

The proof that G’ is acyclic proceeds by contradiction. Suppose G’ has a simple
cycle. Let the sequence of nodes in the cycle [/21, Vl], [/’/2, V2],"" ", It/m--i, Vm--1],
[Um, Vm], [U, V], where [u, vii is such that, for all 2<-i<=rn, u<=u and if u=u,
then v < v. In other words, we let the leftmost (least column-wise) from among the
topmost (least row-wise) nodes in the cycle be deemed the first node [Ul, v] of the
cycle. We shall prove that, if [u, v] is the first node of the cycle, then, without loss
of generality, {[u, v], Urn, V,,]} must be a wraparound edge. Furthermore, if {[ u, vii,
[u, Vm]} is a wraparound edge and [u, Vl] is the leftmost among the topmost nodes
in the cycle, then acHaIN[u,v], 1, which implies that the number of nodes in
CHAIN[u, v] is less than 2/3. Thus, this leads to a contradiction of the fact
that a chain with a wraparound edge is of maximum length 2/3.

Note that either [u, v] and [u:, v:] are a critical pair, or [u, vii and [Um, V,]
are a critical pair, since both pairs cannot be twins. So, we can assume without loss
of generality, that [u, v] and [u_, v:] are a critical pair (otherwise, consider [u, v],
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[Urn, Vm], [U,-I, Vm-1],’’’,[U2, V2], [U, V] instead), implying that [u2, v2]
{[Ul, v 1], [ui, vl + 1]} (by Lemma 2.5.1). However, since [ul, vii is leftmost from
among the topmost nodes in the cycle, then [u2, v2]=[ul, vl+ 1]. Note that since

vl < v2, [u, vii cannot be in the last column, i.e., vl </3.
Next, we wish to argue that {[ul, vl], [urn, Vm]}e E(G’) must be a wraparound

edge. In so doing, we make use of the following convenient fact.
LEMMA 2.5.3. When a<--_3E/2, for all l_-<j</3, al,j+al,j+lN3.
Proof.

f[a/c]+[(c-l)a/c]-[(c-2)a/c] ifj=l

/ [(c -j+ 1)a/] [(c -j- 1)a/c] if 1 <j < c
a,j+al,j+l

][a/EJ+[a/E] ifj=c

I,a,_ + al,+1- ifj > c.
Using (1) and (2), we can show that al,j+al,+l -< [2a/c]. The lemma follows since
a 3/2. I-1

LEMMA 2.5.4. {[Ul, Vii, [Urn, Vm]} E(G’) must be a wraparound edge.
Proof. Assume to the contrary that {[ul, vii, [Um, Vm]} E(G’) is nota wraparound

edge. Then, by Lemma 2.5.2,

[Um, Dm] {[Ul, Vl--1], [Ul,

[u,- 1, v 1 ], [/’/1- 1, Vl], U - 1, /)1], l’/1 -- 1, V - 1 ]}.

However, since [ul, Vl] is leftmost from among the topmost nodes in the cycle and
[Um, Vm][Ul,Vl+I]=[U2, V2], then [Um, Vm]{[Ul+l, Vl],[ul+l, vl+l]}. By
Lemma 2.5.1, we know that [Ul, vl] and [Urn, Vm] are twins. So, [Urn-i, Vm-1] and
[urn, Vm] are a critical pair and by Lemma 2.5.1, [Urn-l, Vm-1]
{[Urn, Vm- 1], [Urn, Vm + 1]}. The remaining possibilities can now separate into three
cases, all of which will be shown to be impossible.

Case a. [Urn, Vm] [Ul + 1, Vl + 1]. (See Fig. 2.5(a).)
Because [u, Vl] and [b/m, /Am] are twins, the first [log2 flJ bits ofthe last [log/3J + 1

bits of the labels of [Ul, vii and [Urn, Vm] must be equal. Since [Urn, Vm] =[U+ 1, V2],
by Lemma 2.3.1, MARK[u,,, Vm]--MARK[u2, v] and the first [10g2/3] bits of the
last [log2/3] + 1 bits of the labels of [Um, V,,] and [u2, v2] must also be equal. This
makes it impossible for [ul, Vl] and [u2, v2] to be a critical pair. Thus, this case is
impossible.

Case b. [Um, Vm] [Ul + 1, VII and [u,,-1, Vm-1] [Um, Vm + 1]. (See Fig. 2.5(b).)
Since [u2, v] and [Ul, vii are a critical pair, [Ul, vii and [Um, Vm] are twins, and

[Um, Vm] and [Um-1, Vm-] are a critical pair, CHAIN[u2, v2] and CHAIN[ul, vii differ
by one, CHAIN[ul, vii CHAIN[urn, Vm], and CHAIN[urn, Vm] and
CHAIN[urn_l, Vm-1] differ by one. However, [u2, v2] and [u,,-1, Vm-1] are grid-neigh-
bors, and hence, by Lemma 2.2.1, CHAIN[u2, v2] and CHAIN[um_I, Vm-1] should

[u ,v] [u ,v [u ,v] [u ,v ]. s [u ,v] [u ,v

[um,vm [Um,Vm [u m- ,v m- [u m- ’Vm-
(a) (b)

FIG. 2.5. Impossible cases in G’ for cycle formation.

oT
[Um,Vm]

(c)
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differ by at most one. This means that CHAIN[u2, v2]-- CHAIN[u,,_1, v,,_l]. Hence,
the edge joining the topmost node of column Vl belonging to CHAIN[u1, vl] and the
bottommost node of column v2 vl + 1 belonging to the same chain must slope upward
or slope downward too much, violating Lemma 2.1.6. Thus, this case is also impossible.

Case c. [Um, Vm]=[ul+l, Vl] and [u,,-1, )m-1] [Um, V,,-- 1]. (See Fig. 2.5(c).)
First note that nodes S and T in Fig. 2.5(c) must belong to the same chain as

[ul, vii and [u,,, Vm] (for otherwise, Lemma 2.1.6 would be violated, i.e., the line
segments of CHAIN[u1, vii from column vl-1 to vl and from column vl to vl + 1
will slope upward or slope downward too much). This means that

COLSUM(vl- 1; 1, CHAIN[u1, Vl] Ul, COLSUM(vl; 1, CHAIN[u1, )1]) Ul -" 1

and

COLSUM(vl + 1; 1, CHAIN[u1, vii)--> ul / 1

(because CHAIN[um_I, Vm-1] CHAIN[S]), which implies that al, 2 and al,l+l
2 (by Corollaries 2.1.4 and 2.1.3). This contradicts Lemma 2.5.3.

Given that {July1], [Um, Vm]} is a wraparound edge and because vl </3, we have
vl 1 and Vm =/3. Thus, from now on, we denote {[ul, 1 ], [u,,,/3 ]} as the wraparound
edge. The next five lemmas concern ROWSUMs and COLSUMs within matrix A,
with particular attention paid to row 1, row CHAIN[u1,1], and columns 1, v--2,
Vm-1 --=/3 1 and/3 of A. Taking full advantage of {[ ul, 1 ], u,,,/3 ]} being a wraparound
edge, with these lemmas we finally arrive at the contradiction that G’ contains a cycle.

The following lemma shows that the number of nodes in columns 1 to k of the
first chain is at least as many as the number of nodes in columns 1 to k of CHAIN[ul, 1
for any 1 =< k _<-/3.

LZMMA 2.6.1. For all 1 <= k <= ,
ROWSUM(CHAIN[ul, 1]; 1, k) <= ROWSUM(1; 1, k)=

Proof Let k pc + q where p, q are integers and 0 <= q < c.
ROWSUM(1; 1, k) =pa + ROWSUM(1; 1, q)

=pc+ [(c- 1)a/cJ L(c- q)a/cJ

=per+a- L(c-q)cr/c] =per+ rqcr/cl fko/l,

and from Lemma 2.1.3, ROWSUM(CHAIN[ul, 1]; 1, k)<= [ka/].
The next lemma shows that the chain with the wraparound edge and the first

chain are both of maximum length.
LEMMA 2.6.2. ROWSUM(CHAIN[ul, 1]; 1,/3) ROWSUM(1; 1, fl) 2ft.
Proof Because {[Ul, 1],.[u,,,/3]} is a wraparound edge, ROW-

SUM(CHAIN[u1, 1]; 1,/3) 2/3. From Lemma 2.6.1, we have

ROWSUM(CHAIN[ul, 1]; 1,/3) <- ROWSUM(1; 1, ) <= [a/ ffz <=2,8.

The lemma rllows.
LMMA 2.(;.3. COLSUM(1; 1, CHAIN[u1,1])= ul and COLSUM(2; 1,

CHAIN[u1, 1 ]) u 1.
Proof Because {[ul, 1, [urn,/3]} is a wraparound edge, CHAIN[

CHAIN[ul, 1], and thus, COtSUM(1; 1, CHAIN[u1,1])=u. Then, from Lemma
2.1.2,

COLSUM(2; 1, CHAINrtua, 1]) {u- 1, u, ua + 1}.
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Since [/’/1, 1] and [u2, 2] are a critical pair, CHAIN[u2, 2] CHAIN[u, 1] and thus,

COLSUM(2; 1, CHAIN[ua, 1]) Ul u2.

Suppose COLSUM(2; 1, CHAIN[u1, 1])= u + 1. COLSUM(1; 1, CHAIN[ul, 1])=
Ul and COLSUM(2; 1, CHAIN[u1,1]) Ul+ 1 imply that al,2-- 2 (Corollary 2.1.4).
Since a,l-- [a/] =2, a,al,=4 contradicts Lemma 2.5.3. Thus, COL-
SUM(2; 1, CHAIN[u1,1]) Ul- 1.

LEMMA 2.6.4.

COLSUM(fl; 1, CHAIN[u1,1]) u u,

and

COLSUM( 1; 1, CHAIN[ul, 1]) Ul- 1.

Proof By Lemmas 2.6.3 and 2.1.2,

COLSUM(-1; 1, CHAIN[u, 1]), COLSUM(fl; 1, CHAIN[ul, 1])6 {u-1, u}.

Because {[u, 1 ], [u,,, fl ]} is a wraparound edge, CHAIN[u,,, fl CHAIN[u, 1 ]. So,
COLSUM(; 1, CHAIN[u1,1]) ->_ u,,. u,, _-> u since [u, 1] is topmost. Thus,

COLSUM([3; 1, CHAIN[u1,1])= Um= Ul.

Since CHAIN[um_, 1] CHAIN[u,,, fl], then COLSUM( 1; 1,
CHAIN[ul, 1 ]) # u. Thus,

COLSUM(fl 1; 1, CHAIN[u1,1]) =//1- 1.

LEMMA 2.6.5. al,/3 2 and aCHAiN[u,],--- 1.

Proof Lemma 2.6.4 implies that a,t =2 by Corollary 2.1.4. Because {[Ul, 1],
[Urn, fl]} is a wraparound edge,

CHAIN[Um- 1, fl CHAIN[ u,,,, [3 CHAIN[u 1 ].

Lemma 2.6.4 says that

COLSUM([3; 1, CHAIN[u, 1 u u,,,.

Thus, aCHAIN[u,I],I aCHAIN[um,],i 1. U
There is the following contradiction: Lemmas 2.6.1 and 2.6.5 imply that

ROWSUM(CHAIN[u, 1]; 1,/3)

ROWSUM(CHAIN[u, 1]; 1,/3- 1)+ acnAISt,.l,

<= ROWSUM(1; 1, 1) + aCHAIN[u ,1 ],/3

<= ROWSUM(1; 1, )- a,3 + aCHAt,,,I,e <-- 2 1,

which contradicts Lemma 2.6.2. Thus G’ is acyclic.
Since G’ is acyclic, step (6) of the algorithm can always be done. Implementation-

wise, step (6) can be done by first building dependency graph G’ and then traversing
G’ by either using a breadth-first or depth-first tree traversal scheme. When each node
T is visited for the first time, its last bit is determined. Suppose T’s parent in the
breadth-first or depth-first tree is S. If S and T are twins, then make T’s last bit different
from S’s. If, on the other hand, S and T are a critical pair, then make T’s last bit the
same as S’s.



852 MEE YEE CHAN

Let us now look at the overall time complexity for our dilation-2 embedding
strategy. Computing the c /3 matrix A(a,/3) takes O(c/3) time since each element
of A can be computed in constant time. Determining the first [log2 c bits of the labels
for all nodes [x, y], 1 _-<x=< a and 1 <_-y =</3, takes O(a/3) time since CHAIN[x, y] for
all nodes Ix, y] can be computed in O(a/3) time. Determining the last [log2/3] + 1 bits
of the labels for all nodes [x, y] also takes O(a/3) time since MARK[x, y] for all nodes
[x, y] can be computed in O(a/3) time, and modifying the last bit for all nodes [x, y]
takes O(a/3) time since the construction and traversal of G’, which has a/3 nodes and
O(a/3) edges, takes O(a/3) time. Thus, we have the following theorem.

THEO.EM 2.1. Any two-dimensional grid can be embedded into its optimal
hypereube with a dilation of at most 2 in 0( time.

3. The d-dimensional embedding strategy. Having obtained the best possible dila-
tion for all two-dimensional grids, the next question is: how can the technique be
extended to higher-dimension grids ? Trivial extensions to higher dimensions, unfortu-
nately, tend to cause grids to be mapped to larger-than-optimal-sized hypercubes. The
insistence on embedding into optimal hypercubes makes the problem nontrivial and
requires a careful embedding strategy. In this section, we give the following result: all
d-dimensional grids can be embedded in their optimal hypercubes with dilation at
most 4d + 1.

The optimal hypercube for an nlxn2x...xn d-dimensional grid is a

[log2 nln2 nd ]-cube. So, given an n x n2 x. x nd d-dimensional grid X, we want
to ultimately map each node of X to a [log2 nine’’’ nd ]-bit label. While our two-
dimensional strategy consists of two stages, our d-dimensional embedding strategy
consists of d stages: at each stage some bits of each node’s label are determined. Once
again, partitioning the nodes plays a key role. Initially, all nodes of X form a single
group. At each successive stage, each group of nodes is in turn partitioned into a
power-of-two number of groups of about equal size. If, at some stage, each group is
partitioned into say 2 groups, then to which of the 2" groups a particular node
belongs determines m additional bits of its label. After d stages, each node will have
a unique label. The partitioning is done in such a way as to ensure that grid-neighbors
belonging to different groups will be given additional bits that differ by no more than
four or five bits; thus, after p stages, neighboring nodes in X have accumulated labels
that differ by at most O(p) bits. The partitioning process is described in terms of chains
and jagged grids, which are introduced in the next section. Jagged grids relate to our
"group" concept. "Chains" partition our groups into smaller groups with about the
same number of nodes. Initially, all nodes in the d-dimensional grid are mapped to
a jagged grid, a two-dimensional grid-like structure. Thus, the partitioning is performed
on a two-dimensional structure rather than a d-dimensional structure.

3.1. Preliminaries: Chains and jagged grids. Essentially, jagged grids are two-
dimensional layouts or arrangements of the nodes of X. Jagged grids play a very
important part in our embedding strategy and have very interesting properties. At each
of the d stages of our embedding algorithm, the jagged grids we deal with will be
"compatible," i.e., they will be similar in size and shape and will have similar properties.
The process used to partition jagged grids is like that of two-dimensional grids. Again,
a partitioning matrix is used to define "chains" to partition the nodes of the jagged
grid in such a way that grid-neighbors are assigned to nearby chains and the number
of nodes in each of the chains differ by no more than 1. After the chains are determined,
nodes within a chain are then laid out to form a smaller jagged grid, which can again
recursively be partitioned into smaller chains and jagged grids. The newly-constructed



EMBEDDING OF GRIDS INTO OPTIMAL HYPERCUBES 853

jagged grids should be compatible and will try to bring nodes in a chain which are
grid-neighbors under a particular dimension closer together for further partitioning.

DEFINITION. An (a, )-jagged grid G is a collection of/3 columns of nodes, each
column having at least a _-> 2 and at most a + 3 nodes; moreover, for any two/c-column
slices S and S’ of G, ]size(S)- size(S’)l <_-3, where 1 _-</c_-</3. A slice S of a
jagged grid is defined to be a subcollection of/c consecutive columns and size(S) is
defined to be the number of nodes in the slice. [3

DEFINITION. Let size(G) denote the number of nodes in the jagged grid G. Two
a, /3 -jagged grids G and G’ are said to be compatible if ]size(G)- size( G’)l -<_ 1 and

for any /c-column slice S taken from G and any /c-column slice S’ taken from G’,
Isize(S) size( S’)l -<_ 3, where 1 _-< k -<_/3. [3

Figure 3.1(a) gives an example of a (5, 6)-jagged grid. There are six columns, each
column with at least five and at most eight nodes. In this jagged grid, the sizes of the
2-column slices spanning columns to 2, 2 to 3, 3 to 4, 4 to 5, and 5 to 6 are 12, 11,
13, 13, and 12, respectively. The sizes of the 3-column slices spanning columns 1 to 3,
2 to 4, 3 to 5, and 4 to 6 are 17, 19, 18, and 20, respectively. The sizes of the 4-column
slices spanning columns 1 to 4, 2 to 5, and 3 to 6 are 25, 24, and 25, respectively. The
sizes of the 5-column slices spanning columns 1 to 5 and 2 to 6 are 30 and 31,
respectively. Thus the sizes of any two 2-column slices will differ by at most 3 (likewise,
for any two 1-column, 3-column, 4-column, or 5-column slices). There is only one
6-column slice.

Henceforth, we shall, for convenience, refer to the nodes of a jagged grid by its
column and row-position within the column. So, for example, in Fig. 3.1(a), we refer
to node U as the node in row-position 1 of column 1, node V as the node in row-position
2 of column 1, and node W as the node in row-position 5 of column 4.

Figure 3.1(b) gives another example of a (5, 6)-jagged grid which happens to be
compatible with the (5 6)-jagged grid shown in Fig. 3.1(a). The reader can verify that
the two jagged grids are indeed compatible with each other.

Five lemmas are introduced in this section. Lemmas 3.1.1 and 3.1.2 ensure that a
jagged grid can be partitioned into power-of-two smaller and compatible jagged grids.
Lemma 3.1.3 ensures that, when two compatible jagged grids are each broken down
into smaller jagged grids, the smaller jagged grids are all also compatible with one
another. Finally, Lemmas 3.1.4 and 3.1.5 make a statement as to the dilation induced
by such a partitioning process.

We first describe the procedure for constructing chains within a, /3 -jagged grids.
This allows for the systematic partitioning of the nodes in the jagged grid.

Procedure for construction chains. We construct d 2 [log2 J 2 chains within an
a, /3 -jagged grid G. To do so, we define three d x/3 matrices A, B, and C, where
matrix A is simply the matrix A(a, fl) introduced in 2 for drawing chains in a
two-dimensional a /3 grid, matrix B is defined below, and matrix C is simply A + B.

For k -< k2, let
k

ROWSUM(M, i; kl, k2)-- Z mi,
j=k

and
k

COLSUM(M,j; kl, k2)-- Z mi,
i=k

where mi, denotes the element in the ith row, jth column of matrix M. For kl> k2,
ROWSUM(M, i; k,, k2)= COLSUM(M,j; k,, k2) O.
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U

(a)

(b)

FG. 3.1. An example of two compatible (5, 6)-jagged grids.

Matrix C will be used in a way similar to how matrix A was used in 2 to define
chains; in particular, ci, will tell us how many nodes from column j of the jagged grid
G will belong to chain i. Thus, matrix C ought to be an c /3 matrix since we wish
to partition the/3 columns of G into chains. To ensure that all of the nodes of each
column of G are assigned to chains, we want COLSUM(C, j; 1, c) to equal the number
of nodes in column j of G. To ensure that the number of nodes in each chain is about
the same, we want

ROWSUM(C, i; 1, fl){[nlJ, [n/]}

where n size(G).
If each column of jagged grid C had a nodes in it, matrix A could immediately

be used to define chains; however, since a column of G may have up to a + 3 nodes,
matrix A needs to be adjusted before it can adequately define chains in jagged grid
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G. Matrix B acts as an adjustment matrix which accounts for the "extra" nodes in the
columns of G. With

COLSUM(B,j; 1, c) (the number of nodes in column j of G)-a<-3,

then clearly, since C A + B, COLSUM(C, j; 1, c) (the number of nodes in column
j of G). Moreover, we construct matrix B to distribute the "extra" nodes of each
column evenly among the c chains, one at a time according to some cyclic order of
the chains, starting with the shorter chains first to make sure that

ROWSUM(C, i; 1, fl){tn/], [n/c]}
where n size(G). To construct B, we apply the following procedure:

(i) Initialize B with all O’s.
(ii) Let ro, r,. ., ra_ be the row numbers 1, 2,..., t, ordered in such a way that

ROWSUM(A, ri" 1, fl) <- ROWSUM(A, ri+l; 1,/3)
(iii) Set to 0.

For j= 1, 2, ,/3"
Do (number of nodes in column j of G)-c times:

Set br,,j to bri,j 471.
Set to (i+ 1) mod c.

Figure 3.2(a) gives an example of matrices A, B, and C for the (5, 6)-jagged grid shown
in Fig. 3.1(a).

For 1 <_- _-< c, 1 _-< j, j’ _<-/3, and 1 _-< q + 1, q’ + 1, q / k, q’ + k <-/3, note the following
properties of matrix A"
(PAl) ai, {1, 2} (from Lemma 2.1.2)
(PA2) COLSUM(A,j; 1, c)=a (from Corollary 2.1.1)
(PA3) ICOLSUM(A,j; 1, i)-COLSUM(A,j’; 1, i)l_-< 1 (from Lemma 2.1.2)
(PA4) IROWSUM(A, i; q+l, q+k)-ROWSUM(A, i’; q’+l, q’+k)l<-I

(see Appendix A).
For 1 _-< _-< c, 1 _-<j, j’ _-</3, and 1 _-< q + 1, q’ + 1, q + k, q’ + k _-</3, properties of B include:
(PB1) Since c -> 2, b, {0, 1, 2} (from construction)

(When c _-> 3, b, {0, 1}, but when c 2, b, might be 2.)
(PB2) COLSUM(B,j; 1, c) =number of nodes in column j of jagged grid

_-< 3 (by construction)
(PB3) ICOLSUM(B,j; 1, i)-COLSUM(B,j’; 1, i)1_-<3 (from PB2)
(PB4) IROWSUM(B,i; q+ 1,q+ k)- ROWSUM(B,i’; q’+ 1, q+ k)l_<-2

(see Appendix B).
For 1 <= <-_ d, 1 <-_ j, j’ <-_ fl, and 1 _-< q / 1, q’ + 1, q + k, q’ + k _-</3, properties of C A+ B,
which follow from the properties of A and B and how B is constructed, include:
(PC1) c,, {1, 2, 3, 4}
(PC2) COLSUM(C,j; 1, c)=number of nodes in column j of jagged grid G
(PC3) ICOLSUM(C,j; 1, i)-COLSUM(C,j’; 1, i)1_-<4
(PC4) IROWSUM(C, i; q+ 1, q+k)-ROWSUM(C, i’; q’+ 1, q’+k)l-<3
(PCS) ROWSUM(C, i; 1, fl){[n/dJ, [n/c]}.
The t chains are drawn in G according to the c /3 matrix C" the ith chain is
comprised of c, nodes from column j. In particular, the first Cl, nodes of column j
will belong to chain 1, the next c2, nodes of column j will belong to chain 2, the next

c3, nodes of column j will belong to chain 3, and so on. Figure 3.2(b) shows the
resulting partition of the (5, 6)-jagged grid shown in Fig. 3.1(a) into four chains. Once
again, we use line segments to join together nodes in the same chain, with the convention
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FIG. 3.2. Matrices A, B, C, and chains for a (5, 6)-jagged grid.

that adjacent nodes in the same column belonging to the same chain are joined by a
line segment, and the topmost node in column j belonging to chain is joined to the
bottommost node in column j + 1 belonging to chain i. Moreover, we can number the
nodes of each chain sequentially, starting at 1, proceeding along the line segments. A
node numbered p in chain is deemed to be the pth node of chain i. F1

DEFINITION. A k-column chain segment S is a segment of a chain which spans k
consecutive columns of the grid, and size(S) is the number of nodes in the chain
segment. [3

LEMMA 3.1.1. Using the above procedure, the n nodes of an (a, )-jagged grid G
can be partitioned into 2 IIg2 J>= 2 chains so that each chain contains either In/]
or In nodes, andfor any two k-column chain segments S and S’, Isize( S) size( S’)l -< 3.
Note that S and S’ may be in different chains.

Proof The proof follows from (PC4) and (PC5). [3

We shall now provide some insight into our embedding strategy by considering
our procedure for decomposing jagged grids into smaller jagged grids in the context
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of trying to embed a three-dimensional grid into its optimal hypercube. Assume that
you have an (a, ky)-jagged grid corresponding to a three-dimensional a k 3’ grid
such that node [xl,x2,x3] of the three-dimensional grid is mapped to the (xl)th
row-position of column x2 + (x3-1) k in the jagged grid. Actually, each column of this
(a, ky)-jagged grid has exactly a nodes. Nodes [xl, x2, X3] and [x + 1, x2, X3] of the
three-dimensional grid are said to be first-coordinate grid-neighbors; likewise, nodes
[Xl, x, x3] and [x, x_ + 1, x3] and nodes [Xl, xe, x3] and [Xl, xe, x3 + 1] are said to be
second-coordinate and third-coordinate grid-neighbors. Notice that first-coordinate grid-
neighbors are in adjacent row-positions within the same column of the (a, ky)-jagged
grid and second-coordinate grid-neighbors are in adjacent columns in the (a,
jagged grid. First of all, the (a, ky)-jagged grid is partitioned into c 2 fg "j chains
of about equal size in such a way that three-dimensional grid nodes mapped to nearby
row-positions (though they may be in different columns) in the (c, ky)-jagged grid
will end up assigned to nearby chains (to be proved in Lemma 3.1.4). The chain to
which a node is assigned determines the first [log aJ bits of its label. This will allow
grid-neighbors to have similar first [logz c bits. A smaller jagged grid is then construc-
ted from each chain. Each chain is partitioned into y k-column chain segments and
each such chain segment forms a column of the smaller jagged grid. Thus, the smaller
jagged grid has 3’ columns. Three-dimensional grid nodes mapped to nearby columns
of the (a, ky)-jagged grid will be placed in nearby row-positions in the smaller
(t, y)-jagged grids though they may be placed in different columns and/or different
smaller jagged grids (to be proved in Lemma 3.1.5). These smaller jagged grids also
bring third-coordinate grid-neighbors somewhat closer together for further partitioning.
When the (a, ky)-jagged grid is decomposed into c smaller (t, y)-jagged grids, note
that first-coordinate and second-coordinate grid-neighbors end up in the same column
and third-coordinate grid-neighbors end up in adjacent columns of the smaller jagged
grids, though they may be in different jagged grids. In fact, node [x, x2, x3] will be
placed in the x3th column of a smaller jagged grid. The formal procedure for construct-
ing smaller jagged grids is described as follows. The smaller jagged grids will be shown
to carry certain properties which will allow further recursive decomposition.

Procedure for constructing smaller jagged grids. We decompose an (c, ky)-jagged
grid into 2tg2"(t, y)-jagged grids in the following manner, where is the size of
the smallest k-column chain segment of G. After drawing c chains within an (c, ky)-
jagged grid G using the above procedure, we can construct a (t, y)-jagged grid G’
from each chain by simply mapping the nodes of the k-column chain segment spanning
columns 1 to k to the first column of G’, the nodes of the k-column chain segment
spanning columns k + 1 to 2k to the second column, the nodes of the k-column chain
segment spanning columns 2k + 1 to 3k to the third column, and so on. In particular,
the pth node of the chain will be the ((p- 1)mod k + 1)st node of a column in G’,
and a node in column j of G will be mapped to column [j/k of G’. The (5, 6)-jagged
grid of Fig. 3.3(a) can be decomposed into the four (4, 2)-jagged grids shown in Fig.
3.3(b) using this procedure with k-3. It can also be decomposed into the four
(2, 3)-jagged grids shown in Fig. 3.3(c) using this procedure with k 2. The nodes in
Fig. 3.3(a) have been labeled with letters, and the nodes of the smaller jagged grids
in Fig. 3.3(b) and 3.3(c) have also been labeled to reflect their origin within the jagged
grid in Fig. 3.3(a). [3

The following two lemmas show that the newly-constructed jagged grids from two
compatible jagged grids are always compatible if they are decomposed in the same
fashion.
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Fit3. 3.3. Example of decomposing into smaller jagged grids.

LEMMA 3.1.2. Using the above procedure, the n nodes of an (, ky)-jagged grid G,
k >-2, can be mapped to d 2 Ug2J pairwise compatible (t, 3,)-jagged grids, each grid
containing either n/J or [n/d nodes, where is the size of the smallest k-column
segment of G.

Proof. With defined as in the lemma and the property that any two k-column
chain segments of G differ by at most 3 in size (see Lemma 3.1.1), as a column in G’
is taken from a k-column chain segment of G, we are ensured that each column of G’
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will have at least and at most + 3 nodes. Clearly, G’ will have 3’ columns, and with
k-> 2, >_-2. Any q-column slice of G’ is created from a kq-column chain segment of
G, hence any two q-column slices of G’ will differ by at most 3 in size (see Lemma
3.1.1). In short, each jagged grid constructed is faithful to the definition of (t, y)-jagged
grids.

Since each chain has either [n/] or [n/] nodes (see Lemma 3.1.1), each jagged
grid will have either [n/] or [n/] nodes. Furthermore, if G and G are two
(t, 7)-jagged grids created from G, any q-column slice of G and any q-column slice
of G will differ by at most 3 in size, since each slice is created from the nodes of a
kq-column chain segment of G (see Lemma 3.1.1). In short, the c (t, y)-jagged grids
are pairwise compatible.

LEMMA 3.1.3. If G and G’ are two compatible (a, ky)-jagged grids, then the 2
(t, y)-jagged grids produced by the above procedure from G and G’ are also pairwise
compatible with each other.

Proof Suppose G has n nodes and G’ has n’=> n nodes. The jagged grids produced
from G will have at least In/c] nodes, while the jagged grids produced from G’ will
have at most [n’/c nodes. Since G and G’ are compatible, n’-n-< 1. So, [n’/ ]-
In c] =< 1. Hence, the 2c jagged grids produced from G and G’ will differ by at most
1 in size.

To argue that any q-column slice of a jagged grid created from G and any q-column
slice of a jagged grid created from G’ will differ by at most 3 in size, we need only
argue that any kq-column chain segment of G and any kq-column chain segment of
G’ will differ by at most 3 in size. Suppose the chains of G and G’ are defined by
C A+ B and C’ A’ + B’, respectively. Note that A A’ A(a,/3). Hence,

IROWSUM(A, i; p + 1, p + kq) ROWSUM(A’, i’; p’ + 1, p’ + kq) <_- 1 (from PA4).

Because G and G’ are compatible, any kq-column slice from G and any kq-column
slice from G’ will differ by at most 3 in size, hence, in regards to matrix B and B’,
using a proof similar to the one in Appendix B,

Thus,

IROWSUM(B, i; p + 1, p + kq) ROWSUM(B’, i’; p’ + 1, p’ + kq) <= 2.

IROWSUM( C, i; p + 1, p + kq) ROWSUM(C’, i’; p’ + 1, p’ + kq) <= 3.

DEFINITION. Let Chain[ G, x, y] denote the chain to which the xth node of column
y in jagged grid G is assigned. Let Pos[ G, x, y] be such that the node in row-position
x of column y in G, after decomposing G into smallerjagged grids using our procedure,
ends up in row-position Pos[G, x, y] within one of the columns of one of the smaller
jagged grids.

For example, let G be the (5, 6)-jagged grid shown in Fig. 3.3(a) which was
decomposed into the four (4, 2)-jagged grid shown in Fig. 3.3(b). Then, Chain[ G, 2, 3]
2 and Pos[G, 2, 3] 4, i.e., the node in row-position 2 of column 3 of G belongs to
chain 2 and is mapped to row-position 4 of one of the columns (in fact, column 1) in
one of the (4, 2)-jagged grids.

Intuitively, since chains somewhat horizontally partition the nodes of a jagged
grid, we can roughly deduce the chain to which a node belongs given its row-position
within a column. The following lemma gives a bound on the chains to which nodes
in two compatible jagged grids belong. Note that the bound is a function of their
row-positions and is independent of their columns.
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LEMMA 3.1.4. Let G and G’ be two compatible (a, )-jagged grids. Then,

[Chain[ G, x, y[ Chain[ G’, x’, y’][-< 4 + Ix x’[.
Proof Let C--A + B and C’= A’+ B’, respectively, be the partitioning matrices

used to draw chains in G and G’ by our procedure for constructing chains. Since
A= A’= A(a, fl),

[COLSUM(A,j; 1, p)- COLSUM(A’,j’; 1, P)I -<- 1 (from PA3).

Since

Thus,

O<=COLSUM(B,j; 1,p), COLSUM(B’,j’; 1,p)=<3 (from PA2),

ICOLSUM(B,j; 1, p)- COLSUM(B’,j’; 1,p)[=<3.

[COLSUM(C,j; 1, p)- COLSUM(C’,j’; 1, p)[-<4 (*).
Suppose z-- Chain[ G, x, y].

COLSUM(C’,y’;1, z-1)-4+x’-x<=COLSUM(C,y;1, z-1)+x’-x (by(*))

<x + x’- x x’ <-_ COLSUM( C, y; 1, z) + x’- x (since z Chain[ G, x, y])

<=COLSUM(C’,y’; 1, z)+4+x’-x (by (*)).
In order to show that

z 4 -Ix x’ <- Chain[ G’, x’, y’] <-_ z + 4 + Ix
we need only consider the case when z 4-]x x’ _>- 1 and z + 4 + Ix x’ -< c. Since
c’ >1i,j

COLSUM(C’, y’; 1, z- -Ix-x’l) <- COLSUM(C’, y’., 1, z- 1)-4/x’-x

and

x’ <- COLSUM( C’, y’; 1, z) + 4 + x’- x <- COLSUM( C’, y’; 1, z + 4 + Ix x’[).
Thus the lemma follows. U

In our procedure for decomposing a jagged grid into smaller jagged grids, we
take a chain from the larger original jagged grid, cut it into segments which we pull
taut and turn by 90 degrees, and paste it together to form a smaller new jagged grid.
Thus, the row-position of a node in the smaller new jagged grid is roughly determined
by its column in the larger jagged grid. The following lemma gives a bound on the
row-positions to which nodes in compatible jagged grids are assigned in the smaller
new jagged grids. Note that the bound is a function of their columns in the larger
jagged grid and is independent of their row-positions.

LEMMA 3.1.5. Let G and G’ be two compatible (a, ky)-jagged grids which are

decomposed into smaller (t, 3,)-jagged grids. Then,

IPos[ G, x, y] Pos[ G’, x’, y’][ <_- 6 + 4[(y 1) mod k (y’- 1) moO k[.
Proof Let C A+ B and C’= A’+ B’, respectively, be the partitioning matrices

used to define chains in G and G’ by our procedure for constructing chains. Since
A=A’=A(a, kT),

[ROWSUM(A,i;p+I,p+q)-ROWSUM(A’,i’;p’+I,p’+q)I<=I (from PA4).

Since any q-column slice from G and any q-column slice from G’ will differ by at
most 3 in size, by a proof similar to the one used in Appendix B, we have

[ROWSUM(B, i; p+ 1, p+ q)-ROWSUM(B’, i’; p’+ 1, p’+ q)[-<2.
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Thus

IROWSUM(C, i;p+l,p+q)-ROWSUM(C’,i’;p’+l,p’+q)l<-_3 (**).

Let y rk + s and y’= r’k + s’ where 1 < s, s’ < k, and r, r, s, are integers. Without
loss of generality, suppose that s <-s’. Then, observe that, since 1 _-< ci, =< 4 and from
the way the smaller jagged grids are constructed, we have

1 + ROWSUM(C, Chain[ G, x, y]; rk + 1, rk + s- 1)
<- Pos[ G, x, y]

-<_4+ ROWSUM(C, Chain[G, x, y]; rk+ 1, rk+ s- 1).

Ase’ >1i,j

(s’-s+I)+ROWSUM(C’, Chain[G’,x’,y’]; r’k+l,r’k+s-1)

<-_I+ROWSUM(C’, Chain[G’,x,y ,r’k+l,r’k+s’ 1)
<-_ Pos[ G’, x, y

As e’ < 4, similarly,i,j

,];Pos[G’,x’,y’]<=4+ROWSUM(C ’, Chain[G’,x,y r’k+l,r’k+s’-l)

=< 4(s’- s + 1)+ ROWSUM(C’, Chain[G’, x’, y’]; r’k+ 1, r’k+ s- 1).

Because of (**), IPos[G,x,y]-Pos[G’,x’,y’]l<=6+4(s’-s).
3.2. The embedding strategy. To embed the d-dimensional nl n2 x. nd grid

X, ni>-2 for 1, 2,..., d, into its optimal hypercube, we generalize the method
previously described for the three-dimensional grid and use the following procedure.

THE S’RAa’EG.
Step 0: First map X to an (nl, n2n3"’" nd)-jagged grid G by mapping node
[xl, x2, , Xd of X, where 1 <= x <_- n for 1, 2, , d, to the (x)th node of column
x2+(x3-1)nz+(Xa-1)n2n3+’’ "+(Xd--1)nzn3"’’nd_ of jagged grid G. Let t=nl.
Steps p=l, 2,-..,d-l: Decompose each of the (tp, np+np+2.., nd)-jagged grids
created by the previous step into tp 2 [lg2 tpJ(tp+l, rtp+znp+3" nd)-jagged grids, using
the procedure described in 3.1. Let Gi,2,...ip_l,ip denote the jagged grid constructed

whenp>l or Gwhenp, 1.from the (ip)th chain of G,,i2,...ip_
Step d: We now have the nodes of grid X partitioned into tl t2" td-1 (tel, 1)-jagged
grids with td or td + 1 nodes each (because they are all pairwise compatible). Map the
(id)th node (of column 1) in the (td, 1)-jagged grid Gi,,2,...,d_, to the hypercube node
labeled with the concatenation of

GRAY( [log2 tlJ, i,), GRAY( [log2 t2J, i2), GRAY( [log2 td-lJ, id-1)

and GRAY( [log2 (td + 1) ], id), where GRAY is as defined in 2. U

Through the above strategy, the nodes of the d-dimensional grid X are ultimately
partitioned into, p,ower-.of-two groups of about the same number of nodes each, in
particular, into t t2 td-1 (td, 1)-jagged grids with either td or td + 1 nodes per jagged
grid. Each node is given a unique label since nodes belonging to different (td, 1)-jagged
grids will receive different initial [log2 tJ +... + [log2 td-J bits for their labels and
nodes belonging to the same (td, 1)-jagged grid will receive different final [log (td + 1)
bits for their labels. Since ti’s are powers of two,
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we will indeed end up with labels of

[log2 nln2’’" ha] =log2 ’1+1og2 ’2+’" "+log2 td_l+ [1og2 (td + 1)]

[log2 tJ + [1oge t2J +’’" + LIog td-lJ + [1og (ta + 1)]

bits. Thus, we are indeed mapping into X’s optimal hypercube. Now, let us turn our
attention to the dilation involved.

The following lemma shows that for any two grid-neighbors, their corresponding
column, chain, and row-position numbers in the newly-constructed jagged grid at each
stage of the construction differs only by a constant amount.

LEMMA 3.2.1. Let U and V denote, respectively, the nodes
(Xl," , Xj_l, Xj, Xj+l," Xd) and (Xl," ", xj-1, xj + 1, Xj+l," ", Xd) of grid X, i.e.,
U and V are grid-neighbors. Let COLUMN(p, U), CHAIN(p, U), and POS(p, U)
denote, respectively, the column in the (tp+, np+2np+3""" nd)-jagged grid, the chain in
the tp+l np+znp+3 nd )-jagged grid, and the row-position in the
tp+2, np+3np+4" nd)-jagged grid to which node U is mapped. Then,

I( COLUMN(p, U) l mod np+z- COLUMN(p, V) l mod np+21= I I,, ifp -j-2
otherwise

IPOS(p, U) POS(p, V) <_- 6 + 41(COLUMN(p, U) 1) mod rip+2

-(COLUMN(p, V) 1) mod np+l

<_10 ifp=j-2

1.6 otherwise

]CHAIN(p, U) CHAIN(p, V)[ <- 4 + IPOS(p 1, U) POS(p 1,

<_{14 ifp=j-1
10 otherwise

Proof Note that

COLUMN(O, U) x2 + (x3 1)n2 + (x4- 1)n2n3 +" + (Xd 1)nn3 nd-

and

COLUMN(O, U) + n2 nj_

COLUMN(O, V)= COLUMN(O, U)+l
COLUMN(O, U)

ifj> 2

ifj=2.
ifj<2

Since a node in column j of the (tp+, np+2np+3 nd)-jagged grid will be mapped to
column [j/np+] of a (tp+2, n+3np+4"’" nd)-jagged grid, then

and

COLUMN(p, U)= Xp+2-}-(Xp+ 1)np+2q-" "q-(Xd 1)np+2np+3 nd-

COLUMN(p, U) + rip+2 nj_

COLUMN(p, V)= COLUMN(p, U)+l
COLUMN(p, U)

ifj>p+2
ifj=p+2.
ifj<p+2

The first part of the lemma readily follows. Applying Lemmas 3.1.5 and 3.1.4, the rest
of the lemma also follows. [3
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LEMMA 3.2.2. Let U and V be two neighbors in the d-dimensional grid X, and
DILATION( U, V) denote the number of edges in the hypercube by which U and V are
distanced. Since binary-reflected Gray code has the property that GRAY(t, i) and
GRAY(t, i+j) will differ by less than or equal to [log2 (3j/2)] bits [MS],

DILATION( U, V)<-_ [log2 (3[POS(d -2, U)- POS(d -2, V)[/2)
d-2

+ [log2 (AICHAIN(p, U)- CHAiN(p, V)I/2)]
p=0

<=4d+l=O(d).

THEOREM 3.1. Any d-dimensional grid can be embedded into its optimal hypercube
with a dilation of O(d).

4. Concluding remarks. We have successfully solved the problem of embedding
all two-dimensional grids into their optimal hypercubes with dilation at most 2 and
have given an O(d) upper bound on dilation for embedding d-dimensional grids into
their optimal hypercubes. The d-dimensional strategy actually grew from the technique
we developed for handling three-dimensional grids. That technique and its analysis
[C2], being especially tailored to the three-dimensional case, results in dilation 7 rather
than 13 =4d + 1) for embedding three-dimensional grids into their optimal hypercubes.
Insofar as lower bounds are concerned, we only know that not all grids are subgraphs
of their optimal hypercubes, implying that dilation at least 2 is necessary; nothing
more is known.

Appendix A: Proof of property (PA4).
q+k q+k k

ROWSUM(A, i; q + 1, q + k) Y ai, a(i-j) mod &+l,1 a(i-q-j)mod c+1,1
j=q+l j--q+l j=l

k

a(I-j) mod c+l,1-- ROWSUM(A, I; 1, k)
j=l

where

I=(i-q) mod d.

From Lemma 2.1.3, we have [ka/dJ <- ROWSUM(A, i; q+ 1, q+k)<-_ [ka/d].
Similarly, we have [ko/d] <-ROWSUM(A, i’; q’+l, q’+k)<= [ka/].
Thus, IROWSUM(A, i; q + 1, q + k) ROWSUM(A, i’; q’ + 1, q’ + k)l-<_ 1.

Appendix B: Proof of property (PB4). Let S and S’ be two k-column slices from
columns q + 1 and q + k and columns q’+ 1 to q’+ k, respectively. By the definition of
jagged grids, Isize( S) size( S’)[ <- 3. From the algorithm constructing matrix B, the
extra elements m size(S)-ka and m’= size(S’)-ka in these two k-column slices
are evenly distributed among the c rows in B. Thus, we have

ROWSUM(B, i; q+l, q+ k){[m/d], [m/c/J},

ROWSUM(B, i’; q’+ l, q’+ k){[m’/d], [m’/c]}.
As m- m’ <-3 and c/_-> 2, we thus have

IROWSUM(B, i; q + 1, q + k) ROWSUM(B, i’; q’ + 1, q’ + k)l _-< 2. U
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PP IS AS HARD AS THE POLYNOMIAL-TIME HIERARCHY*
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Abstract. In this paper, two interesting complexity classes, PP and P, are compared with PH, the
polynomial-time hierarchy. It is shown that every set in PH is polynomial-time Turing reducible to a set in
PP, and PH is included in BP. 0)P. As a consequence of the results, it follows that PP PH (or 03P___ PH)
implies a collapse of PH. A stronger result is also shown: every set in PP(PH) is polynomial-time Turing
reducible to a set in PP.
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1. Introduction. Since the notion of probabilistic Turing machines was introduced
by Gill [5], much attention has been given to several questions about its computational
power. One ofthose questions is whether PP is more powerful than PH (the polynomial-
time hierarchy), where PP denotes the class of sets accepted by polynomial-time-
bounded probabilistic Turing machines with two-sided unbounded error probability.
In particular, it is important in the theory of computational complexity to ask whether
PH is included in PP, or to ask whether all sets in PH are reducible to sets in PP under
a suitable reducibility. This has been an open question discussed in many papers [1],
[2], [10], [12], [15], [16], [19-21]. It was shown by Gill [5] that NPU co-NP is included
in PP. It is not known, however, whether A2P is included in PP. For this question,
Beigel, Hemachandra, and Wechsung [3] have recently shown that pNP{ogJ is included
in PP. This is the strongest result known currently for the containment question of PH
in PP. Some related results have been shown in [20].

In this paper, we give an affirmative answer to one of the above questions. We
show that all sets in PH are _< -reducible to a set in PP. Namely, our Main Theorem
in this paper is stated as follows.

MAIN THEOREM. PH P(PP)
As an immediate consequence, we see that PP is not included in PH unless PH

collapses to a finite level. This gives us evidence that PP is harder than PH. In the
process of proving the Main Theorem, we show an interesting result about the hardness
of the class P. This class was introduced by Papadimitriou and Zachos [13] and
further investigated in several papers [13], [25], [15]. We show that all sets in PH are
reducible to a set in this class under polynomial-time randomized reductions with
two-sided bounded error probability. It was shown by Valiant and Vazirani [25] that
all sets in NP are reducible to a set in P under polynomial-time randomized reductions
with one-sided bounded error probability. These randomized reductions are stronger,
but in other respects our result extends theirs. In fact, they asked how computationally
difficult P is. Our result is an answer to their open question.

Our proof of the main theorem proceeds as follows. In 3, we show that PH is
included in BP. P, where BP. denotes the BP-operator introduced by Sch/Sning 15].
Intuitively speaking, a set is in BP. P if and only if it is reducible to a set in P
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under a polynomial-time randomized reduction with two-sided bounded error probabil-
ity. The proof of it is based on a result by Valiant and Vazirani [25] and a result by
Sch/Aning [15]. In 4, we show that BP. 0)P is included in P(PP). In fact, we will
show a stronger result than this. The proof is based on a structural property of 0)P
discovered in this paper. At the end of 4, we will mention a stronger result than the
Main Theorem above: PP(PH) P(PP). This result is obtained by combining the
technique in this paper with a result by K6bler et al. [10].

2. Preliminaries. We assume that the reader is familiar with the basic concepts
of computational complexity theory. Let E be a finite alphabet. For a string w E*, Iwl
denotes the length of w. For a set L

_
E*, L denotes the complement of L. For a class

K of sets, co-K denotes the class of sets whose complement is in K. Let En (respectively,
E -<n and E<’) denote the set of strings with length n (respectively, length, at most n
and less than n). For a finite set X

_
E*, IIXII denotes the number of strings in X. Let

N denote the set of natural numbers.
Our sets in this paper are over E {0, 1, : } unless otherwise specified. The symbol

: is usually used as a delimiter among strings of {0, 1}*. A pairing function (respectively,
a k-tuple function) over {0, 1}* is represented by delimiting two strings (respectively,
k strings) by this symbol.

Our models of computation are variations of polynomial-time-bounded oracle
Turing machines (deterministic, nondeterministic, or probabilistic). Our oracle
machines are usual ones. For an oracle machine M and an oracle set A, M(A) denotes
that M uses A as an oracle. A polynomial-time-bounded deterministic (respectively,
nondeterministic) oracle machine is abbreviated by an oracle P-machine (respectively,
oracle NP-machine ). A polynomial-time-bounded probabilistic oracle machine with
two-sided unbounded error probability (respectively, with two-sided bounded error
probability) is abbreviated by an oracle PP-machine (respectively, an oracle BPP-
machine). In the unrelativized cases, we omit the term "oracle." For example, an oracle
NP-machine with the empty set as an oracle is simply called an NP-machine.

For an oracle set A, P(A) denotes the class of sets accepted by oracle P-machine
with oracle A. NP(A), PP(A), and BPP(A) are defined similarly. 0)P(A) denotes the
class of sets L for which there exists an oracle NP-machine M such that for each x, x
is in L if and only if the number of accepting computation paths of M(A) on x is odd.
This class was defined by Papadimitriou and Zachos [13]. For a class K of oracle sets,
P(K) {P(A): A K}. Other classes are defined similarly. The unrelativized classes
are defined by setting the oracle set to the empty set, and the specification of oracle
set is omitted in this case.

We assume that all polynomial-time-bounded oracle machines M satisfy the
following conditions.

(1) Its transition function has at most two possible transitions from each
configuration.

(2) All computation paths of M are encoded into a string of {0, 1}* by the usual
manner, where a computation path may contain possible answers from a given oracle,
and the oracle answer "yes" (respectively, "no") is encoded by 0 (respectively, 1).

These assumptions are technical ones. Obviously, we lose no generality under
these assumptions.

Let X be a finite set of strings and R be a predicate over strings. In this paper,
we denote by Prob ({we X" R(w)}) the probability that R(w) is true for randomly
chosen w from X under uniform distribution. In [15], Sch/Sning introduced the
BP-operator, which produces a probabilistic class from a given class. He also defined
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-operator in [16], as an abstraction of the class P. In [26], Wagner defined the
counting operator, based on a characterization of PP in [14], [26]. We give those
definitions here. The following definition of the counting operator is different from
the original one; however, it is easy to see that both definitions define the same concept.

DEFINITION 2.1 [15], [16], [26]. Let K be a class of sets and let L be a set. Then
we define some new classes denoted by @ K, BP. K, and C. K as follows.

(1) L e @ K if there exist a set A e K and a polynomial p such that for all x e E*,

x e L ---> [[{w e {0, 1}P(lxl): x 4 w e a}][ is odd.

(2) L e BP K if there exist a set A e K, a polynomial p, and a constant a > 0 such
that, for all x e E*,

Prob ({we{0, 1}p(Ixl’xweA<--xe L})>=1/2a.

(3) L e C K if there exist a set A e K and a polynomial p such that for all x e E*,

Prob ({we{0, 1}p(lxl’xqeweA<-->xe L}) >1/2.
It is easy to see that C-P= PP, BP. P= BPP, and @. P= @P. The following

propositions are basic properties of the above operators, which follow immediately
from the definitions. These will be used implicitly in later arguments.

PROPOSITION 2.2. Let K1 and K2 be arbitrary classes of sets. Then, the following
statements hold.

(1) If K
_
K2, then K

_
@) K2.

(2) If K is closed under marked union with sets of theform {x#0 pII>" x eX*} (for
arbitrary polynomial p such sets are in P), then K1 is closed under complernentation.

(3) If K1 is such that, for all sets Le K, the set {xx" x e L} also belongs to K1,
then K @ K.

PROPOSITION 2.3. Let K and K2 be any classes ofsets. Then thefollowing statements
hold.

(1) If KI_ K2, then BP. KI BP. K2.
(2) co-BP. K

_
BP. co-K Hence, if K is closed under cornplernentation, then

co-BP. KI= BP. K1.
(3) If K1 is closed under padding i.e., L e K1 implies {x 44= y" x e L and y e {0, 1 }*} e

K for each set L), then K BP" K.
PROPOSITION 2.4. Let Ki and K2 be arbitrary classes of sets. Then the following

statements hold.
(1) If K _K, then C.K_C.K2.
(2) co-C. K

_
C. co-K1. Hence, if K1 is closed under complernentation, then co-

C. K1-C. K.
(3) If K is closed under padding, then K1 C K
(4) BP" K

___
C. K

We can easily see that all the classes to be built in this paper satisfy the. closure
properties mentioned in the above propositions (except possibly for complementation).
For example, II(k => 0) is closed under taking marked union with the set of the form
{x#O p(lxl)"

X eY-,*}’, hence, . II is closed under complementation; we will use this
fact in the next section.

In the later sections, we will be concerned with several reducibility notions defined
below.

DEFINITION 2.5. Let A and B be arbitrary sets. A is said to be -< P.-reducible to
B(A<-P,, B) if there exists a function f computable in polynomial time such that for

P P B) ifeach x, x e A if and only ill(x)e B. A is said to be <- ma- reducible to B(A --<ma
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there exists a function f computable in polynomial time such that for each x,f(x)=
yl#Y2# #Ym (m >--_ 1), and x A if and only if the majority of yi’s are in B. A is
said to be <- -reducible to B (A --<TP B) if there exists an oracle P-machine that accepts
A with oracle B. Let K be a class of sets and let <-rP denote an arbitrary reducibility.
A set L is <P-r-hard for K if every set in K is _< P-reducible to L; if L K in addition,
then L is said to be --r-< P complete for K. Then we say that K is closed under < p if and
only if for all sets A and B, A _< P B and B If implies A K.

PObserve that for all sets A and B, A maj B implies A _< T
P B; and hence, if a class

PIf is closed under <--, then the class is closed under <--maj.

3. P is hard for PH under randomized reducibility. In this section, we show that
)P is hard for the polynomial-time hierarchy under polynomial-time randomized
reducibility. More precisely, our main result in this section is stated as follows.

THEOREM 3.1. PHi_ BP" P.
Before proving this, we give an intuitive explanation of the proof to the reader.

We first show that E is included in BP. II_ for each k > 1 (see Lemma 3.3)
This generalizes a result due to Valiant and Vazirani [25] in which they showed that
all NP-complete sets are reducible to a set in P under randomized polynomial-time
reducibility. Our proof technique is essentially the same as theirs. We next observe
that it is possible to swap a @-operator and a BP-operator. In particular, we show
that @ BP. @ P__G_ BP. @ @ P (see Lemma 3.6). Furthermore, we observe that it is
possible to reduce two consecutive BP-operators (respectively, two consecutive
operators) to one operator: It was shown by Papadimitriou and Zachos [13] that
0) P(@ P) @ P. This implies that 0) @ P @ P, and we also show that BP BP @ P
BP 0)P (see Lemma 3.7). At the end of this section, we put all this together to prove
Theorem 3.1, using an induction on the levels of the polynomial-time hierarchy.

Now we begin to show the lemmas mentioned above. Following Valiant and
Vazirani [25], we shall view strings of {0, 1} as n-dimensional vectors from the vector
space GF[2] n. We denote by u. v the inner product of two vectors u and v over GF[2].
In [25], they showed the following result.

THEOREM 3.2 [25]. Let n>= 1 and let So__ {0, 1} be a nonempty set. Suppose
Wl, w2," w, are randomly chosen from {0, 1}". Let So S and let

S={v S: v. w= v" w2 v. w=O}

for each 1 <= <-_ n. Let P,(S) be the probability that Si 1 for some 0 <- n. Then,
P,(S) >=-.

LEMMA 3.3 For each k > 1, Z U 1-I c B P. . 1-I_ |o

Proof By Propositions 2.2(2) and 2.3(2), BP .. 1-I_ is closed under com-
plementation. Hence, it suffices to show that c_ BP. . II_. Let L . Then it
was shown by Stockmeyer [18] and Wrathall [28] that there exist a set A II_ and
a polynomial p such that for every x, x L if and only if x y A for some y
We define a set C as follows:

C {x :: w w2 Wp(Ixl): for each i, 1 <= <- p([xl) w {0, 1} p(lxl), and for some j,

O<-j<-p(Ixl), II{Y {0, 1} p(Ixl)" x y A^ (ti<=j)[w;. y =0]}11 is odd}.

We first show that C is in II_l. Since FI _1 is closed under complementa-
tion, it suffices to show that C’s complement, , is in . II_l. This can be done as
follows: Given arbitrary strings x and z wlw2 Wpll such that, for each i, 1
P(lX[), wi {0, 1}
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x#zC-for each j, 0 _-<j <- p([x]), []{y {0, 1} ,(Ixl). x # y A ^ (/i <_j)[wj. y 0]}[[ is even

o n (ll{" x#yJ^(Vi<_j)[wj.y=O]}ll+l)isodd.
j=0

Hence we may define a set B 6H_ and a polynomial q such that for every x # z,
(Izl =p(Ixl)2),

p(lxl)

j=0

The set B is defined by

B {x # w wp(lxl) # ayay. a(ll)w(ixl)" for every j, 1 j p(]x[),

wj {0, 1 } v(ll, aj {0, 1 }, yj {0, 1 } v(ll, and
(W, J p(Ixl))[ajyj o+’ v (j x yj A (Vi j)[w," yj 0])]}.

It is easy to see that BH_ and that B and the polynomial q(n)=p(n)(1 +p(n))
satisfy the required condition; that is, the set B and the polynomial q witness C
.Pk-l"

Next, we show L BP. . H_ by using the set C. Let x be a string and let
w, w2," , w(ixl> be randomly chosen from {0, 1}P(lxl). We define

So {y {0, }v(- x y A}

and

S ={y So" w y w. y wi" y}

for each 1 ip(Ix[). Let Pv(ll(So) be the probability that
p(]x]). Then it is easy to see that

Hence, from Theorem 3.2,
(1) xLProb({u{O, 1}P(ll)’x#uC})and
(2) xeLProb({u{0,1}v(ll’x#uC})=0.

The probability of (2) follows from the fact that for all x, if x L, then x # y A for
every y {0, 1}(Ixl). To amplify the probability in (1), we fuher define a set D as
follows"

D {x # u,uu lu, (Ixl) for each 1, 2, 3 and x # u, C for some 1, 2, 3}.

Then we obtain that for each x,

(3) xLProb({uuu{O, 1} v(ll)" x#uuuD})

=1 (Prob ({u {0, 1} (ll)" x # u C}))

1 27-=+ and

(4) xLProb({uuu{O, 1}v(ll)’x#uuuD})=O.
By using the same argument as when showing C H_, we can show D H_.
This implies L

It was shown by Papadimitriou and Zachos 13] that P( P) P. This implies
the following theorem. For the sake of making this paper more selficontained, we
provide a sketch of their proof.
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THEOREM 3.4 [13]. 0) P(0) P) P. Hence we have that O) P P and that
PP is closed under --<maj.

Proof Sketch. Let L be a set in 0)P(0)P). Then there exist a set A 0)P and an
oracle NP-machine M such that for every x, x L if and only if the number of accepting
paths of M(A) on input x is odd. Let M1 be an NP-machine that witnesses A P.
Then we define an NP-machine M2 working on a given input x as follows"

(1) M2 first guesses a computation path w ofM on input x, which includes possible
oracle answers to the query strings appearing in w.

(2) If w is a rejecting path of M on x, then M2 enters a rejecting state; otherwise,
it goes to the next step.

(3) Let y, Y2, Y,, (z, z2, , Zl) be all the query strings which appear in w
and whose corresponding oracle answers in w are "yes" (respectively, "no").
Then M simulates M successively for each y and each z in the following
manner:
(a) For each yi, it simply simulates M. If M enters a rejecting state, then
so does M2; otherwise, it proceeds to the next simulation.
(b) For each z, it nondeterministically selects one of the following processes:

(i) M2 goes to the next simulation. (Intuitively speaking, this process
can be regarded as a dummy-accepting path of M1 on input z.)

(ii) M2 simulates M on z. If M1 enters a rejecting state, then so does
M2; otherwise, it goes to the next simulation.

(4) M2 enters an accepting state.

We can classify all possible accepting computation paths of M on input x into
two groups, one of which consists of accepting paths of M(A) on x (group 1), and
the other consists of the remaining ones (group 2). Obviously, every accepting path
in group 1 contains correct oracle answers of the oracle set A, and every accepting
path in group 2 contains a wrong oracle answer. From the definition of M2, we can
easily see that every accepting path in group 1 is followed by an odd number of
accepting paths in steps 3 and 4, and every accepting path in group 2 is followed by
an even number of accepting paths in those steps. From this observation, it is not
difficult to see that for every x, x L if and only if the number of accepting paths of

M on input x is odd. We leave the verification to the interested reader. Thus L is in
P. The other statements are immediate from the first one.
The following theorem was shown by Sch6ning [15].

PTHEOREM 3.5 [15]. Let K be a class of sets which is closed under --<maj. Then for
all sets A B P K and all polynomials q, there exist a set B and a polynomial p such that,
for all n,

Prob ({y {0, 1} p(n)" (X, ]X]-- n)[x y B--xa]})>= 1-2-q(n).

LEMMA 3.6. 0) BP ( P c__ BP P.
Proof Let L . BP. P. Then there exist a set A BP. P and a polynomial

p such that for each x, x L if and only if

[l{w" Iwl =p(Ixl) and x w

is odd. Furthermore, there exist a set B P, a polynomial q, and a constant a > 0
such that for each y,

Prob ({u {0, 1} q(lyl)" y=uB,-y6A})>--+o.
PSince P is closed under --<ma, we may assume, from Theorem 3.5, that for all m,

Prob ({u {0, 1}q("): (Vy, lyl m)[y. u6 B--yA]})>-1/4.
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Hence we have that for all x of length n,

Prob ({u e {0, 1} q(n+l+p(n))" (VW e {0, 1}P(n))[X # W # 12 e B *- x # w e A]}) >- ,
and hence,

(1) Prob({ue{O, 1}q(n+l+p(n))’{we{O, 1}p(n)’x#w#ueB}

={we{O, 1}P(": x# w e A}}) >-.
For a string x of length n, assume xe L. Then [l{w e {0, I}P(": x wea}[I is odd.

Hence from (1),

(2) Prob ({ue{O, 1} q("+l+p("))" [[{we{O, 1}P("): x# w#ueB}l is odd}) >_- .
Conversely, assume xeL. Then [[{we{O, 1} p("" x# weA}l[ is even. Hence from (1),

(3) Prob ({ue{0, 1} q(n+l+p(n))" [[{We{0, 1}P(n): X# w#ueB}l is odd}) -<_ 1/4.

We now define B’ and A’ by

B’={x# u # w" lu[= q([xl+ l+p([x[)), [w[=p([x[), and x# w # u e B}

and

A’= {x * u" lul q(lxl + 1 +p(lxl)) and x, u * w e B’

for an odd number of w

Then we obtain that Prob ({u e {0, 1} q(Ixl+l+p(Ixl))"
X U e A’ ’-’ x e L}) >-- from (2) and

(3) above. It is easy to see that B’e 03 P and A’e ). P. Hence, A’ is in 03 P from
Theorem 3.4. This implies L e BP. 03 P.

LEMMA 3.7. BP" BP q) P BP 0) P.
Proof. It suffices to show the inclusion BP. BP. q)PG BP. 03 P. Let L e BP. BP.

0)P. Then there exist a set A e BP. O)P and a polynomial p such that for each x,

Prob ({we{0, 1}p(Ixl): x weA<->xeL})>-.

Furthermore, there exist a set B e @ P and a polynomial q such that for each y,

Prob ({u e {0, 1}q(Iyl):

Note that we are using Theorem 3.5 in this setting. We now define a set C by

C {x # wu" [w[ P(lx[), [u[ q(lx # w[)= q(lx[ + 1 +p(Ix})), and x # w # u e B}.

It is easy to see that C is in 03 P. For a string x, if x e L, then
(1) Prob ({wu e {0, 1} p(IxI)+q(IxI+I+p(IxI))" x # wu e C})

=Prob ({we{0, 1} p(II" x# weA})

xProb ({u e {0, 1}q(lxl+l+p(lxl)): x# w# Ue B}[x# weA)

+Prob ({we{0, 1}p(Ixl): x# weA})

x Prob ({u e {0, 1}q(Ixl+l+p(Ixl)): X W U e B}lx w A)
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where Prob (X/Y) denotes the conditional probability of the event X under the
condition Y.

Conversely, if x L, then
(2) Prob ({W/,/C {0, 1}p(lxl)+q(lxl+l+p(lxl)): x Wbl C})

=Prob ({w {0, 1} p(Ixl)" x wA})

x Prob ({u {0, 1}q(Ixl+l+P(Ixl)): x w u B}lx w A)

+Prob ({w {0, 1} p(Ixl) x#t wf:A})

Prob ({u {0, 1}q(Ixl++p(Ixl)): X W 4 u B}lx w A)

_-<z.l+l.= =-.
Thus we have that for every x,

Prob ({v {0, 1} p(lxl)/q(lxl+/p(lxl)), x v C x Z}) -> 1/2+.
This implies that L

Now we can prove Theorem 3.1.
Proof of Theorem 3.1. We prove this theorem by induction on the levels of the

polynomial-time hierarchy. The inclusion E P BP. P is obvious. We now assume
c BP. @P for some k>0. It is easy to see that BP. @P is closed under com-

plementation. Hence we have the inclusion IIkP_l
_
BP. 03 P. Then,

;c__ BP. @. 1-I[_ (from Lemma 3.3)_
BP. @ BP. @P (from inductive assumption)

BP. @ P (from Lemma 3.6 and Lemma 3.7).

Thus we conclude that PH U k__>0 Z[-----BP. @ P.
It was shown by Sch6ning [15] that IIc_ BP. Z[ implies Z+l=H[+ for every

k _-> 1, which is regarded as a refinement ofthe result by Karp and Lipton [7]. Combining
this result with Theorem 3.1, we observe that P is harder than PH unless PH collapses
to a finite level. More precisely, we obtain the following corollary.

COROLLARY 3.8. For every k >- 1, if P
_ ,, then PH E+l. Hence 03 P_ PH

implies that PH collapses at a finite level.
The second statement in this corollary follows from the fact that 03 P has a complete

set under _< Pro-reducibility.

4. PP is <-_-hard for PH. In this section, we prove the following theorem.
THEOREM 4.1. C @ P

_
P(PP).

It is easy to see that BP. @ P_ C. @ P. Hence the Main Theorem in 1 follows
immediately from this theorem and from Theorem 3.1.

The following lemma plays an important role in the proof of Theorem 4.1, and
depends on an interesting numerical property. For an NP-machine N and an input y,
let # aCCN(y) denote the number of accepting computation paths of N on input y.

LEMMA 4.2. Let X be a set in P and let q be a polynomial. Then, there exists an
NP-machine N such that for each input y of length n,

(1) if ye! X, then # accr(y)=-O.(mod 2q(),and
(2) ify X, then # accrl(y) -1 (mod 2q(")).
Before proving this lemma, we give an intuitive explanation about our proof of

Theorem 4.1 and about the role of Lemma 4.2. Let L be a set in C. 03 P. Then there
exist a set X @ P and a polynomial p such that for every x,

Prob ({ w c {0, 1 } p(lxl), x # W G X iff x L}) > 1/2.
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Let N1 be an NP-machine satisfying the conditions in Lemma 4.2 for the set L and
the polynomial q(n) n. Consider an NP-machine N which operates as follows. Given
an input x of length n, N first guesses a string w of length p(n), and it begins to
simulate N1 on input x # w. If N1 enters an accepting state, then N enters an accepting
state; otherwise, it enters a rejecting state. Let # X[x] denote the number of strings
w such that Iwl=p(n) and x wX. From Lemma 4.2, it is not difficult to see that
# aCCN(X)=2n+l+p(n kx- X[x] for some natural number kx-->0. By a standard
binary search technique, # aCCN(X) can be computed in polynomial time with an oracle
set from PP. After this, we can also get the value of #X[x] within polynomial time
by computing :aCCN(X mod 2n+l+p(n), because #X[x]<-2 p(")2n++p(n). Finally, we
decide to accept the input x if and only if #X[x] > 2 p(n)-l. Hence, we can conclude
that C. P c_ p(pp).

The recurrence relation in the next lemma provides the key numerical property.
Intuitively speaking, it gives us a whole exponential factor of freedom in our counting.

LEMMA 4.3. For an integer m, define the sequence So, s, s2,’’’, inductively by
So m and for > 1, si 3 4

S i- -JI- 4 s i-- 1" Then,
(1) if m is even, then for all i, si is a multiple of 22, and
(2) if m is odd, then for all i, si + 1 is a multiple of 2 2’.
Proof. The statement (1) is obvious from the definition of the sequence. We prove

(2). The case i=O is obvious. We assume that for some i> 0, Si_ --22i-1" ki_ -1 for
some positive integer ki_. Then, from the definition of si,

S 3 4
Si_ +4" Si_

3. (2 2’-1. ki-1- 1)4+4. (22i-1. k,-1-1)3

3 22i+1 4 2 3. 2 2 2‘ 2ki-1- 8. k,3._l +6. ki-1 1

22i (3 22i k,4._l 8 22’- 2ki-1 + 6" ki_ 1) 1.

Hence si is a multiple of 2 2’. [3

Accordingly, we make the following recursive definition of a functionfs" * X N-+
N, where is the input alphabet of a given NTM N.

DEFINITION 4.4. For an NP-machine N and an input y, define

fN(Y, O)= aCCN(y), and for -> 1,

fN(Y, i)= 3" (fN(Y, i-1))4+4 (fN(Y, i-1))3.

LEMMA 4.5. Let N be an NP-machine, and let q( n) be a polynomial. Then for all
input y of length n,

(1) if aCCN(y) is even, thenfN(y, [log2q(n)])=-O(mod2q(")), and
(2) if aCCN(y) is odd, then fN(y, [log2 q(n)])--=--1 (mod 2q(")).
Proof Since 22[1g2 q(n)] 2q(n)+k 2q(n) 2k for some natural number k, this follows

immediately from Lemma 4.3.
Given a set Xe @P, it follows from the definition of P that there is an

NP-machine N such that for all y, y e X if and only if aCCN(y) is odd. Hence, to
obtain Lemma 4.2, it remains to show how to construct an NP-machine Q such that
for all y,

acco(y)=fN(y, [log2 q(n)]).

This is accomplished in the following lemma.
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LEMMA 4.6. Let N be an NP-machine, and let be a polynomial which bounds the
runtime of N. Then we can find an NTM Q which takes inputs of the form y : li, and
a constant c > 0 such that for all y, i:

(1) accQ(y 4 I i) =fN(Y, i), and
(2) all computations of Q on input y 1 halt within c. 4i. (t(lYl) / 1) steps.
Proof. Intuitively speaking, the required machine Q is designed so that for each

input y 1 , it executes itself recursively on input y : 1-1 according to the definition
of fN. This can be done by using stack operations. Furthermore, since the depth of
recursive executions for input y 1 is at most i, and at most four sequential calls are
made at each level, the required time bound is obtained. We now describe Q as a
recursive procedure, using a stack for the recursive executions.

PROCEDURE Q(y, i), where the input is written in the form y 4 1 i.
Step 1: if 0 then simulate M on input y;

if M enters an accepting state
then return "ACCEPT" else return "REJECT";

Step 2: guess one of the following subprocesses nondeterministically;
(subprocess 1)
branch away nondeterministically into three branches;
execute the following in each branch;
for j:= 1 to 4 do

execute Q(y, 1) recursively;
{this can be done by pushing i,j and return position into a stack before
execution and by popping those off the stack after execution}

if this call to Q(y, i-1) returns "REJECT" then return "REJECT"
od;
return "ACCEPT""
(subprocess 2)
branch away nondeterministically into four branches;
execute the following in each branch;
forj:=lto3 do

execute Q(y, 1) recursively;
{this can be done by pushing i,j and return position into a stack before
execution and by popping those off the stack after execution}

if this call to Q(y, i-1) returns "REJECT" then return "REJECT"
od;
return "ACCEPT."

By induction on i, it is not difficult to show that for each input y 1 , the number
of accepting computation paths of Q is equal to fN(Y, i). The essence of this proof is
to estimate the runtime of the above machine. Let y I be an input for Q and let
T(y, i) denote the runtime of Q on input y 1 . It is not difficult to see that stack
operations and the other bookkeeping operations in Step 2 can be done within time
at most O(i), say c. i+ c for some c> 0, if we denote natural numbers by unary
notation. Furthermore, the operations in Step 1 can be done within a constant time,
say c > 0. Then, we obtain the following inequalities from the definition of Ml:

(1) T(y, 0)<-_ t(lyl)+ c,

and

(2) T(y,i)_-<4.(T(y,i-1)+c.i+c) for each > 0.
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From this, we have:

(3) T(y, i)<4 t(lY[)+ 4k =4’ 4
=, "(c" i+c) t(lY[)+’(4i-1) "(c" i+c).

Thus we finally have T(y, i)<= 0(4i" (t([y[)+ i)). This completes the proof.
Proof of Lemma 4.2. Let N1 on input y simulate Q of Lemma 4.6 on input

y # 1 rg2q(lYll. Then N1 runs in polynomial time in [y[, and satisfies the properties
required in Lemma 4.2.

Before deducing Theorem 4.1, we state and prove a technically stronger result. A
function h" 2" N is said to belong to the class # P [23], [24] if there is an NP-machine
N such that for all x *, h(x)= #aCCN(X). Then pptl stands for the class of sets
which can be solved in polynomial time with one free evaluation of a P function.
Papadimitriou and Zachos [13] showed that pNpoga pp (calling the latter class
"+P"). We show that the whole polynomial-time hierarchy is contained in PPt, as
a consequence of Theorem 4.7.

THEOREM 4.7. C @ P p.P[1].

Proof Let L C. @ P. Then there is a set X @ P and a polynomial p such that
for all x, putting W {w {0, 1 } p(ll), x # w X}, we have x L if and only if Wx >
2p<lxl)-l. Then from Lemma 4.2, we can find an NP-machine N such that for all inputs
y, with m

(1) if y X, then for some integer ay > 0, accy(y) 2. ay 1, and
(2) if y X, then for some integer/3y _-> 0, accN(y)= 2m’y.
Now let Z be an NTM which on every input x of length n does this"
(1) Guess w {0, 1} p(n).
(2) Simulate N on input x # w, accepting if and only if N accepts.
Then Z clearly runs in polynomial time. Now writing r for {0, 1} P("- W, we

have"

#accz(x) 2
I,V

2
VV"

#accN(x#w)+ #accN(x#w)

(21.wl.ce.w_l)+ E 21 *wl’/3w)
w

Since every a and fl. is integral, it follows that # accz(x) + 11W[I is a multiple
of 2II++p(II. Since wxll--<2(x <2x+/(x, it follows that wxll can be computed
simply by complementing the last p(Ixl) bits of #accz(x) in binary notation. That is
to say, x L if and only if the p([xl)th bit of #accz(x) from the right is a "0." Since
Z is a polynomial-time-bounded NTM, #accz(" is a # P function, and the theorem
follows. [3

Proof of Theorem 4.1. It is well known that for every P function h, its graph
{x k: h(x)<-k} belongs to PP [14]. By the standard binary search technique, h(x)
can be computed with O(Ixl)-many queries to its graph. So C. ( P, and hence PH,
is included in P(PP). [3

The following corollary is straightforward from the Main Theorem.
COROLLARY 4.8. For each k >- O, if PP

___
Z, then PH collapses to E. Furthermore,

if PP PH, then PH collapses to a finite level
Proof Assume PP

_ . It is well known that PP is closed under complementation.
Hence we have PP__ EfqI/ from the assumption. It is also well known that P(E
1-I)_ Z for each k_-> 0. From the main theorem, we have

PH
___
P(PP) P(E CI II)

_ .
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The second statement is easily obtained from the fact that PP has a complete set under
-< Pm-reducibility. [3

At the end of this section, we observe a result stronger than the Main Theorem.
It was shown by K6bler et al. [10] that PP(BPP)= PP. Furthermore, the equality can
be relativized to all oracle sets. More precisely, we have the following result.

THEOREM 4.9 [10]. For all oracle sets A, PP(BPP(A))= PP(A).
From this theorem, we have the following theorem.
THEOREM 4.10. PP(PH) is included in P(PP).
Proof It is easy to see that PP(PH)PP(BP.P)_PP(BPP(P)). These

inclusions follow from Theorem 3.1 and from the definition of BP-operator. From
Theorem 4.9, we have PP(PH)_ PP(P). It is not hard to show that PP(P)=
C. P(P)=C.P. Some techniques for showing this have appeared in [21], [26].
Hence we obtain this theorem from Theorem 4.1.

5. Concluding remarks. In this paper, we showed that every set in PH (and in
PP(PH)) is polynomial-time Turing reducible to a set in PP. We also show a similar
result about P. There are some further questions that are related to this work. A
simple question is whether we can show, by using a different kind of reducibility such
as polynomial-time truth-table reducibility, that PH is reducible to PP. In fact, we
showed that PH is included in p.Plj; this is a somewhat stronger statement than
PH G P(PP). On the other hand, it is well known that every set which is _<tPt-reducible
to a set in PP is in P*PIJ; but the converse is unknown. Hence the answer to the above
question will give us a somewhat stronger result than the present result. The other
interesting question is whether C=P [26], [21] is as hard as PH. A more important
question is whether NP(PP) is included in P(PP), or whether PP(PP) is included in
P(PP). It is also interesting to find oracle sets that separate those classes from each
other.
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SELECTION NETWORKS*

NICHOLAS PIPPENGER?

Abstract. An upper bound asymptotic to 2n log n is established for the number of comparators required
in a network that classifies n values into two classes, each containing n/2 values, with each value in one

class less than or equal to each value in the other. (The best lower bound known for this problem is

asymptotic to (n/2) log2 n.)

Key words, comparator, classifier, expanding graph, random walk

AMS(MOS) subject classifications. 68E05, 94C10

1. Introduction. The selection networks of which we speak in this paper are
comparator networks (see Knuth [K]) that classify a set of n values into two classes,
with each of the values in one class being at least as large as all of those in the other.
In this paper we shall confine our attention to the simplest case, in which n is even
and the two classes each contain n/2 values, but similar methods apply to classes of
unequal cardinality, as well as to the problem of selecting the value having a prescribed
rank, such as the median.

We shall present an upper bound asymptotic to 2n log2 n for the number of
comparators needed to construct such a network. Alekseev [A1] has given a lower
bound asymptotic to (n/2) log2 n. Some perspective on the gap between these bounds
is gained by considering the analogous problem of determining the median of n values
with an adaptive sequence of comparisons: here the best upper bound known is
asymptotic to 3n (see Sch6nhage, Paterson, and Pippenger IS]), and the best lower
bound known is asymptotic to 2n (see Bent and John [Be]).

The classifying problem has traditionally been considered in connection with the
problem of sorting n values into order. In 1983, Ajtai, Koml6s, and Szemerdi [Aj]
showed that O(n log n) comparators are sufficient for sorting, and this bound obviously
applies to classifying as well. The constant factor implicit in their original proof is
enormous, however, and further efforts to refine their ideas have not brought it below
1000 (see Paterson [Pa]). Our classifiers are based on the same fundamental idea as
their sorters; our only contribution is to show that in the context of classifiers, it yields
both a much simpler proof and a much smaller constant.

Though we shall confine ourselves to proving the result stated above, two additional
points should be mentioned. First, we prove the existence of classifying networks
without giving an explicit construction. This situation arises from the use of expanding
graphs; by exploiting known explicit constructions for expanding graphs (see Pippenger
[Pi, 3.2]), and by accepting a somewhat larger bound (the best we have been able
to obtain is slightly less than 6n log n), we could give a completely explicit construction.
Second, the networks we describe have depth f((log n)2); with more care in the
construction and proof, we could establish a bound of O(log n). Our method does not
seem well suited to optimizing the depth, however, and we have not made any attempt
to obtain the sharpest possible result in this direction.
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2. Exlaatling graphs. We shall need some results concerning expanding graphs;
these will be obtained as special cases of a general result due to Bassalygo [B], to
whom we refer for the proof.

A bipartite graph with n "left" vertices and m "right" vertices will be called an
(a, fl)-expander if any k of its left vertices (k_-< JanJ) are connected to at least [flkJ
right vertices (the set A of left vertices is connected to the set B of right vertices if at
least one edge from A leads to each right vertex b, b B; [xJ is the integer part of x).

LEMMA 2.1 (Bassalygo). For any positive integers q and p, any reals a and fl
(0 < a < p/ flq < 1 ), and any sufficiently large n n >- no(a, fl, q, p there exists an a, fl
expander with qn left vertices and pn right vertices, for which the number of edges does
not exceed spqn, where s is any integer greater than

H(a) + (p/ q)H(aflq/p)
pH(a)-aqH(p/q)

H(x)=-xlogx-(1-x)log(1-x), 0<x<l.

The proof of Lemma 2.1 considers only graphs in which every left vertex meets
sp edges and every right vertex meets sq edges. This observation will be important
when we consider the depth, rather than merely the size, of networks.

We shall use this lemma with p-q 1. We shall let a and fl depend on a new
parameter O by a O and/3 (1- O)/O. For every O > 0, there is a value of s that
satisfies the hypothesis of Lemma 2.1.

The proof of Lemma 2.1 may be regarded as considering a probability distribution
over graphs, and when p q, this distribution is invariant under the exchange of left
and right vertices. The proof also shows, not merely that there exists a graph with the
prescribed expansion property, but that almost all considered graphs have this property.
In particular, a majority of the considered graphs have this property. It follows that
there exists a graph such that both it and the graph obtained from it by exchanging
left and right vertices have the prescribed expansion property.

Combining these elaborations of Lemma 2.1, we obtain the following corollary.
COROLLARY 2.2. For every 0 > O, there exists an s such thatfor all sufficiently large

n (depending on O) there exists a bipartite graph with n left vertices, n right vertices, and
s edges meeting each vertex such that (1) every set of k <-On left vertices is connected to
at least (1- O)k/ 0 right vertices, and (2) every set of k < On right vertices is connected
to at least (1- O)k/ 0 left vertices.

Returning to Lemma 2.1 with p =q 1, if we take s =4 and choose/3 <3, then
the hypothesis is satisfied for all sufficiently small a > 0 (depending on/3). Thus we
also obtain the following corollary.

COROLLARY 2.3. For every fl < 3, there exists an a > 0 such that for all sufficiently
large n (depending on fl ), there exists a bipartite graph with n left vertices, n right vertices,
and four edges meeting every vertex such that (1) every set of k <-an left vertices is
connected to at least flk right vertices, and (2) every set ofk <-_ an right vertices is connected
to at least flk left vertices.

3. Classifiers. A comparator network with 2in inputs and two sets of rn outputs,
the "left" outputs and the "right" outputs, is an a-weak approximate classifier with
tolerance 0 (or simply an a-weak O-classifier) if, for any assignment of values to the
inputs and positive integer k <-_ am, (1) at most Ok of the k smallest values appear at
right outputs, and (2) at most Ok of the k largest values appear at left outputs. A
1-weak approximate classifier with tolerance O will be called an approximate classifier
with tolerance 0 (or simply a O-classifier). An approximate classifier with tolerance 0
will be called a classifier.
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Classifiers are the goal of our construction. Approximate classifiers and weak
approximate classifiers are the ultimate building blocks of our construction. These
building blocks are secured by a lemma that is a slight generalization of the most basic
lemma of Ajtai, Koml6s, and Szemer6di [Aj], from which the proof is easily adapted
(see also Pippenger [Pi, 3.2]).

Let G be a bipartite graph with n left vertices and n right vertices, in which every
vertex meets s edges. The edges of G may be decomposed into s perfect matchings
El," ", Es between the left and right vertices. We may regard each perfect matching
Er as a comparator network, by taking a comparator for each edge in Er, labelling the
inputs of the comparator with the vertices met by the edge, labelling the smaller output
of the comparator with the left vertex met by the edge, and labelling the larger output
of the comparator with the right vertex met by the edge. We may then combine the
comparator networks El," ", Es into a single comparator network by identifying the
outputs of Er with the corresponding inputs of Er+ for each 1 _-< r_-< s-1. We shall
denote the resulting comparator network by G; this notation is ambiguous, since
different decompositions of the bipartite graph yield different comparator networks,
but this ambiguity will not be important to us.

LEMMA 3.1 (Ajtai, Koml6s, and Szemer6di). Let G be a bipartite graph with n left
vertices and n right vertices and s edges meeting every vertex in which (1) any set of
k<-_aOn left vertices is connected to at least (1-O)k/O right vertices, and (2) any set

of k<= son right vertices is connected to at least (1- O)k/ O left vertices. Let the left and
right outputs of the comparator network G be those labelled by the left and right vertices,
respectively. Then G is an t-weak O-classifier.

4. Recursive construction. A comparator network with 2m inputs, outputs
labelled as "low," outputs labelled as "high," and 2m 21 outputs labelled as "middle"
is a strong partial classifier if, for any assignment of values to the inputs, only values
among the m/2 smallest appear at low outputs and only values among the m/2 largest
appear at high outputs. A strong partial classifier is less than a classifier in that there
are some outputs, the middle outputs, at which any value may appear; but it is more
than a classifier in that fewer values can appear at the low and high outputs. Our goal
in this section is to show how strong partial classifiers can be assembled to form a
classifier.

It will be convenient to use strong partial classifiers for which the number of
inputs is of the form 2 or 3 2, with u a positive integer; numbers of this form will
be called magic. If n is any even positive integer, the largest magic number not exceeding
n will be called the magic part of n; it is even and at least 2n/3.

Consider the following .recursive construction for a classifier with n inputs. Let
2m denote the magic part of n. Feed 2m of the inputs into a strong partial classifier
with 2m inputs. Feed the remaining n- 2m inputs, together with the 2m- 21 middle
outputs of the strong partial classifier into a classifier with 2n- 21 inputs. The left and
right outputs of the combined network will be the low and high outputs, respectively,
of the strong partial classifier, together with the left and right outputs, respectively, of
the constituent classifier.

A value appearing at a low output of the strong partial classifier must be among
the m/2 smallest of the 2m values at its inputs, and thus among the (m/2)+(n-2m)=
n-3m/2 smallest of all n values. Since 2m >-2n/3, it must be among the n/2 smallest
of all n values. Similarly, a value appearing at a high ouput of the strong partial
classifier must be among the n/2 largest of all n values. Thus, of the n/2 largest and
n/2 smallest values, equal numbers appear at the inputs of the classifier with n-21
inputs. It follows that any value appearing at a left output of this classifier must be
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among the n/2 smallest, and any value appearing at a right output must be among
the n/2 largest. Thus the combined network is indeed a classifier.

LEMMA 4.1. Let C > 0 be a constant. Suppose that, for every e > 0 and all sufficiently
large m (depending on e), there exists a strong partial classifier with 2m inputs, low
outputs, and high outputs, and size at most (C + e)l loge m. Then for every e > 0 and
all sufficiently large n (depending on e), there exists a classifier with n inputs and size at
most C/2 + e) n loge no

Proof Apply the recursive construction until the number of inputs of the strong
partial classifier that is needed is too small for the hypothesis to apply. Terminate the
recursion with a sorting network using (’) comparators. The size of this final sorting
network depends only on e, and thus is at most (e/2)n log2 n for all sufficiently large
n (depending on e).

Let 2m,..., 2m denote the numbers of inputs of the strong partial classifiers,
and let l, , l denote the numbers of low outputs. We have 2mr <- n for all _<- r =< s

and, since each left output of the combined network is a low output of at most one
strong partial classifier, Y<=<= l<= n/2. Thus the total size of all the strong partial
classifiers is at most Y<=<= (C + e)lr loge mr <= (C/2 + e/2)n log2 n. Adding the bound
(e/2)n loge n for the final sorter yields (C/2+ e)n Iog2 n. [-I

5. Crude classification trees. This section introduces classification trees, the basic
tool we shall use to construct strong partial classifiers. We shall begin with a crude
version of the construction, and later refine it to obtain our final bound.

Set O--1/2. Corollary 2.2 and Lemma 3.1 then yield constants So and no such that
for all n _-> no, there is a O-classifier with 2n inputs and depth So. (A simple calculation
shows that So 28. The determination of no would require scrutiny of the proof of
Lemma 2.1, but this proof consists of explicit estimates, so that no is at least effectively
calculable. The actual values of these constants will not be important to us.)

Suppose that we wish to construct a strong partial classifier with 2m inputs, where
2m is a magic number. Feed the 2m inputs into a O-classifier with 2m inputs. This
approximate classifier has m left outputs and m right outputs. Feed each of these sets
of outputs into a O-classifier with m inputs. These two approximate classifiers have
four sets of outputs. Feed each of these sets into a O-classifier with m/2 inputs, and
continue in this way until the sets of outputs of the approximate classifiers have
cardinality less than 2no. The result is a tree of approximate classifiers that we shall
call a classification tree. At its root are 2m inputs, and at its leaves are sets of outputs
each containing fewer than 2no outputs.

The next step will be to label the outputs as low, high, and middle in such a way
that the result is a strong partial classifier. When, as we do this, we assign the same
label to all the outputs in a subtree, we may prune away that subtree, and affix the
label to the outputs of the approximate classifier feeding the subtree. A large fraction
of the tree will be eliminated in this way.

We begin by labelling as middle the right outputs of the left child of the root,
and the left outputs of the right child of the root (and pruning away the subtrees
below). We shall label as low some of the outputs in the subtree fed by the left outputs
of the left child, and as high some of the outputs in the subtree fed by the right outputs
of the right child. We shall now describe which outputs are to be labelled as low. The
mirror image of this procedure will label an equal number of outputs as high.

Consider the m/2 smallest values assigned to the inputs, since it is these that are
eligible to appear at an output labelled as low. We shall call these m/2 values good,
and the other 3m/2 values bad.
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At most, a fraction O =- of the good values can appear at right outputs of the
approximate classifier at the root, and at most a fraction 1/2 can appear at right outputs
of the approximate classifier that is its left child. Thus at least a fraction 1- (-)- (-)=
of the good values appear at left outputs of the left child. Since the number of good
values equals the number of left outputs of the left child, at most a fraction 1- ()=
of the values appearing at these outputs are bad.

We may characterize the set of left outputs of the left child by its cardinality rn/2
and its "impurity" 1/4 (the largest possible fraction of its values that could be bad).
Suppose now that we have a set of outputs of some approximate classifier with
cardinality k and impurity r/. First, if r/> , we shall label these outputs as middle
(and prune away the subtree below). Second, if r/k < 1, then not a single bad value
can appear at one of these outputs; thus we shall label them as low (and prune away
the subtree below). Finally, if r/_-<1/2 and Tk=> 1, then we shall consider the sets of
outputs of the child. The set of left outputs has cardinality k/2 and (by Lemma 3.1)
impurity 207 /4, and the set of right outputs has cardinality k/2 and impurity 2r/
(the factors of 2 in the impurities arise because we are considering a fraction of half
as many things). We may continue in this way along each path in the tree until we
assign a label or reach a leaf. If we reach a leaf, we shall label its outputs as middle
if Tk--> 1, and as low if rtk < 1.

The first question we shall ask is: what fraction of the outputs are labelled as
middle by being in a set with impurity exceeding 1/2? To answer this question, we shall
consider the following random walk on the integers. Start at the position 2, Zo 2. At
each step, independently move to the position one smaller, Z,+I Z, 1, or two larger,
Zt+l Zt + 2, with equal probabilities. What is the probability of ever reaching a position
smaller than 1 ? Since the walk is confined to the integers, this is the probability of
ever reaching the position 0, Z, 0. The answer to this question is an upper bound to
the fraction of the outputs that are labelled as middle by being in a set with impurity
exceeding 1/2, as can be seen by considering the correspondence between paths in the
tree and walks, where the number of levels from the root corresponds to time in the
walk, and the negative of the logarithm (to base 2) of the impurity corresponds to
position in the walk.

In the present instance, the probability of ever reaching the position 0 can be
determined explicitly and is (3-x/)/2=0.382. . To see this, let f(x) denote the
power series in x in which the coefficient of x’ is the number of walks that start at 1
and reach 0 for the first time at time t. Then f(x)2 is the power series for walks that
start at 2 and reach 0 for the first time at time t, since each such walk can be uniquely
parsed into two subwalks according to the time at which it first reaches 1, and the
numbers of possibilities for both subwalks are counted by f(x). Thus the probability
we seek is f(1/2)2, so it will suffice to show that f(1/2)= (-1 +x/)/2 0.618.... Let g(x)
count the number of walks that start at 1 and return to 1 for the first time at time t.
Then g(x)= xf(x), since such a walk must go to 3 on the first step, then return to 1
for the first time in 1 more steps. On the other hand,f(x) x + xg(x) + xg(x)2 -k-

x (1 g(x)), since the walks counted byf(x) may be classified according to the number
oftimes they visit 1 before reaching 0. Thusf(x) satisfies the equation xf(x) -f(x) + x
0, so that f(1/2) satisfies f(1/2)3_ 2f(1/2)+ 1 0, which yields the stated result.

Next we shall ask: what fraction of the outputs are labelled as middle by being
in a leaf that is not pruned away? Such a leaf has cardinality at most 2no, and thus it
must have impurity at least 1/2no to avoid being labelled as low. Let d denote the number
of levels of approximate classifiers in the tree. Rephrased in terms of random walks,
our question becomes: what is the probability of being at a position at most Co log2 no
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at time d- 2 ? (The first two levels of the tree do not correspond to steps of the random
walk.) We shall answer this question with a lemma that goes beyond our present needs,
but which will be applied repeatedly later.

We shall consider random walks with discrete time indexed by the natural numbers
and discrete positions indexed by the integers. We shall assume that the steps are
independent and identically distributed, but we shall allow the steps to have any
probability distribution on a finite set of integers. We shall say that such a random
walk is positively biased if the expectation of a step is positive. (In the present instance,
the step is uniformly distributed on the set {-1, 2}, and the expectation is (-1 + 2)/2
1/2>o.)

LEMMA 5.1. Let Zt, O, 1, 2,..., be a positively biased random walk starting at

O, and let c be any position. Then there exist constants A and b < 1 such that for all t,
the probability that Zt is at most c does not exceed Ab .

Proof Let ()= Ex(exp-(Z1)). The power series expansion of (:) is 1-

: Ex (Z1)+O(2). Since Ex (Z1)>0, we can choose o>0 sufficiently small so that
(o) < 1. Since the steps are independent and identically distributed, we have Ex (exp-
(oZt)) (o) t. IfZ, -< c, then exp-(oZt)_-> exp-(oC). Thus, by Markov’s inequality,
the probability that Z, <- c is at most (:o)’/exp- (:oC), so we may take A=exp (oC)
and b (o). [-1

We may now apply Lemma 5.1 with t=d-2>=log2 (m/4no) and conclude that
the fraction of outputs that are labelled as middle by being in a leaf that is not pruned
away is at most Aba <-Cm-e, where C and e > 0 are constants. The only feature of
this bound that is relevant to our present purposes is that it tends to zero, even when
multiplied by d =< log2 m.

Finally, we shall ask" what is the size of the approximate classifier constructed in
this way? To answer this question, we shall again transform it into a question about
random walks. In a "synchronous" comparator network (in which the two inputs of
any comparator are at the same depth), each comparator contributes 2 to the sum of
the depths of the outputs. Thus the number of comparators is n/2 times the average
depth of the outputs. Since the depth of each approximate classifier is So, the number
of comparators is son times the average level at which the outputs are labelled. For
outputs labelled as low or labelled as middle by being in a leaf that is not pruned
away, the level at which they are labelled is at most d <= log2 m. (For outputs labelled
as low, it is in most cases substantially less than this, but we shall not attempt to exploit
this effect, since later optimizations will render it negligible.) For outputs labelled as
middle because their impurity exceeds 1/2, the level at which they are labelled is two
more than the number of steps taken by the corresponding walk to reach position 0
for the first time. (Again, the first two levels of the tree do not correspond to steps of
the random walk.)

In the present instance, this average number of steps can be calculated explicitly
and is 4/x/-= 1.788.... It is obtained from the power series f(x)2 that counts the
walks by evaluating xd(f(x)Z)/dx at x=1/2 or, equivalently, evaluating f’(x)f(x) at
x =. This evaluation is most conveniently accomplished by dividing the equation
xf(x)3-f(x) + x =0 by x, differentiating with respect to x, multiplying by x2, solving
for f’(x) in terms off(x) and x, multiplying by f(x), and evaluating the result at x .
Taking account of the equation f(1/2)2__ (3-x/)/2, derived earlier, yields the stated
result.

We can now sum the contributions to the size of the strong partial classifier. The
outputs labelled as low contribute at most (sol/2) log m, and those labelled as high

contribute equally. The outputs labelled as middle by being in a leaf that is not pruned
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away contribute at most Fm 1--e log2 m for some constants F and e > 0, and the outputs
labelled as middle because their impurity exceeds 1/2 contribute at most Gm for some
constant G. Since the /=l)(m), we conclude that for every e >0 and all sufficiently
large rn (depending on e), there exists a strong partial classifier with 2m inputs,
outputs labelled as low and an equal number labelled as high, and size at most
(So+ e)l log2/. It follows from Lemma 4.1 that for every e >0 and all sufficiently large
n (depending on e), there exists a classifier with n inputs and size at most (So/2+
e)n log2 n. The remainder of this paper is devoted to refining the construction just
given to reduce the constant So to 2.

6. Refined classification trees. If we ask what properties were essential to the
construction in the preceding section, we find three. First, the probability that the
random walk ever reaches the position 0 is strictly less than 1. Second, the probability
that the walk is near position 0 after steps decreases exponentially with t. Third, the
expected number of steps needed to reach 0 (with no contribution from walks that
never reach 0) is finite.

The second property is a consequence of the random walk being positively biased.
Thus it is natural to seek ways to reduce the number of comparators while preserving
the property that the corresponding random walk is positively biased. When this is

done, the explicit calculations by which we established the first and third properties
will no longer be feasible, but we will see that these properties are consequences of
the second property.

The property that the random walk was positively biased follows from the
inequality O < (so that the geometric mean of the factors 2 and 2O, by which impurities
change from parent to child, is less than 1). We shall arrange for O to vary from level
to level in such a way that the average (again in the sense of the geometric mean) of
O is strictly less than z, but by a very small margin. We shall also exploit the fact that
for most of the approximate classifiers in the classification tree, the number of bad
elements is very small, so that we may substitute weak approximate classifiers (as
defined in 3).

Let h be a positive integer. Set Oh :21/h/4 and h =(1--Oh)lOb. Since Oh>1/4, we
have /3h < 3. Corollary 2.3 and Lemma 3.1 establish the existence of ah > 0 such that,
for all sufficiently large n (depending on h), there exists an Ceh-weak Oh-classifier with
2n inputs and depth 4.

Let us now define a gadget to be a tree comprising h levels of ceh-weak approxitnate
classifiers, which therefore approximately classifies the values assigned to its inputs
into 2h classes. The Ch-weak approximate classifier at the root will have tolerance 1/2,
and those at the remaining h- 1 levels will have tolerance Oh.

Suppose that at most a fraction r/of the values assigned to the inputs of the gadget
are bad, where r/<-ah. We may determine the impurities of the 2h sets of outputs by
proceeding through successive levels of the tree as before. The root multiplies the
impurity by a factor of 2 or z, and every other node multiplies it by a factor of 2 or
21/h/2. A simple calculation shows that the geometric mean of the impurities of the
2h sets of outputs is (1/2)1/2h which is less than 1

Since all changes to impurities are by factors of 21/h, we may consider a random
walk on the integers by taking the position to be h times the negative of the logarithm
(to base 2) of the impurity, and letting the probability distribution for each step
correspond to the changes to impurities for a gadget. The expectation for a step is h
times the negative of the logarithm of the geometric mean of the changes, which is 5.

Thus the random walk is positively biased.
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Since every path through a gadget passes through one weak approximate classifier
with tolerance and through h- 1 with tolerance Oh > , we can construct a gadget
with depth at most 4(h- 1)+ So.

The gadget we have constructed is composed from ck-weak approximate classifiers,
and thus is only useful when the number of bad values is small. We shall call the
gadgets described above cheap gadgets. We shall also define dear gadgets, which have
the same tree structure, but with approximate classifiers (rather than weak approximate
classifiers) at all nodes, and with all classifiers having tolerance 1/2. We shall use the
same step probability distribution for dear gadgets that we used for cheap gadgets
(though of course dear gadgets do much more). The depth of a dear gadget is at most
hs0

We shall now construct a refined classification tree using gadgets rather than
approximate classifiers as nodes below the root and its children (so that the tree is
2h-ary rather than binary below the first two levels). We assign impurities to each set
of outputs of each gadget as before. We shall use a cheap gadget when the impurity
of the set of inputs is at most Ch, and a dear gadget when the impurity exceeds Ch.

We shall label outputs as low, high, or middle, and prune away subtrees as before.
It remains to estimate the number of outputs labelled as low, high, or middle, and to
estimate the size of the resulting strong partial classifier.

The fraction of the outputs that are labelled as middle because their impurity
exceeds can be bounded as before by the probability that the corresponding random
walk reaches a nonpositive position. (We must consider nonpositive positions, rather
than just the position 0, because a single step may now decrease the position by more
than 1.) For this purpose we shall use the following lemma.

LEMMA 6.1. Consider a positively biased random walk starting at a positive position.
Then the probability that the walk ever reaches a nonpositive position is strictly less than
1.

Proof By Lemma 5.1, the probability that the walk is at a nonpositive position
at time is at most Ab for some constants A and b < 1. The series Z,_>_ Ab converges,
so we may choose T sufficiently large that Z,=>_7‘ Ab’ <-. Let -A denote the most
negative step that is taken with positive probability, and let P > 0 denote the probability
that a step is positive. Then ZAT‘ => A T with probability at least P7-. If this event occurs,
the walk cannot reach a nonpositive position in fewer than T additional steps, and
the probability of it reaching a nonpositive position in T or more additional steps is
no larger than the probability of reaching a position at most A T in T or more additional
steps, and this is at most . Thus the probability of ever reaching a nonpositive position
is at most (1 pA 7‘) + p7‘/2 < 1. V1

Using Lemma 5.1 as before, we can again show that the fraction of the outputs
that are labelled as middle by being in a leaf that is not pruned away is at most Cm-e,
where C and e > 0 are constants.

To estimate the size of the strong partial classifier we have constructed, we again
begin by considering the average level at which outputs are labelled as middle because
their impurity exceeds . This is bounded by the expectation for the corresponding
random walk of the number of steps needed to reach a nonpositive position (with no
contribution from walks that never reach a nonpositive position). We shall use the
following lemma.

LEMMA 6.2. Consider a positively biased random walk starting from a positive
position. Let U denote the number of steps needed to reach a nonnegative position, if the
walk ever reaches a nonpositive position, or 0 if the walk never reaches a nonpositive
position. Then the expectation of U is finite.
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Proof Applying Lemma 5.1 with c the negative of the starting position, we have
that the probability of being at a nonpositive position at time is at most Ab for some
constants A and b < 1. The convergent series Zt_>_l Abtt bounds the sum over all visits
to nonpositive positions of the times at which the visits occur. This in turn bounds the
sum over first visits, which is exactly U.

For refined classification trees, we shall need an additional estimate concerning
the total size of dear gadgets. Since a dear gadget is used precisely when the impurity
exceeds a threshold ah, then the total size of dear gadgets can be bounded in terms
of the average time spent by the random walk at positions less than a corresponding
constant eh =-h log2 Ceh. By Lemma 5.1, this average time is bounded by a convergent
series >__1Ab , for some constants A and b < 1, and thus is finite. It follows that the
total size of dear gadgets is at most Hm, for some constant H.

Summing the contributions to the size as before, we find that for every h and all
sufficiently large rn (depending on h), there exists a strong partial classifier with 2rn
inputs, outputs labelled as low and an equal number labelled as high, and size at
most (4(h-1)+so+l)llog_h l=(4+(So-3)/h)llogzl. Letting h tend to infinity, we
see that for every e > 0 and all sufficiently large rn (depending on e), there exists a
strong partial classifier as above with size at most (4+ e)l log2 1. It follows from Lemma
4.1 that for every e > 0 and all sufficiently large n (depending on e), there exists a
classifier with n inputs and size at most (2+ e)n log2 n. Thus we have achieved the
goal of this paper.

7. Embellishments. In this section we shall offer some additional comments on
the embellishments to our main result that were mentioned in the introduction.

If one wishes to classify n values into classes of cardinality and n- t, this can
be accomplished by modifying the definitions of some of the components in the
construction. One redefines "strong partial classifier" so that the numbers of outputs
labelled as low and high are in the correct proportion, t: n- t, and so that t/2 and
(n- t)/2 values are eligible to appear as low and high outputs, respectively. One must
then modify the upper levels of the classification trees to accommodate the new
definitions of "good" and "bad" values, which now differ on the two sides of the trees.
(Special care is necessary if or n is much smaller than n.) The constant factor in
the final result is independent of t, but this should be regarded as a deficiency rather
than a merit, since it is to be expected that this constant should decrease as is varied
away from n/2.

The problem of obtaining an explicit construction is attacked by replacing Lemma
2.1 by an analogous explicit result (see Pippenger [Pi, 3.2]). A complication arises
from the fact that the explicit results hold only for certain n, rather than for all
sufficiently large n. Thus one obtains, for example, weak approximate classifiers with
2(q + 1) inputs, where q is a prime congruent to 1 modulo 4. In constructing classification
trees, one must always settle for using the next smaller weak approximate classifier of
this form, and reconcile oneself to labelling the remaining outputs of the parent
approximate classifier as middle. Standard results on the distribution of primes,
however, allow one to show that only a negligible fraction of the outputs are labelled
as middle in this way. Using weak approximate classifiers with depths 8, 12, and 30
results in a final bound slightly less than 6n log2 n.

Finally, if one wishes to ensure that the depth of the final classifier is O(log n),
one must modify the recursive construction so that the various strong partial classifiers
are "overlapped" in depth. To do this, it is most convenient to make them "stronger"
(so that m/4 rather than m/2 values are eligible to appear at an output labelled as
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low or high). One can then show that enough outputs are available from the shallower
levels of the first r strong partial classifiers to supply inputs for the (r + 1)st strong
partial classifier.

8. Conclusion. We have established the existence of classifiers with many fewer
comparators than those previously known. For most constructions that rely on expand-
ing graphs (such as those given by Bassalygo [B]), the constant factor depends on the
current state of technology of expanding graphs, and can be expected to improve with
further advances in the state of this art. The result of this paper, however, will not be
improved in this way: the constant in the leading term of the size depends only on
the degree needed for expanding graphs to expand very small sets, and this aspect of
expanding graphs is understood completely (graphs of degree s can expand small sets
by any factor up to s- 1, but not by more).

It would be of interest to see if a similar situation can be brought about for other
applications of expanding graphs, perhaps even for the most celebrated application
of all, the sorting networks of Ajtai, Koml6s, and Szemer6di.
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Abstract. The visibility graph of a set of nonintersecting polygonal obstacles in the plane is an undirected
graph whose vertex set consists of the vertices of the obstacles and whose edges are pairs of vertices (u, v)
such that the open line segment between u and v does not intersect any of the obstacles. The visibility graph
is an important combinatorial structure in computational geometry and is used in applications such as
solving visibility problems and computing shortest paths. This paper presents an algorithm that computes
the visibility graph of a set of obstacles in time O(E + n log n), where E is the number of edges in the
visibility graph and n is the total number of vertices in all the obstacles.

Key words, visibility graph, output-sensitive algorithms, shortest paths
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1. Introduction. The visibility graph of a set of nonintersecting polygonal obstacles
in the plane is a graph whose vertex set consists of the vertices of the obstacles and
whose edges are the pairs of vertices (u, v) such that the open line segment between
u and v does not intersect any of the obstacles. In this paper an output-sensitive
algorithm is presented for computing the visibility graph of a set of polygonal obstacles.
The visibility graph is a fundamental combinatorial structure in computational
geometry; it is used, for example, in applications such as computing shortest paths
amidst polygonal obstacles in the plane [11]. In particular, given a set of polygonal
obstacles in the plane, the shortest-length path between any two points s and travels
along the edges of the visibility graph of the obstacle set augmented with the points
s and [10],[15].

In the worst case the visibility graph of a set of obstacles with n total vertices
may contain O(/12) edges. An O(n2 log n) algorithm for this problem was given by
Lee [9] and Sharir and Schorr [15]. Later, worst case optimal O(n) algorithms were
discovered by Asano et al. 1 and Welzl 16]. If the visibility graph contains relatively
few edges, for example, when there are many densely packed objects, it is desirable
to have an algorithm whose running time is a function of the number of edges.
Hershberger has described an output-sensitive algorithm for the case of computing the
visibility graph within a simple polygon (once the polygon has been triangulated) [6],
and Overmars and Welzl have given an algorithm for computing the visibility graph
for a set of disjoint polygonal obstacles whose running time is O(E log n) and whose
space is O(n), where E is the number of edges in the visibility graph [14].

In this paper we present an algorithm that computes the visibility graph of an
arbitrary set of disjoint obstacles with running time O(E + n log n). The O(n log n)
term is overhead needed for computing a particular triangulation of the obstacle-free
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space, after which the algorithm runs in O(E) time. This is optimal in the worst case
with respect to E and n, since there are cases of n obstacles where E--O(n), but
computing the visibility graph is equivalent to sorting a set of n points 1 ]. The algorithm
uses O(E + n) space. Recalling the application of computing shortest paths amidst
polygonal obstacles, once the visibility graph has been constructed, the shortest path
can then be computed in O(E + n log n) time by Fredman and Tarjan’s variation of
Dijkstra’s algorithm using Fibonacci heaps [2].

The key to the algorithm’s efficiency is a way of structuring the edges of the
visibility graph in terms of a set of objects called funnel sequences. Intuitively, the
funnel sequence associated with an edge of an obstacle encodes the set of vertices that
can see some portion of this edge. We present a novel technique of traversing the
funnel sequences.

Throughout, P will denote a bounded polygonal domain, which we will think of
as a simple polygon (forming the external boundary) whose interior contains a set of
simple polygons (the holes) such that the holes have pairwise disjoint interiors. Define
the free space to be the closed space lying on or within the external boundary and on
or outside the holes. (If no exterior boundary is given, the convex hull of the obstacle
set, which is computable in O(n log n) time, suffices as the external boundary.)
Throughout, in using the term polygonal domain, we will assume the existence of an
external boundary. The boundary of a polygonal domain is represented by a single
counterclockwise cycle of directed edges forming the holes. Thus for each directed
edge, free space lies to the left side of the edge. To simplify the presentation, we will
make the "general position" assumptions throughout that no three vertices of the
polygonal domain are collinear and no two vertices share the same x-coordinates. We
will also assume that each vertex of P is incident on exactly two edges of P (line
segment obstacles can be handled as degenerate polygons with two oppositely directed
edges). Our results hold in the absence of these assumptions, but the presentation
would be complicated by a number of tedious special cases that would need to be
considered.

2. The plane-sweep triangulation. As mentioned in the Introduction, the visibility
graph algorithm is based on a triangulation of free space. Let T1, T2," ", T, denote
the triangles of this triangulation. Thus the free space region defined by P is just the
union of these triangles" P= i% Ti. The visibility graph algorithm operates by
constructing a series of subsets of free space by successively adjoining triangles to one
another, P T, P2 T t_J T2, P3 T [_J T2 [_J T3, etc. We compute a complete visibility
graph for each subset Pk by augmenting the visibility graph for Pk_l. (To be exact,
we simultaneously add a number of triangles incident on a single vertex.) Because of
the nature of the augmentation procedure, it will be important to select the triangulation
and the ordering of triangles in a careful way. Fortunately, there is a simple and natural
triangulation based on plane-sweep which suffices for our purposes. The triangulation
algorithm is essentially equivalent to one described by Mehlhorn [13, pp. 160-172].
Although Mehlhorn’s algorithm assumes that the polygon has no holes, the algorithm
generalizes easily.

The idea behind the plane-sweep triangulation for polygons is most easily illus-
trated by describing the plane-sweep triangulation of a set of points p, p2,..., Pn.
As is common in plane-sweep algorithms, first the points are sorted in increasing order
of their x-coordinates. The triangulation initially contains no edges, just the vertex
whose x-coordinate is minimum. Inductively, let us assume that the first k-1 points
have been triangulated. Think of the outer boundary of the triangulated region as a
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polygon Pk-1, namely the convex hull of the first k- 1 points. Clearly the point Pk lies
outside of Pk-1. Thus we can incorporate Pk into the triangulation by connecting Pk
to all of the points on the boundary of Pk-1 that are visible from Pk (thinking of Pk-1
as an obstacle). The point Pk will be joined to an inward-convex chain of vertices on
the boundary of Pk-1.

The plane-sweep triangulation of the interior of a polygonal domain is similar.
First the vertices are sorted by x-coordinate. Let Vl, v2,"" ", vn denote the resulting
sequence. Inductively assume that the first k-1 vertices have been incorporated into
the triangulation. The outer boundary of the triangulated region consists of a set of
disjoint simple polygons, which may degenerate to isolated points and line segments.
Thinking of the edges of the polygonal domain as forming obstacles, the vertex /)k is
incorporated into the triangulation by adding visible segments between Vk and all its
visible neighbors on the boundary of the triangulated region.

The plane-sweep triangulation can be built in O(n log n) time. The important
property of the plane-sweep triangulation, which will be exploited by our algorithm,
is summarized in the next lemma. This lemma follows from the discussion in [13]. See
Fig. 1.

(a) (b) (c)

FIG. 1. Connecting a point to the triangulation.

LEMMA 2.1 (Mehlhorn [13]). Consider the triangles formed as an arbitrary vertex
v is incorporated into the triangulation of a polygonal domain P. These triangles form
either one or two connected sequences about v such that the sides opposite v form an
inward-convex chain with respect to v (degenerating possibly to a single point). If there
are two such sequences, then these sequences are separated from one another by the
boundary of P (Fig. 1 c ).

3. The funnel sequence. The visibility graph of a polygonal domain possesses a
great deal of structure when seen within the context of the polygon itself. In this section
we describe the fundamental structure that our algorithm manipulates, called the funnel
sequence for an edge of the polygonal domain P. Funnels arise naturally in shortest-path
and visibility problems in simple polygons [5], [6], [10]. We begin with some definitions
and observations about funnels.

Define a visible chain in polygonal domain P to be a path in the visibility graph
of P. To avoid confusion, we will use the term edge when referring to an edge of a
polygon, and the term visible segment or just segment when referring to an edge in a
visibility graph. A chain is convex if the figure defined by joining the two endpoints
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of the chain is a convex body. Consider a vertex v that is visible from an interior point
z of an edge (x, y) of P. For the sake of illustration, imagine that the edge (x, y) is
directed upwards and point v is to the left of the edge (see Fig. 2). Define the lower
chain of v with respect to (x, y) to be the unique convex visible chain from v to x
such that the interior region bounded by this chain and by the line segments vz and
xz is empty. Intuitively, the lower chain is formed by imagining that the segment vz
is a rubber band and sliding the point z of this rubber band down the edge (x, y) until
reaching x. The upper chain of v with respect to (x, y) is defined analogously for y.
The lower chain, upper chain, and edge (x, y) bound a simple polygon in P which we
call a funnel.

v z v

y

(a) (b)

FIG. 2. Visible chains and funnels.

By definition, the interior of the funnel contains no vertices and no edges of P.
The vertex v is called the apex of the funnel and the edge (x, y) is the base of the
funnel. Unlike funnels that arise in simple polygons [6], in polygonal domains there
may be many funnels sharing a single apex vertex (see Fig. 2(b)). We will think of
these apexes as being distinct objects occupying the same physical location in space.

Considering the visibility graph for P and a vertex v of P. Let Uo, u2," , u,, be
the clockwise sequence of vertices that are visible from v so that (Uo, v) and (v,
are edges of P. For every pair of cyclically adjacent vertices ui-1 and ui, there is a
unique edge e of the polygonal domain that can be seen by an observer located at v
looking between these vertices (for otherwise, there would be another visible vertex
between them). Thus there is a unique funnel whose apex is v, whose base is e, whose
upper chain begins with (v, u_l), and whose lower chain begins with (v, u). Given
the first directed segment (v, u) of the lower chain, the first directed segment (v, u_)
of the upper chain is uniquely determined, and vice versa. An immediate result of this
correspondence is the following.

LEMMA 3.1. There is a 1-1 correspondence between pairs of cyclically adjacent
directed segments of the visibility graph about a vertex v, ((v, Ui_l) (V, U )) for 0 < <-- m,
and the funnels whose apex is v.

COROLLARY. The total number offunnels in a visibility graph with E undirected
edges and n vertices is 2(E- n), which is O(E).
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For a given edge (x, y) of the polygonal domain P, let FNL(x, y) denote the set
of funnels whose base edge is (x, y). Recall that the interior of P lies to the left of the
edge, so these funnels all lie on the left of (x, y). For completeness, vertices x and y
can each be thought of as the apexes of degenerate funnels in FNL(x, y). (There are
2n degenerate funnels, so this does not alter the number of funnels asymptotically.)
If v is the apex of a funnel in FNL(x, y), and u is the first vertex on the lower chain
from v to x, then u is visible from the edge (x, y) implying (by convexity of funnels)
that u is the apex of a unique funnel that is contained within v’s funnel. If we think
of the apex u as the parent of the apex v, we see that the set of funnels in FNL(x, y)
forms a tree rooted at x whose paths are the lower chains of FNL (x, y). Note that it
is important to distinguish vertices from apexes here because the same vertex can
appear many times as an apex in FNL (x, y), whereas each apex can appear only once.
Each path from a node to the root of this tree is a convex visible chain that turns
clockwise. Call this the lower tree for the edge (x, y) (see Fig. 3(a)). Analogously, we
define the upper tree to consist of the tree of upper chains of FNL (x, y) rooted at y
(see Fig. 3(b)). Paths from a node to the root in the upper tree are convex visible
chains that turn counterclockwise.

Y

x

(a) (b)

FIG. 3. The lower and upper trees.

We can define a natural linear ordering on the funnels of FNL (x, y) based on
these trees by considering the clockwise preorder traversal of the lower tree. There is
another natural order that results from considering a clockwise postorder traversal of
the upper tree. In both orderings, the degenerate funnel at x is first, and the degenerate
funnel at y is last. Our next result states that these orders are in fact equal to one
another. We refer to this clockwise ordering of funnels as the funnel sequence for the
edge (x, y).

LEMMA 3.2. The linear orders on FNL (x, y) arising from a clockwise preorder
traversal ofthe lower tree and a clockwise postorder traversal ofthe upper tree are the same.

Proof Let fl and f2 be two funnels so that fi precedes f2 in a clockwise preorder
traversal of the lower tree. Think of the lower chains of fi and f2 as paths from the
root x to the apexes of these chains, and think of upper chains as paths from y. There
are two reasons that fi may precede f2: (1) the lower chain of fi is a subchain of the
lower chain off2 and (2) the lower chain off2 diverges clockwise from fi’s lower chain
at some common ancestor.
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In case (1) the apex off1 lies on the lower chain off2. By the emptiness of funnel
f2, the upper chain of fl contains a single segment that lies entirely within f2 and joins
the apex of fl to a vertex v on the upper chain of f2 (either at a point of tangency or
at y). See Fig. 4(a). This implies that the upper chain for f2 diverges clockwise from
the upper chain for fl at v, and hence fl precedes f2 in any clockwise traversal of the
upper tree.

fl

x x

(a) (b)

FIG. 4. Funnel ordering.

In case (2) f’s path diverges from fl along a segment that enters into the interior
off1. Since funnels are empty, this segment must eventually intersect the boundary of

fl at some point z (which may or may not be a vertex). The point z must lie on the
upper chain off1, since it cannot intersect the interior of edge (x, y), and by convexity
it cannot cross the lower chain off1. See Fig. 4(b). If z is the apex off2, implying that
f is an ancestor of fl in the upper tree, then fl precedes f in any postorder traversal
of the upper tree. Otherwise the lower chain of f2 crosses the upper chain of fl at z.
The upper chain of f2 cannot enter into the interior off1 by the emptiness of funnels,
and hence the upper chain of f2 must diverge clockwise from the upper chain fl at
some vertex v before reaching z. This implies that the upper chain for fl precedes f2
in any clockwise traversal of the upper tree. [3

4. The enhanced visibility graph. In this section we describe the basics of the
visibilit.v graph algorithm. We assume that we have computed the plane-sweep triangula-
tion for the polygonal domain P. (Actually, the process described here could be
performed while the triangulation is being built.) Recall from 2 that the vertices
vl, v2,’’ ", vn of P have been sorted in increasing order by x-coordinate, and they
are incorporated into the triangulation in this order. Let Pk denote the triangulated
region containing the vertices Vl," ", vk. We will think of P as a polygonal domain
contained within P (it may be disconnected and contain isolated points and edges).

For each k we maintain a structure called the enhanced visibility graph for P.
Before specifying the enhanced visibility graph we first give some definitions. Consider
a vertex v in the visibility graph and consider the visible segments directed out of v.
This list will include the two boundary edges of P incident on v. Let (v, u) be a visible
segment incident on v. Define the clockwise successor of (v, u), CW (v, u), to be the
next visible segment about v in clockwise order and define the counterclockwise successor
of (v, u), CCW (v, u), analogously. Define the clockwise extension CX (u, v) of a visible
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segment directed into v as follows (note the reversal of arguments). Rotate the ray
from v through u clockwise by 180 degrees about v. If this sweep lies entirely within
the interior of P locally about v, then the extension is the very next visible segment
encountered after the 180 degree sweep (by our assumption of the noncollinearity of
three vertices, there will be no segment at exactly 180 degrees). If not, then the clockwise
extension is undefined. The counterclockwise extension, CCX (u, v), is defined symmetri-
cally using a counterclockwise sweep. Fig. 5 illustrates three of these entities, and the
fourth, CX (u, v), is undefined for this example. Finally, define REV (u, v) to be the
directed reversal (v, u).

DEFINITION. Define the enhanced visibility graph for polygon P to consist of:
the boundary of P represented such that the two neighbors of a given vertex

can be found in constant time;

CCX(u,v)
/

Um/
CW(v,u)

u CCW(v,u)
FIG. 5. Traversal primitives.

the visibility graph for P, represented such that the operations CCW, CW, CCX,
CX, and REV can be evaluated in constant time each; and

the funnel sequence FNL (x, y), for each edge (x, y) on the boundary of P,
represented (say, as a doubly linked list) so that the operations of split, concatenate,
predecessor, and successor can be performed in constant time each. (To be exact, our
algorithm only maintains the funnel sequence for a selected set of boundary edges
along the right side of P, along which we will augment the triangulation.)

In 7 we will show how to implement CW, CCW, CX, CCX, and REV, but for
now we assume that these operations are available to us. From Lemma 3.1 we may
assume that each funnel apex is uniquely represented by giving the first segment in its
lower chain (directed out of the funnel’s apex), but we will refer to apexes by vertices,
when the funnel is clear from context. Next we observe that the enhanced representation
of the visibility graph contains sufficient information to permit traversals of the upper
and lower trees.

LEMMA 4.1. Consider the enhanced visibility graph of a polygonal domain P, and
suppose that (u, v) is any directed segment of the lower tree of an edge (x, y) of P, such
that u is a parent of v. Thefollowing relatives ofu and v in the lower tree can be computed
in constant time:

(i) the parent of u,
(ii) the extreme clockwise and counterclockwise children of v, and
(iii) the clockwise and counterclockwise siblings of v.
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Analogous claims hold for the upper tree.

Proof We prove the lemma for lower trees, and a symmetric argument establishes
the result for upper trees. For (i), by the clockwise turning of the lower chains, the
parent of u in the lower tree is the apex whose lower chain begins with the head vertex
of the clockwise extension CX (v, u), that is, CX (REV (u, v)), provided it exists (see
Fig. 6). If this extension is undefined, then it follows (by the emptiness of funnels)
that u =x, and hence u is the root of the tree.

FIG. 6. Tree traversal.

Since (u, v) is a segment of the lower tree for (x, y), v is the apex of a funnel that
is visible from the interior of the edge (x, y). The first lower chain segment of this
funnel is (v, u) and the first upper chain segment is CCW (v, u). Let (v, u’) CCW (v, u).
To establish (ii), let (w, v) be the directed edge on the polygon’s boundary, such that
the interior of the polygon lies to the left of this directed edge. If the counterclockwise
extension CCX (u, v) is undefined (implying that w lies in the halfplane to the right
of segment (u, v)), then, by the convexity of lower chains, v cannot have a child in
the lower tree, and hence is a leaf. Otherwise, any children of v must lie between
CCX (u, v) and (v, w) counterclockwise about v (see Fig. 6). Let z be such a vertex.
For z to be a child of v, the funnel with apex z whose lower chain begins with segment
(z, v) must be visible from the interior of edge (x, y). This is true if and only if the
counterclockwise angle u’vz is less than 180 degrees. (The "only if" part of this
statement is true from the convexity of the upper chains. The "if" part holds because
if u’vz is less than 180 degrees, then the ray from z through v passes through the
interior of the funnel whose apex is v and strikes the interior of the edge (x, y).)

Let w’ be chosen such that if the counterclockwise extension CCX (u’, v) exists,
then (v, w’)=CW(CCX (u’, v)), and otherwise w’--w. Clearly, w’ is computable in
constant time, and it follows from the previous discussion that the children of v are
exactly those apexes z visible from v that lie counterclockwise from the head of
CCX (u, v) to w’, assuming that this angular sector is not empty. If so, the reversal of
these two edges, REV(CCX (u, v)) and REV (v, w’), are the first edges of the lower
chains of the extreme clockwise and counterclockwise children of v, respectively. If
the sector is empty, then v is a leaf.

For (iii), note that the clockwise sibling of v is just CW (u, v), provided that v is
not the extreme clockwise child of u. A symmetric statement holds for the counterclock-
wise sibling of v. By (ii) we can test whether v is an extreme child of u.
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COROLLARY. Given the enhanced visibility graph, clockwise and counterclockwise
traversals of the lower and upper trees can be performed in time proportional to the sizes

of the trees, and a funnel can be traversed in time proportional to its size.

5. Splitting the funnel sequence. Our next task is to describe how to use the ability
to traverse the enhanced visibility graph in order to add a new vertex into the visibility
graph.

The basic loop of the visibility graph algorithm consists of successively adding
triangles from the triangulation of the polygonal domain and updating the visibility
graph with each addition. We assume inductively that an enhanced visibility graph
has been computed for the interior of the triangulated region so far. For each new
triangle added, we update the visibility graph appropriately. The fundamental operation
on which our algorithm is based is procedure SPLIT. This procedure is given an
enhanced visibility graph for a polygonal domain P, a directed edge (x, y) on the
external boundary of P, and a point v lying to the right of this edge so that the triangle
xvy is external to P. The procedure essentially merges the triangle xvy into P (erasing
the edge (x, y)) and computed the enhanced visibility graph of the resulting polygonal
domain.

After the edge (x, y) is removed, every vertex in P that was visible from some
interior point of the edge (x, y) will be visible from either the interior of edge (x, v)
or edge (v, y) or both. The apex of a funnel of P is visible from both edges (x, v) and
(v, y) (through the funnel) if and only if the apex is visible from v. Consider a funnel
with apex u, whose upper chain is U and whose lower chain is L. (We will often refer
to a funnel by giving the name of the vertex that is its apex whenever the actual funnel
is clear from context.) If u can see v through the funnel, then SPLIT will add the
visible segment between u and v, in effect splitting the funnel u into two funnels, one
for FNL (x, v) whose lower chain consists of L and whose upper chain has only the
segment (u, v), and one for FNL (v, y) whose upper chain consists of U and whose
lower chain has only the segment (u, v) (see Fig. 7(a)). If u can see only one edge
through the funnel, say the lower edge (x, v), then SPLIT will make u the apex of a
funnel to be added to FNL (x, v). The lower chain of such a funnel will consist of L,
and the upper chain will consist of a tangent segment from v to the upper chain U,
followed by the remainder of U to u (see Fig. 7(b)).

Y Y

11

(a) (b)

FIG. 7. Splitting a funnel.
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To illustrate the operation of SPLIT in greater detail, consider two funnel apexes
u and that are visible from v in consecutive clockwise order about v. Between these
apexes lies a pocket of visibility, where there may exist apexes that can see the edge
(x, y), but not the vertex v. Extend the visible segments (v, u) and (v, t) until reaching
points q’ and r’ on the boundary of P (see Fig. 8). There are no vertices or polygonal
edges in the triangle vq’r’ because there are no visible vertices between u and t. Imagine
for the moment two funnels whose apexes are the points q’ and r’. These points are
visible from the interior of edge (x, y), and hence (as apexes of two funnels that pass
between u and t) they can be put into the linear order of FNL (x, y). It is not hard
to see that q’ and r’ will be consecutive in funnel order and (as will be proved in
Lemma 5.2) q’< r’. (We will use the notation < and > to relate apexes in funnel
order.) Let q be the true apex in FNL (x, y) that precedes q’ in funnel order, and let
r be the true apex in FNL (x, y) that succeeds r’. It may be that q u or r t. Intuitively,
if q u, then every apex a, u < a =< q, has its visibility of v blocked from below by u.
(We say an apex q’s visibility of v is blocked from below by u if the lower chain of q
passes through u, and u is a point of tangency with respect to v on this chain.) These
apexes are only visible from the upper edge (v, y). Similarly, if r t, then every apex
a, r-<_ a < t, has its visibility of v blocked from above by t. These apexes are only visible
from the lower edge (x, v).

The procedure SPLIT operates by finding the funnel apexes that are visible from
v in clockwise order. For each consecutive pair of visible apexes that it finds (such as
u and t) there is a pocket of edge visible apexes. The procedure locates apexes (such
as q and r) at which the pocket can be split. Since the funnel sequence is a simple
doubly linked list, the splitting can be done in constant time, once the endpoints of
the split are known. The key to the efficiency of the procedure is to locate t, q, and r
quickly, once u is known. The heart of the SPLIT procedure is a search of the enhanced
visibility graph, which when given a visible vertex u, finds these entities and, in general,
a number of other visible vertices in time proportional to the number of visible pairs
encountered. Thus the effort of the algorithm will be amortized against the number of
newly discovered visible segments.

Before describing the SPLIT procedure, we investigate the deeper structure of the
upper and lower trees. The fundamental intuition that we exploit is that within a

FIG. 8. Splitting the funnel sequence.
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sufficiently small region, namely two vertices that are adjacent in funnel order, the
visibility structure is really no different than the visibility structure of a simple polygon
without holes. To make this intuition more formal, we begin with a definition. Consider
a pair of apexes q < r that are consecutive in the funnel order of the edge (x, y). Define
the hourglass of q and r to consist of the edge (x, y), the upper chain from r to y, the
line segment (r, q), and the lower chain from q to x (see Fig. 9).

LEMMA 5.1. (i) The four parts of an hourglass do not intersect each other except at
their endpoints, and thus they define a closed simple polygon.

(ii) The interior of the region bounded by the hourglass is empty, that is, it contains
no vertices or edges of P.

Proof To prove (i) consider the upper tree for edge (x, y). Since q immediately
precedes r in funnel order, by Lemma 3.2, r is the clockwise postorder successor of q
in the upper tree. Thus either r is the parent of q in the upper tree or else r is the
furthest counterclockwise leaf in the subtree rooted at the clockwise sibling of q. If r
is the parent of q in the upper tree, then the hourglass degenerates into the funnel for
q, and both parts of the lemma follow immediately. Thus assume that r is not the
parent of q, and let s denote the parent of q in the upper tree (see Fig. 9). The upper
chain from r to y passes through s. By the clockwise and counterclockwise turning
natures of the lower and upper trees, respectively, the line passing through q and s

separates the upper chain from r to y from the lower chain from q to x; thus these
portions of the hourglass’s boundary do not intersect (except at their endpoints). This
line also separates the segment (q, r) from the lower chain passing from q to x, implying
that these parts of the hourglass boundary do not intersect. A symmetric argument
(applied to the lower tree) shows that segment (q, r) does not intersect the upper chain
from r to y. Finally, since all these structures lie within P, none of them intersects the
edge (x, y).

To show (ii), consider the region R bounded by the portion of the upper chain
from r to s, the segment (q, s), and the segment (q, r). Clearly, the region R, together
with the interior of the funnel for q, subdivide the interior of the hourglass into disjoint
regions. Because q and r are consecutive in the funnel order, there can be no vertices
in the interior of R. Furthermore, there can be no edges of P in the interior of R since,
in the absence of vertices in the region, such an edge would have to cross either the
segment (q, s) or else the upper chain from r to s, but these are formed entirely from

FIG. 9. The hourglass defined by two consecutive apexes.
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visible segments. This implies that the interior of R is empty. Fact (ii) follows
imrnediately by the emptiness of the funnel for q.

We will also need the observation that there is consistency between the funnel
ordering for edge (x, y) and the new edges.

LEMMA 5.2. Let (x, y) be an edge of a polygonal domain P, and let v be a point
external to Pforming an empty triangle with (x, y). Let P’ be the polygonal domain which
results by replacing the edge (x, y) with the two edges (x, v) and (v, y). Let u and w be
two apexes of FNL (x, y) such that u precedes w in funnel order.

(i) If u and w are both visible from v in P’, then u precedes w in clockwise order
about v from x to y.

(ii) If u and w are not visible from v in P’, but both are visible from the lower edge
(x, v), then u will precede w in the funnel order of (x, v) (as apexes in FNL (x, v)).

(iii) If u and w are not visible from v in P’, but both are visiblefrom the upper edge
(v, y), then u will precede w in the funnel order of (v, y) (as apexes in FNL (v, y)).

Proof Assertion (ii) holds because in this case the lower chains for all such funnels
are unaffected, and thus the tree relationships are preserved. Assertion (iii) holds
because in this case, the upper chains for such funnels are unaffected, and thus the
tree relationships are preserved (using Lemma 3.2).

To prove (i), we consider the two ways in which u can precede w in the lower
tree. If u is an ancestor of w in the lower tree, then the lemma follows immediately
from the convexity of the lower chains and the fact that w is visible from v. Otherwise,
since u precedes w in funnel order, they share a common ancestor u" in the lower
tree, and the lower chain passing from x to w diverges clockwise from the lower chain
from x to u at u". This implies that the first segment on the path from u" to w passes
into the interior of the funnel for u. Since the funnel for u is empty, this segment must
intersect the upper chain for u at some point z (not necessarily a vertex). Since u is
visible from v, all of its upper chain is visible from v, and all the points on this upper
chain lie clockwise from u about v. Thus z lies clockwise from u. By the convexity of
the lower chains, and the fact that w is visible from v, w lies clockwise from z and
hence clockwise from u about v.

We now return to the description of the SPLIT procedure. SPLIT is a recursive
procedure that is called under the following conditions. We are given the enhanced
visibility graph for a polygonal domain/9, an edge (x, y), and a point v external to
forming a triangle with (x, y). Throughout the description, P, x, y, and v will remain
constant. We are also given a funnel apex u that is visible from v. Let w be the parent
of u in the upper tree. By Lemma 3.2, w follows u in funnel order. By the convexity
of the upper chain, it follows that w is also visible from v. We assume that all of the
visible segments from (v, x) to (v, u) in clockwise order about v have been added to
the visibility graph but that none of the visible segments after this have been added.
Let FNL [u, w] denote the subsequence of FNL (x, y) that contains all the funnels (in
funnel order) between u and its parent w, noninclusive. (Note that the elements of
FNL [u, w] have edge (x, y) as their base, not the segment (u, w).) It is easy to see
that, since w is the parent of u in the upper tree, the upper chain of every funnel in
FNL [u, w] passes through w (although the lower chain of every funnel in FNL [u, w]
need not pass through u).

Recall that funnels are not stored explicitly as upper and lower chains, but rather
we only store the first segment of the lower chain and extract all other segments from
traversals of the enhanced visibility graph. Thus as segments are added to the enhanced
visibility graph, the structure of the funnels changes. With this in mind, on return from
the call SPLIT (u, w), the following tasks will be completed.
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(1) All the visible segments between v and visible apexes of FNL u, w] are added
(each addition will, in effect, split some funnel into two funnels),

(2) FNL [u, w] is split into two funnel sequences, those with apexes visible only
to the lower edge (x, v) and those with apexes visible only to the upper edge (v, y).
The first set of funnels are concatenated onto the end of FNL (x, v) and the second
set is concatenated onto FNL (v, y). (Note that the addition of the visible segments
in (1) implies that all funnels in FNL [u, w] will be in either one class or the other.)

FNL (x, v) and FNL (v, y) are initialized to empty. The algorithm proceeds by
first creating the visible segment (v, x), then calling SPLIT (x, y), which does the bulk
of the work, and finally adding the visible segment (v, y). The fact that SPLIT will
encounter visible pairs in clockwise order about v together with Lemma 5.2 implies
that the final order of these newly formed sequences will be correct. We now give an
annotated description of the procedure. Throughout the description, unless otherwise
noted, all funnels and the lower and upper trees belong to FNL (x, y). Although we
will often ignore the distinction between apexes and vertices in the description below,
recall that every apex is represented by the first edge of its lower chain.

PROCEDURE SPLIT (u, w):
(1) We begin by searching for the last funnel apex q after u in funnel order whose

visibility of v is blocked by u. The path to q in the lower tree may visit many
vertices that are invisible from v, so we seek a more efficient route. Our method
instead locates the successor r of q in funnel order (see Fig. 10). Since we
have added the visible segment (u, v), this segment is the first segment of an
apex in the lower tree of FNL (v, y). Let u’ be the extreme clockwise child
of this apex in the lower tree for (v, y). This is the most clockwise child of u
whose visibility of v is blocked by u.

FIG. 10. Searching for a new visible apex.

(a) If u’ is undefined, because the apex associated with (u, v) is a leaf in the
lower tree of FNL (v, y), then it follows that there is no apex of FNL (x, y)
whose visibility of v is blocked by u, and so we can take q to be u and r to
be the successor of u in funnel order, and continue with step (2).
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(b) Otherwise let us think of u’ (represented by the segment from u’
to u) as an apex in FNL (x, y). Let S denote the set of apexes who
are descendents of either u’ or of its siblings in the lower tree lying
counterclockwise of u’. These apexes will be consecutive in
FNL (x, y), starting from just after u to q. These are exactly the
apexes whose visibility of v is blocked by u. The first apex r

immediately following S in the funnel order of FNL (x, y) will be
the postorder successor of u’ (ignoring the ancestors of u’) in a
clockwise traversal of the lower tree of (x, y).

The apex r can be found by the following loop which walks along
the lower tree of (x, y) towards the root. Let u"-u. Throughout
the loop we will maintain the invariant that u" is the parent of u’.
While u’ is the extreme clockwise child of u", let u’- u" and let u"
be assigned its parent in the lower tree of (x, y). On exit of this
loop, let r be the next clockwise sibling of u’ in the lower tree.
(Since u y, such a successor will eventually be found.) Take q to
be the predecessor of r in funnel order.

(This traversal toward the root of the lower tree of (x, y) is compli-
cated technically by the fact that the tree has been altered during
previous calls to SPLIT by the addition of visible segments from
these vertices to v. However, the data structure described in 7 has
no difficulty ignoring these added segments and taking their clock-
wise neighbors instead.)

(2) If q u, all the funnels following u up to q are known to be hidden from v,
but can see the edge (v, y). Split the list FNL [u, w] just after u and up to
and including q, yielding the sublist of apexes a such that u < a =< q (in funnel
order). Concatenate this sublist to the end of FNL (v, y).

(3) Let s be the parent of q in the upper tree. The following properties relating
r, s, and w are now relevant. These are proven later in Lemma 5.3.

(a) Both w and s lie on the upper chain from r to y so that s lies between
r and w (inclusive) on this chain.

(b) The set of apexes on the upper chain from r to y that are visible
from v form a contiguous subchain whose last element is either r or
an apex such that the line passing through v and is tangent to
the upper chain.

(c) The segment (v, t) is the next visible segment after (v, u) in clockwise
order about v.

(d) The apex s is visible from v; that is, s lies between and w on this
upper chain.

Property (d) is key to the procedure since it implies that we have "jumped"
from one visible vertex u to another visible vertex s in essentially constant
time. The other properties are used to help locate the intermediate visible
vertices.
The vertex that we are really interested in finding is the vertex t, which closes
off the pocket started by u. Unfortunately, our search procedure only gives
us s, a visible ancestor of t, in the upper tree. It would be tempting to simply
search for at this point, but in order to maintain our complexity bounds,
we must make each piece of work pay off with the discovery of a new visible
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(4)

(6)

segment. The remainder of the procedure "mops up" the pockets of visibility
between and w.
Traverse the upper parent chain from s to w, and then backtrack along this
chain from w back through s and towards r. (Backtracking is done by stacking
the vertices visited from s to w and then popping the stack, while the traversal
from s towards r is done by selecting the next clockwise segment in the upper
tree following the segment (s, q) and then continuing along the extreme
counterclockwise child of each succeeding apex. Since r is the next vertex in
the upper tree following q in postorder, this process will eventually terminate
at r if allowed to.) This traversal continues until reaching r or the last apex
that is visible from v. (The apex is a point of tangency on the upper chain

with respect to v (see Fig. 10).) From properties (3)(b) and (3)(d) above it
follows that all of the apexes visited by these traversals are visible from v. Let
to, tl,’’’, tk denote the apexes visited by this traversal in reverse order so
that to and w tk.
The counterclockwise turning of the upper chains implies that every apex
a, r_-< a < in the funnel order, will have its visibility from v blocked by t,
but each apex will be visible from the lower edge (x, v). If r= t, then this
sublist is empty, otherwise split FNL u, w] just before r and just before and
concatenate this sublist to the end of FNL (x, v).
By Lemma 5.2 the apexes to, q,’’’, tk W are given in clockwise order
about v, are all visible from v, and in each case, ti is the parent of ti_ in the
upper tree. It is easy to see that FNL [u, w] consists of the funnels between
u and t, which have already been processed, and the concatenation of
FNL [ti_, ti] for i= 1,2,..., k (including also the visible segments (v, t)).
Thus the preconditions of the SPLIT procedure apply. For running from 1
to k do the following.

(a) Add the visible segment (v, t_), thus effectively splitting the funnel
with apex t_ into two funnels, a lower funnel whose base is edge
(x, v) and an upper funnel whose base is edge (v, y).

(b) Concatenate the lower funnel to the end of FNL (x, v) and concat-
enate the upper funnel to the end of FNL (v, y).

(c) Call SPLIT (ti_, ti). This will find all the visible apexes between t_
and ti and will append all funnels to either FNL (x, v) or FNL (v, y)
as appropriate.

The only nontrivial observations needed to establish the correctness of SPLIT are
the properties mentioned in step (3).

LEMMA 5.3. Properties (a), (b), (c), and (d) listed in step (3) of the above algorithm
are all true.

Proof Since q and r are consecutive in funnel order, where q precedes r, we can
apply Lemma 5.1 to the hourglass of q and r. As in that lemma, if r is the parent of
q in the upper tree, then the hourglass degenerates into a funnel, and s r and is
visible from v. The lemma follows immediately from basic funnel properties. It was
shown in the proof of Lemma 5.1 that s lies between r and y on the upper chain. We
show that s is between w and r. By Lemma 5.1 and the convexity of the upper and
lower chains, since u is an ancestor of q on the lower chain, the parent of u, namely
w, is an ancestor of the parent of q, namely s, on the upper chain. This establishes
(3)(a). Property (3)(b) is a simple consequence of Lemma 5.1 and the convexity of
the chains.
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We argued earlier that all apexes strictly after u and up to q are hidden from v.
To prove (3)(c) we first argue that all apexes starting with r, and up to but not including
t, are also hidden from v. Property (3)(c) will then follow from Lemma 5.2, because
will be the next visible vertex in funnel order. If r t, then this sequence of apexes

is empty and the claim is trivially true. Otherwise the line passing through v and u is
tangent to the lower chain from q to x (or possibly q u). The apex r lies on the
opposite side of this line because r’s visibility of v is not blocked by u. Since r t,
is a point of tangency with respect to v along the upper chain. By extending the
segments (v, u) and (v, t) through u and t, respectively, to the boundary of P, we have
a wedge that separates q from r. This wedge contains no apexes in its interior, for
otherwise q and r would not be adjacent in funnel order. Since is an ancestor of r
in the upper tree, all the successors of r up to, but not including, are descendents
of in the upper tree (because funnel order corresponds to a postorder traversal of
the upper tree), and it is easy to see that is a point of tangency with respect to v for
the upper chains of all of these successors. Thus all these apexes are hidden from v,
implying that is the next visible apex.

To prove property (3)(d) we claim that s lies on the portion of the upper chain
from r to y which is visible from v. Since this chain is convex and is a point of
tangency, this means that we must show that s lies on the portion of this upper chain
from to y. Suppose that s were to lie in the invisible portion of the upper chain from
r to t. Consider the upper tree edge from q to s. Because this segment is tangent to
the upper chain from r to y (and is directed so that its extension through s would stab
the segment (x, y)) it would follow that q lies clockwise from with respect to v.
However, by our construction, q’s visibility of v is blocked by u (or q equals u), so
q lies counterclockwise of u with respect to v. This leads to a contradiction because
we have just shown that is clockwise of u with respect to v. E]

Ignoring the time needed to manipulate the underlying data structure (which we
will show to be O(E) in 7), the algorithm’s running time is proportional to the
number of visible segments added.

LEMMA 5.4. Assuming that the graph is represented as an enhanced visibility graph,
the running time of SPLIT (x, y) is proportional to the number of visible segments added
to v.

Proof The procedure performs essentially only local traversals of the enhanced
visibility graph, by walking around either the lower or upper trees for the edge (x, y).
As mentioned in Lemma 4.1, these traversals can be performed in constant time
assuming that the graph is represented as an enhanced visibility graph.

Let E denote the number of visible segments added to v during the call
SPLIT (x, y). To show that SPLIT runs in O(E) time note that the first argument to
SPLIT is always an apex visible from v, and since successive calls are to apexes in
further funnel order, SPLIT is never called with this same first argument twice. Thus,
the number of recursive calls is at most Ev. The procedure contains only two loops.
The first loop appears in step (1)(b) when the lower chain is searched starting from u
for the vertex u" that is the parent of r in the lower tree. Each apex visited in this loop
is visible, and we claim that, with the exception of the apex u", none of these apexes
will be visited twice by this loop. The reason is that all subsequent executions of this
loop will begin searching starting from some apex that comes after (or is equal to) the
apex in funnel order. Since is an ancestor of r on the upper chain, t’s ancestors
on the lower chain will be ancestors of the parent of r, namely u".

The second loop appears in step (4) where the upper chain from s back to w is
traversed and then retraversed to t. All of the apexes visited in this process are visible
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by Lemma 5.3, and a recursive call is made for each such apex (except w), and so the
cost of this step cannot exceed O(Ev) altogether. El

6. The overall algorithm. Finally we describe how to use the SPLIT procedure to
compute the enhanced visibility graph for a polygonal domain P. The problem reduces
to that of incorporating a new vertex v into a triangulated region P resulting in an
enlarged triangulated region P’. The difference between this process and the problem
that SPLIT solves is that SPLIT incorporates exactly one new triangle into P, and in
the plane-sweep triangulation we incorporate one or two sequences of triangles whose
bases form an inward-convex chain with respect to v by Lemma 2.1.

For each of these sequences of triangles, let Uo, ul,’’’, u,, be vertices on the
inward-convex chain that are visible from v. We consider three cases.

(1) If the sequence is empty, v cannot see any vertex on P, implying that there
is no change in the visibility graph except the inclusion of the isolated vertex v. This
occurs in the plane sweep whenever a vertex is inserted whose local neighborhood
with respect to P lies to the right of the vertical line passing through v.

(2) If the sequence contains one vertex Uo, then v can see only Uo on P (locally),
implying that v cannot see any other vertices within P. Thus the only change in the
visibility graph is the inclusion of the edge (v, Uo). This will be the case, for example,
for a vertex following case (1). We will think of this single edge as consisting of two
oppositely directed edges that bound a polygon with zero area. The only funnels are
degenerate funnels.

(3) Otherwise, the sequence contains at least two vertices forming an inward-
convex chain with respect to v. In the rest of the discussion, we consider this case.

Each triple (u_l, u, v) forms a triangle (see Fig. 11). The edges (Uo, v) and (v, Urn)
are on the boundary of P’. Our objective is to compute FNL (Uo, v) and FNL (v,
(for P’). Assume inductively that we have already computed FNL (u_, u) for P for
each of the edges (u_, u) on the chain (since this will be a part of the representation
of the enhanced visibility graph for P). For each such edge and vertex v, call the
SPLIT procedure. This splits FNL (u_, u) into two funnel sequences, one for the
lower edge (u_, v), which we call L, and the other for the upper edge (v, u), which
we call U. In the process, SPLIT also adds all the visible segments from v passing
through the edge (u_, u). Although L consists of funnels for the polygon P whose
common base is the edge (u_, v), we can think of them as funnels for P’ whose

u3

FIG. 11. Joining a vertex to an inward-convex chain.
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common base is the edge (Uo, v). Similarly, U can be thought of as a sequence of
funnels for P’. In order to form the desired funnel sequences for P’ we appeal to the
following lemma, which establishes that we can obtain this funnel sequence by con-
catenating the intermediate sequences.

LEMMA 6.1. Consider a point v external to a bounded polygonal domain P and an
inward-convex chain of vertices Uo, u1," , Um m >= 1) on the boundary ofP visiblefrom
v. Let P’ be the polygon obtained by replacing this chain with the edges (Uo, v) and
(v, u,,). Then

(i) FNL (Uo, v) in P’ is equal to the concatenation ofLfor 1 <=j <-_ m, followed by
the trivial funnel whose apex is v.

(ii) FNL (v, Urn) of P’ is equal to the concatenation of the trivialfunnel whose apex
is v followed by Uj for 1 <-j <-_ m.

(iii) The computation of Lj and Uj does not affect the computation ofL and U for
any j.

Proof We first prove (i), and (ii) follows by a symmetric argument (together with
Lemma 3.2). Consider the lower tree for FNL (uo, v). Each vertex u is visible from v
and hence is the apex of a funnel for edge (Uo, v) whose lower chain consists of
uo, u,..., uj and whose upper chain consists of the single segment (uj, v). To see
that this forms a funnel, observe that the chain Uo, , uj is inward-convex with respect
to v, and (Uo, v) is an edge of P’. In general, if C is a path in the lower tree for edge
(u_l, uj) in P, then the concatenation of Uo, u,. ., u_ with C forms a chain in the
lower tree for edge (Uo, v) in P’. Conversely, other than the segment (uo, v) (correspond-
ing to a trivial funnel), every path in the lower tree for edge (Uo, v) is of the form
uo, u,. ., uj_ followed by some chain C in the lower tree for edge (uj_, u). Hence,
every funnel in Lj is extendible to a funnel of (Uo, v) and the funnel order within L
is preserved in the extension. Since uy_ is the child of u in the lower tree for (Uo, v), L_
precedes L in the funnel order for (Uo, v). This implies that FNL (Uo, v) is the
concatenation of FNL (uj_, uj) (which is L) for 1 _-<j-<_ m, followed by v.

To prove (iii) we first note that there are two things that might go wrong. First,
when calling SPLIT, the list FNL (u_, u) is destroyed to form Lj and R. However,
SPLIT does not access any funnel sequences other than the one that it is decomposing,
and since funnel sequences are disjoint, one decomposition does not affect another
one. The second thing that may occur is that SPLIT adds visible segments from v to
some of the vertices in P in order to form the visibility graph for P’. It might be that
by adding these segments, we would alter the structure of a funnel in some other funnel
sequence (since we use the visibility structure to traverse the funnel trees). Observe
that it may be the case that this visible segment intersects the interior of a funnel for
some other base edge, or even for this base. The key is that this visible segment does
not alter the set of funnels or the funnel structure for any other base edge. To see this,
consider the apex for a funnel located at some vertex v belonging to some other base
edge e. As shown earlier, the first visible segments of the upper chain and lower chain
for this apex define a wedge whose apex is v such that all rays emanating from v
intersect the boundary of P first at the base e. The only way that the newly added
segment could affect the structure of this funnel would be if the newly added visible
segment is incident upon v and lies within this wedge. However, the fact that the new
visible segment first intersects the base edge (uj_, uj) implies that it cannot lie within
this wedge. By applying this argument to every funnel of the lower tree for base edge
e, we see that the newly added visible segment cannot alter the lower tree for e, and
hence it cannot alter the funnel structure for e. rq

Thus, the overall algorithm for building the enhanced visibility graph of P follows.



906 s.K. GHOSH AND D. M. MOUNT

(2)

(3)

(4)

Compute the plane-sweep triangulation of P by forming the triangulated
polygons with holes P1, P2,"" ", Pn. The enhanced visibility graph of Po is
empty. For k running from 1 to n, repeat steps (2) through (4).
When vk is added to the triangulation it is connected to either one or two
inward-convex chains of vertices on the boundary of Pk-1. For each such
chain Uo, Ul," ", Urn, perform steps (3) through (4).
If the chain has length zero, then simply add the isolated vertex /)k to Pk-1
forming Pk. If the chain has length one, then add the vertex /)k and the visible
segment (v, Uo) to Pk-1, forming Pk.
If the chain has length two or greater, call SPLIT on the polygon Pk-1 with
each edge (uj_l, uj) and vertex Vk (for 1 _--<j--<_ m) forming L and U. Concat-
enate the Lj’s together with the trivial funnel whose apex is /)k and whose
base is (Uo, Vk) to form FNL (Uo, Vk). Concatenate the trivial funnel whose
apex is Vk and whose base is (Vk, Um) together with the U’s to form
FNL (Vk, Urn). From these we have the enhanced visibility graph for Pk.

The running time of the complete visibility graph algorithm is proportional to the
sum of the times to:

compute the plane-sweep triangulation, which we showed to be O(n log n),
plus the number of edges in the triangulation, which is O(n); and

the time needed to call the procedure SPLIT for each triangle ofthe triangulation,
which we will show to be O(E) in the next section (where E is the number of visible
segments in the visibility graph).

7. Data structure. The only detail omitted in the previous sections is how the
operations REV, CW, CCW, CX, and CCX are implemented. An earlier version of
this paper used finger trees to implement these operations [4]. In this version we use
a simpler data structure based on a data structure for the set Split-Find problem [3].

To implement the operations of CW and CCW, all that is needed is a doubly
linked adjacency list for each vertex such that the entries are sorted in angular order
about each vertex. To implement REV, we cross index entries for oppositely directed
edges. Note that when inserting new visible segments in the SPLIT procedure, we
always have access to the clockwise neighbors ofthe new segment (because the segments
are always inserted into the middle of a funnel apex, and each apex is represented by
the first segment of the lower chain). Thus updates can be performed in O(1) time.

To compute the boundary extensions CX and CCX we will need to make use of
the following observations about the way in which visible segments are added to this
structure. Every vertex v has two phases during which segments are added to it. Phase
A occurs when we are incorporating the new vertex v into the visibility graph in the
SPLIT procedure. All the visible neighbors of v discovered during this phase have
already been visited (have lower x-coordinates) and have already been incorporated
into the visibility graph. As observed in the earlier sections, the visible neighbors added
during this phase are added in clockwise order about v. Phase B neighbors arise when
a vertex u whose x-coordinate is higher than v’s is being incorporated into the visibility
graph, and the SPLIT procedure applied to u discovered that some funnel whose apex
is at v can see u. We have no control over the order (about v) in which these neighbors
appear. All phase A neighbors have been added before any phase B neighbors are added.

A vertical line passing through v divides the plane into two halfplanes; the left
halfplane contains the phase A visible neighbors and the right halfplane contains the
phase B visible neighbors. We will maintain the segments of each phase in clockwise
angular order about v, and we make the convention that there are imaginary vertical
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segments, so that each segment has a predecessor in this order. Extend each phase B
visible segment to a line passing through v. These linear extensions subdivide the left
halfplane into a set of wedges about v. These wedges divide the phase A segments
into disjoint intervals of segments. Each interval is associated with the phase B segment
whose extension is the nearest counterclockwise extension to (immediately preceding)
the interval, and each phase B segment is associated with the first nonempty interval
that lies clockwise from (immediately after) its linear extension (see Fig. 12).

’",, I4(w5) w0(I1)
Phase A

I3 (w4) U5’"............. U4 ",,, w2 (I3)............
w3 (I3)............. w4 (I3)

u3

I2 (Wl)
u2 ,,"

," w5 (I4)

,," Ii(wo)

Phase B

FIG. 12. Visible neighborhood of a vertex.

By maintaining this interval partition of the phase A neighbors, we claim that we
can compute the extensions CX and CCX. Define the clockwise extension candidate
of segment (u, v) to be the visible segment with the smallest clockwise angle greater
than 180 degrees with respect to (u, v). The candidate differs from the true clockwise
extension in that the clockwise extension may not be defined if one of the two boundary
edges of P intersects v locally through this angular sweep. Clearly, it can be tested in
constant time whether the clockwise extension candidate is the true clockwise extension.
A similar definition applies to the counterclockwise extension candidate. If (u, v) is a

phase A segment, then its counterclockwise extension candidate is the extension edge
associated with the interval containing this segment, and the clockwise extension
candidate is the clockwise neighbor of this segment. If (w, v) is a phase B segment,
then the clockwise extension candidate for this edge is the first segment in the interval
associated with this segment and the counterclockwise extension candidate is the last
segment in the previous interval.

From this, it is clear that maintaining extensions can be reduced essentially to the
problem of maintaining a partition of the phase A visible segments of v into a set of
intervals, where the intervals are defined by the linear extensions of phase B visible
segments of v. Let ma denote the number of v’s visible neighbors in A. Since the phase
A neighbors are added in clockwise order, we can easily associate them with the set
of integers S { 1, 2, , ma}. Observe that this is just a ranking of the visible segments
in order of decreasing slope. This is done on completion of the SPLIT procedure when
v is incorporated into the visibility graph.

These integers are stored in a data structure developed by Gabow and Tarjan for
processing Split-Find operations [3]. The Split-Find data structure (not to be confused
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with the procedure SPLIT) is designed to process an intermixed sequence of the
following two operations, which are seen to be a reversal of the familiar Union-Find
operations:

Find(i): Return the name of the set containing i.
Split(i): Split the set containing into two sets, one containing all integers less than

or equal to i, and the other containing all integers greater than i.

Given an initial set of size a, a sequence of b Splits and Finds can be processed
in total time O(a + b). In addition, each Find runs in constant time.

As mentioned earlier, the Split-Find data structure is initialized to contain the
integers S associated with the phase A visible segments as soon as the SPLIT procedure
has completed. Before describing the processing of the phase B visible segments, there
is one operation which we will need to discuss which is not supported directly by the
Gabow and Tarjan data structure. When a new phase B segment is discovered, we
need to find the counterclockwise extension candidate, that is, the next larger phase
A segment in slope order. Note that this is not the same as a Find operation because
Find assumes that the exact index of the split point is known. We assume that the
slopes of the phase A segments are stored in an array sorted by decreasing slope. This
order is available to us without sorting because the visible segments are added in slope
order.

To update the structure when a new phase B visible segment (v, w) is added, recall
that we know the existing phase B segment, say (v, w’), immediately preceding this
segment in clockwise order about v. The phase A interval I associated with w’ will be
the interval split by the extension of the new segment. To locate the counterclockwise
extension of (v, w), we perform a dovetailed doubling search starting at each end of
the interval L This is done by locating the endpoints of the interval I in the slope
array, and performing two one-sided doubling searches starting in from opposite ends
of the interval, dovetailing the operations of the two searches into an interleaved
sequence. (Observe that this is essentially a simple implementation of the search
performed by finger search trees.) It follows that the time required to locate the
clockwise extension is proportional to the logarithm of the distance to the nearer of
the ends of the interval.

If the counterclockwise extension of (v, w) is before the first segment of/, then
we associate (v, w) with I and do not split the interval. If (v, w) is the extension
immediately preceding I, then we update I’s associated phase B segment. If the
counterclockwise extension of (v, w) is the last segment in/, we associate (v, w) with
the successor interval of/. Each such trivial search requires constant time, so overall
their running times are bounded by O(mB), where mB is the number of phase B visible
segments incident upon v. Otherwise, we apply the dovetailed search procedure
described above to locate the counterclockwise extension of (v, w). Let us say that the
index of this extension is i. We call Split(i), associating the new interval of elements
that are greater than (clockwise from ui) with (v, w). It follows that when applied
to an interval of size rna, the asymptotic running time of this algorithm satisfies the
recurrence

T(ma) max T(k)+T(ma-k)+min(logk, log(mA-k)),
l<k<rn-1

whose solution is O(mA) (see [12, p. 185]). Combining this with the O(m) cost for
the trivial finds implies that the total time spent searching for extensions about the
vertex v is O(mA d- mn). Summed over all vertices, the total running time of the searches
is O(E).
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Each CX and CCX operation performs one Find operation (observe that no Find
is needed on a phase B segment, since we simply access the first or last segment in
the appropriate interval). Thus each CX or CCX operation requires O(1) time in our
data structure, and hence O(E) time overall, since our algorithm performs this many
primitive operations. Each Split arises when a visible segment is added in phase B, of
which there are at most mB. Thus the total amount of time spent in the Gabow and
Tarjan data structure processing the Splits is O(ma + mB), which again is O(E) when
summed over all vertices.

8. Concluding remarks. We have given an O(n log n + E) algorithm for construct-
ing the visibility graph of a set of polygonal obstacles in the plane. The construction
is based on the notion of funnels, funnel sequences, and upper and lower trees, which
have arisen in various forms in the study of visibility and shortest paths in polygons.
These notions are combined with a novel method of traversing the visibility graph
utilized in the procedure SPLIT. Together with a variation of Dijkstra’s algorithms
that runs in O(n log n + E) time, this provides a shortest-path algorithm in the midst
of polygonal obstacles whose running time is dependent on the size of the visibility
graph.

The principal drawback of our algorithm is the complexity of its implementation,
particularly due to the extraction of the tree traversal primitives from the enhanced
visibility graph. As an implementation note, there is a simpler data structure for the
Split-Find problem that runs in O(m log* n) time [7]. Although this leads to a theoreti-
cally slower algorithm, O(n log n + E log* n), it is likely that the simpler version will
run faster for all reasonable input sizes. Another interesting issue is that the algorithm
may need to store O(E) segments at every intermediate stage. Overmars and Welzl’s
O(E log n) visibility graph algorithm, although inferior with respect to asymptotic
complexity, requires only O(n) working storage [14]. The need to store the complete
visibility graph at every stage of the algorithm seems inherent in our approach.

Other sorts of visibility graphs are easily derivable from this algorithm. It is a
fairly simple enhancement to the algorithm to label each funnel apex with the unique
edge that can be seen by looking out from the apex through the funnel. From this the
vertex-edge weak visibility graph can be derived (where a vertex and edge are adjacent
if the vertex can see at least one point of the edge). The visibility polygon of a vertex
can be constructed in O(n) time. The edge-edge weak visibility graph can also be
derived (where two edges are adjacent if they contain points which are mutually visible)
since two edges e and e2 are weakly visible if and only if there exist vertices u and v
such that the funnel apex whose lower chain begins with the segment (u, v) sees edge
el, and the funnel apex whose lower chain begins with edge (v, u) sees edge e2.
Although the running time of the algorithm is dependent on the size of the standard
visibility graph E, and not on the size of the edge-edge weak visibility graph Ew, it
can be shown that these two quantities are asymptotically equal. To see this, observe
that the above construction implies that Ew O(E). Any pair of visible vertices (u, v)
can be associated with a weak visibility between two edges of P having u and v as
endpoints. Each weakly visible pair of edges is associated with at most four such visible
pairs, and so E O(Ew) (we thank one of the anonymous referees for this observation).

In general, not all of the visibility graph is needed by the shortest-path algorithm.
In general, shortest paths will travel only along the lines of tangency between the
obstacles. Kapoor and Maheshwari [8] have shown that such a reduced visibility graph
can be computed in O(ER + T) time, where T is the time needed to triangulate the
polygonal domain, and ER is the number of edges in the reduced visibility graph.
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Abstract. This paper aims at developing a learning theory where "simple" concepts are easily learnable.
In Valiant’s learning model, many concepts turn out to be too hard (like NP hard) to learn. Relatively few
concept classes were shown to be learnable polynomially. In daily life, it seems that things we care to learn
are usually learnable. To model the intuitive notion of learning more closely, it is not required that the
learning algorithm learn (polynomially) under all distributions, but only under all simple distributions. A
distribution is simple if it is dominated by an enumerable distribution. All distributions with computable
parameters that are used in statistics are simple. Simple distributions are complete in the sense that a concept
class is learnable under all simple distributions if and only if it is learnable under a fixed "universal" simple
distribution. This holds both for polynomial learning in the discrete case (under a modified model), and
for non-time-restricted learning in the continuous case (under the usual model). This completeness result
is used to obtain new learning algorithms and several quite general new learnable classes. These include a
discrete class that is known to be not polynomial learnable under Valiant’s model, unless RP--NP, and a

continuous class that is not learnable in Valiant’s model. The results here allow that for each concept class
from a wide range of concept classes, for each underlying distribution from a wide range of distributions,
the learning algorithm uses a single fixed procedure to draw examples by a single algorithmic process using
a random number generator. The "universal" simple distribution is not computable. To make the theory
feasible, a polynomial-time version is developed for it. All results derived for discrete sample spaces hold
mutatis mutandis for the polynomial-time versions, including versions of completeness, the new learning
algorithms, and the new learnable classes.

Key words. PAC learning, Kolmogorov complexity, universal distribution, enumerable distributions,
learning simple concepts, completeness, discrete and continuous sample spaces, polynomial-time learning
algorithms
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1. Introduction. Valiant has proposed a learning theory in which one wants to
learn a concept with high probability, in polynomial time, and a polynomial number
of examples, within a certain error, under all distributions on the examples IV]. A
precise definition of this "pac-learning" is given in 1.2. Let us highlight its special
features. It contrasts with the common approach in statistical inference, or recursion
theoretical learning, where we want to learn a concept precisely in the limit, by insisting
only on learning a concept approximately. The feasibility restriction to a polynomial
algorithm precludes the precise learning of nontrivial concepts, and therefore we had
to relax precision to within a certain error. This corresponds with natural learning,
where it is important to learn fast, and it suffices to learn approximately, The additional
computational requirements are orthogonal to the usual concerns in inference, and
result in a distinct novel theory. But many subsequent investigations have demonstrated
negative, hardness, or equivalence results [G], [A2], [KLPV], [PW], [KV], [PW1],
[PV]. There are at least two problems with Valiant’s proposal in IV]:
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(1) Under all distributions, many concept classes, including some seemingly
simple ones, are not known to be polynomially learnable or known not to be poly-
nomially learnable if RP NP, although some such concept classes are polynomially
learnable under some fixed distribution.

(2) In certain situations it may be undesirable, too slow, or impossible to sample
according to underlying distributions. We aim at developing a theory in which a
learning program, for any concept class it can learn, under any distribution from a
large class of distributions, draws the examples using a single fixed table, representing
a particular distribution, and a random number generator. This contrasts having to go
out in the real world and draw its examples from the actual underlying distribution.

Item (1) is at odds with the notion that machine learning should be practically
useful. One may interpret it as evidence that Valiant’s initially proposed requirements
for learning are too strong. In practice, it seems exaggerated to require that the algorithm
learn under all distributions. Accordingly, several authors have proposed to study
Valiant learning under particular distributions [KLPV], [N], [BI]. Then some pre-
viously (polynomially) unlearnable classes become learnable. For instance, the class
of/DNF formulae is polynomially learnable under the uniform distribution. However,
the assumption of any special distribution is obviously too restrictive and not practically
interesting. There arises the problem of finding a class of distributions which is small
enough to improve learning ability, but still large enough to be meaningful.

1.1. A new alproach. We propose to study Valiant-style learning under all simple
distributions, which properly include all computable distributions. This allows us to
systematically develop a theory of learning for simple concepts that intuitively should
be polynomially learnable. To stress this point: maybe it is too much to ask to be able
to learn all finite automata fast, but surely we ought to be able to learn a sufficiently
simple finite automaton fast. Previous approaches looked at syntactically described
classes of concepts. We introduce the idea of restricting a syntactically described class
of concepts to the concepts that are simple in the sense of having low Kolmogorov
complexity. This will cover most intuitive notions of simplicity. Our other restriction,
from distribution-independent learning to simple-distribution-independent learning is
also not much of a restriction. All distributions we have a name for, like the uniform
distribution, normal distribution, geometric distribution, and Poisson distribution, are
recursive or enumerablemif we use finite precision parameters.

In many situations sampling according to the real distribution, as prescribed in
Valiant’s model, is problematic. In practice the examples are more conveniently
provided algorithmically, rather than by drawing them from the underlying distribution.

Benevolent teachers provide good examples first in order to train a pupil fast. To
learn addition, the teacher starts with "1 + 1" rather than with "592 + 4124." Providing
the simpler examples first intuitively helps to improve the speed of learning. The results
in this paper supply evidence for this thesis.

Consider a situation where a robot wants to learn but there is nobody around to
provide it with examples according to the real distribution. Because it does not know
the real distribution, the robot just has to generate its own examples according to its
own (computable) distribution and do experiments to classify these examples (see
[RS]). An example is the case of learning a finite state black box (with resetting
mechanism and observable accepting/rejecting behavior).

If we want to put a man on the moon we cannot learn according to the real
distribution. This is too expensive. Learning to drive without a teacher in Boston is
too dangerous. We learn according to easily describable emergencies.
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A solution is, that in each case the examples are algorithmically generated by the
same program, whatever concept class or underlying distribution one is dealing with.
This magical solution turns out to be realizable for a quite general range of concept
classes and distributions.

1.2. Basics of learning. We review some standard definitions and facts from
pac-learning theory.

(1) Let X be a set, the sample space. A concept is a subset of X. A concept class
is a set C

_
2x of concepts. An example of a concept c C is a pair (x, b) where b 1

if x c and b 0 otherwise. A sample is a set of examples. We enumerate a concept
class C as Cl, c2," by enumerating finite binary strings S(Cl), s(c2),. representing
the concepts. For instance, s(c) is the binary encoding of a finite automaton, and c is
the language accepted by that automaton.

(2) Let c C be the target concept and P be a distribution on X. Given accuracy
parameter e, and confidence parameter 6, a learning algorithm A draws a sample S of
size mA(e, t) according to P, and produces a hypothesis h hA(S) C.

(3) We say C is learnable by C if there is a learning algorithm A, such that for
all e, 6, for every distribution P and every target concept c C, as in definition (2),

P{P(hAc)>e}<-_8,

where A denotes the symmetric difference between two sets, and P{boolean} is the
probability of boolean being true. In this case we say that C is (e, )-learnable, or
pac-learnable (probably approximately correct).

(4) C is polynomially learnable if A (e, )-learns C, and runs in time polynomial
(and asks for a polynomial number of examples) in 1/, l/e, and the length of the
representation s(c) of the concept c to be learned.

(5) We also consider the case where the Learning Algorithm A returns h C’
satisfying definition (3), rather than h e C. In this case, we say C is learnable by C’,
or simply, C is learnable.

Remark. A different model as used by IV], [KLPV] assumes separate distributions
over positive and negative examples. These models are basically equivalent. Also see
[HLW] for an on-line model.

We need the following very useful theorem proved by Blumer, Ehrenfeucht,
Haussler, and Warmuth [BEHW]. See also [KL] for the case when the concept is only
consistent with a fraction of the examples.

OCCAM’S RAZOR THEOREM. Let C and C’ be concept classes. Let c C be the
target concept, and let n be the length of its binary representation s(c). Let A be an
algorithm which (e, 6 )-learns C. Let a >= 1 and 0 <= fl < 1. Assume that A, using a sample
S of tn (positive and negative) examples drawn randomly from a distribution over the
sample space, output a hypothesis h C’, which is consistent with at least (1-e/2)m
examples in S, and its representation s( h has binary length less than or equal to nmt.
if

m f max log ,
then A learns C polynomially. If O, and n > log (1 / ), then we use m O( n / e ). In
many cases, we have C C’.

1.3. Outline of the paper. We treat both discrete and continuous concept learning.
While each discrete concept class is learnable in unrestricted time, this is not the

case for concept classes over continuous sample spaces. In the paper, for expository
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reasons, we first treat the discrete case, and then the continuous case. To outline the
results, the reverse order seems more convenient.

In 4, we derive a completeness result for continuous concept learning. There
exists a "universal" measure such that a concept class is learnable under this single
measure if and only if it is learnable under all "simple" measures. This result holds
both if we sample according to the actual simple measure itself, or according to the
substitute "universal" measure. Subsequently, we use the result to show that there is
a concept class which is learnable under all simple measures, but which is not learnable
under all measures.

In 2 we derive a completeness result for polynomial learning of discrete concepts.
There exists a "universal" distribution such that a concept class is polynomially
learnable under this single distribution if and only if it is polynomially learnable under
all "simple" distributions, provided we sample according to the "universal" distribu-
tion. We use this completeness result as a novel tool to obtain new nontrivial learning
algorithms for several (old and new) classes of concepts in our model. For example,
the class of DNFs such that each monomial has Kolmogorov complexity O(log n),
the class of simple DNF, the class of simple k-reversible DFA (in the Appendix), and
the class of monotone k-term DNF, are polynomially learnable under our assumptions.
These classes are not known to be polynomially learnable under Valiant’s more general
assumptions; monotone k-term DNF is not polynomially learnable in Valiant’s model,
unless RP NP. We have put the treatment of simple k-reversible DFA in the Appendix,
because the other examples already illustrate the point we want to make well enough.

The "universal" distribution in 2 is not computable. In 3 we develop the theory
of 2 for polynomial-time computable distributions. It turns out that this class also
has a "universal" distribution, which is exponential-time computable. Apart from this,
all results derived in 2 hold mutatis mutandis in the polynomial-time setting, including
the new learning algorithms and new learnable problems. We give some ideas about
how to use the developed theory.

2. Discrete sample spaces.
NOTATION. Let N, Q, and R denote the set of nonnegative integers, nonnegative

rational numbers, and nonnegative real numbers, respectively. A superscript "+," as
in N/, restricts the set involved to the positive numbers. If x is a binary sequence,
then its length l(x) is the number of occurrences of zeros and ones in it; if x is an
integer, then l(x) denotes the length of the binary representation of x.

DEFINITION. We consider countably infinite sample spaces, say S= N kJ{u},
where u is an "undefined" element not in N. A function P from S into R, such that

xs P(x) 1 defines a probability distribution on S. (This allows us to consider defective
probability distributions on the natural numbers, which sum to less than one, by
concentrating the surplus probability on u.) The function P itself is properly called
the "probability density function," but we identify it loosely with the "probability
distribution." A probability distribution P is called enumerable, if the set of points

{(x, y): x N, y Q, P(x) > y},
is recursively enumerable. That is, P(x) can be approximated from below by a Turing
machine, for all x N. (P(u) can be approximated from above.) Note that enumerable
distributions include the recursive ones.

L. A. Levin has shown that we can effectively enumerate all enumerable probability
distributions, P1, P2," In particular, it can be proved that there exists a universal
enumerable probability distribution, denoted by say m, such that

(1) Vi N+=lc > OVx N[cm(x) >: Pi(x)].
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That is, m dominates each Pi multiplicatively. Let K(x) be the prefix variant of
Kolmogorov complexity first proposed by Levin ILl, [G1]. It is defined as follows.
Consider an enumeration T1, T2,’’" of Turing machines with a separate binary
one-way input tape. Let T be such a machine. If T halts with output x, then T has
scanned a finite initial segment of the input, say p and we define T(p)--x. The set of
such p for which T halts is a prefix code, no such input is a proper prefix of another
one. Fix a universal machine in this enumeration, say U, and call it the reference prefix
Turing machine. Define

K(x) =min {/(p)" U(p)=x}.

It can be proved that, if T(q)= x for some T in the enumeration and some program
q, then K(x)<-l(q)+c., where c- is a constant depending on T but not on x. It can
be proved that if T T/, then c7- K (i) + O(1) =< log + 2 loglog + O(1). It can be
proved that

(2) m(x) 2-:()+(1

It can be proved that, in (1), the constant c can be set to

(3) c 2(+( 2c(i+( O(i log2 i).

This means that we can take c to be exponential in the length of the shortest self-
delimiting binary program to compute Pi.

The universal distribution (rather, its continuous version) was originally discovered
by Solomonott in 1964, with the aim of predicting continuations of each finite prefix
of infinite binary sequences [So]. We can view the discrete probability density rn as
the a priori probability of finite objects in the absence of any knowledge about them.
Solomonoff’s approach is as follows.

Consider the enumeration T, T2," of prefix Turing machines again. Assume
the input is provided by tosses of a fair coin. The probability that T halts with output
x is PT-(x)= .p= 2-lp, where l(p) denotes the length of p. Then ,N PT"(X) <- 1,
the deficit from one being the probability that T does not halt. Concentrate this surplus
probability on P.(u), such thats PT-(x) 1. It can be shown that P is an enumerable
probability distribution if and only if P (R)(P) for some T. In particular, Pt(x)=
(R)(re(x)) for a universal machine U. From this, properties (1), (2), and (3) can be
derived.

Levin has shown that Solomonott’s definition, and the two definitions (1) and (2)
given above, are equivalent up to a multiplicative constant. Thus, three very different
formalizations turn out to define the same notion ofuniversal probability. It is customary
in mathematics to view such a circumstance as evidence that we are dealing with a
fundamental notion. See [ZL] for the analogous concepts in continuous sample spaces;
also see [G2], and [LV1] or [LV2] for elaboration of the cited facts and proofs.

This universal distribution has many important properties. Under m, easily describ-
able objects have high probability, and complex or random objects have low probability.
Other things being equal, it embodies Occam’s Razor, which says we should prefer
simple explanations over complicated ones. To give an example, with x 2" we have

K (x) -< log n + 2 loglog n + O(1)

and

m(x) =( 1 )n log2 n
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If we generate the binary representation of y by n tosses of a fair coin, apart from the
leading "1," then for the overwhelming majority of outcomes we shall have K (y)> n
and m(y)= 0(2-").

By Markov’s inequality, for any two probability distributions P and Q, for all k,
we have Q(x)<k. P(x) with P-probability at least 1-(l/k). By (1) and (3) therefore,
for each enumerable probability distribution P(x), we have

1
(4) Y {P(x)" kin(x) => P(x) >= re(x)/k} => 1 -,
for all k-> 2P)+. In this sense, with high P-probability, P(x) is close to re(x), for
each enumerable P. The distribution m is the only enumerable one (up to order of
magnitude) which has that property. In the absence of any a priori knowledge of the
actual distribution, therefore, apart from that it is enumerable: studying the behavior
under m is considerably more meaningful than studying the behavior under any other
particular enumerable distribution.

DEFINITION. A distribution P(x) is simple if it is multiplicatively dominated by
some enumerable distribution Q(x), as follows. There is a constant c =< 20)+1), such
that for all x N,

(5) cQ(x)>-P(x).

The first question is how large the class of simple distributions is. It certainly
includes all enumerable distributions and hence all distributions with bounded pre-
cision parameters in our statistics books. We next show that containment is proper
and not vacuous.

LEMMA 1. There is a nonenumerable distribution which is simple.
Proof Let A be a subset of the sample space. Consider the distribution

p(x) {;/x if x A,
otherwise.

The constant c is determined such that x P(x)= 1. Now if we choose A to be not
recursively enumerable, then P(x) is not enumerable. But P(x) is multiplicatively
dominated by the recursive distribution Q(x) 6/(rx)2. By trivial modification of the
above, we can also guarantee that 2Q(x)_-> P(x) for all x. [3

LEMMA 2. There is a distribution which is not simple.
Proof We define a probability distribution f(x) which exceeds x/-m(x) for

infinitely many x. Then by (1) and (5), f(x) is not simple. Let u be the least monotonic
upper bound on m, u(x) sup {m(y): y >= x}. Then u(x) l)(1/log2 x) (consider the
sequence of values x= 2n). The desired function f(x) is defined by f(x)= u(x) for
infinitely many x such that re(x)-< 1/x, otherwise f(x)=0. We have to set the x’s which
yield nonzero values for f(x) such that ,f(x)<-1. [3

MOTIVATION. If one can dominate the actual distribution by an enumerable
distribution, then the theory we develop in this paper can be used to learn. This is the
case with all distributions known in statistics, as long as the parameters are computable.
What happens when the parameters are real numbers? Let us consider a Bernoulli
process (p, 1-p). The probability of k successes out of n outcomes is

Ifwe truncate p to p e in the approximation of a real number p, then the approximating
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probability becomes

B’(n, k)= 1-
e
1+ B(n, k).

1-p

Then, for fixed e, we find that, for k O,

B’(n,O)
lim .

B(n, O)

Suppose, however, that we have an algorithm which gives us precision of A(n, k) bits
of p, estimating p by p(n, k) such that

p-p(n, k) <=2 -a(n’k).

Denote the resulting approximation of B(n, k), substituting p by p(n, k), by/(n, k).
Clearly, for each constant 0 < 6 < 1, there is such a function A, which is computable,
such that

/( n, k) 1
6<<-.

B(n,k)

In practice, the algorithm giving A(n, k) bits of a real parameter p may consist in
estimating p from a large number of outcomes. We cannot guarantee that such a
process will always give the required precision. By the law of large numbers, however,
it gives the required precision with any required high probability, using sufficiently
many outcomes. As it happens, this suffices for the learning application. Similar
approximations can be devised for many other distributions with real parameters.

2.1. Simple distribution-independent learning. In this section all concept classes
we deal with are over discrete sample spaces. In the learning phase we draw the sample
according to m instead of according to the underlying probability distribution. However,
m is positive for all x in N, while the underlying probability distribution often assigns
nonzero probability to only a (finite) subset D N (like the set of Boolean formulas
over n variables). Denote a conditional probability distribution P(xlx D) by P(xID).
If the sample space is N, then we have

{P(y)" y N}
(6) P(xJD) P(x),-- {p(y). Y D}’

for x D, and P(xlD 0, otherwise.
We extend the notion of prefix complexity to recursively enumerable sets and

enumerable functions. For each set D_ N define"

m(D) {m(y)" y D},

K(D) -log m(D)+ O(1).

If D is a recursively enumerable set, enumerated by a shortest program p of the
reference prefix machine U, then K(D) K(p)+ O(1). Namely, the ith element of D
in enumeration order can be described by 0(i)liq, where U(q)=p and therefore

m(D) {2 -21(i)-I-K(p)+O(1)" 1 <- <= IDI}
2-K(p)+O(1).

If f is an enumerable function, enumerated by a program p of the reference prefix
machine U, then K(f)<-K(p)+O(1).
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DEFINITION. Let P(. ]D) be a simple conditional probability distribution. We say
that the learning algorithm samples according to m, if in the learning phase of the
concept class distributed according to P(. ]D), the algorithm draws random samples
from m(. D).

All properties of m(.) versus simple P(.) hold by similar derivation for the
conditionals m(. D) versus simple P(. D). We can formalize the sampling notion in
different ways. The following two implementations are equivalent. Assume that D is
a recursive set.

(1) The learning algorithm is equipped with an m oracle that supplies samples
according to m. Intuitively, this is natural in a teacher-student situation, or in auto-
learning by nonrandom experiments. In such circumstances, samples with low Kol-
mogorov complexity are drawn with high probability. To obtain m(. D), we simply
draw examples from m(.) and discard the ones not in D. If we need to draw m
examples according to m(. D), then it suffices to draw O(2K(). m) examples under
m(. ). Namely, for each x D,

Y {m(y)" y 6 N}
m(x D) m(x)

{re(y)" y D}

(R)(2K() m(x)).

(2) The algorithm has access to an m table in the form of a division of the real
half-open interval [0, 1) into nonintersecting half-open subintervals Ix such that
C,J Ix [0, 1). For each x, the length of interval Ix is m(x)/Yy re(y). Define the cylinder
F as the set of all infinite binary strings starting with r. To draw a random example
from m, the algorithm uses a sequence rr2 of outcomes of fair coin flips until the
cylinder Fr, r rlr2’’" rk, is contained in some interval Ix. It is easy to see that this
procedure of selecting x, using a table m and fair coin flips, is equivalent to drawing
an x randomly according to distribution m. To obtain m(. D), see under item (1).

The table m is noncomputable. In 3 we develop time-limited analogues of simple
distributions and a corresponding universal distribution. In many learning algorithms
we consider only examples of fixed length n, which allows us to precompute a
time-limited version of m. Such a table of the time-limited version of m needs to be
precomputed only once, and being available, can be used repeatedly by any learning
process for learning any concept class.

Let us discuss the description length of enumerable distributions. By program
length of each distribution, we mean the length of the Turing machine which computes
it plus the length of the description of parameters such as the mean and variance in
the normal distribution. Let us look at an example. Let the sample space be N. The
uniform distribution L is defined by

(x)
’T/’" l(x))2"

Hence the uniform probability on n-length strings is the conditional probability
L(x[D) 2-" with D {x" l(x)= n}. Then,

K(L(. Io))--< K(L)+ 2 log n + O(1).

Our model of learning has the following completeness property. Without loss of
generality, we assume that the sample space D is a subset of N. The following theorem
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says roughly that a concept class is polynomially learnable under m if and only if it
is polynomially learnable under each simple distribution. Its statement is unduly
complicated because of some technicalities.

THEOREM 1. Let C be a concept class, D N the associated sample space, m
min { l(s (c)): c e C}, and d > 0 a constant. C is polynomially learnable under the universal
distribution m if and only if it is polynomially learnable under each sample distribution
P( D) (= P( )), provided there is an enumerable distribution Q dominating P satisfying
K (Q) _-< d log m + O(1), and either (i) or (ii) is the case.

(i) In the sampling phase, the examples are drawn according to the conditional
distribution m(. D).

(ii) K(D)<-dlogm+O(1), and in the sampling phase, the polynomially many
examples are drawn according to unconditional distribution m(. where the degree of the
polynomial depends on d. (Typically, there is an n, such that D consists of all n-length
vectors over a finite alphabet, so that K(D) log n + 2 loglog n + O(1), and d 2
suffices.)

Proof. Note, that in the statement of the theorem, the polynomial associated with
the learning algorithm depends on m and the concept class C, but not on the underlying
distribution P. The "if" case is vacuous since m is a simple distribution. We prove the
"only if" case.

(i) Conditional Version. We prove that if C with sample space D is polynomially
learnable under m, then it is learnable under P(’ID) while sampling according to
m(. D). Let c e C be the concept to be learned, and let D be the set of all examples
associated with C. Let n denote the length of the representation s(c) of c. Since P is
simple, by (5), there is an enumerable Q, and a constant d1<2K()/(1), such that,
for all x N, we have dlQ(x) > P(x). Using (6), and P(N) P(D), there is a constant
d2>O,

Q(D)
d2 dl Q(N)’
dzQ(xlD)>-P(xlD).

Since Q is in turn dominated by m, and by (1) and (3), there is a constant

d3 2:()+1, possibly dependent on D, such that for all x, we have dam(x)-> Q(x).
Using (6) again, there is a constant d4> 0, such that

m(D). Q(N)
d4-- d3 m(N).Q(D)’
d4m(xlD)>-Q(xlD).

By (6),

Hence, for all x D,

re(N)
re(D)

m(xlD)=dsm(x).

d2d4dsm(x) >= P(x D)

d2d4d5 <= 22K O)+K D)+O(1).

Assume C is polynomially learnable under m using learning algorithm A. Let n be
the length l(s(c)) of the representation s(c) of the concept c e C to be learned. Then
one can run algorithm A with error parameter e/n2a+l in polynomial time. Let err be
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the set of strings that are misclassified by the learned concept. So with probability at
least 1 6,

Then, since m _-< n,

E m(x)_-< 2a+1-n

E P(xID)<=22I((O)/(1)E m(xlD)e,

for large enough n.
(ii) Unconditional Version. We prove that if C with sample space D, K(D)<=

d log rn + O(1), is polynomially learnable under m, then it is learnable under P(.
while sampling according to m(. ). Let Q be as in (i). Since Q is dominated by m, then
by (1) and (3), there is a constant d6 > 0, such that

d6-- 2K(Q(’]D))+O(1)

d6m(x)>=Q(xlD).
Hence, for all x e N,

d2d6m(x)>-P(xlD).
d2d6 _dl2K(Q(’ID))+O(1)

Since K(Q) is a constant independent of n,

K(Q(.ID)) K(Q)+K(D)2d log m+ O(1).

Assume C is polynomially learnable under m, using Learning Algorithm A. Let
n be the length l(s(c)) of the representation s(c) of the concept c C to be learned.
Run Algorithm A with error parameter e/n3d+1 in polynomial time, such that, with
probability at least 1- 6,

Y P(x D) <= n3a+’ E m(x)-< e,

for n large enough. (We oversample polynomially under m in order to approximate
m(" ID).) 0

In the next sections we show how to exploit this completeness theorem to obtain
new learning algorithms. After all, ifwe know the sample space has a simple distribution,
then we can learn using any learning algorithm for the specific distribution m. The
latter distribution has the remarkably convenient property that in a polynomial sample
all examples of logarithmic complexity occur with probability near one.

Obviously, Theorem 1 also holds if we replace m by any distribution Q that
dominates P. But any such Q which is not equivalent to rn and yet dominates all simple
distributions, is not simple itself.

Since m assigns higher probabilities to simpler strings, one could suspect that after
polynomially many examples, all simple strings are sampled and the strings that are
left unsampled have only very low (inverse polynomial) probability. However, the next
theorem shows that this is not the case.

THEOREM 2. Let S be a set of n samples drawn according to m. Then

(7) m(x)=l( 1 )xs (log n)2
Proof Consider the first n+2 strings. These strings have Kolmogorov complexity

at most (c + 2) log n + 2 loglog n + O(1) each. The total probability for these strings,
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excluding S, is at least

nC+2(logn)2 (logn)2

By using more efficient prefix coding, (7) can be improved to

m(x)=f( 1 )xs log n log log n log log log n..

Remark. This says that we cannot just do polynomial sampling and hope to do
trivial learning by listing the examples in a table. Namely, the error probability required
in Theorem 1 is e/n(1), which cannot be satisfied by (7). So nontrivial learning is
required to satisfy the requirements with small e.

Remark. Since re(x) is not recursively computable, one may be inclined to suggest
that "sampling according to m" has only theoretical interest. In a separate paper, we
will investigate the polynomial-time-bounded approximation of m and show that it has
similar domination properties with respect to the polynomial-time simple distributions,
which still include all textbook distributions we know of. In fact, in all of the discussion
below, the Kolmogorov complexity K and the universal distribution m can be replaced
by their polynomial-time-bounded version. For a polynomial-time-bounded version
of rn, it will be possible to precompute its table once, to be used for sampling in the
learning phase.

2.2. Log n-DNF. We have established that learning under the universal distribu-
tion is important, since if one can polynomially pac-learn under the universal distribu-
tion, then one can polynomially pac-learn, using the same algorithms, under any simple
distribution by using the universal distribution and sampling according to it. Are there
classes of concepts which are not (known to be) learnable under all distributions (in
the sense of Valiant) but which are learnable while sampling according to m? We first
consider a class for which it is not known whether it is Valiant learnable.

DNF stands for "disjunctive normal form." A DNF is any sum ml + m2 +. + mr
of monomials, where each monomial mi is the product of some literals chosen from
a universe x,..., xn or their negations S," xn. A k-DNF is a DNF where each
monomial consists of at most k literals. It is known that k-DNF is learnable in Valiant’s
sense IV]. One is inclined to think that also (n-k)-DNF is learnable, and so is the
sum of monomial terms such that every third variable is true, or every seventh element
is true, etc., like Yi XlX2’’X[n/i] i, where ranges from 1 to f(n) for some sublinear
function f Or more generally, expressed in a DNF form,

(8) E x,()x,()...x,(,),

with a set oftotal recursive functions such that [1 is polynomial in n, K (b) O(log n)
and b(i) =< n, for b and 1, , n. This class should also be learnable. It is not
known whether such formulae are Valiant learnable. We show they are learnable in
our sense. For example, the class contains DNF formula like, for any 1 <= <= n,

f xl xi + Xi+ X2i + Xn--i Xn"

Let us write log n-DNF to denote DNF formulae over n variables, where each
monomial term is of Kolmogorov complexity O(log n), and the length of the formula
does not exceed a polynomial in n. This is a superset of k-DNF (it contains all formulae
of the form (8)).

THEOREM 3. The class log n-DNF is polynomially learnable under m.



922 M. LI AND P. M. B. VITANYI

Proof Let f(xl, , xn) be a log n-DNF where each term has Kolmogorov com-
plexity at most c log n. If m is a monomial term in f, we write m f Sample n c’

examples, where we choose c’ large enough to satisfy the argument below.
Claim 1. With probability greater than 1-nO/e n, all examples of the following

form will be drawn"
For each monomial term m off, the example vector that satisfies m and has zero

values for all variables not in m, denoted by 0m the example vector that satisfies m
and has one value for all variables not in m, denoted by lm.

Proof Each monomial m above has Kolmogorov complexity at most c log n, and
therefore example 0m has Kolmogorov complexity at most c log n + O(1). Therefore,
Ill(Ore) 2-clgn+(1) n --1, for large enough n. This is the probability that 0m will be
sampled. Let E be the event that 0m does not occur in n’ examples. Then

Pr(E)(1-n--l)"’
for c’ large enough. The same estimate holds for the probability that the example lm
is not sampled in nC’ examples. There are only nC possible monomials m such that
K (m) <- c log n. Hence, the probability such that all vectors 0m and 1 associated with
such monomials m are sampled is at least 1-nO/e".

Now we approximate f by the following learning procedure.

LEARNING ALGORITHM.
(0) Sample n’ examples according to m. Let Pos (Neg) be the set of positive

(negative) examples sampled.
(1) For each pair of examples in Pos, construct a monomial which contains xi if

both vectors have "1" in position i, contains )i if both vectors have "0" in
position i, and does not contain variable xi otherwise.

(2) Among monomials constructed in step (1) delete the ones that imply examples
in Neg. The remainder forms a set S.

(3) Let Am {x: re(x) 1}, that is, Am is the set of positive examples implied by
monomial m. Use a greedy set cover algorithm to find a small set, C, of
monomials m S, such that QJmC Am covers all positive examples in Pos.

We have to prove the correctness of the algorithm.
Claim 2. With probability greater than 1 n/en, { m: m f} S.
Proof By Claim 1, with probability at least 1-n/en, all vectors lm and 0m such

that monomial m has Kolmogorov complexity at most c log n are drawn. From
and 0m, m is formed in step (1) ofthe algorithm. Thus with probability at least 1 n/en,
all monomials of f belong to S.

Of course, many other monomials may also be in S. Finding all of the original
monomials of f precisely is NP-hard. For the purpose of learning, it is sufficient to
approximate f. We use the following result due to Johnson [J] and Lovisz [Lo].

Claim 3. Given sets A1,. , An, such that (_Ji=A A {1, , q}. If there exist
k sets A,,..., A such that A (._jk= Aj, then it is possible to find in polynomial
time O(k log q) sets Aq ,..., Ai, such that A [.-]j=l Aj. I-]

Let f have k monomials. These k monomials cover the positive examples in the
sense that Pos

_
-.JmIAm. By Claim 3, we can use about O(kn) monomials to approxi-

matef and cover the examples in Pos in polynomial time. Then Occam’s Razor Theorem
implies that our algorithm polynomially learns log n-DNF.

Remark. The reader may wonder if the following scheme would work to learn
log n-DNF: Code each monomial as binary vectors efficiently. Then since we can
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sample all binary vectors of Kolmogorov complexity c log n, decoding these into
monomials gives us all monomials of Kolmogorov complexity c log n. Then we run
the set cover algorithm to choose a small set of monomials and this will achieve
learning. But this scheme will not work since the sampling is done among 2 Boolean
vectors. However, there are 3 monomials of n variables. It can be easily proved that
there is no effective encoding scheme which selectively codes only 2 monomials
including all c log n Kolmogorov complexity monomials. (Because, if there is such an
effective procedure, then this procedure can be used to show that certain strings have
Kolmogorov complexity larger than, say, c log n. We know this is not possible [LV1].)
An interesting open question remains: is log n-decision list polynomially learnable
under re(x)? A log n-decision list is a decision list of Rivest JR] with each term having
Kolmogorov complexity O(log n).

2.3. Simple DNF. We learn a more general class of DNF formulae in this section.
This time, we allow each term to have very high Kolmogorov complexity. We call a
vector v k-close to a monomial m, if after changing no more than k bits in v, v would
satisfy m. Let us define a DNF formula f to be simple if, for each term m of f, there
is vector v,, that satisfies m but is not 1-close to any other monomials of f and
K (Vm) O(1og n). Simple DNFs can contain many high Kolmogorov complexity terms.
An easy example is to take a random binary sequence y with K(y)_-> n- c. Then the
number of ones in y is about n/2. Construct a term m containing xi if yi--1, and
neither x nor ffi otherwise. Then K(m) => n c, but the vector 1,, of all ones satisfying
m has K(lm)--O(log n). The class of simple DNFs is pretty general. The learning
algorithm for the class of simple DNF formulae is as follows, assuming K(v,) <-_ c log n
for all

LEARNING ALGORITHM.
(0) Sample ne/2 examples from distribution m.
(1) For each positive example e, construct the corresponding monomial, me, of

size n, which is satisfied only by e.
(2) For each monomial me constructed in step (1), mark variable x in me if there

is a negative example that differs with e by only one bit at location i. In me
delete the unmarked variables. Remove those monomials that are satisfied by
some negative examples.

(3) Use the set cover algorithm to choose a small set, S, of monomials that cover
all the positive examples, i.e., so that each positive example is implied by
some monomial in S.

THEOREM 4. The class of simple DNF is polynomially learnable under m.

Proof For each monomial m in f, there is a vector Vm that satisfies only m and
no other monomials in f Hence if in v,, we flip a bit corresponding to a variable in
m, it becomes a negative example of Kolmogorov complexity (c + 1) log n. Therefore
it will be sampled with high probability according to Claim 1 in the previous section.
From this v,, and corresponding negative examples (which will all be sampled with
high probability), one forms precisely m. Note that variable x will be marked if and
only if it appears in m. There will also be many other monomials so constructed not
belonging to f But since all monomials of f are in the set, we can cover all positive
examples using about l(f)n monomials in polynomial time. Hence using Occam’s
Razor Theorem, we learn correctly with high probability.

2.4. Monotone k-term DNF. The previous subsections provided several classes
that are polynomially learnable under the universal distribution, and hence in our
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sense under all simple distributions, and which are not known to be polynomially
learnable in the general Valiant model. The purpose of this subsection is to demonstrate
a class that was shown to be not polynomially learnable in Valiant’s sense, unless
RP--NP, but which is polynomially learnable under m (and hence under all simple
distributions in our model).

A Boolean formula is monotone if no literal in it is negated. A k-term DNF is a
DNF consisting of at most k monomials. In [PV] it was shown that learning a monotone
k-term DNF by k-term (or 2k-term) DNF is NP-complete (see also [KLPV]).

THEOREM 5. The class of monotone k-term DNF is polynomially learnable by
monotone k-term DNF, under m.

Proof. Assume we are learning a monotone k-term DNF f(xl,’" ",xn)-
ml +’’" 4-rag, where mi’s are the k monotone monomials (terms) of f
LEARNING ALGORITHM.

(0) Draw n k’ examples according to m, for k’> k + 1. Set DNF g := . (g is the
DNF we will eventually output as approximation of f)

(1) Pick a positive example a (al, , an). Form a monotone term m such that
m includes xi if a 1.

(2) for each positive example a=(a,..., an) do: if a=0 and deleting x from
m violates no negative examples, delete x from m.

(3) Remove from the sample all positive examples which are implied by m. Set
g g + m. If there are still positive examples left, then go to step 1, else halt
and return g.

We show that the algorithm is correct. Let us write mi_ m for two monotone
monomials if all the variables that appear in m also appear in m. At step 1, the
monomial m obviously implies no negative examples, since for some monomial m of
f we must have mi

_
m. Step 2 of the algorithm keeps deleting variables from m. If at

any time for no monomial mf holds m m, then there exists a negative example
that contains at most k zeros such that it satisfies m but no mi of f This negative
example is of Kolmogorov complexity at most k log n, hence with high probability (at
least 1- 1/en) is contained in the sample. Hence at step 2, with high probability, there
will be an m such that m m. Hence we eventually find a correct m (precisely) with
high probability. Then at step 3, we remove the positive examples implied by this m
and continue on to find another term of f The algorithm will eventually output g-f
with high probability (at least 1- (ne/e n) for some constant c). [3

Remark. Note that this is not an approximation algorithm like the ones in the
previous sections. This algorithm outputs the precise monotone formula with high
probability.

3. Discrete sample spaces and polynomial-time computable distributions. The draw-
back of the theory developed in 2 is that m is not computable. In this section we
scale the entire theory down to a more feasible domain.

Consider the countably infinite discrete sample space N. It is convenient to
formulate this section in terms of distribution functions P*: {1, 2,.. }- [0, 1], where
P*(x) is the probability of all instances not exceeding x. Its density P(x)-
P*(x)- P*(x- 1) is the probability of example x.

A function f is computable in time t, if there exists a Turing machine T which
on input x computes output f(x) in at most t(l(x)) steps. We construct a time-bounded
version of equation (2) as follows. First we define a time-bounded version of Kol-
mogorov complexity, see also [LV1]. Let U be the reference universal prefix machine



LEARNING UNDER SIMPLE DISTRIBUTIONS 925

(as in 2). Let be a total function. Define the t-time-bounded version of K(x) by:

K,(x) =min {/(p): U(p)= x, the computation taking <=t(l(x)) steps}.

Note that, for all at least linear and x, K,(x)<=l(x)+21(l(x))+O(1). The limiting
value of Kt(x), for t(. )-* oo, is

lim Kt(x) K(x).
t( t( )oo

According to generally accepted notions of feasibility (in the theory of computing),
should be polynomial. Let denote a polynomial in the sequel, up to multiplicative

constant factors.
DEHNIa’ION. The t-time-bounded version of m, denoted by rn<,5, is defined as

follows:

m<,5(x 2-/(,(x)

mt>(x)= Y m<,>(y).
y<=x

Note that, for all and x, we have m<,(x) => 2-I(x)-2I’3+). In the limit, for t(. oo,
we have, using (2),

lim m<,5(x) =(R)(m(x)).
t( l( )oo

Let P(t) denote the class of t-time-computable probability distributions P*. We
want to show that m(m( multiplicatively dominates all probability density functions
P with P* P(t).

NOTE. We do not know whether m.t.) is polynomial-time-computable. We can

compute the density function m.( in nt(n)2-time, by computing Knt(n by running
all programs of length less than n 4-O(1) for nt(n) steps, and determining the length
of the shortest program which halts with output x. A variation yields a similar upper
bound on the computation time for m,(x), by computing the sum

m(m()(x)= Z m(l(y)t(l(y)))(Y).
yNx

THEOREM 6. The distribution m(nt(n)? is universalfor the class P(t) in the sense that
it multiplicatively dominates each P with P* P(t): there exists a constant c > 0, such
that, for all x, we have cm(,()(x) _-> P(x).

This follows immediately from the following lemma.
LEMMA 3. If the probability distribution P* is computable in time t, then there is a

constant, c, such that for all x:

K.t(,,)(x) <= -log P(x) + c,

where x n.

Proof We wish to show that K,,(,)(x) <= -log P(x) + c. Without a polynomial-time
bound, a proof similar to that of the optimality of the Shannon-Fano code would be
sufficient (like that of (2), see [LV2]). But we have to deal with the time bound here.

We divide the real interval [0, 1] into subintervals such that the code word p(x)
for source word x "occupies" [P*(x- 1), P*(x)]. Notice that Yx P(x) -< 1. The binary
interval determined by the finite binary string r is the half-open interval [0.r, 0.r + 2-(r))
corresponding to the set of reals (cylinder) F consisting of all reals 0.r. If Fr is
the leftmost greatest binary interval contained in Ix=[P*(x-1), P*(x)), then x is
encoded as p(x):= r. Since length /(Ix)= P(x), it is easy to show that l(p(x))<=
-log P(x) + 2 bits.
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We give polynomial encoding and decoding algorithms. The encoding algorithm
is trivial: since P* is computable in time t(n), given source word x, /(x)= n, the
code word p(x) can be computed through P*(x-1) and P*(x) in O(t(n)) time. In
order to compute p-l, the decoding function, given a code word p(x), we proceed as
follows.

DECODING ALGORITHM.
(1) Set k:= 1.
(2) Repeatly set k:= 2k until 2 -l(p(x)) lays in or left of interval [P*(k- 1), P*(k)].

Set u := k and /:= k/2.
(3) (Binary search) Let rn =(u+ 1)/2. If Fp(x) is the leftmost maximum binary

interval in [P*(m-1),P*(m)], then return x=m. Otherwise set u:= rn if
2 -t(p(x)) lays left of P*(m-1) and set I:= rn if 2 -l(p( lays right of P*(m).

This procedure is similar to a binary search, and it takes at most time

O(t(i))= O(nt(n)), n l(x),
i=0

to find x.
This completes our encoding/decoding of x using distribution P*. To reconstruct

source word x from its code word p(x), with l(p(x))<--log P(x)+2 by the above
construction, the description of the Decoding Algorithm is also needed. If q is a binary
program to compute P*, then the latter description takes (q) + O( 1 bits. Since K,t(,(x)
is the shortest program from which x can be reconstructed in O(nt(n)) steps, setting
c l(q)+ O(1), we have

-log P(x)+ c.

COROLLARY. Note that c K,((P) + 0(1) suffices, since the program q computing
P* may be reconstructed in time O(n(t(n))) from a shorter description q’.

Above we noticed that we do not know how to compute m0 in polynomial time.
But for a subset of the domain we can do better.

LEMMA 4. The probabilities mt(x)= 2 -K’(x) for the set of all x’s with K(x)=
O(log n), can be computed in time polynomial in t(n).

Proof As in 2, use the universal prefix Turing machine U with a one-way input
tape, a two-way work tape, and an output tape. On the input tape it is provided with
a sequence of O’s and l’s, generated by random flips of a fair coin. The universal
machine finds the first initial segment of the coin-tossing sequence which constitutes
a program in a prefix-free code. Such a program must be in form of (n, t(n), p). If
this is not the case, U discards the code. Otherwise U proceeds as follows. Simulate
p for t(n) steps. If p stops within t(n) steps, then print the output of p, otherwise print
undefined on the output tape. This way the probability of generating a string x, l(x) n,
is at least 2 -K’(x)-(lg n).

If K,(x)= O(log n), then we can try all programs p of length l(p)<= Kt(x), and
determine the values of m,(x)= 2-K,() for all such x together, in time polynomial in
t( n). [-1

In time polynomial in t(n) we can obviously find all x of length n with Kt(x)=
O(log n), and by Lemma 4 also determine their probabilities mt(x). This way we can
precompute m,> for the high probability x’s in polynomial time. However, for us the
following Lemma is more important.
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LEMMA 5. To compute a table m(t(x+ 1),... m(t(x+2"), l(x)= n, takes time

O(t(n)2"). In other words, we can divide [0, 1) into 2" half-open disjoint intervals Iy with

1i] m<t>(y)
m>(x + 2") m>(x)

such that y Iy [0, 1), y x + 1, ., x + 2".
Hence, if we want to learn a concept class using examples of fixed size n, sampling

according to re<t>, we can precompute the interval representation of the table (as in the
Lemma) once and for all, and use it to sample according to m<t> by means of a sequence
of fair coin flips analogous to what we explained in 2 for m.

The entire 2 and 3 can now be reformulated in terms of t-time-limited simple
distributions, m<nt(n>, and Knt(n ). For example, a distribution P(x) is t-simple if it is
dominated by some distribution QP(t), as follows. There is a constant c_-<

2:-’(-(+(1), such that, for all x N, we have cQ(x) > P(x). We leave it to the reader
to prove the analogons of Lemmas 1 and 2 and Theorems 1-5.

To use it in practice, proceed as follows. Fix a low t, like O(n2), and precompute
once and for all an re(n3> table. Let C be a concept class which is polynomially learnable
under re(n3>. For example, C is the class of n2-simple DNF (analogous to simple DNF
in 2.3). We can use this table, together with random coin flips as explained in 2,
to polynomially learn n2-simple DNF under all n2-simple distributions.

4. Continuous sample spaces. We consider continuous spaces, say the set of all
one-way infinite sequences over some basic set of elements B. The sample space is
l- B. A measure l on l-I satisfies, with A the empty word and x B*"

(9) p,(A) 1,

(10) /z(x) E tz(xa).
aEB

The meaning of z(x) is the combined probability (measure) of the set of elements, or
cylinder, Fx defined as Fx {xoo’w }. Using standard notions from measure
theory, we can form the closure of the set of cylinders under complementation and
taking countable union (and therefore countable intersections), each resulting set
having an appropriate/-measure. The resulting sets are called Borel sets, and form a
so-called o--algebra denoted by, say, r. The pair (r,/z) is called a probability field (see
[Ha]).

Example. The discrete probability distributions we considered before, actually
probability densities, correspond to measures with B=NtA{u} and consider the
measures of the cylinders F, where a N U {u}.

Example. Another example is the Lebesgue measure, or uniform measure, on
interval [0, 1). Take B={0, 1}, and consider the measure h(x)=2-(). This has a
geometric interpretation. Consider real numbers in [0, 1) as being represented by their
binary representation. A number like 1/2 has two representations. Then we choose the
representation with infinitely many zeros. The uniform measure of the cylinder F is
the length of the real interval [0.x, 0.x + 2-()).

A measure/z over 1) is enumerable, if the set

() {(x, y). x (- {u})*, y (2, y-<- (x)}

is recursively enumerable, where u is a special "undefined" symbol in B.
It remains to elucidate the role of u. We would have liked to satisfy (9) and (10)

with B {0, 1}, but (9), (10), and (11) together, with B-{u} replaced by B, imply that
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the measure is recursive. It can be shown that the set of recursive measures cannot be
enumerated such that it contains a universal recursive measure. Using enumerable
functions it turns out that we cannot satisfy (9) and (10), but only /(A)_-< 1 and
/z(x) =>/z(x0) +/z(xl). The surplus probability corresponds with nonterminating com-
putations. By use of the "undefined" symbol u, we normalize the enumerable defective
measures to proper measures, by concentrating the surplus probability on dummy
"undefined" elements in the sample space.

We obtain an enumeration of enumerable measures as follows. Consider an
enumeration T1, T2," of Turing machines, with a one-way input tape, a one-way
output tape, and a two-way worktape. The input elements are taken from a set A, one
element in each input tape square. Initially, the output tape contains the symbol u in
each square. A machine T in the list computes a function from A* into B*, as follows.
If after having scanned an initial input segment p, upon shifting its input head to the
(l(p)+ 1)th input tape square, the initial segment of the output tape up to the position
of the output tape head contains x, l(x)< oo, while the output tape does not contain
x after the processing of any proper prefix of p, then T(p) x. Such Turing machines
are called monotonic machines. Setting A {0, 1} and B {0, 1, u}, we define

/zT(x)= 2-(p.
T(p)=x

In other words, if the input to T is supplied by tosses of a fair coin, then/xT(x) is the
probability that the output of T starts with x. Using the definition of/xr, it is easy to
define a recursive function which approximates /xr from below in the sense of (11).
Hence /xr is an enumerable measure. It can be shown [ZL] that/x is an enumerable
measure if and only if/x zr for some monotonic machine T. Hence, we have obtained
an enumeration/xl,/x2, of enumerable measures.

We are particularly interested in/Xu, where U is a universal monotonic machine
U in the list T1, T2,.. Suppose U has the property that U(Onll(n)np)= T,(p)
for all p in {0, 1}*. This means that if T T, in the enumeration, then

(x) > (x)
2n loge n’

for all x in {0, 1}*. Fixing U and defining M =/xt, we have established the result of
Levin" the enumerable measure M multiplicatively dominates all enumerable measures
/x, in the sense that

(12) ViN+:lc>OVx(B-{u})*[cM(x)>=txi(x)].
We call such an M a maximal enumerable measure or a universal enumerable

measure.
A measure/x over f is simple if it is dominated multiplicatively by an enumerable

measure r (there is a c > 0 such that r(x) > clx(x) for all x). Obviously, each enumerable
measure is simple, and each simple measure/x is multiplicatively dominated by M in
the sense of/x(x) O(M(x)).?

4.1. Learning continuous concepts. A concept class is a subset C 2" of concepts,
each of which is a Borel set. If c is a concept to be learned, then x e 12 is a positive
example if x c, and it is a negative example if x e f- c. The remaining definitions of
learning can now be rephrased in the continuous setting in the obvious way.

?Similar to the discrete case one can show that there are simple measures which are not enumerable,
and there are measures which are not simple.
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While for discrete sample spaces all concept classes are learnable (although not
all are polynomially learnable), this is not the case for continuous sample spaces.
Here we show that all continuous concept classes are learnable over each simple
measure/z if and only if they are learnable under the universal measure M. In contrast
with polynomial learning of discrete concepts, we do not need to require (but do allow)
that the learning algorithm samples according to the universal measure.

THEOREM 7. A concept class C of concepts in 12 is learnable under M if and only
if it is learnable under each simple measure.

Proof. The "if" part holds vacuously. We only need to prove the "only if" part.
We use some definitions and results from [BI]. According to [BI], C is an e-cover of
C, with respect to distribution/x, if for every c C there is a C which is e-close
to c, (/z(cA) < e). A concept class C is finitely coverable if for every e > 0 there is a
finite e-cover C of C, everything with respect to a given measure/x. A finite e-cover
C has finitely many concepts c, and each c is in the closure of the set of cylinders
under finite union, complement (and finite intersection).

LEMMA 6. A concept class C is finitely covetable with respect to tx if and only if C
is learnable with respect to

Proof. We give the main idea of the proof in [BI].
"Only If." Assume that C is finitely coverable under /z. We show that C is

learnable under . This is done by encoding the finite cover set C’ of C into the
learning algorithm. We iterate the following procedure. We draw a sample, and choose
the concept from C’ which minimizes the error in the classification of the elements
from the sample. By the standard application of Occam’s Razor Theorem this algorithm
learns if the size of the sample sufficiently exceeds the size of the concept selected.
This can always be guaranteed since there is no priori limit on the sample size, but
there is an a priori limit on the size of concepts in C’ since C’ is finite.

"If." Assume that A learns C under using a sample of size with error less
than e with probability greater than 1- 8. We show that C is finitely coverable under
/z. Let n n(/z, C, e) be the cardinality of the smallest 2e-cover Cn of C under/z (n
is possibly infinite).

Choose a set C2 C of n pairwise 2e-far concepts (/z(cAc’)>_--2e for all unequal
c, c’ in C2). For instance, define a sequence of concept classes Co, C1,’" by Co
and Ci/l Ci U {c} such that c is 2e-far from all concepts in C. Then C2 Cn if n
is finite, or C2 lim_ C if n

Let c be the concept to be learned. Let x--(x,..., Xl) 121 be a sequence of
examples and L=(L1,’’., L)e{0, 1} 1. Then (x,L) is a sample of size l. If L 1 if
xi c and L 0 if x e 12- c, then we denote this L by Lc. Let hA(X, L) be the concept
returned by learning algorithm A. For c e C, let

X(c, hA(X, L), e) (10 if/x(hA(1,, L)Ac) < e,
otherwise.

Consider the sum

C2e
X(c, hA(X, L), e)

By hypothesis, the probability that X(c, hA(X, L), e)= 1 exceeds 1- 8, for a randomly
drawn sample (x, L) from /z. From (13) we obtain S> (1-)n. On the other hand
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we have, trivially,

s_-< 2 1 2 x(c, hA(X, L), e)
C2e .Jx LG{0,1}

=1 L X(C, hA(x,L), e) d/x.
Le{0,1} C2

Since concepts in C2 are 2e-far, for every (x, L) there exists at most one c C2 such
that X(C, ha(x, L), e)= 1. Thus

(1-6)n<=S<- fx( 1) d/X=Ix2d/z=2.
L{0,1}

Hence l_-> log ((1- 6)n). When n c, this implies that the Learning Algorithm A has
to take an infinite sample. Hence finitely learnable means finitely coverable.

Using Lemma 6, if C can be learned under M, then C can be finitely covered
with respect to M. Let/x be a simple distribution, and d > 0 such that M(x)_-> dlx(x)
for all x. Then, any finite ed-cover of C, with respect to M, is also a finite e-cover
with respect to z. Using Lemma 6 again, it follows that C is learnable with respect to

Remark. Note that this is a strong statement since we are saying that if one can
learn under M, then one can also learn under any simple measure/x, while sampling
according to/x. In the polynomial learning of discrete concepts we required sampling
according to m in the learning phase. This improvement of Theorem 7 over Theorem
1 is made possible by relaxing the "polynomial learning" requirement to "learning"
(without a priori time bound).

Obviously, by the proof, if a concept class C is finitely coverable with respect to
M, then it is also finitely coverable and hence learnable under any simple distribution

/x.
We may wonder whether Theorem 7 is vacuously true. Namely, do there exist

concept classes which are learnable under all simple measures but are not learnable
under all measures?

DEFINITION. Given a concept class C and finite S
___

l-l, if {S fq c: c C} 2s, then
we say S is shattered by C. The Vapnik-Chervonenkis (VC) dimension of C is the
smallest integer d such that no S

___
12 of cardinality d + 1 is shattered by C; if no such

d exists then the dimension of C is infinite.
It is a fundamental result of [BEHW], that a class C has finite VC-dimension if

and only if it is learnable under arbitrary measures.
THEOREM 8. There is a concept class that is learnable under all simple measures

but not learnable under all measures.

Proof Each singleton set {to}, to 12, is a Borel set obtainable by countable
intersection"

and therefore is measurable. There are elements to fl with M({to})> 0. Clearly, there
are only countably many such elements. Therefore, modified cylinders in fl’ defined by

r’x rx-( e rx: > 0},

are also Borel sets. Let the concept class C be the class of concepts c, where each c

is defined by an index set I
___
B*, such that

c=t..J {r’: x e I},
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satisfying: if x, y /, x y, then either M(F’)>= 2M(F) or vice versa. We show that
C has infinite VC dimension. For any d consider a set A___ ’ of cardinality d. For
every subset A’ of A we can find a concept c C of d cylinders such that c fq A A’.
Therefore, by the result of [BEHW] quoted above, C is not learnable under arbitrary
measures.

We now show that C is finitely coverable under M, and hence learnable under
M, by Lemma 6. For each e > 0, there are only finitely many cylinders F’ such that
M(F’) > e/2. We denote this set of cylinders by At. Given e, we define an e-cover of
C with respect to M as follows:

C {c’: =Ic C[c’=(._J {F’ At F’x _. c}]}.

It can be easily verified that C is finite and e-covers C. Therefore C is finitely coverable
with respect to M, and C is learnable with respect to M, by Lemma 6. [3

5. Concluding remarks. We have restricted Valiant distribution-independent learn-

ing to simple-distribution-independent learning. In the case of discrete sample spaces,
we found a "hardest" or "universal" distribution m which holds all the secrets about

polynomial learning of simple concepts in this world. In a sense, we were even more

successful for continuous sample spaces. There we found the straight completeness
result that a concept is learnable under all simple measures if and only if it is learnable

under the particular simple measure M. We demonstrated the use of these completeness
results by exhibiting new learning algorithms, new learnable concept classes, and

distinctness of our model from Valiant’s.
Our approach does have its disadvantages, the most obvious one being that m is

not computable, but only enumerable. It turns out that we can scale down the entire

theory as developed to more practically interesting classes of computable distributions,
for instance, polynomially computable ones. Treating polynomial-time computable
distributions as the analogon of the simple distributions, we encounter the mathemati-

cally inelegant drawback that this class does not contain a universal distribution--there
is a universal distribution for this class but not in it. It has been shown, however, that

the class of polynomial sampleable distributions, as defined in [BCGL], contains a

universal distribution. One may also further restrict our assumption to even narrower

classes to make the theory practically usable. An entirely similar set of considerations

holds for the continuous incarnation M of m.
It seems likely that many simple concepts previously polynomially unlearnable

become polynomially learnable in our model. We have given evidence for this by
several examples. Is log n decision listmin analogy with log n DNF--polymomially
learnable in our model? The connection between our approach of sampling under m
and learning via queries is obvious, but has not been treated here. Many other classes,
such as monotone DNF formulae, are also attractive candidates that may be learnable
in our model.

We view this paper as another step towards a viable mathematical theory for
machine learning in the tradition of Solomonoff, Gold and Valiant, as described in

[LV2]. The ultimate aim is a theory supporting machine learning using few examples,
rather than polynomially many.

Appendix: Simple reversible languages: We exhibit one more discrete concept class
which is polynomially learnable under all simple distributions, and not known to be
polynomially learnable under all distributions. A deterministic finite automaton (DFA)
A--(Q, qo, F, A, 6) consists of a set of states Q, a finite nonempty input alphabet A,
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an initial state qo and a set of final states F
_

Q, and a transition function 6 Q x A - Q.
Reversible languages were defined by Angulin in [A1] (see also [BF]). A is O-reversible
if it has only one final state ([F[= 1), and its reversal AR is deterministic. (AR is
obtained from A by reversing each transition in A and exchanging the initial and the
final state of A.) An alternate definition would be that A is O-reversible if it is
deterministic with one initial state and one final state and 8(ql, a)= t(q2, a) implies
ql q2. A language L is 0-reversible if it is accepted by a 0-reversible DFA.

Many languages/DFAs are 0-reversible and of low Kolmogorov complexity.
Examples are, for fixed n, the language L set of strings of length at least n and
containing an even number of zeroes, and the language L2= {0klJ: k,j > n}.

A nondeterministic finite automaton (NFA) is like a DFA with qo replaced by
I Q, and 8" Q x A- 2. We generalize 0-reversibility as follows. A k-reversible DFA
is a DFA A such that in (the possibly nondeterministic) AR, if two distinct states q, q2

are initial states or q, q2 6(q3, a) for a A, then no string u of length k satisfies
both 6(q, u) (g and 6(q2, u) . This guarantees that any nondeterministic choice
in the operation of AR can be resolved by looking ahead k symbols past the current
one. A language is k-reversible if it is accepted by a k-reversible automaton.

For each fixed n, L3={0klr:k-->n,ml} and L4={0’lk:k_->n,m=>l} are 1-
reversible and have O(log n) Kolmogorov complexity. We say a path from the initial
state to a final state is simple if it has Kolmogorov complexity O(log n). A k-reversible
DFA A is simple if each state of A lies on a simple path.

Example. We show that the set of k-reversible DFAs of Kolmogorov complexity
O(log n) are simple. To see this, consider A such that K(A)= c log/(A) where /(A)
is the description length of A. We show that every state of A is on a simple path of
Kolmogorov complexity at most (c+ 1)log/(A). Without loss of generality, assume
that every state of A is reachable from the initial state. If this is not the case, we can
just delete those obsolete states from A. We have assumed that A can be specified in
c log n bits. Fix an enumeration of the paths from the initial state to final states of A
such that each path contains at least one more new state. There are at most n =/(A)
such paths since each path must contain at least one new state which is not contained
in the previous paths. Obviously, each such path can be specified using A, that is,
c log n bits, and the index of the path in log n bits. Hence the Kolmogorov complexity
of each such path is at most e log n + log n. Every state is on at least one of these paths
by construction.

Note that if K(A)= O(log n), it is still possible that A may have very random
paths. For example, the automaton which accepts all strings of length n has Kolmogorov
complexity O(log n), but it actually contains a path for every string of length n. In
particular, it contains a path of Kolmogorov complexity n. On the other hand, one
can construct (left to the reader) a simple 0-reversible DFA which has Kolmogorov
complexity much larger than log n (like f(log2 n)).

In the general Valiant distribution-independent setting, it is not known whether
the class of 0-reversible languages is learnable. Angluin [A1] shows that the set of
k-reversible languages can be identified in the limit in the Gold paradigm. A DFA is
polynomially learnable by membership queries and equivalence queries [A].

THEOREM 9. The class of simple k-reversible automata is polynomially learnable
under m.

Proof. We first show how to learn a simple 0-reversible DFA under the universal
distribution.

Claim 1. The class of 0-reversible DFA of Kolmogorov complexity O(log n) is
polynomially learnable under m.
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Proof The following algorithm and proof use ideas in [A1].

LEARNING ALGORITHM.
(1) Randomly sample n+2 positive examples. Construct the trivial tree DFA from

these examples.
(2) Merge all the final states in above tree.
(3) repeat

if there are states p, q Q such that on input a A, p, q lead to the same
state, then merge p and q

until no more merges.

We prove that this algorithm correctly infers the underlying DFA A with high probabil-
ity. Each positive example represents a path from qo to qy, where some states may be
repeated because of loops in A.

By previous arguments, we know that with high probability (at least 1-1/e""))
each string corresponding to a simple path is sampled.

Claim 1.1. Given all simple paths of A, A can be inferred from the above algorithm.
Proof All states of A are presented at least once in the tree constructed above. It

is up to the algorithm to merge them correctly. Now between any two simple paths,
P and P, if there is a transition from a state a on P to a state b on Pe, then the
path from qo to a via P then to b then to qy via P2 is also simple, hence also given,
hence the above merging process will add a transition from a to b correctly. Since this
applies to all transitions, eventually A will be correctly inferred. As for the nonsimple
strings, some of which may also be sampled since they have higher than 1/(log n)2

probability in total, will also fit into the structure. Notice that all above merges do not
introduce mistakes since we are dealing with 0-reversible DFAs. [3

This also finishes the proof of Claim 1.
Claim 2. For each k, the class of simple k-reversible DFA is polynomially learnable

under m.

Proof A generalization of the algorithm and the proof in Claim 1 shows that
simple k-reversible languages are polynomially learnable under m, for each fixed k.
We refer the readers to [A1] for more details.

We now show how to learn the class of simple k-reversible languages for all k.
The algorithm is given as follows:

for k := 1 to o .do
(1) Apply the algorithm for learning k-reversible language to learn a k-reversible

DFA;
(2) Draw a polynomial, in the size of above derived DFA, number of examples,

according to m(x), to test the inferred automaton;
(3) if the DFA learned is consistent with (l-e/2) fraction of the test set

then output this DFA
else continue with the next k value;

At step (3), if the DFA is consistent with (1- e/2) fraction of the test set, then
applying Occam’s Razor Theorem, the DFA we have learned approximates the real
DFA with high probability. Note that it is not necessary that the real k-reversible DFA
is inferred. The rest of the correctness and complexity analysis are standard and similar
to that in [A1], so we again refer the reader to [A1]. [3
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Abstract. This paper considers the problem of evaluating a function f(x, y) (x 92 ’, y 9V’) using two

processors P1 and P2, assuming that processor P1 (respectively, P2) has access to input x (respectively, y)
and the functional form off A new general lower bound is established on the communication complexity
(i.e., the minimum number of real-valued messages that have to be exchanged). The result is then applied

n--1 (X .q_ yi)zi --0 and a lowerto the case where f(x, y) is defined as a root z of a polynomial equation
bound of n is obtained. This is in contrast to the (1) lower bound obtained by applying earlier results of
Abelson.
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1. Introduction. In a computer network where a set ofprocessors wishes to perform
some computational task, communication can sometimes become a bottleneck,
especially when communication resources are scarce. This is particularly so in the area
of parallel and VLSI computation (see, e.g., [BT89], [U84]), where the communication
issues have been studied extensively. In such contexts, it is desirable to design algorithms
that require as little information exchange as possible. Problems of minimizing the
amount of exchanged information also arise in the context of decentralized signal
processing, where each local processor collects some partial data to be processed
collectively. In this paper, we study the "communication complexity" (i.e., the minimum
possible amount of information exchange) of some particular computational tasks.

Generally speaking, communication complexity depends both on the topology of
a computer network and on the nature of the computational task under consideration.
In this paper, we ignore the topological issues by assuming that there are only two
processors, say P1 and P2. We use the following model of communications introduced
by Abelson [AS0]. Let there be given a continuously differentiable function f: Dx
Dy -> 92, where Dx and Dy are some open subsets of 9 and Rn, respectively. It is
assumed that processor P1 (respectively, P2) has access to a vector x D (respectively,
y Dy) and the formula defining f. The processors P1, P2 proceed to evaluate f(x, y)
by exchanging messages, using a two-way communication protocol, in which messages
can be sent in both directions. Let us use 7r to denote a two-way communication
protocol and r(r) to denote the number of messages exchanged in 7r. In addition, let

T1-2 (respectively, T2-1) denote the set of indices for which the ith message is sent
from P1 to P2 (respectively, from P2 to P1). The protocol 7r consists of r(Tr) functions
ml,"" ", mr(r):Dx >( Dy -> , with mi(x, y) being interpreted as the value of the ith
message. These message functions must depend on the inputs x and y in a very special
way. Precisely, for each i, there must exist some real-valued function r such that

(1.1) mi(x,y)=r,(x, ml(x,y),..’,mi_(x,y)) V(x,y)DXDy ifiTl_2,
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or

(1.2) mi(x,y)=thi(y, ml(x,y),’’ .,mi_l(x,y)) V(x,y)DxXDy ifiT2_l.

Furthermore, we require that either:
(a) There exists a function h such that

(1.3) f(x, y)= h(x, ml(x, y),"., mr(.,,.)(x, y)) V(x, y) Dx x De,
(this corresponds to the case where processor P1 performs the final computation) or

(b) There exists a function h such that

(1.4) f(x, y)= h(y, ml(x, y), mr(=)(x, y)) V(x, y) Dx x De,
which corresponds to the case where processor P2 computes the final result.

Typically, some smoothness constraints are imposed on the functions mi, the, and
h. For example, [AS0] considers the class of two-way communication protocols
(denoted by H2(f; D x De)) in which the functions mi, g’li, and h are twice continuously
differentiable. In this paper, we consider a more general class of protocols in which
the message functions mi, thi are once continuously differentiable and the final evalu-
ation function h is continuous. We denote this class oftwo-way protocols for computing
f by H1 (f; D x Dy). We define the two-way communication complexity of computing
f with protocols in H2(f; D x Dy) as

C2(f; D Dy) inf r(r).
l-I2(f; D Dy)

We define the quantity C(f; DxXDy) similarly. Notice that II2(f; DxX Dy)C
Ill(f; Dx x Dy). Thus, C2(f; D x Dy)>- Cl(f; D x Dy). As discussed in [L89],
II(f; D x D) is, in some sense, the most general class of protocols for which the
notion of communication complexity is well defined for problems involving continuous
variables.

A general lower on C2(f; D x Dy) was established in the fundamental work of
Abelson [A80]. In particular, let f’D, x Dy t be a twice continuously ditterentiable
function and let Hx(f) denote the matrix (of size m x n) whose (i,j)th entry is given
by 02f/OxiOy. The following result was proved in [A80].

THEOREM 1.1. For any p e D, x Dy, we have

C2(f; Dx x D)_-> rank (H,(f))(p).

Note that Theorem 1.1 only takes into account the second-order derivatives of f and
ignores the derivatives of other orders. Thus, this bound should not be expected to be
tight, as was shown in [LT89].

In this paper, we derive a new general lower bound. Our result (Theorem 2.1)
makes use of the first-order derivatives of f and is fairly intuitive, but surprisingly
difficult to prove. Our work was motivated from the problem of distributed computation
of a root of a polynomial equation of degree n 1. We apply our result to this problem
and obtain a lower bound of n, in contrast to the 1(1) lower bound obtained from
Abelson’s result. In [L89], a similar 12(n) lower bound is established for the same
problem, but under a more restricted class of communication protocols in which the
functions m, rh (i 1,. , r(r)) are assumed to be polynomials. The proof in [L89]
makes use of a result from dimension theory and is algebraic in nature, in contrast to
the analytic approach in the proof given here.

In related work ([LT89]), Abelson’s result has been extended by considering a
more restricted class of communication protocols; in particular, some improved lower
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bounds on one-way and two-way communication complexity have been obtained by
exploiting the algebraic structure present in certain problems. Communication com-
plexity has also been studied under discrete communication models (see, e.g., [MS82],
[PS82], [PT82], [Y79]). In these models, the messages are no longer real numbers, but
binary strings. A substantial amount of research has been devoted to the study of the
communication complexity of selected combinatorial problems ([AU83], [PE86],
[U84]). A different model is introduced in [TL87] for the problem of approximately
minimizing the sum of two convex functions under the assumption that each convex
function is known to a different processor.

The rest of this paper is organized as follows. In 2, we prove our main result
(Theorem 2.1). In 3, we apply the result of 2 to establish a lower bound of n for
the problem of computing a root of a polynomial equation of degree n- 1. In 4, we
compare our result with Abelson’s. Finally, the Appendix contains certain results from
multidimensional calculus that are needed in 2.

2. Main result. Let f’Dx x Dy - 9 be a continuously differentiable function,
where Dx and Dy are some open subsets of " and 9n, respectively. We use the
notation Vf(x, y) (respectively, Vyf(X, y)) to denote the m-dimensional (respectively,
n-dimensional) vector whose components are the partial derivatives off with respect
to the components of x (respectively, y). Also, for any set S c D, we use [Vyf(X, y); x
S] to denote the subspace of 9 spanned by the vectors Vyf(X, y), x S. Finally, for
any set S Dy, [Vf(x, y); y S] is similarly defined.

ASSUMPTION 2.1. For any y Dy, we let

2)(y) {S D,If(S y) contains an open interval}.

(For any x D, 51)(x) is similarly defined.)
(a) For any y Dy and any nonempty open set S D,, we have S 5e).
(b) For any x D and any nonempty open set S Dy, we have S 1).
(c) For some nonnegative integer ny, we have

(2.1) dim [Vyf(X, y); x S] >= ny ty Dy IS 52)(y).

(d) For some nonnegative integer my, we have

(2.2) dim [Vf(x, y); y S] >_- my /x D /S 5)(x).

Our main result is the following.
THEOREM 2.1. Under Assumption 2.1, the following is true

(2.3) C(f; Dx x Dy)_-> min {ny, my}.

The proof of Theorem 2.1 is a long and tedious argument based primarily on
elementary differential geometry. Before proving Theorem 2.1, we first give a sketch
of the basic proof ideas.

Consider an optimal protocol described by (1.1)-(1.2). By symmetry, we can
assume that the final evaluation off(x, y) is performed by processor P1, in which case
the last message must have been transmitted by processor P2.

We assume, in order to derive a contradiction, that the number r of messages in
the protocol satisfies r < ny. Let us fix a "crossing message sequence" c (c,..., cr),

The notation f(S, y) stands for the set {f(x, y)lx S}. Similar notation will be used later without
further comment.
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that is, the values ci rni(x, y) of the messages under some execution of the protocol.
Fixing c imposes the following constraints on x and y:

(2.4) ci rill(X, Cl," ", c_1),

(2.5) c ri(y 1,’’’, Ci-1), T2_>

Note that these constraints decouple and can be expressed in the form x S,,(c) and
y Sy(c). With some technical work (making sure that certain Jacobians are nonsin-
gular), we can show that S,,(e), Sy(c) are "smooth" (continuously differentiable)
surfaces, depending smoothly on c.

The equation

(2.6) f(x, y)= h(x, rnl(x, y), mr(x, y))

shows that f(x, y) depends on y through at most r functions. Taking derivatives and
using the chain rule, we can show that for any y*, and any crossing sequence c, the
collection of vectors {Vyf(X, y*)lx Sx(e)} spans a subspace of dimension at most r.

Note that if y* Sy(e), then f(x, y*) h(x, c) for all x Sx(e). We consider two
cases.

Case 1. If there exists some open set of c’s in which h(x, c) h(c) (i.e., indepen-
dent of x), for all x S(c), then there exists an open ball in which the equation
f(x, y) h(ml(x, y),. , rn(x, y)) holds. But this would imply that f(x, y) could have
been evaluated by processor P before transmitting the message mr(x, y), and we would
have a protocol with r-1 messages, a contradiction.

Case 2. If Case-1 does not hold, a technical argument shows that there exists
some particular c for which h(x, c) is not independent of x. By continuity, {h(x, c)Ix
S(c)} contains an open interval. Hence, S(c) belongs to 9(2(y*). Therefore, using
Assumption 2.1 (d) and the fact that the subspace spanned by the vectors {Vf(x, y*)lx
S(c)} has dimension at most r, we have nf <- r, which contradicts our earlier assumption.

To turn the above intuitive argument into a rigorous proof, we have to make sure
that all the functions involved are properly defined and have the desired differentiability
properties. The rest of this section is devoted to a formal proof of Theorem 2.1.

Let r Cl(f; Dx x Dy). We first prove that it is sufficient to show the lower bound

(2.3) under the additional assumption

(2.7) r min Cl(f D x Dy),
Dx, Dy

where the minimum is taken over all nonempty open subsets D, Dy of D, Dy,
respectively. Suppose that we have already shown that Theorem 2.1 is true under the
assumption (2.7). Let us now show that (2.3) is valid whenA (2.7) does not hold. In this
case, there exists some r’< r and some open subsets Dx x Dy of D x Oy such that

r’= C(I;/x x/y) min C1(/;/ x/)),
Dx, Dy

where the minimum is taken over all nonempty open subsets J0x, JOy of J0,/y. Thus
(2.7) holds with r, D, and Dy replaced by r’,D, and Dy, respectively. Since any
nonempty open subset of Dx (respectively, Dy) is also a nonempty subset of D
(respectively, De) we see that Assumption 2.1 remains valid (with the same constants
ny, my) when D,, De are replaced by D,, Dy. Therefore, Theorem 2.1 applies and shows
that r > r’ -> min { n, my}, which shows that Theorem 2.1 holds regardless of assumption
(2.7).
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In the rest of the proof, we will assume that (2.7) holds. Let us consider a protocol
that uses exactly r messages, described by (cf. 1)

(2.8) mi(x, y) thi(x, ml(x, y), ", mi_(x, y)) V(x, y) Dx x Dy if T_2,

(2.9) mi(x, y) thi(y, rn(x, y), ., mi_l(X, y)) V(x, y)

where each mi and thi is a continuously differentiable function. By symmetry, we can
assume that the final evaluation of f is performed by processor P. Thus there exists
some continuous function h such that

(2.10) f(x, y) h(x, ml(x y), mr(X, y)) V(x, y) D) x Dy.
Before presenting the main line of argument, we derive three lemmas. Let u (x, y)

and let D Dx x Dy. Write m(u) (ml(u)," ", mr(U)) and let Vm(u) be the (m + n) x r

matrix whose ith column is the gradient vector Vmi(u), i= 1,. ., r. Define

(2.11) k max rank [V rn(u)].
uGD

LEMMA 2.1. k r.

Proof We show this by contradiction. Suppose that r> k. Consider the con-
tinuously differentiable mapping m" D - Nr, where D Dx x Dy is an open set and
m(u) (ml(u), , mr(u)). We claim that Vm(x, y) is not identically zero on the set
D. Indeed, if this was the case, then ml(x, y) would be equal to a constant on the set
D, and the first message in the protocol would be redundant. Thus, there would exist
a protocol that uses r-1 messages, contradicting definition of r. We can therefore
apply Theorem A.2 in the Appendix (with the correspondence rn - F, D Q, r s)
to conclude that there exists some positive integer and some continuously differentiable
function g such that

(2.12) mi+l(U) g(rn,(u), mi(u)) Vu D,
where D is some nonempty open subset of D. By taking a subset of D if necessary,
we can assume that D is of the product form D x Dy, where Dx and Dy are some
open subsets of D and Dy, respectively. Then, (2.12) would imply that the (i+ 1)st
message mi+l(X, y) is redundant for computing f over D, x Dy, which contradicts the
definition of r (cf. (2.7)). [21

Loosely speaking, Lemma 2.1 tells us that each message in an optimal protocol
has to contain some "new information" and therefore the corresponding gradient
vectors have to be linearly independent. Before we go on to the next lemma, we
introduce some more notations. Let Dx C D, Dy D be nonempty open sets such
that V rn(u) has full rank for every u Dx x Dy. (Such sets can be taken nonempty due
to Lemma 2.1, and open due to the continuity of Vrn(u).) We use D as a short notation
for Dx x Dy. Furthermore, for any vector c (Cl, , Cr) r and for i-<_ r, we let
c =(Cl, c,..., ci). Let also r (respectively, r:) be the number of messages sent by
processor P1 (respectively, P). In addition, we use the notation [Vmi(x, y); i TI_]
to denote the mxr matrix whose column vectors are Vxmi(x,y)=
(Omi(x y)/Ox," ", Omi(x y)/Ox,,), TI_2. The n x r2 matrix [Vymi(x y); T2-1] is
defined similarly. As a refinement of Lemma 2.1, we have the following lemma.

LEMMA 2.2. For any (x, y) D, we have

rank [Vxthi(x, ci-1); T_2] r,

and

where c m(x, y).

rank [Vyri(y ci--1)’ T2l] r2,
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Proof By Lemma 2.1, we see that the matrix Vm(x, y) has full rank (and its rank
is equal to r) over the set D. Note that by possibly reindexing the columns of the
matrix Vm(x, y), we can write V m(x, y) in the form

V m(x, y)
A AJ

where A [Vm(x, y);i T_,] and A= [Vm(x, y);i T]. From (2.8)-(2.9), it
is easily seen that for each TI, there exists a continuously differentiable function

M such that

(2.13) mi(x, y) Mi(y, {ml(x, y)" < i, T12}), T2
(In other words, a message sent by processor P can be expressed as a function of y
and the messages already received.) By differentiating (2.13), we obtain

(2.14) Vxmi(x, y) E dl(X, y)Vxml(x, y), i T2l,
l Tl2,/<

where each dl(X, y) is a suitable scalar. Thus,

Vm(x, y) span {Vml(x, y); Tl2} V(x, y) D Vi T.
This means that the columns of A12 belong to the span of the columns of All and
therefore

A] rank (All) N rl.rank [AI
Similarly, one can show that

rank [A2
On the other hand,

This implies that

and

A2e] rank (Ae) =< r2.

r- rl-t- r2

_--> rank (All) + rank (A2)

=rank [AI A12]+rank [A2

>- rank [All A121
A:zl A.2_I

=rank[Vm(x, y)]

=r V(x,y)D.

A22]

rank (All) rank [Vxmi(x, y); T_e] r

rank (A22) rank [Vymi(x, y); T2_ 1] r2

To show that rank [Vxrhi(x, ci--1)’ i T1-2] rl, we differentiate (2.8) to obtain

il(2.15) Vxmi(x, y) Vxri(x, c i-l) + (x, ci-1)Vxml(x, y) if T1_,2,
/=10ml

where c= re(x, y) and (x, y). D. Using (2.14), we see that
i--1

E (Oti/Oml)(X, ci-1)Vxml(x, Y)
/=1

can be written as a linear combination of the vectors {Vxmt(x, y); < i-1, Tl-,2}.
Therefore, (2.15) shows that

[Vxrfii(x, ci-1);i Tl-2] [Vxm(x, y);i6 T1-2] C All C,
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where C is some upper triangular matrix whose diagonal entries are equal to 1. Hence
rank [Vxtfii(x, ci-1); i T1-,2] rank (All)= rl. The equality

rank [Vyrfii(y, ei-); T2_] r2

can be shown by a similar argument.
Let us fix some more notations. For any vector c (Cl, , Or) r and 1 --< =< n,

S(c) {(x, y) Dx x Uyltni(x y) ci, i= 1,’" ", r},

Sx(c) {x Dxlrli(x c i-l) ci, Vi T-z},
(2.16)

Sy(C) {y Dylrhi(y, C i-l) Ci, Vi T2_l},

Rr- {(m(x, y),..., m(x, y))I (x, y) D D}.
LZMMa 2.3. For any c R r, we have

(2.17) S(c) S(c) Sy(c).

Proof We have, using definition (2.16) and (2.8)-(2.9),

S(c) {(x, y) Dx x Dy rhi(x, C i-l) Ci, Vi Tl_2, ?’li(y C i-l) Ci, Vi T2-}

---Sx(c)XSy(c

We now fix some (x*, y*) D and let c*-- m(x*, y*). Let us define

Fi(x, c) rhi(x, c i-) ci Vc R", x D, TI2.
Thus Fi(x*, c*)--0 for all i T_,2. Moreover, it follows from Lemma 2.2 that the
matrix [VF(x*, c*)] has full rank. It is now clear that we are in a position to apply
Theorem A.3 in the Appendix (with the correspondence that u--x, and vc) to
conclude that there exist an open subset U of , containing c*, and an open subset
/x of D, containing x*, such that Sx(c) f-] lx is nonempty and connected for all c U.
Following a symmetrical argument, we see that there exist open subsets U2 r and
Dy Dy such that c* U, y* Dy, and Sy(C) y is nonempty and connected for all
c U. Let U U1 fq U2. Clearly, U is nonempty, since c* U. In light of Lemma 2.3,
we see that for all c U,

g(c) S(c) n (lx X ly)
--(Sx(C n bx) x (Sy(C) n by),

and the set (c) is nonempty2nd connected. Let us use x(C) and gy(C) to denote the
sets Sx(c) fq D and Sy(c) fq Dy, respectively.

We now proceed to prove Theorem 2.1. Since we have assumed that the final
result is evaluated by processor P, it follows that the last message mr(X, y) must have
been sent by processor P. (Otherwise, processor P1 would be able to evaluate f(x, y)
on the basis of ml(x, y),’’’, mr_l(X, y), and we would have a protocol with r-1
messages, thus contradicting (2.7).) Suppose that there exists some function w" U-,
such that

(2.18) h(x,c)=w(c) Vc U VXex(C),
where h is the function given by (2.10). We claim that w is a continuous function of
c in U. In fact, let c be an arbitrary vector in U and let {c U;i= 1,2,...} be a
sequence of vectors converging to c. By Theorem A.3 in the Appendix, we can pick a

we let
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convergent., sequence of vectors (xiSx(ci); i= 1,2,...} such that limi_.oox=x for
some x e Dx. By using (2.18) and the continuity of h, we see that

lim w(ci)= lim h(xi, ci)= h(x, c),

which implies that w is continuous on U. Since for any (x, y) m-l(U) f’l (/ x/y)
we have m(x, y) U, (2.18) yields

f(x, y)= h(x, m(x, y))= w(m(x, y)) V(x, y)/ x E3y.
Thus f can be evaluated on the basis of re(x, y) alone over the set m-l(U) f’l (/ x f3y)
and this can be done by processor Pe before sending the last message Thus (2.18)
leads to a protocol with r- 1 messages for computingf over,, m-l(U) f-) (D x/y). This
will contradict (2.7) once we show that m-(U) (Dx x Dy) is a nonempty open set.
To this effect, we notice that S(c) is nonempty and that

(c)c m-’(U)f’l(Xly) Vce U,

from which it follows that m-l(U) (/x /y) is nonempty. Furthermore, m-(.U) is
open since it is the inverse image of the open set U under a continuous mapping.
Thus, m-i(U) f’/(/ x/y) is open, since / x/y is open by construction.

Since no function w can have the property (2.18), we conclude that there exists
some e U such that h(x, ) is a nonconstant function of x on the set (). Since h
is a continuous function and the set x() is nonempty and connected, we see that
h((), g) must contain an open interval in t. Using the fact f(x, y) h(x, ) for all
(x, y) (t) x y(), we have

f(x(), Y)= h((-), ) Vy e y().
Therefore, f((),y) contains an open interval, or equivalently, x()(e)(y) for
all y e y() (cf. definition 2.1). Let us fix some 33 e y(). Then, using the definition
of ny (2.1), there exist x1, xnSex(.) such that Vyf(X 1, .),... Vyf(X"S, )3) are
linearly independent. Meanwhile, we observe that

L() {y e/y [/i(y, /-1)___ , Vi

and that, for any fixed x (), f(x, y) h (x, ) is a constant function of y on the set
y(). Moreover, by Lemma 2.2, we have

(2.19) rank [yrli(y i 1); m Te-,1] re Vy Dy.

Thus we are now in a position to apply Theorem A.4 (with the correspondence
A-->y(), F->{tfi,(y, ,-1)_ ; im Te-.1}) and conclude that

Vyf(X, .) span {Vyrfi,(y, .,-1), Te-.1} ’’x (’).
Since each xJ x(), we see that Vrf(x, ) is the span of the vectors
m Te-,1}, for j= 1,..., ny. Using the fact that the vectors yf(XJ,) are linearly

independent, we conclude that r >-r= >- ny >- min {my, ny}, which is the desired result,
under the assumption that processor P1 performs the final evaluation of f. A similar
argument yields r => r -> ny _-> min { my, ny} for the case where processor Pe performs the
final evaluation of f. This completes the proof of the theorem.

As a remark, we note that in the preceding proof we have actually shown that
re >-ny in the case where processor P1 performs the final computation and rl >-my if
processor P2 performs the final computation. Therefore, if Cl(f; DxXDy)=
min { my, ny}, then either rl my and re 0, or, rl 0 and re ny. This means that our
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lower bound is tight only for those problems for which one-way communication
protocols are optimal.

COROLLARY 2.1. IfCl(f Dx Dy) min {nf, mf}, then any optimal communication
protocol for computing f over Dx x De is necessarily a one-way communication protocol.

3. Computing a root of a polynomial. We now apply Theorem 2.1 to the distributed
computation of a root of a polynomial. We shall demonstrate that in this case Abelson’s
result is far from optimal.

Let x (Xo, , Xn--1) n and y (Yo, , Yn-1) }]n., let F(z; x, y) be the poly-
nomial in the scalar variable z defined by

n--1

(3.1) F(z; x, y) E (x, + y,)z i.
i=0

Processor P1 (respectively, P2) has access to the vector x (respectively, y); and the
objective is the computation of a particular root of the polynomial F(z; x, y). In order
for the problem to be well defined, we must specify which one of the n- 1 roots of
the polynomial is to be computed. This is accomplished as follows. We fix some
(x*, y*)6,912n such that one of the roots (call it z*) of the polynomial F(z; x*, y*) is
real and simple. This root will vary continuously and will remain a real and simple
root as x and y vary in some open set containing x*, y*. We formulate this discussion
in the following result.

LEMMA 3.1. Suppose that z* is a real and simple root of F(z; x*, y*). Then, there
exist open sets Dx, De c fit such that (x*, y*) Dx De and an infinitely differentiable
function f: Dx Dy-->R such that f(x*, y*) z* and

(3.2) F(f(x, y); x, y) 0 V(x, y) D, De.

Proof Note that (OF/Oz) (z*; x*, y*) 0, since z* is a simple root. By the implicit
function theorem ([$65, p. 41]), we see that there exists an open set D containing
(x*, y*) and an infinitely ditferentiable function g: D-> fll such that g(x*, y*) z* and
F(g(x, y); x, y) 0 for all (x, y) D. Now by the continuity of (OF/Oz) (z; x, y) Iz=g(x,y)
at the point (x*, y*), there exist open sets D,, Dy such that (x*, y*)e Dx x Dyc D and
such that (OF/Oz) (z; x, y) [=g(x.y) 0 for all (x, y) e D x Dy. As a result, g(x, y) is a
simple root of the polynomial equation F(z; x, y) 0 for all (x, y) Dx x Dy. Let f be
the restriction of g on D x Dy. Clearly, f has all the desired properties.

By Lemma 3.1, we see that f(x, y) is a root of F(z; x, y) and is a well-defined
smooth map from Dx Dy to t. We are interested in the communication complexity
Cl(f; D Dy) of computing f(x, y) as (x, y) varies in the set D Dy. We start by
pointing out that Abelson’s !ower bound (Theorem 1.1) is rather weak.

LEMMA 3.2. The rank ofthe matrix H,,y(f ), whose i, j) th entry is equal to 02f/OxiOyj,
is at most 3, for any (x, y) D, Dy.

Proof We have

rl--1

(x +yi)(f(x, y))’= 0 V(x, y) Dx Dy.
i=0

We differentiate both sides of the above equation, with respect to Ym, to obtain

i(x+yi)(f(x,y))i-l.0f(x’Y)+(f(x,y))m=O V(x,y)DXDy,

(3.3)
O<__m<_n_l"
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We differentiate (3.3) further, with respect to x, to obtain

(3.4)

nl i--2i(i-1)(xi+ yi)(f(x, y))
of(x, y) Of(x, y)

i=1 OXl Oym

i--1+ i(xi + yi)(f(x, y))
oZf(x’ y)

i= OXlOym

+m(f(x, y)),,,-a Of(x, Y)-t- l(f(x, y))/-1 Of(x,Y) 0,
OX Oy,,,

V(x,y)DxDy, O<-m,l<=n-1.
rl--1Since f(x, y) is a simple root, it follows that i--1 i(x+y)(f(x, y))i-1 0. Equation

(3.4) shows that 02f(x, y)/OxlOy, is of the form Ul(l)va(m)+u:(l)v2(m)+u3(1)v3(m),
where u(l), v(m) are some real numbers depending on x, y. Therefore the rank of the
matrix Hxy(f) can be at most 3, for any point (x, y) Dx x D. I-1

We now illustrate the power of our general results by deriving a lower bound that
matches the obvious upper bound.

THEOREM 3.1. Let Dx, Dy be as in Lemma 3.1. Then, Cl(f(x, y); Dx x Dy) n.

Proof The upper bound C(f; D x Dy) <- n is obvious, so we concentrate on the
proof of the lower bound. To this effect, we will employ Theorem 2.1 and it suffices
to verify that Assumption 2.1 holds with nf =mf n. Since the roots of a polynomial
equation cannot remain constant when the coefficients vary over an open set, it follows
that the continuous function f(x, y) given by Lemma 3.1 satisfies parts (a) and (b) of
Assumption 2.1. Now we fix some y Dy and some S 5()(y), that is, S D and
f(S, y) contains an open interval. Let Cl,’’’, c, be some distinct real numbers in
f(S, y) and x, x" S such that

(3.5) f(x i, y)= ci, i= 1,’’’, n.

Let xj be the jth coordinate of x i. Using (3.3), we see that

1

(3.6) aiVyf(xi, y)= ci

n--1
Ci

--1where ai=,"-j(xj+y)c{ If we form a matrix whose columns are the vectors
n--1(1, ci, , c ), 1, , n, this matrix is a Vandermonde matrix and is nonsingular,

because the values Cl,"" ", c, are chosen to be distinct. Then, (3.6) implies that the
vectors Vyf(X i, y), 1,. , n, are linearly independent. This proves that ny n. The
proof that mf-- n is similar. 1

As a remark, we point out that Theorem 3.1 is in some sense the strongest result
possible. The only assumptions we used in showing Theorem 3.1 are that (a) the
message functions are continuously differentiable; (b) the final evaluation function is
a continuous function; (c) the protocol computes a root of a polynomial on some open
set. As discussed in [L89], assumption (a) is necessary since its removal could lead to
unreasonable conclusions. Assumption (b) is basic and natural since the function to
be computed, i.e., a particular real simple root of some polynomial, is continuous,
while assumption (c) is minimal. Finally, we note that no truly two-way communication
protocol can be optimal. In other words, if each processor transmits at least one
message, then at least n + 1 messages have to be exchanged. This is a simple consequence
of Corollary 2.1 of 2.
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4. Comparison with Abelson’s bound. In the previous section, we saw that Theorem
2.1 can yield a much better bound than Abelson’s result (Theorem 1.1). However, it
is not true, as we shall see next, that Theorem 2.1 always provides a stronger lower
bound. The reason is, loosely speaking, that our result only places a constraint on the
minimum number of messages that has to be sent by a single processor, while Abelson’s
result is a bound on the total number of messages sent by both processors. As pointed
out at the end of 2, any two-way communication protocol that attains the lower
bound in Theorem 2.1 is necessarily a one-way protocol. Notice that our result makes
use of information about the first-order derivatives of function f. This is in contrast to
Abelson’s result which uses only the second-order derivatives of f. In what follows,
we provide an example where Abelson’s bound is more effective than our bound.

Let f(x, y) x rQy, where Q is some m x n matrix, x t" and y n. By Theorem
1.1, we see that C2(f; " x,9t n) >-rank (Q). Using the singular value decomposition
of Q, one can construct a protocol that uses exactly rank(Q) messages (see [LT89]).
Therefore, we conclude that C2(f; tmx ")= rank(Q). To see what lower bounds
are provided by Theorem 2.1, we need to calculate the values of my and ny.

Suppose that rank (Q)= r > 0. Let Dx, Dy be some convex open subsets of ,qt"
and 9", respectively. We assume that 0 Dx and 0 Dy, in which case f(x, y) is
nonconstant as x or y vary in an open subset of D, or Dy, respectively. Thus parts
(a) and (b) of Assumption 2.1 are satisfied. We now show that Assumption 2.1 can
only hold with min {my, ny}_-< 2. By the singular value decomposition, there exist two
linearly independent families of vectors ,/1, ’/r in ,tt and )1, Vr in 91 n, such
that

(4.1) O U1Vl
T -- U2V2T -- -" Ur)rT.

It follows that xTQy=Yi:l (u[x)(vy). Since r>0, there exists some point (Xo, yo)
D x Dy such that xgQyo O. Hence, we can, without loss of generality, assume that
(urxo)(Vfyo)O. Let S={xeDxlurx=urxo, l<=i<=r-1}. Clearly, S is nonempty
since Xo e S. We claim that if r > 1, then f(S, Yo) contains an open interval. In fact,
(4.1) shows that

(4.2)
i=1

r--1

E (U2Xo)(V2 o)+(U rX)(V r o)
i=1

VxeS.

Since U is linearly independent from ul," ",/-/r-l, we see that ufx is a nonconstant
function of x on S. Using (4.2) and the fact that vfyoO, we see that xrQyo is also
a nonconstant function of x on the set S. Note that S is connected because D is
assumed to be convex. It follows that f(S, Yo) contains an open interval. To see that
ny <-2, we note that

r-1

Vyf(x, Yo) 2 (uTixo)Vi "91- (UTrX)Vr
i=1

VxeS.

Hence, dim [Vyf(X, Yo); x S] =< 2. Thus Assumption 2.1 can only hold with ny- 2. The
relation my -< 2 can be established in a symmetrical fashion. As a result, we have shown
that min { my, ny} =< 2.

Thus, for the problem f(x, y) xrQy, Theorem 2.1 provides a lower bound of at
most 2, as opposed to the lower bound of rank(Q) provided by Abelson’s result.
Hence, Theorem 2.1 can be quite far from optimal, in general. Furthermore, the above
example and the results of 3 illustrate that Theorems 1.1 and 2.1 are incomparable.
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Appendix. This appendix contains some results concerning multivariable functions
that are used in 2.

Let F: U V--,gt be a continuously differentiable mapping, where U and V are
open subsets of r and t, respectively. We assume that r>s and that
rank [VuF(u*, v*)]- s, for some (u*, v*) U x V. Then, the matrix VFu(u*, v*) has s

linearly independent rows and we can find a set J c { 1, , r} of indices, of cardinality
s, such that the vectors (OFl(U*, v*)/Oui,...,OFs(u*,v*)/Oui),iEJ are linearly
independent. We define the projection YI:r-->9] by letting YI(u) be the vector
with coordinates ui,

_
J. We have the following lemma.

LEMMA A.1. There exists a connected open subset R of U x V, and a connected open
set S ,qt r+t, and a continuously differentiable function g S R such that (u*, v*) R,

and such that

(A.1) (u, v)=g(F(u, v),II(u), v) V(u, v)R.

Proof Consider the mapping q: Ux V-> r+t defined by q(u, v)
(F(u, v), YI(u), v). We claim that 7q(u*, v*) has full rank. To see this, let us permute
the rows of7q(u*, v*) so that the last r+ t-s rows correspond to the partial derivatives
with respect to the variables v and ui, i J. Then, 7q(u*, v*) will have the structure

q(u., v,)= [A 0i]B

where A, B are suitable submatrices of 7F(u*, v*) and 1 is the (r+ t-s)x (r+ t-s)
identity matrix. Each one of the s rows of matrix A is a vector of the form
(OFl(u*, v)/Oui, ", OF(u*, V*)/OUi) J, and these vectors are linearly independent
by construction. Thus det (Tq(u*, v*))= det (A)S0. The result then follows from the
inverse function theorem [$65, p. 35]. [3

THEOREM A.1. Let Q be an open subset of r. Let F Q->, be a continuously
differentiable mapping such that

(A.2) max rank (VF(z)) s.
zQ

Suppose that f: Q-> 92 is a continuously differentiable function with the property

Vf(z) span {TF(z)} Vz e Q.

Then, there exists some continuously differentiable function h such that f(z)= h(F(z))
for all z R, where R is some open subset of Q.

Proof Suppose that z* Q is a vector at which the maximum in (A.2) is attained.
By taking -0 and dropping the set V, we see that all the assumptions of Lemma A.1
are satisfied, and thus Lemma A.1 applies. Let R, S, and g be as in Lemma A.1. By
assumption, Vf(z) span {VF(z)}, for all z R. Thus, for every z R, there exists a
vector d (z) 92 such that

(A.3) 7f(z) VF(z)d(z) Vz R.

We have assumed that > s here. The proof for the case s is essentially the same except that 1-I
is redundant.
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Using Lemma A.1, we have

F(z) F(g(F(z), II(z))) Vz e R,

or

(A.4) u F(g(u, v)) V(u, v)e S.

Let Vg be the (r-s)x r matrix of the partial derivatives of g, with respect to the
components of v. Since the left hand side of (A.4) does not depend on v, the chain
rule yields

(A.5) 0= Vg(u, v) VF(g(u, v)) V(u, v)e S.

We use Lemma A.1 once more to obtain

f(z) =f(g(F(z), H(z))) Vz R.

We define a function h" S- by letting

(A.6) h(u, v)=f(g(u, v)) V(u, v) S.

Note that h is continuously differentiable. Using the chain rule,

V,h(u, v)= 7,g(u, v)" 7f(g(u, v)) V(u, v) S,

where Vh (u, v) is the vector of partial derivatives of h with respect to the components
of v. Using (A.3) and (A.5), we conclude that V,h(u, v)=0, for all (u, v) S. Since S
is open and connected, it is easily shown that h is independent of v and there exists
a continuously differentiable function h" V-. such that

h(u, v)= h(u) V(u, v) S.

Here V F(R), which is obviously open and connected. For any z R, we have

f(z) f(g(F(z), H(z))) h(F(z), H(z)) h(F(z)),

as desired.
THEOREM A.2. Let F" Q-s be continuously differentiable, where Q c r is open.

We assume that rank (VF(z))<s, for all z Q, and that VFl(z) (the first component
mapping of F) is not equal to zero on the set Q. Then, there exists some positive integer
and some continuously differentiable function h such that

Fi+l(Z) h(Fl(Z), Fi(z)) Vz R,

where R is some nonempty open subset of Q and F denotes the ith component mapping

ofF.
Proof We let be the largest index such that there exists some if6 Q with the

property

dim span {VV ()," ", 7 Fi (:)} i.

Clearly, 1 _-<i< s. By continuity, there exists some open subset
such that VF(z), , VF(z) are linearly independent for all z 0. By our choice of
the index i, we have

VFi+(z) span {VG(z), VG(z)} Vz(.
By Theorem A.1, we see that there exists a continuously differentiable function
h" U9t such that

Fi+(z)= h(Fl(Z), F(z)) Vz g

where R is some open subset of and U F(R).
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THEOREM A.3. Let F" U x V- be a continuously differentiable mapping, where
U and V are open subsets of )r and t, respectively. Let (u*, v*) U V be such that
rank [VuF(u*, v*)] s and F(u*, v*) =0. Then, there exists some nonempty open subsets
Wc U, Vc V such that u* 6 W, v* V, and

{u[F(u, v) 0}f’) W

is nonempty and connectedfor all v V. Furthermore, if { vi V; 1, 2, } is a sequence
of vectors such that limi_ vi v and v V, then there exists a sequence {ui W} such
that F(u, v) 0 and limg_ u u for some u W.

Proof We are in a situation where the assumptions of Lemma A.1 hold. Let
q, g, R, S be given as in Lemma A.1. Thus (u, v) g(q(u, v)) g(F(u, v), H(u), v), for
all (u, v) R. Let gu, gv be the corresponding component mappings of g such that
u= g,(q(u, v)) and v= gv(q(u, v)). Since S is open, we can take a connected open
subset of S with the form W1 x W2 x V such that W1 c s, W2 r-, and q(u*, v*)
W x W2 V. It is easy to check that W2 is nonempty and connected and that v* V.
Since g is a diffeomorphism, it follows that the set g( W W2 x V) is open. Moreover,
we claim that g has following properties"

(a) gv(Wl, W2, V)-- V for all (W1, W2, V) W x W2 x V;
(b) I-I(g,(w, w2, v))= w2 for all (wl, w, v) W1 x W2 x V.
To prove the first property, let us write (w, w, v)= q(u, v’) for some (u, v’) R.

This is possible since (wl, w, v) S. Hence, (w, w2, v) (F(u, v’), II(u), v’). It follows
that v v’ and (w, w, v)= q(u, v). Thus, g(w, w2, v)= g(q(u, v)) v, which proves
(a). We now show the second property. As we have just seen, there exists some u such
that (w, wz, v)= q(u, v) and (u, v) R. Thus, (w, w2, v)=(F(u, v), II(u), v), from
which it follows that w2--II(u). On the other hand, we have

H(g,(wl, w2, v))= H(g,(q(u, v)))= H(u),

from which it follows that W2--rI(gu(w1, W2, V)).
Now let W=g,,(Wx WzX 9) and S,(v)={u U]F(u,v)=O}. Since W is the

projection of the open set g(W1 x W2 x V), it follows that W is open in r. Also, it
can easily be seen that Wc U and u* W. Furthermore, we claim that

(A.7) S,(v) f3 W--{gu(O w2, v)[w2 W2} Vv

In fact, let us fix some v V and let E(v) be the set in the right-hand side of (A.7).
We will show that E(v)c S,(v)f3 W. Clearly, E(v)c W. Thus, we only need to show
that E (v)c S,(v). Let u be an element of E (v). Then, there exists some w W2 such
that u gu(0, w2, v). Since q(u*, v*)= (F(u*, v*), II(u*), v*)= (0, H(u*), v*) and
q(u*, v*) W x W x V, we see that 0 W. Thus, (0, w, v) W x W x V. In light of
property (a), we see that v g(0, w2, v). Consequently,

F(u, v)= F(g,(O, w2, v), g,(O, w2, v))= F(g(O, w2, v))--0.

It follows that E(v)c S,(v)t3 W.
For the reverse inclusion, given any u S,(v)f3 W, we have F(u, v)=0. Further-

more, there exists some (w, w2, v’) W1 x WzX V such that u=g,,(w, w2, v’). By
property (b), we see that II(u) w2. Thus (0, w2, v) (F(u, v), H(u), v) q(u, v).
Hence, u g,(q(u, v)) g,(O, w2, v). This implies that u E(v), and (A.7) has been
established. As a result, the set S,(v)f3 W is connected because, according to (A.7),

Here we have assumed that > s. The same argument works for the case s except that H should
be dropped in the remaining proof.
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it is the image of the connected set W2 under a continuous mapping. Since E(v) is
nonempty for each v V, (A.7) also shows that Su(v) W is nonempty.

Given a sequence of vectors {vi V; 1, 2, } such that limi_ vi v and v V,
let us pick u g,(0, w2, v), i= 1, 2,. ., where w2 is some fixed vector in W. Hence,
u E(v) for all i. According to (A.7), we see that F(ui, vi) =0. Furthermore, by the
continuity of gu, we see that

lim ui lim gu (0, w2, vi) gu (0, w2, v),

which is clearly in W.
THEOREM A.4. Let Q be an open set in 8i t. Let also F" Q_s be a continuously

differentiable mapping such that

(A.8) rank (VF(z)) s Vz A,

where A={zlF(z)=O}. Suppose that f: Q- is continuously differentiable and is a
constant function of z on A. Then,

(A.9) Vf(z) span {VF(z)} Vz A.

Proof Consider the following constrained optimization problem"

(A.10) minf(z).
TEA

By assumption, each z in A is an optimal solution to (A.10). Since the regularity
condition (A.8) ensures the existence of a set of Lagrange multipliers, the necessary
condition for optimality gives the desired result ([L84, p. 300]).
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THE SPECTRA OF INFINITE HYPERTREES*

JOEL FRIEDMAN?

Abstract. A model of regular infinite hypertrees is developed to mimic for hypergraphs what infinite
trees do for graphs. Two notions of spectra, or "first eigenvalue," are then examined for the infinite tree,
obtaining a precise value for the first notion and obtaining some estimates for the second. The results indicate
agreement of the first eigenvalue of the infinite hypertree with the "second eigenvalue" of a random
hypergraph of the same degree, to within logarithmic factors, at least for the first notion of first eigenvalue.

Key words, tree, graph, hypergraph, hypertree, second eigenvalue, eigenvalue, spectrum
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1. Introduction. In this paper we attempt to further the theory of the "second
eigenvalue" of hypergraphs. The theory of the second eigenvalue of graphs is very
rich, and can be used to give explicit constructions of graphs with certain geometric
properties. However, its applications to problems, such as constructing dispersers, seem
rather limited. This construction method generalizes naturally to hypergraphs and, in
fact, constructing hypergraphs with small second eigenvalue can give much better
dispersers (see [FW89]).

The problem with the notion of second eigenvalue for hypergraphs, as in [FW89],
is that much of the eigenvalue theory for graphs does not generalize. For example, the
"second eigenvalue" is not really an eigenvalue in any classical sense, and it is not
clear that the known constructions of graphs with small second eigenvalue generalize
in a strong way (e.g., to give better dispersers that can be given via graphs). In addition,
there are various ways one can try to study the second eigenvalue of hypergraphs by
relating them to the second eigenvalue of certain graphs, but the ones with which the
author is familiar do not give, for example, better dispersers.

In graph theory, there is a strong connection between the second eigenvalue of a
d-regular graph and the first eigenvalue of the infinite d-regular tree, its universal
cover. In this paper we define for a uniform and regular hypergraph an infinite hypertree,
and we analyze the "first eigenvalue" of the infinite hypertree. We do this for two
notions of "first eigenvalue" or spectrum, but only for the first do we determine the
precise answer. The analysis shows that, as with graphs, the second eigenvalue of
random, regular hypergraphs is roughly the same as the first eigenvalue of the corre-
sponding infinite hypertree; also, this value is roughly as small as one can get with
any hypergraph of the same regularity.

The first notion of spectrum is the direct generalization of the definition in [FW89],
but the second notion is new and perhaps has more structure to it. In particular, for
every value of A we define what it means to be spectral or nonspectral. In the first
notion there is only a notion of what the "largest eigenvalue" (or "second largest" for
a finite regular hypergraph) would be.

While the theorems proven here are fairly simple and do not directly imply facts
about finite hypergraphs, the analysis does seem to show that there may be more ways
to study "eigenvalues" of hypergraphs. Namely, there is a natural notion of universal

* Received by the editors October 15, 1990; accepted for publication January 4, 1991. This work was
partially supported by a National Science Foundation Presidential Young Investigator grant CCR-8858788.

t Department of Computer Science, Princeton University, Princeton, New Jersey 08544. This paper
was written while the author was visiting the International Computer Science Institute.
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cover for hypergraphs, and its spectrum is, at least for superficial reasons, related to
the spectrum of the finite hypergraphs it covers. In doing so, we introduce a new notion
of spectrum, which may be worthy of study. The author hopes that the continued study
of the spectra of hypergraphs will eventually yield explicit constructions of finite
hypergraphs with small second eigenvalues.

In 2 we discuss the relationship between the spectra of regular graphs and the
corresponding infinite trees. In 3 we define hypertrees and study their spectra. In
4 we make some remarks about further directions of study.

2. The spectrum of graphs and infinite trees. In this section we summarize the
connection between the spectrum of graphs and infinite trees, and we state two
definitions of spectrum which can be generalized to hypergraphs: the one in [FW89],
and one new one.

Let G- (V, E) be a finite, undirected, d-regular graph, i.e., with every vertex
having degree d, and let A be its adjacency matrix. Then A is an n x n matrix, n
which is symmetric and therefore has real eigenvalues hi <= h2 <--" <-- An. It is easy to
see that h d and that An --> -d. There are examples of graphs (see [LPS86], [LPS88],
[Mar84], [Mar87], [Mar88], [Hal86], [Chu88], and [Fri89]), for certain values of d
and n, for which

(2.1) hi [-2x/d 1, 2x/d 1] Vi_->2,

and it is easy to show that for fixed d and n-, the interval in the above equation
cannot be replaced by any smaller interval (independent of n; for d varying with n
one can do better, as in [Mar84], [Mar87], and [Mar88]). It is also known that, for
fixed d, "most" d-regular graphs on n vertices satisfy (2.1) if we enlarge the interval
by an additive factor of 2 log d + C on each end, for some constant C, as n - (see
[Fri88]).

Next, let T-(W, F) be the undirected, infinite, d-regular tree. We view its
adjacency matrix as an operator B on L:(W), and it is easy to see that the spectrum
of B is precisely the interval appearing in (2.1) (see [Car72] and the many references
in [DK88]). This is not a coincidence, in that there is a standard technical reason for
the similarity in the two, involving taking the trace of powers of A while viewing T
as the universal cover of (3. For example, the additional eigenvalue d which occurs
in A’s spectrum accounts for the fact that at the ruth level of T (viewing T as rooted
with root r), for large m, one expects roughly 1! n of the nodes to be the same V node
as r; the derivation from this behavior is precisely related to the second eigenvalue of
G (see, for example, [Fri88]).

Much of the theory used with graphs, such as forming matrices and considering
their eigenvalues (via taking traces, etc.), seems to be difficult to generalize in a way
that gives good results for the second eigenvalue of hypergraphs. We will give some
definitions and propositions which generalize more directly for the infinite tree.

We begin with the standard calculation of the spectrum of the tree. We include
the proof because it will be used in the hypergraph analysis.

PROPOSITION 2.1. The spectrum of B, as above, is [-2v/d 1, 2v/d 1].
Proof Fix a vertex v of T. Consider the "radial" function f:T C whose value

at the mth level of T, i.e., at all vertices of distance rn to v, is r". We have that

dr- if w v,
((B-hI)f)(w)= r,_l((d_l)r2_hr+l ifwliesonlevel m>=l.

Fix a with ][> 2x/d- 1. There exists a solution, r, to

(2.2) (d-1)r2-hr+l=O,
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with Irl< (d-1)-1/2, which makes the resulting fr lie in L2(W). For such an r we have
dr- A 0, and therefore the equation in x,

(2.3) (B-AI)(x)=6

has an L2(W) solution x, where 6 is 1 on v and 0 elsewhere. Writing an arbitrary
w L(W) as a (possibly infinite) linear combination of such 6’s and using.linearity,
we can solve the above equation in x with 6 replaced by any w, with ]lxl] bounded
by a constant times w l]. Therefore B- AI is invertible and A lies outside the spectrum
of B.

On the other hand, we claim that for ]A[ < 2/d 1, (2.3) has no solution x L2(W).
Indeed, if such an x existed, then its symmetrization, Y, whose value at each vertex
on the ruth level is the average of the mth level value of x, would also be an L2(W)
solution of (2.3). Then the values of at the ith level satisfy

(d 1) -2Xi+2--A,i+l-lt-,i --O Vi>-O,

and so

:,,, clr’ + c2r’
for some constants ci and with r being the roots of (2.2). But for A, the roots r, r
are both of absolute value (d 1)1/2, contradicting the fact that Y L(W).

Also, A +2v/d- 1 is in the spectrum, either by modifying the equation for Y,, in
the above, or by noting that the spectrum is a closed set. Since B is selfadjoint, its
spectrum is real; we have now determined its entire spectrum.

Since B is selfadjoint, the above proposition implies the following.
COROLLARY 2.2. For any x, y L2(W), I(Bx, y)l-<- 2/d 1 Ilxll Ilyll, and 2/d 1

is the best constant possible. Equivalently, the L2(W) norm of B is 2/d- 1.
We provide a simpler proof of this which immediately generalizes to hypertrees.

The upper bound is, in a sense, related to "integration by parts" eigenvalue bounds
suggested to the author by Sarnak.

Proof It suffices to consider the case Ilxll- [lyl[- 1. We have

(Bx, y)= E xiyj,
(i,j)F

where we think of F as containing one copy of (i, j) and one of (j, i) for every
undirected edge {i,j} it contains. For those terms xiyj in the above sum with nearer
to v than j, write

2
xiYj <= 1/2(w/d 1 X + y.//d 1);

for those with j nearer to v, reverse xi and yj. Remembering that every vertex except
v has one neighbor closer to v and d- 1 further from v (and that v has d neighbors,
all further away from v), we get

d2 2 2 2[(Bx, y)l<= 2/d-l(xw+Yw)+(x+y)<=2/d-1.W-{v}

This provides an upper bound on the norm of the bilinear form associated with
B. For the lower bound, consider for small e > 0 the radial function, fr, with r

(d 1)-1/2( 1 e). We have

II/rll 2 1+ 2 d(d 1)m-((d 1)-1/2(1 E))2m
d 1 - 0(1),

m=l d-1 2e
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and, similarly,

2d 1 - 0(1)(Bf f) x/d- 1 2e

so that taking e - 0 gives the desired lower bound. [3

The above argument also shows that the norm of B is never achieved by any
vector in LE(w). We now state the precise definitions which we intend to carry over
to hypergraphs in the next section. In what follows, we take L2(W) to be the space
of complex-valued functions, although in a lot of places it suffices to take real-valued
functions.

DEFINITION 2.3. The spectral radius of the infinite tree T with adjacency matrix
B is the L2(W) norm of the bilinear form (Bx, y).

DEFINITION 2.4. For the infinite tree T with adjacency matrix B, a number A C
is said to be nonspectral if

(i) fundamental solutions exist for B AI, i.e., there exists an x with (B AI)x 6,
(ii) for every y L2(W), (B AI)x y has a solution x L2(W),
(iii) the above x is uniquely determined,
(iv) the above x’s norm is bounded by a constant times y’s.

If any of the above fail to hold, A is said to be spectral. Also, a A R is said to be a
spectral upper bound (respectively, lower bound), if it is nonspectral and

(i) for every real-valued (x, y) pair with (B-AI)x= y, we have that (x, y) is
nonnegative (respectively, nonpositive).

Note that in the present circumstances, the first condition of nonspectrality implies
all the others.

3. The spectra of hypergraphs and infinite hypertrees. For simplicity, we will state
all theorems in this section for 3-uniform hypergraphs, though all the theorems here
easily generalize to t-uniform hypergraphs for any fixed t.

We review our terminology for hypergraphs; see [FW89] for details. A 3-uniform
hypergraph is a collection G (V, E) of a set V and a collection of subsets of V, E,
such that each subset e E has size three. Out of this data we can form a trilinear
form " analogous to the bilinear form associated with the adjacency matrix of a graph,
namely,

"r(x, y, z)= , xiyjzk’rik
i,j, kc V

for x, y, z 6 L2(V), where

10 if (i,j, k} E,
7"ijk

otherwise.

For our purposes it is simpler to think of a hypergraph as a trilinear form r, with "/’Ok
nonnegative integers. In [FW89], the second eigenvalue of r is defined to be

(3.1) ’-- g

where is the trilinear form with all ijk 1, n IV[,
the norm as a trilinear form on L2(V), i.e.,

d Ok %k/n2, and the norm is

(3.2) IIrll max Io’(x, y, z)l.
Ilxll Ilyll Ilzll
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It is shown there that for a "randomly chosen" r on n vertices with dn 2 hyperedges,
d > C log n, the second eigenvalue of r is, with high probability, roughly x/d, to within
a factor of C(log ?l)3/2. This can be compared with its "first eigenvalue," namely, the
norm of z, which is roughly dx/-. One can give explicit examples of hypergraphs with
second eigenvalue around dl/2rl 1/4, but this does not give improvements for the
dispenser construction. However, any explicit construction of hypergraphs with smaller
exponents would yield improvements.

First we form a notion of the infinite hypertree. Before doing so, notice that the
first and second "eigenvalues" of a random z (as above) are not powers of each other.
We can remedy this by working with the L3(V) norm. Indeed, as remarked in [FW89],
all the theorems generalize to Lp for any p (using (3.1), but taking []. on x, y, z to
be the LP(W) norm in (3.2)), and choosing p 3 gives first eigenvalue (i.e., norm of
’) to be roughly dn and second eigenvalue to be roughly (dr/) 1/3. While the L norm
may seem strange, it has other advantages. For one, defining eigenvalues in terms of
bilinear forms involves picking a fixed inner product on the space in question. A
natural analogous trilinear product is, x, y, z) Y xyz,

iV

and when using 5, it seems natural to work with the L norm. Also, use of the L
norm suggests that we work with k dn as the "degree" of our hypergraph, and this
notion of degree gives a good model of a universal cover.

To define our hypertree, fix a value of k. Start by taking one triangle, and to each
of its vertices glue k- 1 triangles, all disjoint except that they meet in the one vertex.
For each newly created vertex, create k- 1 new triangles. The resulting infinite hyper-
graph, T (W, F), is depicted in Fig. 1. On T we have a notion of distance, defining
two vertices to be neighbors (i.e., distance 1) if they both lie in some triangle. Thus,
if the top vertex of Fig. 1 is v, then all the vertices of distance 1 to v lie in the row of
vertices directly below v, those of distance two in the next row, etc.

We call the above hypergraph T the k-regular hypertree. Why do we use this
model? Aside from the fact that the first and second L eigenvalues of a random
hypergraph are roughly powers of k, this hypertree is, in a natural way, the universal
cover of any hypertree of degree k, i.e., in which each vertex is incident on exactly k
(hyper)edges. More precisely, taking a morphism of hypergraphs to be a map of vertices

FIG. 1. The infinite hypertree.
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which maps edges to edges, and a cover to be a locally invertible morphism, our
k-regular tree is precisely a (the) universal cover. In particular, any finite hypergraph
of degree k is isomorphic to a quotient of our hypertree modulo some equivalence
relation on the vertices. We could have constructed the hypertree by growing triangles
off of edges, requiring that each edge meet d triangles; this would be closer to the
definition of regularity appearing in [FW89], but seems to be harder to work with.

The infinite hypertree T has a trilinear form - associated to it via the above
procedure, in which each triangle gives rise to six l’s in ’. We expect, in analogy with
the infinite tree, that the range of the L "spectrum" of -, appropriately defined, should
be roughly k1/3, i.e., what the second eigenvalue is for a random hypergraph. Similar
to the "eigenvalue" definitions in [FW89], we make the following definition.

DEFINITION 3.1. The spectral radius of a trilinear form is its L norm.
PROPOSITION 3.2. The spectral radius of ’, i.e., its L3(W) norm, is 3(2k-2) 1/3.
Proof. Fix a vertex v in T. Each triangle is of the form {i,j, l}, with a vertex of

distance m to v, and j, of distance m / 1 to v for some m. To estimate -(x, y, z) for
vectors x, y, z of norm 1, we can estimate, for any positive y,

Ixiy;z, <= 1/2( y-2/3lxil3 / ,//31y; 13 / y/31zll3),
and similarly for the other five terms arising from { i, j, 1}. Then, summing as before yields

I-(x, y, z)[ _-< max (2y/3 + 2(k- 1)y-2/3, 2ky-2/3),
the first term in the max accounting for the contribution of vertices in W-{v}, the
second for v’s (i.e., the components of x, y, z at these vertices). Taking y= (2k-2)/3

yields the desired upper bound on
On the other hand, let fr be the function on W whose value at each vertex distance

m to v is rm. Then for small e > 0 and r (2k-2)-1/3(1- e), we have

k 1
E f3r(W)---- + O(1),
ww k-1 3e

and

so that

1
’r(fr,frfr) 6k(2(k 1)) -2/3 --+ O(1),

3e

I111 3(w-- 6 2-2/3(k 1)1/3= 3(2k-2) 1/3.

Next we consider the analog of Definition 2.4. The equation (B-AI)x =y can
be written as

(3.3) N(x, w)- A(x, w) (y, w) Vw L2( W),
where Y3(x, w)= (Bx, w) is the bilinear form associated with B. To generalize this to
hypergraphs, note that we have a natural trilinear form - to replace , and the question
becomes what to use for the standard inner product (.,.). For the latter, we suggest
using the above-defined 5. The trilinear form 5 seems the most natural to use, although
it does have all the nice properties of the standard bilinear inner product, for example,
(u, u, u) is not generally equal to Ilull 3. However, using does seem related to our
previous notion of spectral radius.

The question now is how many fixed variables, such as x or y, to use in an analog
of (3.4), and how many test variables, such as w, to use and where to place them. In
this paper we investigate the equation

(3.4) r(x, x, u)- AN(x, x, u) 5(y, y, u) Vu L3(W).
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Arguably, we should replace x and/or y by two variables, but we leave it in this form
for simplicity and recall that if " is symmetric, then to find its norm is suffices to check
-(x, y, z) for x y z.

We pause to make two remarks about . First of all, for any x, y, z L3(W),

I(x, y, z)l-< Ilxll Ilyll Ilzll;

this follows from two applications of H61der’s inequality or from estimating as in the
proof of Proposition 3.2. Second, for any x e L3(W) we use the notation x’ to denote

2 ]Xw[3. X’the vector given by Ixwl- Ixwl and XwXw Thus differs pointwise from x by
numbers of absolute value 1, has the same norm as x, and satisfies

(x,x,x’)-ilxll 3.

DEFINITION 3.3. For a trilinear form " a number e C is said to be nonspectral if
(i) Fundamental solutions exist for --, i.e., there exists a solution x for (3.4)

with y ,
(ii) for every y e L3(W), (3.4) has a solution x L3(W),
(iii) any solution x, for (ii), has its norm bounded by a constant times y’s.

If any of the above fail to hold, is said to be spectral. Also, a R is said to be a
spectral upper bound (respectively, lower bound), if it is nonspectral and

(i) for every pair x, y satisfying (3.4) and with x real and each yw either real or
purely imaginary, we have that (y, y, x’) is nonnegative (respectively, nonpositive).

We have omitted the condition that x is uniquely determined, since this will never
be the case (see below). As before, L refers to complex-valued functions; it is not
clear that real L works as well here (for real). In the definition of spectral upper
and lower bounds, we have allowed some of y’s values to be purely imaginary to make
sure that every real x has a corresponding y (see (3.5) below).

We now state the main result of the paper, whose proof comprises the rest of this
section.

THEOREM 3.4. Any C with absolute value bigger than the spectral radius is

nonspectral. In particular, any such positive (respectively, negative) is a spectral upper
(lower) bound.

To begin the analysis, note that (3.4) is equivalent to requiring that for all w W,
k

(3.5) 2 X(w,X(w,- ,Xw yw,
j=l

where each ce(., l) and each/3(., l) is a permutation of W.
Wc will first discuss in detail the situation for real , and remark later about

complex I.
We claim that almost every real , has a complex-valued fundamental solution.

That is, letting fr be as before, we see from (3.5) that fr will be a fundamental solution
if and only if

(k- 1)r3- Ar+ 1 =0.

PROPOSITION 3.5. The equations s3- as + 1 0 has
(i) all roots of absolute value 1 if a 0, 2;
(ii) one positive real root ofabsolute value less than 1, two complex roots ofabsolute

value greater than 1 if a < 0;
(iii) one negative real root of absolute value less than 1, two real roots of absolute

value greater than 1 if a > 2;
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(iv) one real root of absolute value greater than 1, two complex roots of absolute
value less than 1 if 0< a < (27/4)1/3;

(v) one real root of absolute value greater than 1, two real roots of absolute value
less than 1 if (27/4)/3_-> a <2 (the latter two roots being a double root when equality
holds).

Proof The proof follows easily from the fact that the above equation has dis-
criminant 433-27 and that g(s)=sa-as+l has g(-1)-c and g(1) =2-c.

From this proposition it follows that there is always a radial fundamental solution,
frCL3(W), except for r=O, 2(k-1) /3. The existence of a solution to (3.4) does not
follow, because of the nonlinearity. However, assuming that A is larger than the spectral
radius, one can solve (3.4) for any finilely supported y (i.e., which is zero at all but a
finite number of vertices), and pass to the limit for general y. In proving both steps
we will use the estimate in the (direct) proof of Corollary 2.2, and we do not know
what happens in general.

THEOREM 3.6. Let IAI> 3(2k-2) 1/3. Then for any finitely supported y, there exists
a solution x to (3.4).

Proof As usual, fix a vertex v. Suppose y is supported on the set of vertices of
distance less than or equal to m to v. Consider the class of vectors x whose values at
the vertices of distance less than or equal to m is arbitrary, and whose values at each
vertex of distance greater than or equal to m + 1 is given as r times the value of its
neighbor that is closest to v. Such x are "eventually radial"; we have depicted the case
m 1 in Fig. 2. For any such x it is clear that (3.5) holds for any w of distance greater
than or equal to m + 1 from v. To satisfy this equation at the other w’s, we get N
quadratic equations in the N variables Xw where w ranges over the vertices on levels
less than or equal to m. It follows that the system of equations has at least one solution
in x over N-dimensional (complex) projective space. But it is easy to check that all

x I x 2

2 2
X r x

rx rx
1 1 2

x3 x 4

rx rx rx rx
2 2 2k 2k

FIG. 2. A general solution x for rn 1.

See, for example, [Har77, 1.7.2.] The reader who is unfamiliar with algebraic geometry can recall that
if an N x N linear system Ax 0 has no nontrivial solutions, x, then for any b the system Ax b has a

solution. This turns out to be true if the linear equations are replaced by any homogeneous equations,
assuming the underlying field is algebraically closed. This is the point of making the calculation which follows.
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solutions ofthese N equations lie in affine space. This is because a solution in projective
space is precisely a nontrivial solution x of the same system with the yi’s replaced by
zeros. But this would imply

"r(x,x,u)-AN(x,x,u)-0 [uEL3(W).
2In particular, choosing x’E L3(W) given by ]x [x[ and xx, [Xv[3, we get

I111xll -I(x, x, x’)l I(x, x, x’l 3(2k- 2)l/31lxl13
which contradicts the nontriviality of x. Hence all projective solutions of the afore-
mentioned system lie in affine space, and so there exists at least one such solution.

We mention, as in the footnote, that the solvability of (3.4) for arbitrary y is
related, in a certain sense, to the nonexistence of nontrivial solutions for the special
case y 0. We will return to this point in the next section.

THEOREM 3.7. Let [hi exceed the spectral radius. Then, for any y L3(W), there
exists a solution x L3(W) to (3.4). Furthermore, for any such solution x, we have

Ilxll--< Cllyll, where C depends only on

Proof A priori, for any solution x as above, we have

so that

Hence

z(x, x, x’)- AN(x, x, x’) N (y, y, x’),

(1 1-3(2k-2)l/3)llxl[3 [(y, Y, x’)l -< Ilyll2llxl[.

Ilxll Cllyll for C=([h[-3(2k-2)I/3)-/2.

Now fix y L3(W), and let y" be a sequence of finite truncations of y converging to
y, i.e., y" are finitely supported, y is either 0 or Yw for each n and w, and Ily -y - 0
as n-. For each n choose a solution x" to (3.4) for y". Since Ilyll is bounded, so
is IIxll, and any weakly converging subsequence of the x"’s gives us a solution, x, to
(3.4).

In more detail, for each w, the sequence x is bounded, and so we can assume,
by passing to a subsequence, that for each w W we have x Xw for some Xw C
(since W is countable, using a "diagonal subsequence"). A standard argument shows
that the resulting vector x lies in L3( W)" let Y be any truncation of x. Then Y L3(W),
and

X
2

Taking any subsequence of n’s tending to infinity, the left-hand-side converges to IIll 3,
and so

lim inf xll.
Since this holds for any truncation Y of x, this holds for x itself. Finally, for each w,
(3.5) holds for x and y, since for all sufficiently large n (depending on w), the equation
holds for x" and y, and this equation involves only terms x with v ranging over a
finite set. Hence x is a solution to (3.4), and it clearly satisfies the a priori bound
given.

To complete the proof of Theorem 3.4, it is clear that in general any real positive
(respectively, negative) A which is spectral and which exceeds the spectral radius must
be a spectral upper (lower) bound. Finally, the entire discussion of nonspectrality goes
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through for A C of absolute value exceeding the spectral radius, with minor
modifications. We start by observing that the equation

S3--aSAc" 1 =0

can only have all roots Sl, s2, s3 of absolute value less than or equal to 1 if

Iol-=lSlS2/SlS3/S2/S31<-3.
This implies that any complex h with I,1 > 3(k- 1)1/3 has a fundamental solution. The
rest of the analysis goes through virtually word for word, to show that ,Vs with

IAI > 3(2k 2) 1/3 are nonspectral.
We remark that we never have uniqueness in (3.4). One obvious reason is that if

x is a solution, then so is -x. However, this is not the only source of nonuniqueness.
For example, if the support of x L3(W) is any set of minimum distance 3, i.e., the
distance between any two distinct vertices is at least 3, then there is a y L3(W) which
satisfies (3.4), and any pattern of sign changes in x yields another solution. So, in
general, there can be an infinite number of solutions x for a given y.

4. Finite versus infinite hypergraphs. We finish with some remarks on the question
of constructing finite hypergraphs with small second eigenvalues.

The basic question is to construct hypergraphs on n nodes with dn2 edges whose
second eigenvalue, measured in L3, is roughly (dn)1/3. For the application to dispersers,
it would be desirable that the hypergraph be constructable in polylogarithmic time in
n and d. So, for example, in the analogous construction problem for graphs, the graphs
given in [LPS86] and [Mar84] are not known to be constructible so quickly, but those
of [Hal86], [ChuB8], and [Fri89] are. Any construction yielding a hypergraph of second
L eigenvalue less than or equal to (dn) for some /3 < would improve the best
disperser construction known at present; for example, it could boost e-weak sources
for some e < 1/2.

Clearly, any symmetric, regular hypergraph can be represented as the quotient of
an infinite tree whose vertices are identified in some way. The question becomes, then,
are there concise properties of the universal covers which control the second eigenvalue
of a finite hypergraph?

We can suggest the following question, which is even interesting for graphs. Given
a finite graph and an eigenvector, is there a direct way to prove that its eigenvalue is
small by associating to it some vector, or perhaps probability space of vectors, on its
universal cover? This association should work for all vectors perpendicular to e

(1, 1,..., 1) but not for e itself, and would have to involve some properties of the
map from the universal cover to the graph (since no good bound holds for all finite
graphs). This is a suitably vague question, but the intention is to develop methods that
could carry over to hypergraphs to yield better second eigenvalue bounds.

For finite hypergraphs, one may be able to define notions of spectrality as in
Definition 3.3, but one would probably want to modify the definition. For example,
consider the following consequence of the standard variational argument.

PROPOSITION 4.1. Let " be a symmetric, trilinearform on L3(V), where V is a finite
set, and let E be a linear subspace of L3(V). If [z(v, v, v)[ over unit vectors v E is
maximized at v x, then there is a h’ such that

z(x, x, u) h’#(x, x, u) 0 Vu E.

Proof If #(x,x, u) =0, it follows that z(x,x, u)=O by considering [z(v, v, v)[ with
v x+ eu and e small. So choosing h’ to make the above equation hold for any
particular u with # (x, x, u) # 0 will work.
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The point here is that for A’ to equal A it is necessary that I(x, x, x)] Ilxll which
will not generally be the case. A solution to the above equation is clearly related to
the solvability of (3.4) for A A’ (i.e., too many solutions to the above prohibits a
solution to (3.4)), but we would not expect A and A’ to agree over, for example, the
subspace E of u’s with (i, i, u)=0, where i is the all-l’s vector. Hence, to study an
analog of Definition 3.3 for the second eigenvalue of finite hypergraphs, we would
expect some modification.

We remark that all the theorems stated in 3 generalize easily to t-uniform
hypergraphs G=(V, E), i.e., where each e E is a subset of size t. The resulting
eigenvalue for the k-regular, t-uniform hypertree is (k-1)/tt!(t-1)(1-’)/t, which for
fixed k is within polylog factors in k of the right answer, i.e., of the lower bound and
of the upper bound for random hypergraphs.
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Abstract. The following problems about time-bounded program-size complexity are studied:
(1) for a given string x, a size bound s, and a time bound t, whether there exists a Turing machine
of size less than or equal to s that prints x in moves; (2) for two given finite sets Y and Z of
strings, a size bound s, and a time bound t, whether there exists a Turing machine of size less than
or equal to s that operates in time and accepts all y E Y and rejects all z E Z. These problems are
fundamental in complexity theory and feasible learning theory. The complexity of these problems is
apparently between P and NP, but appears very difficult to classify precisely. These problems are
attacked by the approach of relativization. It is shown that for certain variations of the problems,
they could be either polynomial-time computable or not polynomial-time computable, depending on
different oracles. Furthermore, there are oracles relative to which they are not complete for NP under
the polynomial-time Turing reductions, but are complete for NP under the strong NP reductions.

Key words, learning, polynomial time, Turing machines, generalized Kolmogorov complexity,
NP-completeness
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1. Introduction. Time-bounded program-size complexity (generalized Kolmo-
gorov complexity, or simply KT-complexity) has recently found many interesting ap-
plications in complexity theory (see, for instance, Hartmanis [8]; Sipser [23]; Balczar
and Book [3]; Longpr [20]; Ko, Orponen, Schhning, and Watanabe [14]), as well as
the theory of pseudorandomness (Levin [16], Ko [11], Huynh [9]). Other applications
to lower bound proof techniques and cryptography are also known (see Li and Vitanyi
[17] for a survey).

While these applications are very interesting, some fundamental questions about
time-bounded program-size complexity remain unanswered. Consider the following
problem.

MINKT: for a given string x, a given size bound s, and a given time bound t,
determine whether there exists a Turing machine T of size less than
or equal to s that prints x within t moves.

The complexity of this problem is fundamental to a number of applications in com-
plexity theory. For instance, this problem is critical to the question of whether the
Martin-Lhf characterization of randomness by Kolmogorov complexity holds for the
polynomial-time version [11]. Vazirani and Vazirani [26] studied the complexity of the
minimum-size Turing machine problem in the form of real-time transducers.

It is obvious that this problem is in NP if the time bound t is given in the unary
form, Intuitively it is very unlikely to be in P. In fact, we know of no polynomial-time
heuristics to either attack any of its subproblems or to approximate it in any sense.
The only applicable technique seems to be the exhaustive search. And yet this is also
unlikely to be complete for NP, because it does not seem to possess the structural
properties, such as paddability and self-reducibility, that are shared by most other
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known NP-complete problems (see, for instance, ,Balczar, Diaz, and Gabarr5 [4]).
The precise classification of its complexity thus appears to be a challenging problem
in complexity theory.

The close connection between program-size complexity and inductive inference
has been known through the work of Solomonov [24] and was more recently surveyed
by Li and Vitanyi [18]. A fundamental problem in the theory of polynomial-time
inductive inference, or the feasible learning theory, is to identify from a given set S
of input/output pairs, the concept C in the prespecified domain that is consistent
with the input/output pairs in S. For instance, Blumer, Ehrenfeucht,.Haussler, and
Warmuth [5] have shown that Valiant’s distribution-free probabilistic learning model
[25] for a big class of learning problems is essentially equivalent to the consistency
problem. Applying the principle of Occam’s Razor, one is often interested in the
minimum-size concept C that is consistent with S. The consistency problem of some
specific domains of concepts has been well studied. For instance, the consistency
problem of boolean formulas and boolean circuits has been studied in Kearns, Li, Pitt,
and Valiant [10]; the consistency problem of minimum-state finite automata is shown
to be NP-complete in Gold [7] and Pitt and Warmuth [21]; and the consistency problem
of maximum-length pattern languages has been studied in Angluin [2] and Ko, Marron,
and Tzeng [13]. However, very little work has been done on the consistency problem
for the more general concepts of time-bounded Turing machines. We formulate the
problem as follows.

MINLT: for two given finite sets Y and Z of strings, a given size bound s,
and a given time bound t, determine whether there exists a Turing
machine T of size less than or equal to s such that for each y E Y,
T(y) accepts in t moves, and for each z e Z, T(z) rejects in t moves.

Although problem MINLT seems to have a different motivation from problem
MINKT, the two problems can be seen to be quite similar if we regard problem
MINKT as a simpler version of the learning problem MINLT, i.e., learning the Turing
machine program from one of its outputs. In addition, the two problems have similar
complexity-theoretic properties. Namely, if the size bound s and the time bound t are
given in the unary form, then MINLT is in NP and is not likely to be polynomial-time
solvable. Also, it does not seem to possess the structural properties that characterize
known NP-complete problems. The precise classification of its complexity is of interest
in feasible learning theory.

While we are tempted to conjecture that MINKT and MINLT are not in P and
are not NP-complete, they seem to lack any interesting structure which would allow
us to give any justification for these conjectures. Instead, in this paper, we attack
these two problems in the form of relativization. The relativization of MINKT and
MINLT is straightforward: the minimum Turing machines we search for are allowed
to make queries to oracles. In this relativized form, we are able to show that some
conjectured properties of MINKT do hold relative to some oracles and hence to give
some support to the conjectures.

To state our main results, we need to define some subproblem of MINKT:

KTS[s(n), t(n)] {x" (x, 0s(ix[), 0t(Ixl)) e MINKTB}.

Our main results can be summarized as follows:
(1) Let 0 < a < b < 1. There exists an oracle A such that the problems

gTA[an, t(n)] and gTA[bn, t(n)] are polynomial-time inseparable (and so MINKTA
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is not in pA), and there exists an oracle B such that the problems KTB[an, t(n)] and
gTs[bn, t(n)] are polynomial-time separable.

.P,A(2) There exists an oracle A such that MINKTA is not in co-NPA and is not ST
(P,A is the polynomial-time Turing reduction relative to A;complete for NPA, where ST

on the other hand, there exists an oracle B such that MINKTs is <STYP’B-complete
for NP while NPs co-NPs where .SNP,B is the relativized strong NP reduction

The first result shows that the problem MINKT, in the relativized form, could
be either easy or hard to solve and so implies that the unrelativized problem MINKT
is probably not polynomial-time solvable, and its solution must use an unrelativizable
proof technique. The second result provides some evidence for the conjecture that
MINKT is a problem in NP that is neither in P nor NP-complete. It also suggests
an interesting possibility: that MINKT is not polynomial-time Turing complete for
NPbut is complete under some weaker reducibilities. We remark that there have been
some natural problems proven to be complete for NP under some weak reducibilities
(e.g., Adleman and Manders [1], Vazirani and Vazirani [26], and Chung and Ravikumar
[6]). However, no evidence has been given to show that they are not Turing-complete
for NP. Our result is, to the best of our knowledge, the only problem which admits a
natural relativization and hence can be shown to be not <TP-complete in the relativized
form.

In addition to these results, we also investigate other properties of the problems
MINKTA and KTA[an, t(n)]. Call a set X C-immune if X is infinite and X has no
infinite subset in C. A set X being P-immune implies that any polynomial heuristic
algorithm for X can only solve finitely many instances in X. We study the question of
whether gT[an, t(n)] is P-immune, where 0 < a < 1 and t is a polynomial function.
Intuitively, it is difficult to generate strings that have high program-size complexity,
and it is provable that KT[an, ng n] is C-immune, where C is the class of P-printable
sets (a set X is P-printable if the set X n {0, 1}n is printable from 0n in polyno-
mial time). We generalize this idea to show that there exists an oracle A such that
KTA[an, t(n)] is NpA-immune. On the other hand, there exists an oracle B such that
KTB[an, t(n)] is not in ps and is not Pro-immune. Therefore, the question of whether
KTA[an, t(n)] is P-immune can be relativized in both ways and needs unrelativizable
proof techniques to solve it in the unrelativized form.

Proofs of the above results all involve two basic principles about KT-complexity
of a string relative to a set:

(1) If a string x is random relative to A, i.e., its KT-complexity is high, then a
deterministic polynomial-time oracle Turing machine cannot query about x on input
y of smaller KT-complexity (cf. Hartmanis [8]).

(2) When we construct an oracle A, it is easy to make some specific strings x
have low KT-complexity by encoding x into set A.

The above simple observations allow us to construct oracles A to satisfy require-
ments about KT-complexity of some specific strings. However, the construction often
becomes more difficult when the requirements are too strong. The following observa-
tions seem to indicate the limit of this type of construction:

(3) A string x having low KT-complexity relative to set A is difficult to convert
to a string with high KT-complexity if we are allowed to make only local changes on
set A.

(4) A string x having a high KT-complexity relative to A may be inadvertently
converted to a string with low KT,complexity if we change the membership of strings
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of lower KT-complexity.
(5) Most strings have high KT-complexity relative to any set A. Therefore, the

principle (2) above can be applied to only a sparse set of strings.
All of the results stated above also hold with respect to problem MINLT. Indeed,

there seems to be a simple transformation of the proofs of the results about MINKT
to the proofs of analogous results about MINLT. This observation supports our view-
point of treating the problem MINKT as a simpler version of MINLT, and suggests an
interesting link between program-size complexity and learning in the polynomial-time
setting.

2. Preliminaries. We will deal with finite strings over {0, 1}. We let A denote
the empty string. We let Ixl denote the length of a string x. For any set A, we let XA
denote its characteristic function; i.e., XA(X) 1 if x E A and HA(X) 0 if x A.
We write A<n to denote the set A 1 {x e {0, 1}* "lxl _< n}.

We use the standard model of multitape oracle Turing machines (TMs). In par-
ticular, we assume that the query tape is cleaned after each query. We assume that
the reader is familiar with the basic notions in complexity theory. In particular, we
let pA (NpA) be the class of languages over {0, 1} which are computable by some
oracle TMs (nondeterministic oracle TMs, respectively) in polynomial time relative to
set A. For each oracle A and each machine M, we write L(M, A) to denote the set of
inputs accepted by machine M using oracle A. A set B is <TP’A-complete for NPA if
B NPA and for all C NPA, C L(M, A G B) for some polynomial-time oracle
TM M, where A G B denotes the set {0x x A} tJ {ly’y B}. A weaker notion
of completeness is also used: A set B is <sTgP’A-complete for NPA if B NPA and
for all C NPA, C L(N, A B), for some polynomial-time nondeterministic oracle
TM N [19].

Let T be an oracle TM. The program-size complexity of (printing) a string x
relative to set A is defined as

KTA(X) min{ial TA(a) prints x},

where min() is defined to be oo. We say a is a minimum program computing x. The
time-bounded program-size complexity of x relative to A is the length of a minimum
program which computes x within a specific number of moves. More precisely,

KTT(X, t) min{lal’TA(a) prints x in t moves}.

We call this value the KT-complexity of x with time bound t relative to set A. The
importance of the notion of KT-complexity has been recognized as early as in Kol-
mogorov’s original 1965 paper on program-size complexity [15].

It is well known that the KT-complexity is invariant when we replace the machine
T by a universal oracle TM.

PROPOSITION 2.1. There exist a universal oracle TM U and a polynomial po such
that for any oracle set A and any input , if TA(a) halts and prints x in t moves,
then UA({, a)) halts and prints x in po(t) moves, where encodes the oracle TM T.
(The polynomial po, of course, depends on the specific model of TMs that we use. In
general, it seems safe to assume that po(n)= O(n log n).)

In order to calculate the input length to machine U, we need to specify how
the two inputs T and a are encoded into a single string. For any string x, let d(x)
denote the string which doubles each bit of x; i.e., d(0) 00, d(1) 11, and d(ax)
d(a)d(x) for all a e {0,1} and x e {0,1}*. We define {x,y) to be d(x)lOy. Thus,
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I( ,y)l 21xl + lyl + 2. For more than two strings, we define (xl,x2,"’,xm) to be
d(xl)Old(x2)O1 Old(xm-)lOxm. Thus, I(x x2 Xm)l m-,..., (21x l+2)+lxml.
Using this coding scheme, we obtain a simple relation between KT-complexities with
respect to different TMs.

PROPOSITION 2.2. Let the universal TM U and polynomial po be defined as in
Proposition 2.1. Then, for all sets A and all strings x,

KTvA(x,po(t)) <_ KTTA(x,t) + CT,

where 5T is a constant depending on the machine T.
We will, in the rest of the paper, write KTA(x, t) to denote KTuA(x, t), and will

let p0 be the corresponding polynomial function. We also write KA(x) to denote
mint>0 KTA(x, t).

Let A be a set and c an integer. A string x is said to be c-random relative to A
if gA(x) _> Ixl- c. We observe that for any set A and any integer n, most strings of
length n are c-random relative to A if c >_ 1.

PROPOSITION 2.3. For any set A and any n, there are at least 2n 2n-c many
strings of length n that are c-random relative to A.

The fundamental question about KT-complexity of a given string x can be for-
mulated into the following set"

MINKTA { (x, 08, Or) KTA(x, t) <_ s}.

It is clear that MINKTA is in the class NPA. It is not known whether MINKT0 is
NP-complete. The following in a class of subproblems of MINKTA:

KTA[s(n), t(n)] {.x" (x, 08(’xl), 0t(Ix’)) e MINKTA}.
If 0 < s(n) < n and t(n) is a polynomial function, then KTA[s(n), t(n)] is in NPA

and is not known to be in pA or to be NpA-complete.
Next we consider the program-size complexity of (recognizing) two lists of strings.

We write to denote a finite list of strings {yl,’", ym}. For convenience, we also
let denote the set of strings in the list ; i.e., {y,..., Ym}. We modify our
model of oracle TMs into recognizers so that each machine can take two inputs a and
and they are put in two input tapes (rather than encoded into a single string and

put in one input tape). Let R be a two-input oracle TM. We define LTA({,,t)
to be the length of the minimum string a such that for all y in , RA(o, y) halts
and accepts in t moves, and for all z in ’, /A(c, z) halts and rejects in t moves. We
call this complexity the LT-complexity of the lists {, . Note that for the sake of
simplicity, we made the runtime a uniform value t for all yi’s in and all zi’s in . A
more general way to define the LT-complexity is to use a different ti for each yi or zi.
We remark that our results, to be proved in the following sections, remain true using
this general definition.

Similar to the KT-complexity, LT-complexity is invariant under a universal oracle
TM.

PROPOSITION 2.4. There exist a universal two-input oracle TM V and a poly-
nomial pl such that for any oracle set A and any input (a,w), if RA(a,w) halts
and accepts (or rejects) in t moves, then VA({,a},w) halts and accepts (or rejects,
respectively) in p(t) moves. (Again, we may assume that p(n) O(n log n).)

PROPOSITION 2.5. Let the universal TM V and polynomial pl be defined as in
Proposition 2.4. Then, for all sets A and all lists {, ,

LTvA((g,,p(t)) <_ LT((g,,t) + dR,
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where dR is a constant depending on the machine R.
We fix a universal TM V and its corresponding pl and write LTA((g,,t) to

denote LTvA( (g, , t).
The problem about LT-complexity that we are interested in is:

MINLTA {((,z,O,Ot)’LTA((,z,t) <_ s}.

It is clear that MINLTA is in NPA. Let ELm be the set of all pairs (7, z such that 7
and * contain only strings of length m. Let EL kJ=iELm. A class of subproblems
of interest is the following:

iTA[s(n),t(n)] {(7, ELm ((,Z-,Os(m),Ot(m)) MINLTA,m >_ 1}.

In the above definition, for the sake of convenience, we consider only pairs (7, z
in which all strings are of the same length. It should be pointed out that this restric-
tion is not too strong because arbitrary pairs (7, z consisting of strings of different
lengths can be encoded into pairs (g, in EL by a simple padding scheme. Note that
LTA[s(n), t(n)] NPA if both s(n) and t(n) are polynomial functions.

The proofs of our main results make use of some specific Turing machines. We
define them in the following.

DEFINITION 2.6. For any set A, A(n, w) XA(WO1)XA(WO12) XA(wOln). Let
To be the oracle TM that, on input (n, k, w), with oracle A, queries the oracle to print
A(n, wOk). For convenience, also let T be the oracle TM such that TA((n,w))

0,
We assume that there is a polynomial t such that ToA((n, k, w)) halts in t(n/k/

]w]) moves. (It seems reasonable to assume that t(n) O(n2).) We fix a polynomial
to(u) po(tl (4n)) so that UA can simulate To in time to(n). We also assume that to(n)
is big enough so that UA can do, in time to(n), some trivial tasks such as computing
the identity function and converting the binary representation of an integer k to 0k.

DEFINITION 2.7. Let R be the two-input oracle TM that, on input ((m, w),z)
and with oracle A, accepts if and only if wOmz A.

We assume that there is a polynomial r such that RA((m,w),z) halts in r(m /
Iwl / Izl) moves. (Again, it seems reasonable to assume that r(n) O(n2).) We
let ro(n) p(r(4n)). We also assume that VA can simulate, in time ro(n), some
trivial machines, such as a machine that encodes and accepts a fixed list of strings
and rejects all other strings.

3. Polynomial-time computability. Intuitively, it does not appear that the
problems MINKT and MINLT can be solved in polynomial time. In this section we
are going to show that a very general subproblem of MINKTA is indeed not solvable
in polynomial time relative to some A. On the other hand, we also show that this
subproblem of MINKT is solvable in polynomial time relative to some other set B.
The same results hold for the problem MINLT, in a slightly weaker form.

The subproblem here is to distinguish between the class KT[an, t(n)] and the
class KT[bn, t(n)], where 0 < a < b < 1 and t(n) is a polynomial greater than the
polynomial to(n) of Definition 2.6. We say that two sets B and C are pA-separable
ifBC=q) and there exists a set X PA such that B CX andCC. SetsB
and C are pA-inseparable if B C q}, but they are not pA-separable. We first show
that, relative to some oracle A, KTA[an, t(n)] and KTA[bn, t(n)] are pA-inseparable
if t(n) >_ to(n), where to is defined in Definition 2.6.

THEOREM 3.1. Let 0 < a < b < 1 and t be a polynomial such that t(n) >_ to(n).
There exists a set A such that KTA[an, t(n)] and KTA[bn, t(n)] are pA-inseparable.



968 KER-I KO

Proof. Assume that {Mi} is an enumeration of polynomial-time oracle TMs. For
each i, let qi be a polynomial bounding the runtime of machine Mi. We need to show
that for each >_ 0, the following requirement is satisfied:

Ri (3xi)[MiA(x) 1 and x KTA[bn, t(n)]]
or [MA(x) 0 and x e KTA[an, t(n)]].

We construct set A by stages such that requirement Ri is satisfied in the ith stage.
We let A-1 and e-1 -0.

Stage i. Assume that ei_l and Ai- have been defined earlier such that all strings
in Ai- are of length less than or equal to ei_l. We choose an integer n ni that
satisfies an > 2ei_, (1- b)n > 1, and an > 21og(qi(n))+41ogn+4 +2CT1, where CTI
is the constant associated with machine T of Definition 2.6. Let x xi be the least
string of length n that is 1-random relative to Ai-. Simulate machine Mi on input x
with oracle Ai-. If it accepts, then we let Ai Ai- and ei max{qi(n),t(n)}, and
go to the next stage.

If MA- (x) rejects, then we find a string w of length an/2 such that no string in

set w{0, 1}* has been queried in the computation of MA- (x). (Note that we chose
n such that qi(n) < 2an2 and so such a w must exist.) Then, we let

Ai Ai-1 U {w01J the jth bit of x is 1},

and ei max{qi(n),t(n)}, and go to the next stage.
End of Stage i.
We let A t2i=oAi. We claim that A satisfies all requirements Ri. First, assume

that MiA-(xi) accepts in Stage i. Note that we always choose nj such that anj/2 >
ej-1

_
ei, if j > i, and so we never add any string of length less than or equal to ei

to A in later stages. This implies that MiA(xi) behaves the same as M/A’- (xi) and
it accepts. In addition, e _> t(n) implies that for any string a, UA(a) behaves the
same as UA-I(a) in t(ni) moves. Thus the fact that xi is 1-random relative to Ai-
implies that for no a of length less than or equal to bn < n- 1, UA- (a) prints xi in
t(ni) moves and hence xi KTA[bn, t(n)].

Next assume that MiA-(xi) rejects in Stage i. Then, Ai- Ai_ C_ w{0,1}*,
and the computation of M/A- (xi) never queries any string in this set. It follows
that MiA(xi) also rejects. On the other hand, we observe that A(ni,w) xi and
so machine T, with oracle A, prints xi on input (ni, w) in t(ni) moves. The
length of (hi,W) is bounded by 21ogni + ani/2 + 2 <_ ani- CT. Thus,
gTA(x,t(ni))

_
gT(x,t(ni)) + CTI

_
ani, and so xi e gTA[an, t(n)]. This

completes the proof.
Next we show that, relative to some oracle A, gTA[an, t(n)] and KTA[bn, t(n)]

are pA-separable for a sufficiently large polynomial t. Note that if pA NpA, then
both KTA[an, t(n)] and KTA[bn, t(n)] are in pA and so the pA-separability result
would be trivial. In the following, we show that even if pA NpA, it is still possible
to separate gTA[an, t(n)] from gTA[bn, t(n)] in polynomial time relative to A.

The following specific oracle TMs are useful in the next proof, as well as later
proofs.

(1) Let T2 be the oracle TM that, on input (m,a) and with oracle A, works as
follows: It simulates UA(a) until the mth move; if the mth move of UA(a) makes a
query "y E?A," then it outputs y else it outputs 0.
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(2) Let T3 be the oracle TM that, on input (i, j, m,a} and with oracle A, first
obtains x T2A(Im, al), and then prints the substring y of x from the ith bit to the
jth bit.

Let CT2 and CT3 be the constants associated with these machines as defined in
Proposition 2.2.

THEOREM 3.2. Let 0 < a < b < 1 and t be a polynomial such that t(n) >_ to(n).
There exists a set A such that pA NpA and KTA[an, t(n)] and KTA[bn, t(n)] are
pA-separable.

Proof. To separate the classes KTA[an, t(n)] from KTA[bn, t(n)], we encode the
information on whether x E KTA[an, t(n)] in XA(f(x)), where f(x) Omx, m
2t(Ixl)- Ixl + 1. Thus our requirements are:

Ro,x "Ix e KTA[an, t(n)]=f(x) e A] and Ix KTA[bn, t(n)]=f(x) q A].

To satisfy the requirement pA : NpA, we define LA {On "(x, Ixl n) x e A}
and satisfy the following subrequirements:

Rl,s (n)[0n e L(Ms, A) 0n q LA],

where {Ms} is an enumeration of polynomial-time oracle TMs.
We satisfy all these requirements by stages. First let A-1 A and

e-1 0. Let c (a+b)/2. In Stage i, we will define integer es and satisfy requirements
R0, for all x such that es-1 < Ix[ _< es, and satisfy requirement Rl,s using a witness
On, es-1 < n _< es. Assume that the machine Ms has a polynomial time bound

Stage i. Assume that As-l, A_ and es-1 have been defined in earlier stages such
that As-1 N A_ . Choose an even integer n > es-1 such that an > 21og(qs(n))
and (b- a)n/4 >_ 61og(t(n))+ log(qs(n))+ CTo + CT2 + CT3 + 7. Let B As-1 and
B’ A_1.

(1) First, for all x, Ixl <_ n- 1 and es-1 < If(x)l, do the following in increasing
order: Simulate to see whether x KTB[an, t(n)]. If yes, then let B B U {f(x)};
otherwise, let B’ B’ U {f(x)}.

(2) Simulate MA(on) with the queries "y E?A" answered as follows"
(2.a) If y B, then answer YES; if y B, then answer NO.
(2.b) If y B U B’ and y f(x) for any x, then answer NO and let

B, B, U
(2.c) If y B U B’ and y f(x) for some x, then answer YES and let

B S U {y}.
When the simulation is done, let Bo B and B B.

(3) If the simulation of MA(on) in step (2) accepts, then do nothing. Otherwise,
find a string xo of length n which is 1-random relative to Bo and which is not in

B. (Note that there are at least 2"-1 many 1-random strings relative to Bo and
that B O {x "[x n} has size at most qs(n). Since we have chosen n such that
2n- > 2an > as (n), such an xo must exist.) Let B Bo U {xo }.

(4) For each x, Ix[ _> n, if y f(x) has been queried in step (2), case (2.c), then
do the following: Find a string w of length LcnJ such that w is 1-random relative to
B0, xo lw{0, 1}*, wx wz for all wz defined before in this step, and that none of
the strings in lw{0, 1}* is queried in step (2). (Again, we have 2an > (as(n))2, and
this implies the existence of w’s.) Let B B U {lw0"+lJ the jth bit of x is 1}
and B’ B’ U {lw0n+llJ the jth bit of x is 0}.
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(5) For all other x, n _< I: 1 _< max{qi(n), 2t(n)}, but f(x) was not queried in step
(2), we simulate to see whether x e gTB[an, t(n)] and let B S U {f(x)} if yes,
and B’- B’ U {f(x)} otherwise. (Note that strings in lwx{0, 1}* begin with 1 and
so cannot contain f(x).) Let Ai B, A B’, and ei max{m "(2y, [Yl m) y e
BU B’}.

End of Stage i.
Let A UiO__oAi. We claim that A satisfies all requirements. We first verify that

in Stage i, requirement Rl,i is satisfied. Note that in step (2) of the simulation for
MiA(on), we put all answers to the queries into either B or B and then never change
their memberships later. So the simulation result must be correct. Also, if MA(on)
accepts, then A rq {x: Ixl n} ) (note that n is even but If(x)l is odd for all x, and
that all strings of the form lwx0’+1 lJ added to B in step (4) are longer than n), and
if MA(0’) rejects, then we have an x0 of length n in A. This shows that requirement
R,i is satisfied.

Next we show that if ei- < Ixl < n (and so the membership of f(x) in A is
determined in step (1) of Stage i) then requirement R0,x is satisfied. First, observe
that after Stage i, we only add strings of length > ei _> If(x)l >_ t(Ixl) to A, and so
later stages will not affect the membership of x in KTA[an, t(n)]. Then we see that
later in step (1) (after determining the membership of f(x) in A) and in step (2), we
only add strings longer than t(Ixl) to A and so they do not change the membership of
x in gTA[an, t(n)].

In steps (3) and (4), we may add some strings of length less than t(Ixl) to A.
Namely, in step (3), we may add to A a string z x0 of length n that is 1-random
relative to B0. In step (4), we may add strings to A of the form z lw0n+lJ,
j <_ qi(n), where w is of length [cnJ and is 1-random relative to B0.

We claim that for all strings a of length less than or equal to an, UBo(a) cannot
query such a string z (z x0 or z lw0n+lJ) in t(n) moves. Suppose otherwise
that USo(a) first queries such a string z at the mth move, m < t(n) First assume
that z xo. Consider the machine T2 defined above. We see that --T’((m, a)) prints
xo, since in the first m- 1 moves, USo(a) does not query about these special strings.
So,

KB 2lm I+ 2 _< + 2]og(t(n))+(x0) < I+
This implies that

KBo(xo) < an + 2 log(t(n)) + 2 + CT2 < n 1.

This contradicts the fact that xo is 1-random relative to Bo. Similarly, for z
lwOn+lJ, j <_ q(n), machine T3 prints w from input (2, Iwl + 1, m,a), using oracle
Bo, if USo(a) queries about lw0’+lJ at the mth move. Again, a contradiction can
be derived. So the claim is proven.

The above shows that the simulation of whether x e KTS[an, t(n)] in step (1) is
correct relative to oracle A. So, requirement Ro, is satisfied for x such that Ixl < n.

For x of length between n and max{qi(n),2t(n)}, we determine the membership
of f(x) in either step (2), case (2.c), or step (5). If the membership of f(x) in A is
determined in step (5) then, similar to the above argument, all strings added to A
later are of length greater than t(Ixl) and so would not affect the requirement Ro,=.
If the membership of f(x) in A is determined in step (2), then we added in step
(4) strings lw0n+lJ to A if the jth bit of x is 1. Thus, x can be printed from
the input (Ixl, n, lwx) by the machine To of Definition 2.6 in tl(31x[) moves. So,
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KTTAo(x, tl(3]Xl) < 21og(lxl)+21nl+cn+6 < blxl--CTo, and so KTA(x,t(Ixl)) <
Thus requirement Ro,x is satisfied. This completes the proof.

Remarks. (1) The above proof also works for pA-separability of, for instance,

KTA[n/2, t0(n)] from KTA[n/2 + log2 n, t0(n)], with pA NpA. Whether it can be
improved to show that KTA[n/2, t0(n)] E pA NpA is not known. Our construction
above fails because we need, in step (4), to encode string y f(x) into set A such that
the information can be decoded using a program of length less than or equal to bn and
yet cannot be decoded by any program of length less than or equal to an (so that the
requirements established in step (1) are not violated). This presents two inconsistent
requirements if a b.

(2) The construction above for set A is not recursive, because we need to determine
whether a string x0 is 1-random relative to B0 in step (3). It can be made recursive by
replacing the absolute 1-randomness in the construction by 1-randomness with respect
to a time bound t, where t is a large value, because all the arguments above involve
only time-bounded simulations between machines T1, T2, T3, and U.

Next we consider the polynomial-time computability of MINLTA. Our results on
MINLTA are similar to Theorems 3.1 and 3.2. Namely, we show that if 0 < a < b < 1,
then, depending on oracles A, LTA[an, t(n)] and LTA[bn, r(n)] could be pA-separable
or pA-inseparable, if r(n) is sufficiently larger than t(n). The pA-separability result
is a little weaker than Theorem 3.2, because we require that r(n) is larger than t(n).

Recall that rl is the polynomial runtime of machine R1 of Definition 2.7 and that

THEOREM 3.3. Let 0 < a < b < i and t be a polynomial such that t(n) > ro(n).
There ezists a set A such that LTa[an, t(n)] and LTA[bn, t(n)] are pA-inseparable.

Proof. The proof is a slight modification of the proof of Theorem 3.1. We only
give a sketch. In Stage i, we try to satisfy the requirement

Ri (lff, z’))[MA((ff, z-)) 1 and (if, z’) q LTa[bn, t(n)]]
or [MA((ff, ) 0 and (if, z-) e LTA[an, t(n)]],

where M is the ith polynomial-time oracle TM. Let qi bound the runtime of
Assume the same setting in Stage as in Theorem 3.1. Choose a sufficiently large

integer n > ei-. Let x be a string of length n that is 1-random relative to Ai-.
Define, for each j < 2n, a to be the n-bit binary representation of integer j. Define

if= {cr thejthbit ofx is 1}, and 2’= {a thejthbit ofx is 0}. Note that

Now, simulate MAi-1 ((if, z-)). If it accepts, then do nothing. Otherwise, we find
a string w of length an/2 such that no string in set w{0, 1}* has been queried in the
computation of MAi-1 ((if, z-)). Then, let

A A_ U {w(r the jth bit of x is 1}.

This ends the construction of Stage i.
We first observe that the simulation outcome of MAi-1 ((if, z-)) is the same as

MA((ff, z-)), because all strings in Ai- Ai_ are not queried in the computation of

MA((ff, z-)). Next, we claim that if MAi-((ff, z-)) accepts, then (if, z--) LTA[bn, t(n)].
Assume otherwise that there exists an a of length less than or equal to bn such that
YA(a, y) accepts in t(n) moves for all y e ff and VA(a,z) rejects in t(n) moves for all
z 5’. It is easy to see that by choosing a large e we can make sure that A- A_I
contains no string of length less than or equal to t(n). So, the above also holds for
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oracle Ai-1. Consider machine T4 defined as follows" T4A(<m, c}) simulates
for all j 1,..., m, and prints the outcomes in the increasing order.

We can see that machine T4, with oracle Ai-1, prints x on input {n, a}. Thus,
KAi-l(x)

_
bn + 21ogn + 2 + CT4

_
n- 1 when n is chosen large enough. This

contradicts the 1-randomness of x relative to Ai-.
Finally, we observe that if the simulation ofMA-I ({if, ) rejects, then MA({, )

rejects, and furthermore we claim that {if, e LTA[an, t(n)]. To see this, we note that
the machine RA of Definition 2.7 accepts input ((0, w}, a) in r (2n) moves if and only
if wa’ e A if and only if the jth bit of x is 1. This implies that LT ({, , rl(2n))
an/2 + 21ogn + 2 and so LTA((,z,r(n)) <_ an if an/2 > dR1 + 21ogn + 2. [:l

THEOREM 3.4. Let 0 < a < b < 1 and let t(n), r(n) be two polynomials such that
r(n) >_ ro(t(n) + 1). There exists a set A such that pA NpA and LTA[an, t(n)]
and LTA[bn, r(n)] are pA-separable.

Proof. Again, the proof is similar to that of Theorem 3.2 and we only give a
sketch. Recall that ELm contains (, in which all strings are of length m, and

ELm For each x E EL, we encode the information about xthat EL [’Jm=l
nTA[an, t(n)] into f(x) ox, g 4t(Ixl)- Ixl + 1.

At Stage i, we will satisfy the requirement

Rl,i (3rt)[M/A(0n) 1 On . LA],
where Mi is the ith polynomial-time oracle TM and LA {0n" (3y, [y[ 3n) y e A}.
(Note that we have changed the definition of LA so that the witness for On LA must
have length 3n.) In the meantime, for all x, ei-1 < Ixl

_
ei, we satisfy

Ro,x "Ix e LTA[an, t(n)]=f(x) e A] and Ix LTA[bn, r(n)]=f(x) A].

Stage i. Assume that ei-1, Ai-1, and A{_ have been defined as in Theorem 3.2.
We let c (a + 5)/2, B Ai-1, and B’ A{_ 1. We choose a sufficiently large even
integer n and perform the following:

(1) For each x, if x e ELm, m < n, then simulate to see if x e nTS[an, t(n)].
Add f(x) to B if yes, and add f(x) to B’ otherwise.

(2) Simulate MA(on) and answer the query "u e?A" as follows:
(2.a) If u B, then answer YES; if u B’, then answer NO.
(2.5) If u B U B’ and u f(x) for any x e EL, then answer NO and add

u to B’.
(2.c) If u B t2 B’ and u f(x) for some x e EL, then answer YES and

add u to B.
When the simulation is done, let B0 B and B B.

(3) If the simulation of MA(on) above accepts, then do nothing. Otherwise, find
x0 of length 3n that is not in B and is 1-random relative to B0. Add x0 to B.

(4) For each x ELm, m >_ n, if u f(x) is queried and answered YES in
step (2), then find a wx of length [cm] such that no string in the set wx{0, 1}* has
been queried in step (2) and wx w, for any wx, defined earlier in this step. (Such
a wx must exist, if we choose n large enough.) Assume that x (, and let
j t(m) m -Iwl + 1. Let B B U {wOJy: y e } and B’ B’ t2 {wx0Jz: z e }.

(5) For all x, Ixl <_ e :defn max{q(n), 4t(n)} and x e ELm, m >_ n, if u f(x)
was not queried in step (2), then do the same as in step (1).

End of Stage i.
CLAIM 1. If x ELm, rn < n, then f(x) A if and only if x nTA[an, t(n)].
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Proof. After f(x) is determined to be in A or A, we add, later in step (1) and
in steps (2) and (4), only strings of length longer than t(m) to A. Thus whether
x E LTA[an, t(n)] is not affected by these actions.

In step (3), we may have added a string x0 of length 3n to A, where x0 is 1-random
relative to B0. We claim that if lal <_ an and lul _< n, then ySo(a, u) cannot query
x0 in t(n) moves. Suppose otherwise that it queries x0 at the mth move, m <_ t(n).
Consider the following machine Th" T5B ((m, a, u/) simulates ySo (a, u) until the ruth
move; if the mth move is a query "v E?B0," then prints v else prints 0.

Note that T5 prints xo using a string of length

I<rn, a, u>l 21rn + 21a + lul + 4 _< 2 log(t(n)) + 2an + n + 6 < 3n CT,

if n is chosen large enough. So this would imply that x0 is not 1-random relative to
B0 (a contradiction).

The above shows that adding x0 to A does not change the membership of x in
LTA[an, t(n)]. So Claim 1 is proven.

CLAIM 2. /f x (, ELm, m >_ n, and u f(x) is queried and answered
YES in step (2), then x e LTA[bn, r(n)].

Proof. In step (4), we found a string wx of length cm] such that wxOJy A if
and only if y , where j t(m)- m- Iwxl + 1. So machine R1 of Definition 2.7 is
consistent with (, ; i.e., RA(Ij, w},y) accepts if y e , and RA(Ij, w),z) rejects if
z ’. This implies that

LTAR((,,rl(t(m) + 1)) _< 21j + Iwxl + 2 _< 2 log(t(m))+cm + 2 <_ bin-dR1,
if n is chosen sufficiently large so that the above inequality holds for all m _> n. Or,

LTA(<,,p(r(t(m) + 1))) <_ LTA(<,,r(m)) <_ bin.

This completes the proof of Claim 2, as well as the theorem. D
Remarks. (1) The reason that we need r(n) >_ ro(t(n)+ 1) is that we cannot,

in step (4), encode the information about x <, by short strings of the form
wxy, y . This is because we cannot guarantee that simulations in step (1), e.g.,
of VS(a,u), did not query about wxy, even if wx is 1-random relative to Bo: the
machine may use the second input u, which may have length m n- 1, to generate
w, which may be of length shorter than n.

(2) Both Theorems 3.3 and 3.4 can be generalized to sets LTA[s(n), t(n)] with size
bound s(n) > n. For instance, Theorems 3.3 and 3.4 hold for classes LTA[an2, t(n)]
and LTA[bn2, r(n)].

4. NPocompleteness. It has been pointed out in 1 that sets like MINKT or
KT[(n/2), n3] do not seem to possess the properties of self-reducibility or paddability
that are shared by most known NP-complete problems. This leads us to the conjecture
that they are indeed not NP-complete (under the _<P-reduction). In this section,
we show that the problem MINKTA, under a slightly modified form where all time
bounds t in inputs must be greater than or equal to to(Ixl), is neither in co-NPA nor
PA--<T’ -complete for NPA. This result supports our conjecture above.
On the other hand, we show that Athe problem MINKT under the same mod-

SNP,Aification, could be complete for NPA under the weaker <--T -reduction. For the
reader who is familiar with the notion of the high hierarchy [22], recall that the first
two levels of the high hierarchy are

HoP ={B e NP" B is <_TP- complete for NP},
HP -{B fi NP" B is <STNP-complete for NP}.
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It was proved in Ko [12] that HP’A HoP’A relative to some oracle A. Our results
here suggest MINKT as a candidate of natural problems in HP HoP.

In the following, we let MINKTA {(x, 08,0) e MINKTA t >_ t0([xl)}, and
show that MINKTA is not complete for NPA under the <_TP’A-reduction. We note that
this problem is essentially identical to the problem MINKTA since our main concern
about MINKTA is the size bound rather than the lower level time bound. This also
implies that KTA[an, t(n)] is not complete for NPA.

THEOREM 4.1. There exists a set A such that MINKTA q[ co-NPA and MINKTA
is not _PT’A-complete for NpA.

Proof. Let LA {On (Bx, lxl n) x e A}. It is clear that LA e NPA. Let
{Mi} be an enumeration of polynomial-time deterministic oracle TMs, and {Ni} an
enumeration of polynomial-time nondeterministic oracle TMs. Assume that qi is a
polynomial bounding the runtime of machines Mi and Ni. We need to construct set
A to satisfy the following requirements:

R0,i "(Sx xi) INcA(x) accepts x e MINKTA],

Rl,i "(n ni)[0n e LA On q[ L(Mi,A MINKTA )].

Requirements Ro# are easy to satisfy, like those in Theorem 3.1. We only give a
short sketch.

At Stage 2i, we satisfy requirement R0#. Assume that sets A2i-1, Ai_ and
integer e2i-1 have been determined in the last stage. We choose a sufficiently large
n ni > e2i-1. Let z be a string of length n that is 1-random relative to Ai_l. Define

0-,/: 0o(,,)).
Then we simulate Ni(z) using oracle A2i-. If N’-(x) rejects, then we do

nothing. Otherwise, we fix an accepting path of N’-(x) and find a string w
of length n/3 that is 1-random relative to Ai_ and such that no string in the set
w{0, 1}* has been queried in the path . Let A2i A2i- {w01J the jth bit of z
is 1} and di Ai_ (wOlJ" the jth bit of z is 0}.

In the case of :-(x) rejecting, it is easy to see that x (z, On2, 00(n))
MINKT. If-(x) accepts, then z A(n, w) and so (z, on/2, 00()) MINKT,
as long as we choose n large enough so that I(n, w)] n/3 + 2 log n + 2 n/2 CT.

Next, we describe how to satisfy the second type of requirements R,i. In Stage
2i + 1, we satisfy requirement R,i. Again, we assume that A2i, Ai, and e2i have
been defined in the last stage. Select a sufficiently large n. Let B A2i, B Ai.
Simulate Mi on input 0n. In the simulation, we may encounter two types of queries:
the first type querying to the oracle A and the second type querying to the oracle
MINKT. We simulate these queries as follows"

(1) For the query "y ?A" of the first type, answer YES if y B and answer NO
otherwise. For each y answered NO, if y was not in B then add y to B.

(2) Assume that all the queries "y (z, 0, 0) ?MINKT" of the second type
have t to(]z) (otherwise just answer NO). For such a query, simulate UA(), for all

of length less than or equal to s, each for t moves. In these simulations, for each
query "w ?A," we answer YES if w B, answer NO if w B or w n (but do
not add those w of length n to B yet), and consider both answers in the simulation

1This result has been independently proved by Professor Juris Hartmanis (unpublished).
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otherwise. Thus, for each c of length less than or equal to s, we obtain a computation
tree Ca of UA(). The tree Ca has depth less than or equal to t.

(2.1) If there exists a tree Ca such that one of its computation paths prints
z, then fix this tree Ca and this path r. For each query w made in this path, if it
is answered YES then add it to B else add it to B. In particular, for those w of
length n in the path r (their answers were fixed to NO when building the tree), we
also add them to B.. In this case, we answer YES to the query "y E?MINKTA.

(2.2) If no Ca contains a path printing z, then do nothing, and answer NO
to the query "y E?MINKTA.’’
If the above simulation of MiAMINKTA (On) accepts, then let A2i+l B. Oth-

erwise, we choose an x0 of length n that is 1-random relative to B and x0 B U B.
Let A2i+l B t2 (x0). (Note that for each simulation of the second type query
"y (z, Os,0t e?MINKTA’’ (step (2)), we add at most t <_ lYl <- q(n) strings into
B U B’. We execute at most q(n) times of steps (1) and (2), and so, in total, we add
at most (q(n))2 many strings to B U B. Thus, by choosing n large enough, such an

x0 must exist.)
End of Stage 2i + 1.
CLAIM 1. If the simulation of M(On) as described in Stage 2i + 1 accepts, then

Mi(On) accepts with oracle A MINKTA
Proof. All answers to queries of the first type "y ?A" in the simulation were

made to be consistent with the sets B and B at that time and their memberships in
B or B are never changed later. So these answers are all correct with respect to the
oracle A.

For the queries "y (z, 08, Otl ?MINKTA’’ of the second type, if it was answered
YES, then we must have found a computation path r in a tree Ca for some a of length
less than or equal to s and all answers in the path r to queries of the form "w ?A"
were made consistent with B and B. So the answer YES is always correct. If it is
answered NO, then for any set D that is consistent with sets B and B U {0, 1}n at
that time (i.e., B C_ D and B’ N D {0, 1}n N D ) the answer NO is still correct,
because we have simulated all possible trees Ca relative to all such sets D. Since we
did not add any string of length n to B later, the answer NO is correct relative to set
A.

From Claim 1 above, we see that if the simulation of M(0n) in Stage 2i/1 accepts,
then requirement R, is satisfied, because it is obvious that in this case 0" LA.

Next we consider the case where the simulation of M(0n) in Stage 2i / 1 rejects.
CLAIM 2. Assume that the simulation of M(On) in stage 2i + 1 rejects and that

y (z, 08, Otl was queried to oracle MINKTA in the simulation and was answered
NO. Then, it must be true that s < n/2.

Proof. Suppose, by way of contradiction, that s >_ n/2. Then, Izl >_ n/3 (other-
wise, we could print z using z itself as a program that has size < n/2;2 this contradicts
the assumption that y is answered NO). As noted above, we added, in the simulation
of Mi(On) in Stage 2i + 1, at most (q(n))2 many strings to sets B and B’. There must
exist some string w of length n/4 > 2 log(q(n)) such that w{0, 1}* N(BUB’) when
y was queried. Let D B {wO3n/41J the jth bit of z is 1}. Then D is consistent
with B and B’ {0, 1}n. Also, ToD ((Izl, 3n/4, wl) prints z in t(41zl) moves (note that

Izl >_ n/3). This implies that VD(a) prints z in to(Izl) <_ t moves for some program a
of length less than or equal to CTo + 2 log Izl + 2 log n + n/4 < n/2, if n is sufficiently

2We assumed in 2 that t0(n) is large enough to do this.
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large. In other words, one of the computation paths of Ca that corresponds to the
oracle D prints z. This contradicts our assumption that "y E?MINKTA receives.the
answer NO. [:]

CLAIM 3. Assume the same as in Claim 2. Then, xo is never queried in the
computation of UA(a) in t moves for all a of length less than or equal to s.

Proof. Assume otherwise that UA(a) queries about x0 in the ruth move, Icl _<
s < n/2 and m _< t. Let B be the set defined after we completed the simulation of
M(On) in Stage 2i + 1, then the computation of UP(a) is the same as UA(a) in the
first m- 1 moves. Consider the machine T2 defined in 3. T2A({m, a)) prints x0 with
a program of length I(m, a)l <_ 2 log(qi(n))+ n/2 + 2 <_ n- 1 -CT. From our choice
of n, this contradicts the 1-randomness of x0 relative to B.

CLAIM 4. If the simulation of Mi(On) in Stage 2i + 1 rejects, then Mi(On) rejects
relative to A G MINKTA

Proof. The proof of Claim 4 is almost identical to Claim 1. We only need to
add that, from Claim 3, when a second type query "y {z, 08, 0 E?MINKTA was
answered NO, none of its simulation tree Ca queries about x0 and so the simulated
answer remains correct.

Claim 4 above establishes that if the simulation of Mi(On) in Stage 2i + 1 rejects,
then requirement RI, is satisfied.

Next we show that the set KTA[an, t(n)] is ’SNP’A-complete for NPA if 0--T
1 and t(n) k to(n). This also implies that MINKTA is <_STNP’A-complete for NPA.
Note that if NPA co-NPA then this is trivial. We construct set A such that this
condition holds while NPA co-NPA.

THEOREM 4.2. Let 0 < a < 1 and t be a polynomial such that t(n) >_ to(n). There
.SNP,Aexists a set A such that NPA co-NPA and KTA[an, t(n)] is T -complete for

NPA

Proof. Let t’(n) t(n2). Let LA {On "(3x, Ixl 2t’(n)) 0x e A}. Then, it is
<P’A-complete for NPA such that for allclear that LA NPA Also let QA be a set _m

x the question of whether x QA depends only on A<lxl. (For instance, let QA be
the generic complete set consisting of all (x, i, 0J} such that the ith nondeterministic
oracle machine Ni accepts x in j moves, with oracle A.)

We are going to define a function fA (x, y) that is computable in polynomial time
relative to A such that the following requirements are satisfied for all x {0, 1}* and
all integers k 0:

Ro,x x QA == (3Y, lyl Ixl) fA(x, y) KTA[an, t(n)]

RI,i (2n =-ni)IN/A(0n) accepts == On e LA].

Requirements R0, imply that QA e NP(AegTA[an, t(n)]) and so gTA[an, t(n)]
is YP’A-complete for NPA. Requirements R,i imply that NPA cNPA.

We first define a sequence of integers: t0 1, ti+ 22. We partition the set
{0, 1}* into two groups" G0 {x logli x </i for some k 1} and G1 {x"
i ]xI < 2t for some k 1}. We define the function fA as follows:

  (Ixl lxu0 ’

We also let S(x,y) {lxyOt’(Ixl)OlJ 1 <_ j <_ Ixl} if x Go, and S(x,y)
{lxyOt’(ll)Olj 1 _< j _< Ixl 2} if x E G.
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At Stage i, we find the least j such that/j > ei-1, and (a) (1-a)n > 4 log(qi(n))+
4 log(t’(n)) + 6 + CT3, and (b) an2 > 2n + 4 log n + 4 + 2CT1, for all n >_ lj. (Recall
that machine T1 was defined in Definition 2.6, and machine T3 was defined in 3.) Let

Bn =/j and B A-I, A_I.
(1) For all x, e_ _< Ixl < n, do the following in increasing order: Determine

whether x E QB. If x QB, then define

(Thus, for all y, lyl Ixl, f(x, y) 011 if x e Go and fA(X, y) 01xl if x e G. So,
for all y, [y[ Ixl, fA(x,y) e gTS[an, t(n)].) If x

_
Qs, then choose a string w of

length Ix[ if x e Go, or of length Ix[ 2 if x E G1, that is 1-random relative to B. Define

B B U {xy0"(,,)0 e S(x, Y)" lYl Ixl, the jth bit of w is 1},
B’ B’ U {lxyOt’(Ixl)Olj e S(x,y)’[y[ [x[, the jth bit of w is 0}.

(Thus, for all y, lYl I1, (, Y)= w.)
When all these are done, let Bo B and B B.
(2) We simulate N on 0n with queries "w ?A" answered as follows:

(2.a) If w B then answer YES; if w B then answer NO.
(2.5) If w B U B’ and w S(x, y) for any x, y, Ixl lYl, then answer NO

(but do not add w to
(2.c) If w B U B’ and w e S(x, y) for some x, y, Ixl lYl, then consider

both answers in the simulation.
We obtain from the above simulation a computation tree C of Ni(On).

(3) If one of the computation paths in C accepts, we fix this path r and do the
following:

(3.1) Add all strings queried and answered YES in the path r to B, and
add all strings queried and answered NO in the path r to B (including those
answered NO in case (2.b)).

(3.2) Choose the least xo, Ix01 2t’(n), such that 0x0 B’ and add 0xo to
set B.

(3.3) For each pair (x, y), Ixl lYl -> n, such that some w e S(x, y) has been
queried in the path r (note then x G), do the following: First, for all strings
w S(x, y) that were not queried in the path r, add w to B. Then, choose a
string z of length n such that (1) z is 1-random relative to Bo, (2) no string in
lxz{0, 1}* has been queried in the path r, and (3) z is different from all other
z defined in this step from other pairs of (x, y). (Note that there are at most
q(n) pairs of (x, y) for which S(x, y) contains some string queried in path r. So,
from our choice of n, such strings z must exist.) Define

B B U {lxz01J lxyOt’(ll)OlJ B},
B’ B’ U {lxz01J lxyOt’(ll)01J B’}.

(Thus, A(Ixl, xz) Z(x, y).)
(4) If none of the computation paths of C accepts, then do nothing.
(5) For each x, n < Ixl _< 2n, do the following in increasing order: Let Y {y:
Ixl and S(x, y) N (B U B’) }. Determine whether x e QB. If x e QB, then let

( U
yEY
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(Thus, for all y e Yx, fA(X, y) 0Il and so fA(x, y) e KTS[an, t(n)].) If x

_
Qs,

then choose a string w of length Ixl 2 that is 1-random relative to B and define

B B {lxy0t’(tl)01 e S(x,y) y Y, the jth bit of w is 1},

B’ B’ {lxy0t’(ll)01j S(x, y) "y Yx, the jth bit of w is 0}.
(Thus, for all y Y, fA (x, y) w.)

(6) LetAi=B,A=B andei=2n
End of Stage i.
Let A i=oAi. In the following, consider Stage i.
CLAIM 1. If ei-1 <_ Ixl < n, then x QA 4== (VY, lYl Ixl) fA(x,y)

gTA[an, t(n)].
Proof. First we observe that in Stage i, after we determine whether x QB

relative to the set B at that time, we never add any string shorter than Ixl to A. So
the simulation of x Qs is always correct.

Next, we observe that if x QA, then we defined fA(x, y) 0 1 or 01xl and
hence fA(x,y) e gTA[an, t(n)] for all y, lYl Ixl, since 0 can be printed from
a program of size O(logk) in t(k) moves (see the assumption in Definition 2.6). If
x QA, then we defined fA(X, y) w for all y, lYl Ixl, where w is of length Ixl or

Ixl 2, depending on whether x Go or x G, and is 1-random relative to B. We
note that Iwl < n (if x e Go, then Iwl Ixl < n; if x e G1, then Ixl < logn and so

Iwl Ixl 2 < n). Since B0 B contains no string of length less than or equal to t’
gTSo(w,t’(Ixl)) >_ Iwl- 1.

Now consider the strings in Ai- Bo. The only strings of length less than or equal
to t’(Ixl) are those added to A in step (3.3), of the form u lx’z01i, Ix’l >_ n, ]z] n,
1 _< j _< Ixl 2, z being 1-random relative to Bo. We show that for any program a of
length less than or equal to alw[, UA(a) cannot query about such a string in
moves. Suppose otherwise that VA(a), lal <_ alwl, first queries about such a string
u lx’z01J at the mth move, m <_ t’(Ixl). Then, in the first m- 1 moves, VA(a)
and USo(a) behave the same because (A- Bo)<t’(lxl) contains only strings of this
form. Now let i Ix’l +1, i2 i +n- 1. Then, T3B((il,i2,m,a)) prints z,
where T3 is the machine defined in 3, before Theorem 3.2. Therefore, KBo(z)
21ill + 21i21+ 21ml + lal +6+CT <_ 41og(q(n)) + 21og(t’(n)) +an +6+CT <_ n-- 1.
This is a contradiction.

The above shows that all strings added in A B0 cannot affect the computation
of UBo(a), lal <_ alwl, in t’(Ixl) moves. So UA(a) does not print w for all a of
length less than or equal to alw in t’(Ixl) moves. Since t’(Ixl) >_ t(Iwl) we conclude
that fA(x,y) w KTA[an, t(n)] for all y, lYl Ixl So the requirement Ro, is
satisfied.

CLAIM 2. Requirement Rl,i is satisfied in Stage i.

Proof. First, if the simulation of Ni(On) in Stage accepts, then all answers to
the queries made in an accepting path r have been made correct with respect to the
oracle A. So, in this case, NA(0’) accepts. Also, a string 0x0 of length 2’t(n) + 1 is
added to A and so 0n LA.

If the simulation of Ni(0") in Stage rejects, then only strings added to A later in
Stage are in S(x, y) for some x, y, Ixl lYl >- n. We observe that NA (On) must reject;
otherwise, there would be an accepting path in the computation tree C constructed
in step (2) and we would have made A consistent with this path and the simulation
would accept. In addition, it is clear that no string in 0{0, 1}2t’(’) is added to A later
and so 0n LA.
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CLAIM 3. /f n _< Ixl < 2=, then x E QA == (Vy, lyl- I: 1) f(x,y) e
gTA[an, t(n)].

Proof. Again, the simulation of whether x E QA, performed in Stage i, must be
correct because we do not add any string of length less than or equal to Ixl to A after
the simulation.

Assume that x E QA and let Bx and B be the sets B and B defined when
the query "x E?QA" was considered in Stage i. Then for each y, lYl Ixl, either
S(x, y)fq (Bx U B) q (i.e., y E Y) or S(x, y) C_ B U B. In the former case, we
made fA(x,y) 0112 and so it is in gTA[an, t(n)]. In the latter case, we note that
fA (x, y) A(Ixl 2, lxz) for some z of length n. So, fA (x, y) can be printed by machine
T1 of Definition 2.6 from a program of size less than or equal to 4 log Ixl + 2Ix + 3 in
tl(Ixl 2) moves. That is, it has KW-complexity

KTA(fa(x,y),t(Ixl)) <_ 21xl + 4log Ixl + 2 + CT <_ alxl.
Or, fA(X, y) e KTA[an, t(n)].

Next assume that x f/(A. Consider two cases. First, if the simulation of Ni(0’)
rejects, then for all y, S(x, y) fq (B U B’) q). Therefore, for all y, fA(X, y) w, a
1-random string relative to B at that time. Since no string of length less than or equal
to t(lwl) was added to A later in the stage, KTA(w, t(lwl) >_ n- 1 >_ an. So for all
Y, lYl Ixl, fA (x, y) . gTA[an, t(n)].

In the second case, if the simulation of Ni(On) accepts, then for at most qi(n)
many y, lYl Ix], S(x, y) f (B U B’) . So, by our choice of n, there must be at
least one y for which S(x, y) was untouched. Similar to the first case, for these y,
fA(x, y) was made to be 1-random relative to B, and hence 1-random relative to A.
The requirement R0,x is satisfied. [:]

Remark. Note that, in the above proof, if x q QA, then for at least half of
Y, lYl Ixl, fA(x,y)

_
gTA[an, t(n)], as long as we choose n big enough. This

implies that set KTA[an, t(n)] is actually <RP’A-complete in the sense that every
set B E co-NPA is actually in RP(A @ gTA[an, t(n)]). If we exchange the roles of QA

RP,Aand QA, then the proof remains valid, and so KTA[an, t(n)] is -----T -complete for
NPA. Note however that this result is meaningful only if we know that NPA RA.
Indeed, our proof can be modified so that NPA RA and KTA[an, t(n)] is <RP,A

--T
complete for NPA, but the proof involves extra work. We omit it here.

Next we consider the completeness of the problem MINLTA. Let

MINLTA {((ff,,0s,0t) e MINLTA" t > 0(1(, z-31)}.

THEOREM 4.3. There exists a set A such that MINLTA f[ co’NpA and MINLTA
is not --’TP’A’cmplete for NPA.

Proof. The proof is similar to that of Theorem 4.1. It consists of two sets of
diagonalization requirements. The first is for the condition MINLTA f[ co’NpA. It
is proved by a simple diagonalization, as in Theorem 3.3. We omit it here. The

.P,A complete for NPA We sketch in thesecond is for the condition MINKTA not --T
following the modification of the proof in Theorem 4.1 for the problem MINLTA. Our
requirements are

R,i (2n ni)[0n e LA = On

_
L(Mi,A 3 MINLTA )],

where LA {0n "(2x, e A}.
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At Stage 2i + 1, we satisfy requirement R,. Let e2, A2, and A be defined
as in Theorem 4.1. Select a sufficiently large integer n. Let B A2 and B A.
Simulate M(0n), with the queries answered as follows:

(1) For the query "w ?A" of the first type, answer YES if w B, and answer
NO if w B. Add w to B if w was not in B t2 B and w is answered NO.

(2) For the query "((7, , 0, 0 e?MINLTA of the second type (assuming that
t _> ro(l(7, 1)), we simulate YA on all programs a, lal _< s, on all y and all z
each for t moves. In the simulation, for each query "w ?A", we answer YES if w B
and answer NO if w B or Iwl n. Otherwise, we consider both answers. Thus, for
each a, we get trees Ca,u, for each u 7t2 2’. Each tree Ca,u is of depth less than or
equal to t. Let xCa,u denote the computation path in the tree C,u that is defined by
oracle X.

(2.1) If there exists a program a and an oracle D such that B C_ D, B
{0, 1} C , and cD, accepts for all y e , and Dn C,z rejects for all z , then
fix this program a and the set D. For each query w made in the paths Ca,D,
u72’,addwtoBifwDandaddwtoBifwD. We answer YES to
the query "((7, , 0s, Otl e?MINLTA. (Note that there are at most q(n) many
trees Ca,u and each has depth <_ t <_ q(n). So, we add at most (q(n))2 many w
to B tAB for each query of the second type.)

(2.2) If the condition specified in (2.1) fails, then answer NO to the query
"/(7, , 0, 0 e?MINLTA .’’
If the above simulation of Mi(On) accepts, then let A2i+ B. Otherwise, choose

x0 of length n such that x0 B t2 B and x0 is 1-random relative to B. Let A2i+
B t2 {x0}. (Note that for each query of the second type, we add at most (qi(n)) 2

strings to B t2 B. Since the total number of queries (of the first type or of the second
type) is at most qi(n), we know that B B’- A2i contains at most (qi(n))3 strings.
So, such an x0 exists as long as n > 3 log(qi(n)).)

End of Stage 2i + 1.
The proofs of the following three claims are very similar to those of Theorem 4.1

and are omitted here.
CLAIM 1. /f the above simulation of Mi(On) accepts, then Mi(On) accepts with

respect to the oracle A MINLTA
CLAIM 2. Assume that the simulation of Mi(On) of Stage 2i + 1 rejects and that

x ((, , 0s, 0t} was queried to the oracle MINLT; in the simulation and answe: ed
NO. Then, s < n/2.

CLAIM 3. Assume the same as in Claim 2. Then, for any a, la[

_
s, and any

Ca,u does not query about xo.
From Claim 3, we see that adding x0 to A does not change the NO answers to

the second type queries. So the simulation of Mi(On) is correct with respect to the
oracle A MINLTA. This completes the proof.

THEOREM 4.4. Let 0 < a < 1 and let t(n) be a polynomial such that t(n) >_ ro(n)
for all.n. There exists an oracle A such that NPA co-NPA and the set LTA[an, t(n)]
i8 --T’SNP’A-complate for NPA.

Proof. Again, the proof is similar to Theorem 4.2. We only give a sketch. First
recall that an is the m-bit binary representation of integer j, and that machine

T4A((m, al) simulates YA(a,a?) for j 1,...,m, and prints the outcomes in in-
creasing order. We assume that if YA(a,a) halts in time r(m) for all j 1,..., m,
then T4A((m,a)) halts in time t4(r(m)). Let t’(n) po(t4(t(n2))).

Let QA be an NpA-complete set as defined in Theorem 4.2. For each pair (x y),
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Ixl lYl, let fA (x, y) and S(x, y) be defined as in Theorem 4.2 (with respect to the new
t’(n)). Also define g {a?" the jth bit of fA(x,y) is 1} and g= {rn" the jth bit of
fA(x,y) is 0}, where m Ixl if x e Go and m Ixl 2 if x e G1. Let gA(x,Y) Ig, gl.
Our requirements are, for almost all x e {0, 1}* (such that (1 a)lx > 2 log Ixl + co
for some constant co) and all integers i,

Ro,x x

_
QA (SY, lYl Ixl) gA(x,y) LTA[an, t(n)],
RI," same as RI, in Theorem 4.2.

Assume the same setting for Stage as in Theorem 4.2. We choose a sufficiently
large lj > ei-1 and let n =/j. We do the same as in Stage of Theorem 4.2, with the
following modification:

(3.3) For each pair (x, y) such that w E S(x, y) has been queried in the path
do the following: First, for all strings w S(x, y) that were not queried in the path
r, add w to B. Then, choose a string z of length 4n such that (1) z is 1-random
relative to B0 and (2) no string in z{0, 1}* has been queried in the path . Define

B B U {zxya12 lxyOt’(lxl)OlJ B},

B’ B’ U {zxya lxyOt’(lxl)OlJ B}.
It is obvious that requirement R, is satisfied in Stage i.
CLAIM 1. If el-1 IXl < n then x e QA == (Vy, lYl Ixl) gA(x,y)

LTA[an, t(n)].
Proof. It is clear that the simulation of whether x QA is always correct.
If x e QA, then for all y, lYl Ixl, fA (x, y) 011 or 011, and so gA(x, y) (A,

where g= {ax 1 <_ j < Ixl} ifx e Go, or g= {a12 1 _< j _< Ixl 2} ifx e G.
It is clear that gA(x, y) e-LTA[an, t(n)], because gA(x, y) is recognized by an "always
rejecting" program of a constant size in ro(n) <_ t(n) moves.

If x QA, we claim that KTA(w, t’(Ixl) >_ Iwl 1.
Casel. Ixl <logn. Then for ally, lYl Ixl, iffA(x,Y) =w, then ]w Ixl 2

log2 n. When n is chosen large, no string added in B0 B or in step (3.3) is less than
or equal to t’(Ixl) and so gTA(w,t’(Ixl)) >_ Iwl 1.

Case 2. Ixl >_ logn. Thenx E Go and so for ally, ]Yl Ixl, fA(x,y) w has
length equal to Ixl < n, and gTBo(w,t’(Ixl)) >_ ]w 1, because B0 B contains
no string of length less than or equal to t’(Ix]). Only strings in A- B0 that are
of length less than or equal to t’(Ixl) are of the form zx’y’a?’, where z has length
4n and is 1-random relative to B0. We observe that for any a, lal _< Iwl, and any
u, lul <_ Iwl, ySo(a, u) cannot query about such a string zx’y’a?’ in t’(Ixl) moves,
because I(a,u)l <_ 3n + 2, but z is of length 4n and is 1-random relative to B0.
Therefore, gTA(w,t’(Ixl)) >_ Iw[- 1.

Now suppose, by way of contradiction, that gA(x, y) (g, g) enTA[an, t(n)] and
so YA(a, u) accepts for all u e g and YA(a, v) rejects for all v g for some a of
length less than or equal to alw I. Note that each string in gUg has length equal to
and so YA(a,u) halts in t(Iwl) moves for all u e gg. Then, T4A((Iwl,a}) simulates

VA(a, aj ), j 1,..., Iwl, to print w in time t4(t(Iwl) <_ t4(t(Ixl2)). We get

KT (w, t4(t(Ixl2))) _< 2 log Iwl + 2 + lal < Iwl- co + 2,

because we only consider strings x such that (1-a)lx > 2 log Ixl+co. Let co CT4 +3,
we have KTA(w, t’(Ixl) < Iwl- 1. This contradicts our claim above.
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CLAIM 2. If n
_

Ixl < 2n, then x QA === (Vy, Iyl--Ix[) gA(x,y)
LTA[an, t(n)].

Proof. The proof is essentially the same as for Claim 1. We only point out that
if x e QA and S(x, y) c_ Bz U B, then in step (3.3) we have found some z, Izl 4n,
such that zxyax E B if and only if the jth bit of fA(X, y) is 1. So, the machine

RA, with program zxy, is consistent with gA(x, y) {7, 0’}" RA(0, zxy, uj’-Ixl2) accepts

if and only if the jth bit of fA (x, y) is 1 if and only if aj E 7. Thus,

LTA(gA(x, Y), t(Ixl)) _< 611 + dR1

_
lxl2/2,

if n is chosen sufficiently large (note t(Ixl) >_ ro(lxl)).
5. P-immunity. In this section we investigate the property of P-immunity of

the set gT[an, t(n)] and its complement gT[an, t(n)], 0 < a < 1. The set gT[an, t(n)]
contains all "easy" strings and so is immediately not P-immune. For instance, the set
KT[logn, n3] is in P and so is a witness that gT[an, n3] is not P-immune. On the
other hand, it is difficult to construct an infinite subset in P of KT[an, t(n)], because
it must consist of only hard strings and any constructive definition of a set in P is
likely to produce some easy strings. For instance, if t(n) nlg n, then gT[an, t(n)]
is C-immune for C {A A is P-printable}.

PROPOSITION 5.1. Let 0 < a < 1 and t(n) nlg n. Then KT[an, t(n)] does not
have an infinite subset that is P-printable.

Sketch of Proof. Assume, by way of contradiction, that A is an infinite, P-
printable subset of KT[an, t(n)]. Assume that T6 is a polynomial-time TM that prints
the set AN{0, 1}n from input On. Choose a sufficiently large n such that AN{0, 1}n
Let x be the first string in the list printed by T6(0). Then, we can design another
Turing machine T7 that simulates T6(0n) and prints the first string of the output of
T6(0’). It is clear that the size of T7 is only a constant plus log n and hence x has low
KT-complexity. This is a contradiction.

In the following, we show that, in the relativized form, Proposition 5.1 cannot be
generalized too much. In other words, we show that the set KTA[an, t(n)] could be
both pA-immune or non-pA-immune, depending on oracle sets A.

THEOREM 5.2. Let 0 < a < 1 and t be a polynomial such that t(n) >_ to(n).
There exists an oracle A such that KTA[an, t(n)] is NpA-immune.

Proof. Let {Ni } be an enumeration of all polynomial-time nondeterministic oracle
TMs. Assume that the runtime of Ni is bounded by a polynomial qi. We need to
construct a set A such that for each i,

Ri L(Ni, A) C_ KTA[an, t(n)] implies that L(Ni,A) is finite.

We construct set A in stages. In each Stage n, we try to satisfy the least un-
satisfied requirement Ri by finding a witness x of length n such that x L(Ni, A)N
KTA[an, t(n)]. Let no be the least integer such that 2an2 > n2 + nlg n+l + CTI, for
all n _> no, where T1 is the machine defined in Definition 2.6. We begin with Stage
no. Prior to Stage no, let Ano- Ano_l and D q} and E N.

Stage n. (1) Let j min(E). If q(n) <_ nn, then we let D D U {j} and
E= E-{j}.

(2) Determine whether there exists an integer D having the property that
(3x, Ixl- n) [N/S(x) accepts for some B such that An- C_ B and An_ C_ ]. If
yes, let be the minimum integer having this property and fix x and an accepting
computation path r ofN(x) and do the following.
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(2.1) Add all queries "z E?B" in path r that are answered YES to An-1
and add all queries "z E?B" in path r that are answered NO to

(2.2) Search for a string y of length an such that y{0,
0. For each j, 1 <_ j <_ n, add y01J to A,,-1 if the jth bit of x is 1, or add it to
A_I otherwise. (Note that in stage k we add at most k / klg k many strings
to A. So A,,-1 U A_ has size at most n2 + nlg "+1 < 2a/2. Therefore, such a
string y must exist.)

(2.3) Let D- D- {i}.
(3) If the search for in step (2) fails, then do nothing.
(4) Let An A,-I and An A_1.’
End of Stage i.
We let A nC%noAn and claim that A satisfies all requirements R.
First, assume that is cancelled from D in some Stage n. Then we must have

found, in Stage n, an x of length n such that (1) NA(x) accepts and (2) A(n,y) x
for some y of length an/2 and hence KTA(x, t(n)) <_ an/2 + CT <_ an. So this x is a
witness for requirement R.

Next, assume that is never cancelled. We are going to show that L(N,A) is
finite. To see this, we first note that every is eventually added to set D, because
the runtime q(n) is eventually dominated by the function ng ’. So, we may assume
that by some Stage n, D, and all smaller indexes j, which are eventually to be
cancelled, are already cancelled before Stage n. Let nl be the least integer such that
the above holds. For each n _> nl, we observe that is always considered but not
cancelled in Stage n. Therefore, N___(x) rejects for all x of length n and for all sets B
such that An-1 C_ B and A_ C_ B. In particular, x L(N,A) for all x of length
n >_ nl. This implies that L(N, A) is a finite set.

Remark. The above theorem actually holds for all sets KTA[nr, t(n)], r > 0.
THEOREM 5.3. Let 0 < a < 1 and t be a polynomial such that t(n) >_ to(n). There

exists an oracle A such that KTA[an, t(n)] is not in pA and is not pA-immune.

Proof. Define LA {x "A([Xl + 2, X) lxl}. Then it is obvious that LA e pA.
We are going to construct a set A such that KTA[an, t(n)] is not in pA and it contains

LA as an infinite subset. Let e-1 0 and A-1
At Stage 2i, we consider the ith polynomial-time oracle machine Mi and make

gTA[an, t(n)] L(Mi, A). Select an integer n n2i > e2i-1 that is sufficiently
large. Find a string x of length n that is 1-random relative to A2i-1. Simulate

//A2i- (X the accepts A2i Otherwise,). If simulation then do nothing and let A2i -1.

if the simulation rejects, then find a string y of length an so that no string in

y{0, 1}* has been queried in the computation of M/A-I (x). Let m n- [y[. Let
A2i A2i-1 [.J {yOmO1j 1 <_ j <_ n, the jth bit of x is 1} so that A(n, yOm) x.
Finally, let e2i max{qi(n), t(n), 2n + 2} + 2.

At Stage 2i + 1, we try to add one more string to LA so that LA has size greater
than or equal to i. Choose n n2i+l > e2i such that (1 a)n > 3 log n + CT3 + 9.
(Recall the machine T3 defined in 3.) We find a string x of length n that is 1-random
relative to A2i. Define

A2i+l A2i{x01J j 1 or j n+2 or [2 <_ j <_ n+l and the (j-1)th bit of x is 1]}
so that A2i+ (n + 2, x) lxl. Let e2i+l t(n) + 1.

We let A =oA,. It is easy to verify that KTA[an t(n)] pA and LA is
infinite. We claim that LA C_ KTA[an, t(n)] and complete the proof. To see this, we
need to show that if z e LA, then KTA(z, t([z[)) >_ alz [. Assume that z e LA. Then,
A(IZ[ / 2, Z) lzl and so XA(zO1) 1. We consider two cases.
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First, if z01 is added to A in Stage 2i for some integer i, then z is of length n2i.
Note that in this case, we have made e2i

_
2rt2i + 4, and so z01n-i+2 A. That is,

A(n2i + 2, z) ends with a zero. Thus, z cannot be in LA.
Second, if z01 is added to A in Stage 2i / 1 for some integer i, then it must

be true that z is 1-random relative to A2 and Izl n2+1. Let n n2+1. Using
our standard argument in 3 and 4, we see that for no program a of length an, .can
UA.i(a) query about any string of the form z01J, 1 <_ j <_ n + 2, in t(n) moves.
So, gTA2+l(z,t(n)) gTA2(z,t(n)) > an. Next we observe that we have set
e2+ > t(n) so that all strings added to A later are of length longer than t(n). This
implies that gTA(z,t(n)) gTA+(z,t(n)) > an and so z e gTA[an, t(n)].

The above results also hold for the set LTA[an, t(n)]. The proofs are almost
identical.

THEOIEM 5.4. Let 0 < a < i and t be a polynomial such that t(n) >_ ro(n).
There exists an oracle A such that LTA[an, t(n)] is NpA-immune.

Proof. The proof is almost identical to Theorem 5.2. We leave it as an ex-
ercise. D

THEOREM 5.5. Let 0 < a < 1 and t be a polynomial such that t(n) >_ ro(n).
There exists an oracle A such that LTA[an, t(n)] is not in pA and is not pA-immune.

Proof. The oracle is similar to the oracle of Theorem 5.3. Recall that in Theorem
A A n4.3 we defined a machine T4 ((n, a)) that simulates Y (a, a ), j 1,..., n, and prints

the outcomes in increasing order. We assumed that if VA(a, a’) halts in t(n) moves

for all j 1,... ,n, then T4A((n,a}) halts in t4(t(n)) moves and so UA((4, (n,a)))
halts in t’(n) moves. For every string w, let x (,, where

y= {ajlwl 1 _< j _< Iwl, the jth bit of w is 1},

the jth bit of w is 0}.

We construct set A to satisfy the following two conditions: (1) LTA[an, t(n)]
L(Mi, A) for all/_> 0, and (2) LTA[an, t(n)] is not pA-immune. For condition (1), our
action in Stage 2i is almost identical to that of Theorem 5.3, except that our simulation
of M/A- is on input x for some 1-random string w (relative to A2i-), and that e2i
is chosen to be greater than t(n2i). This is sufficient because the KTA-complexity of
w is close to the LTA-complexity of xw.

For condition (2), we do the same as in Stage 2i / 1 of Theorem 5.3 with respect to
size bound (1 + a)n/2 so that LA C_ KTA[(1 + a)n/2, t(n)], and let e2+ > t’(n2+).
Then, let nt {x’w e LA} and claim that LA C_ nTA[an, t(n)]. Let x e n
and so w E LA. Assume that Iwl n2i+l and w01 was added to A at Stage 2i / 1.
Then, our choice of e2i+ > t’(n2i+) implies that KTA(w,t’(n2i+)) >_ (1 + a)n/2.
Suppose otherwise that x e LTA[an, t(n)]. Then, the machine T4 could print w in
time t4(t(n)), using a program a of length less than or equal to an, relative to A.
This would imply that KTA(w, t’(n)) <_ an + 2 log n + ca + 2 < (1 + a)n/2. This is a
contradiction if n was chosen large enough.

6. Open questions. A number of interesting questions about KT-complexity
and LT-complexity remain open. We list a few of them here.

(1) Theorems 4.2 and 4.4 suggest that problems MINKT and MINLT may actu-
ally be provably complete for NP under some weak reducibility. It would be very in-
teresting to either prove such an unrelativized result or to demonstrate that MINKTA

P,A A
IS --T -complete for NP for some oracle A. Vazirani and Vazirani [26] have shown
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that a similar minimum Turing machine problem is indeed complete for NP under
the _<P-reducibility.

(2) Can the results like Theorems 3.1, 3.3, 4.1, 4.3 be improved to hold relative
to random oracles?

(3) Can we prove that problem MINKTA does not have polynomial-size circuits
relative to some oracle A? It is known that there exists an oracle A such that no NPA-

complete set has polynomial-size circuits [27]. However, the proof is a nonconstructive
one and seems hard to apply to MINKTA because we do not know that MINKTA is
complete for NPA.

(4) What can we say about the space-bounded program-size complexity (or the
KS-complexity)? Our preliminary study shows that the minimum-size KS-complexity
problem has different structures from the problem MINKT. In particular, the principle
(1) mentioned in 1 does not apply to strings with high KS-complexity.

Acknowledgments. The author thanks Paul Vitanyi for pointing out that Kol-
mogorov has considered the time-bounded version of program-size complexity in his
original 1965 paper.
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MINIMUM DIAMETER SPANNING TREES AND RELATED
PROBLEMS*

JAN-MING HOt, D. T. LEEr, CHIA-HSIANG CHANG$, AND C. K. WONG

Abstract. The problem of finding a minimum diameter spanning tree (MDST) of a set of
n points in the Euclidean space is considered. The diameter of a spanning tree is the maximum
distance between any two points in the tree. A characterization of an MDST is given and a O(n3)
time algorithm for solving the problem is presented. The authors also show that for a weighted
undirected graph, the problem of determining if a spanning tree with total weight and diameter
upper bounded, respectively, by two given parameters C and D exists is NP-complete. The geometric
Steiner minimum diameter spanning tree problem, in which new points are allowed to be part of the
spanning tree, is shown to be solvable in O(n) time.

Key words, minimum diameter spanning tree, NP-complete problems, computational geometry,
minimum enclosing circle, geometric Steiner trees

AMS(MOS) subject classifications. 68Q25, 68A20, 68R10

1. Introduction. The diameter of a weighted undirected graph G (V, E) is
defined as the longest of the shortest paths among all the pairs of vertices V, where
V is the set of vertices and E is the set of edges. The radius of G with respect to a
specific vertex v E V is defined as the longest of the minimum paths emanating from
v. A spanning tree of a graph G (V, E) is a connected graph T (V, ET) without
cycles.

Spanning tree related problems in a graph have been well studied [1], [13], [3]. So
have the diameter problems in which the diameter is measured in terms of the number
of edges, instead of the total weight [2]. What motivates this investigation is that we
want to find a communication network among n nodes, where the communication
delay is measured in terms of the total weight of a shortest path between them. A
desirable communication network naturally is one that has a minimum diameter. We
restrict the study of communication networks to the class of spanning trees. The
minimum diameter spanning tree (MDST) problem is formally defined as follows.

PROBLEM I (MDST problem). Given a graph G (V, E) and a cost function
W(e) Z+ for all e E, find a spanning tree T for G such that

max W(e)
simple path pET

is minimized.
Let :DT denote the length of the diameter D(T) of T. A tree T with minimum

)T is denoted T*, and the length I)T. is denoted D* for short. Since we may have
many spanning trees with the same minimum D*, we would like, in this case, to
find one with the minimum cost, i.e., the total weight of the edges in the tree T* is
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minimum. We refer to this problem as the minimum diameter minimum cost spanning
tree (MDMCST) problem.

PROBLEM 2 (MDMCST problem). Given a graph G (V, E) and a cost func-
tion W(e) E Z+ for all e E, find a spanning tree T for G such that :DT
maXsimple path pET eEp_ W(e) is minimized and such that among all T’s with the
same TT. minT :DT, eeT* W(e) is minimized.

A similar problem known as the bounded diameter spanning tree problem, was
shown to be NP-hard by Garey and Johnson [6]. In this problem, the measure of the
diameter is in terms of the maximum number of edges in any path of the spanning
tree. In a centralized communication network in which there is a designated source
node, we may then define the minimum radius spanning tree (MRST) problem in
a similar manner, except that we minimize the radius instead of diameter. That
is, the maximum communication delay from the source node is to be minimized.
The minimum radius minimum cost spanning tree (MRMCST) problem is similarly
defined.

A variation of the MDST problem is that of the Steiner MDST, in which we
connect a subset of nodes allowing additional nodes in the network. Specifically, we
consider the following problem.

PROBLEM 3 (Steiner MDST problem). Given a graph G (V, E), a subset S of
V, and a cost function W(e) Z+ for all e E, find a Steiner tree T (VT, ET),
where S C_ VT, of G such that maXsimplepathpT Eep W(e) is minimized.

In this paper we shall study the problem of finding a minimum diameter spanning
tree (MDST) of a special graph, called Euclidean graph, induced by a set of n points
in the Euclidean space, referred to as a geometric MDST problem. In other words, we
are given a set S of n points in the Euclidean space, and are interested in finding a
spanning tree connecting these points so that the length of its diameter is minimum.
Also studied in the paper is the geometric Steiner MDST problem in which Steiner
points, i.e., points not in S, are allowed so as to minimize the diameter of a spanning
tree of S.

This paper is organized as follows. In 2 we give a characterization of a geometric
minimum diameter spanning tree of n points and present a 0(n3) algorithm for the
geometric MDST problem. In 3 we show that the MDMCST and MRMCST problems
are NP-hard by proving the corresponding decision versions of the problems NP-
complete. In 4 we show that one Steiner point is sufficient for an optimal geometric
Steiner MDST and outline a linear time algorithm for the problem. In 5, some open
problems are given.

2. Geometric minimum diameter spanning tree. In this section, we first
provide a proof for the existence of a geometric minimum diameter spanning tree
(GMDST) of a set S of n points with a very simple topology, i.e., either monopolar
or dipolar. A spanning tree of an n-point set S, n _> 3, is said to be monopolar
if there exists a point called the monopole such that all the remaining points are
connected to it; and it is said to be dipolar if there exist two points called the dipole
such that all the remaining points are directly connected to one of the two points in
the dipole. The idea is to start with any optimal GMDST, and then to transform
it into either a monopolar or a dipolar spanning tree without increasing the length
of its diameter. In the following, we denote a path P that connects a sequence of
points Ao, A1,...,Ak as P (Ao, AI,...,Ak). Given a weighted undirected graph
G (V, E), we use distv(p, q) to denote the sum of the weights of the edges on a
shortest path connecting vertices p and q, where p, q V. The following definition
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will be used in proving the main theorem.
DEFINITION 1. An edge (As-l, As) is a center edge of a path P (A0, A1,..., Ak)

of points if max{distp(A0, As-), distp(As, Ak) } is minimized.
It is not difficult to show the following.
LEMMA 1. Let (As-,As) be a center edge of a path P (Ao, A,...,Ak) of

points. Then
(1) distp(Ao, As_) <_ distp(As_,Ak) and
(2) distp(As, Ak)

_
distp(Ao, As).

LEMMA 2. There exists a GMDST of a set S ofn points which is either monopolar
(n >_ 3) or dipolar (n >_ 4).

Proof. Consider an arbitrary GMDST T of S. If there exists a diameter of T,
which has only two edges, i.e., D(T) (A0, A,A2), then a monopolar spanning tree
T can be constructed by connecting every point in T directly to A1. Let IP, Q[ denote
the Euclidean distance between points P and Q. For any pair of points P and Q on
T, we have

distT,(P, Q) IP, A + IA, QI
<_ distT(P,A) + distT(A, Q)
<_ IAo, A[ + IA, AI

The first inequality follows from the triangle inequality and the second from the
definition of diameter. Note that equality holds when {P, Q} {A0, A2}. Therefore
)T’ )T.

Assume that every diameter of T contains more than two edges. Let D(T) (Ao,
A,..., Ak), k _> 3 be an arbitrary diameter of T, and the center edge of D(T) be
denoted as (As_l,As), 1 _< _< k. By deleting the edge (As-,As) from T, we obtain
two subtrees Ts- and Ti with Ti_ containing Ai_ and Ti containing Ai. A dipolar
spanning tree T" can be constructed by connecting all the vertices in Ts- directly to
As- and vertices in Ts directly to As. Consider the distance between any two points P
and Q on T. If P and Q belong to different subtrees, then their distance is obviously
less than :Dr. Otherwise, without loss of generality, assume both points are contained
in the subtree Ts. Note that (As-,As) is the center edge of (A0, A,... ,Ak). From
Lemma 1 we have distT (As, Ak)

_
distT (A0, A). We have

distT,, (P, Q) IP, Asl + IAi, QI
_< distT (P, A + distT (As, Q)
<_ distT(A, Ak) + distT(As, Ak)
_< distT (Ao, A + distT (As, Ak

That is, distT,, (P, Q) is always no greater than )T, and since T is a GMDST, :D-,
:D-. This completes the proof. D

Based on Lemma 2 we can design Algorithm find_min_of_MPST and Algorithm
find_min_of__DPST that enumerate all the monopolar and dipolar spanning trees, de-
noted MPST and DPST, respectively, and find the optimal one.

Detailed discussions of the two algorithms are presented in the following subsec-
tions.
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2.1. Algorithm find_min_of_MPST. For each point p E S, we construct a
monopolar spanning tree by connecting each point in the set S- {p} to p. The
diameter for the MPST centered at p is the sum of the distance between p and its
farthest neighbor and the distance between p and its second farthest neighbor. The
Algorithm find_min_oLMPST(S) returns the MPST, centered at a point p*, whose
diameter is the minimum. This can be done in O(n log n) time using the farthest
neighbor Voronoi diagram (FNVOD)[9], [14].

In the algorithm, we first construct the second-order FNVOD of S [10], [14], in
which each farther neighbor Voronoi region is characterized by a pair of points such
that any point in the region is farther from these two points than from any other
points in S. For each point p E S, the region containing p can be obtained from any
point-location algorithm given in [5], [8], [12], and the sum of the distances from p to
the two points associated with the region, denoted d(p), is calculated. The point p*
minimizing d(p) is then the monopole of the MPST.

The second-order FNVOD algorithm is similar to the kth-order nearest neighbor
Voronoi diagram algorithm [10], [14], and can be computed in O(nlogn) time as
follows.

1. Compute the two outermost convex layers of the set S of n points in O(n log n)
time, where the outermost convex layer is exactly the convex hull CH1 of S
and the second outermost convex layer is the convex hull CH2 of the set of
points in S with points in CH1 removed.

2. Calculate the clockwise supporting line from each point on CH1 to CH2 in
O(n) time. Similarly calculate the counterclockwise supporting line from each
point on CH1 to CH2. Using the supporting line information thus calculated,
the convex hull of S can be updated in O(1) time when a point on the convex
hull CH1 is deleted.

3. The FNVOD of the set S is constructed from the convex hull of S in O(n log n)
time [9], [14].

4. To obtain the second-order FNVOD, the region associated with point p on
CH1 is further subdivided by considering its neighbors on the FNVOD and
the points on CH2 that become vertices of the new convex hull when p is
deleted from the set S (cf. [10]). The set of new points, if any, can be obtained
from the information calculated in step 2. Using an algorithm similar to that
proposed by Gowda, Kirkpatrick, Lee, and Naamad [7], we can construct
the second-order FNVOD in O(n log n) time, as shown by Lemma 3 in the
following.

Let S be a set of n points; Pl,’",Phl be points on CH1; and q,’",qh2 on CH2,
both sequences specified in counterclockwise direction. Note that when a point p
CH1 is deleted from CH1 a subchain PC of points c c of CH2, which may
be empty, appears as new points on CH1. The chain is called the patch-up chain
associated with a point p CH1. Denote the number of regions in the FNVOD
adjacent to the region associated with a point p on the convex hull as s. Then we
have the following lemma.

LEMMA 3.

(1)

hl

i--1
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(2)

hl

E ki O(n).
i=l

Proof. The first equality follows from the fact that there are O(n) edges in the
FNVOD. The second equality follows from the assertion that a point qj E CH2 may ap-
pear on at most two patch-up chains. This can be shown as follows. Let Pi-1, P, P+I
be three consecutive points on CH1, where the arithmetics are taken modulo hl. Let
Ai denote the triangle Ap-lppi+I. If qj appears on the patch-up chain PC, then qj
must be interior to A. By convexity, the two triangles A and Ak intersect at their
interior if and only if and k are adjacent. In other words, qj can also appear in the
interior of either Ai-I or Ai+l, but not both. This completes the proof. 0

2.2. Algorithm find_min_of_DPST. Given a dipolar spanning tree with dipole
p and pj, the sets of vertices which are connected to p and pj are denoted as V/and
Vj, respectively. In searching for an optimal DPST, as we show below, we may restrict
ourselves to only those dipolar spanning trees such that there exists a point q E V and
Iq, Pjl > Iq’,Pjl, for all q’ Vj, and vice versa. This condition is called the stability
condition.

LEMMA 4. Let T be a dipolar spanning tree with dipole p and pj. If T does
not satisfy the stability condition, then there exists a monopolar spanning tree whose
diameter is no greater than that of T.

Proof. Without loss of generality, assume Iq,Pjl < Iq*, PjI for all q V, where
Iq*, Pjl maxq, e1/2 Iq’, Pjl. Then the diameter of the monopolar spanning tree centered
at p is no greater than that of T. []

The Algorithm find_xnin_of_DPST(S) can be implemented in O(n3) time as de-
scribed in the following. Basically, we consider all pairs of points pi and pj of the
set S as possible dipoles of the GMDST, and select the pair that gives a minimum
diameter. Consider now any pair p and pj, = j. We now want to find two circles K
and K centered at pi and p with radii R -IP, el and R IPj, ej[, respectively,
covering the set of points such that the sum of Ri, Rj and IPi, Pjl is a minimum, where
e, ej S are on circles K and Kj, respectively. We proceed as follows. Points other
than Pi and pj are sorted, according to their distances with respect to Pi, into a nonde-
creasing list Li,j. The kth point in the list Li,j is designated as Li,j[k]. By traversing
the list, we can identify all the possible four-point combinations (e,pi,pg, e), each of
which determines the diameter of a dipolar spanning tree, and find the best dipolar
diameter with dipole Pi and pj. At the kth step of traversing, we consider the tree
T(i,j, k) in which every point L,j[1], 1 < < k < n- 2, is directly connected to p,
and all others are connected to pj. The length of its diameter is determined by the
following function f(i,j, k), given the stability condition

(i)
n--2

f(i,j,k) ILi,j[k] PiI + max [Li,j[/]
/:k+l

Note that f(i,j,k) can be updated in O(1) time if max_2+l IL,j[1],pj[ is given,
and testing for the stability condition also takes O(1) time. The minimizer kij for
f(i, j, kij) can be found in O(n) time. By exhaustively searching for all possible pairs
p and pj that minimize f(i, j, kj), we can obtain an optimal DPST in 0(n3) time. We
thus conclude with the following theorem. Detailed implementation of the Algorithm
find_min_of_DPST is given in Fig. 1.
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d :-- c;
for each point pi E S do

construct a sorted array L of the set S- (pi } of points in nondecreasing
order of their distances to the point pi;

for each point pj S- (p} do
L :- the sorted array constructed by deleting pj from L;
Note: L[k] denotes the kth element in the array L.
m2 i2 n- 2; r2 :-]L[i2],pl;
ml il n- 3; r :=
s r + r2;
k:=n-3;
while k _> l do {

iflL[k],Pl>r2then {
:= k;

if r + r2 < s then
8 :- rl -+-r2;
m :- i;
i2 :- il;

}
k := k- 1;

’.[=P" PJl < d thenif
+

Cl Pi;
e := L[m];

r :-IL[i],pl;

m2 "= i2;
r2 :-- IL[i2],

c2 "= PL;
e2 L[m2];

end; of for each pj }
end. { of for each pi }

FIG. 1. Description of Algorithm find_min_of_DPST.

THEOREM 1. Given a set S of n points, the geometric minimum diameter span-
ning tree for S can be found in 0(n3) time and O(n) space.

3. NP-completeness of the BDBCST problem. In this section, we will
show a decision version, called bounded diameter bounded cost spanning tree (BD-
BCST) problem, of the optimization MDMCST problem, for general graphs to be
NP-complete.

PROBLEM 4 (BDBCST problem). Given a graph G (V,E), a cost function
W(e) Z+ for all e E, and positive integers C and D, is there a spanning tree T
for G such that EeET W(E)

_
C and EeEp W(e)

_
D for all simple paths p in T?

THEOREM 2. BDBCST is NP-complete.
Proof. BDBCST is obviously in NP.
Let {C1, C2,..., Cq} be an instance of 3SAT over variable set (X, X2,...,

Xn}. We will construct a graph G (V, E) and weight function W such that C is
satisfiable if and only if there is a spanning tree T for G such that EeT W(e)

_
3n + 3q + 5 and Eep W(e)

_
10 for all simple paths p in tree T.

The construction of G is as follows (Fig. 2). G contains the following vertices:
the true setting node t, the variable nodes {x,,x2,2,... ,Xn,n}, the clause nodes
{c, c2,..., Ca}, and a special node s. G contains the following edges: the assignment
edges {(t,x)[ for all variable node x}, the consistency edges {(xi,hci)[i 1 to n}, the
containment edges {(ui,cj) ui xi or x--7 depending on whether Cj e C contains
literal Xi or Xi, respectively}, and edge (t, s). The assignment edges have weight 2;
the consistency edges have weight 1; the containment edges have weight 3; and edge



MINIMUM DIAMETER SPANNING TREES 993

FIG. 2. Construction of G in proof of Theorem 2.

(t, s) has weight 5. It is clear that this is a polynomial-time construction.
Suppose C is satisfiable. There is an assignment such that every clause in C

contains at least one true variable. We may have a spanning tree T consisting of the
following edges: edge (t,s), (t,x) for all where variable X is assigned true or (t,);
otherwise, all the consistency edges, and the containment edges (xi, ci) for all where

X is the first true variable in clause C. It is easy to see that ’eET W(e) 3n+3q+5.
Since the weight of the path from a leaf node to node t is at most 5, there is no path
in T with weight greater than 10.

Suppose there is a spanning tree T for G such that -eET W(e) <_ 3n + 3q + 5
and no simple path p in T with weight greater than 10. Since there are 2n + q + 2
vertices in G, we have 2n -+- q + 1 edges in T. T must include the edge (t, s), since
(t, s) is the only edge incident to vertex s. For clause nodes are connected only by the
containment edges, there are at least q containment edges in T. Assume the spanning
tree T consists of assignment edges, j consistency edges, k + q containment edges,
and the edge (t, s). We have the following inequalities:

(2) i,j,k>_O,

(3) j _< n,

(4) +j + k 2n,

(5) 2i + j + 3k _< 3n.

Assume j < n. From (5)- 2 x (4), we have k _< j -n < 0, a contradiction. Therefore,
T must include all n consistency edges. Substituting j n into the above formulas,
we have

+ k

(7) 2i + 3k <_ 2n.

From (7)- 2 (6), we have k g 0. Therefore, T contains exactly q containment edges,
n consistency edges, and n assignment edges.
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We claim that all the clause nodes are adjacent only to those variable nodes which
are adjacent to node t in spanning tree T. Suppose this claim is not true. Because
clause nodes are only adjacent to variable nodes in graph G, there must exist a variable
node x and a clause node c such that x is adjacent to c but x is not adjacent to node
t in T (see Fig. 2). The path from c to t which must go through x is of weight 6. So,
the path from s to c in T is of weight 11, which is a contradiction.

Since T contains all the consistency edges, T contains exactly one of the edges
(t, xi) and (t, 2i) for all i. Assigning "true" to all the variables adjacent to t and "false"
to their complements, all the clauses in E are satisfied for every clause containing at
least one true variable. Hence, 3SAT is polynomially reducible to BDBCST.

Note that the cost constraint 3n + 3q + 5 is exactly the minimum cost C* of
T and the diameter constraint 10 is the minimum possible diameter of the graph G
used in the proof. The above proof actually reveals that even in the class of spanning
trees with minimum diameter, finding one with minimum cost (MDMCST problem)
is NP-hard. It also shows that in the class of spanning trees with minimum total
cost, the problem (the MCMDST problem) of finding a spanning tree with minimum
diameter is NP-hard. Thus, the following corollary is self-evident.

COROLLARY 1. (l) The MDMCST and the BDMCST problems are NP-hard.
(2) The MCMDST and the BCMDST problems are NP-hard.
The same arguments used in the proof of Theorem 2 can be used to prove the NP-

completeness of the BRBCST problem except that the notion of diameter is replaced
by the notion of radius, that the diameter bound 10 is replaced by the radius bound
5, and that the vertex t is taken as the distinguished vertex. Similar conclusions can
be drawn for the optimization problems.

THEOREM 3. The BRBCST problem is NP-complete.
COROLLARY 2. (1) The MRMCST and the BRMCST problems are NP-hard.
(2) The MCMRST and the BCMRST problems are NP-hard.

4. Geometric Steiner minimum diameter spanning tree. In this section,
we consider a geometric Steiner tree problem for the set S of n input points. A
geometric Steiner minimum diameter spanning tree (GSMDST) is a tree Ts that
includes all the points of S and some vertices on the tree Ts not in S, and the
diameter of the tree is minimized.

We first give a characterization of an optimal GSMDST and present an efficient
algorithm to compute one.

LEMMA 5. There exists an optimal GSMDST Ts .for S which is monopolar.
Proof. Consider an arbitrary GSMDST Ts of S. According to Lemma 2, Ts is

either monopolar or dipolar. In the former case we are done. Let us assume points
and c2, where cl : c2, are the dipole of Ts.

Let the set of points, excluding {c2}, that are connected to c be denoted V.
i- 1 2, be theThe set V2 is similarly defined. Among points in the set V, let ei,

farthest from the center ci, and e2 be the second farthest. Let d,i,j 1,2, denote
the distance le, cl; and a be the distance Ic, c21. Assume that the straight line cl, c2
passing through c and c2 is positioned horizontally. Note that neither e nor e2 lies
on c, c2. Otherwise, Ts can be transformed into a monopolar tree T (V, E)
centered at cl or c2 without increasing the length of the diameter. Furthermore, the
vertical projection of e (respectively, e2) on cl, c2 does not lie on the segment c, c2,
otherwise c (respectively, c2) can be moved toward the other center and the length
of the diameter can be shortened.
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We will show that

(8)

where 1, 2, by the following arguments:

(2) If

then there exists an e-neighborhood N(cl) of the point cl such that qci cl,ci e
N(c) rq cc2, and

1 2d +d <d+d2+a;
where dl is the longest distance among those from points in the set V to the point
c, and d2 is the second farthest. Since c, c2, and e are not collinear, by the triangle
inequality it is easy to show that

d’l c

In other words, we can construct a new Steiner tree T with diameter D(T)
(e?, c, c2, e), whose length is shorter than T)-s. This is a contradiction. Similarly,

does not hold.
By (8), we have d2 d + a and d d + c. By definition, we have d _> d22 and

d >_ d, and

Thus a 0. This contradicts the assumption that cl and c2 are distinct, rq

Lemma 5 implies that at most one Steiner point is needed for the construction of
a monopolar geometric Steiner minimum diameter spanning tree.

In the next lemma, we establish the relationship between the monopole of the
Steiner MDST and the center of the smallest enclosing circle.

LEMMA 6. Let CM be the center of the smallest enclosing circle of S. The
monopolar Steiner tree TM with CM as the monopole has a minimum diameter.

Proof. Let fs(x) denote the length of the diameter of a monopolar Steiner tree
Ts with x being the monopole. Suppose there exists a monopolar Steiner tree with
c being the monopole such that c # CM and fs(c) < fS(CM). Let el, e2 E S be the
farthest and second farthest points from c.
Case 1. lel, c le2, c I. In this case the diameter fs(c) 21ei, cl, which is equal to

the diameter of the circle C centered at c and enclosing S. Since fS(CM) is
exactly the diameter of the smallest enclosing circle of S, it is impossible that
fs( ) <
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FIG. 3. Illustration for the proof of Lemma 6.

Case 2. lel,c[ > [e2, c[. Let D1 and D2 be the two concentric circles centered at
c such that e and e2 lie, respectively, o__n D and D2. Denote p as the
point of intersection of D2 and the line ce such that c is between p and e.
Suppose p E S. Consider the circle C’ centered at the midpoint c’ of pel

with radius IP, el/2. It is obvious that C’ encloses S and that fs(c’) fs(c)
is equal to the diameter of C’. Hence it is impossible that fs(c) < fS(CM).
Now let us assume that p S. Consider a point q on line segment ce in
the neighborhood N(c) of c such that e and e2 remain the farthest and
second farthest points of q. We have fs(q) -Iq, e21 + Iq, el. By the triangle
inequality, we have fs(c) > fs(q) (see Fig. 3). Thus c cannot be the monopole
of a GSMDST, a contradiction. D

We conclude with the following theorem.
THEOREM 4. The geometric Steiner minimum diameter spanning tree problem is

reducible to the minimum enclosing circle problem, and hence can be solved in O(n)
time.

Proof. We simply use the 1-center algorithm proposed by Dyer [4] or Megiddo [11],
and use the center as the monopole of the monopolar Steiner tree. D

5. Conclusion. We have considered a new class of problems pertaining to the
diameter of spanning trees. We have presented a 0(n3)-time algorithm for finding
a minimum diameter spanning tree of a set of n points in the plane. The result
actually is applicable to any complete graph whose edge weight satisfies the triangle
inequality. We have considered the Steiner minimum diameter spanning tree problem
and presented a linear-time algorithm. Furthermore, we have shown that the problem
of finding a minimum diameter minimum cost spanning tree of a general graph is
NP-hard. We conjecture that the problem of deciding if a spanning tree of a set of
n points in the plane (so that the total cost and diameter are both bounded) exists
is also NP-complete. Whether or not the O(n3) time bound for finding a minimum
diameter spanning tree can be improved is of great interest.
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The proof of Corollary 2, which was originally presented in [1], is false. A correct
proof of the theorem (by the fact that intersections of fields can be computed in
polynomial time) appears in [2]. However, an even simpler proof was pointed out
by Hendrik Lenstra, namely, that the problem of field intersection reduces to the
intersection of subspaces of a vector space. That can be done by linear algebra.
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CREW PRAMs AND DECISION TREES*

NOAM NISAN-

Abstract. This paper gives a full characterization of the time needed to compute a boolean function
on a CREW PRAM with an unlimited number of processors.

The characterization is given in terms of a new complexity measure of boolean functions: the "block
sensitivity," a generalization of the well-known "critical sensitivity" measure. The block sensitivity is also
shown to relate to the boolean decision tree complexity, and the implication is that the decision tree

complexity also fully characterizes the CREW PRAM complexity. This solves an open problem of Wegener.
The results imply that changes in the instruction set of the processors or in the capacity of the shared

memory cells do not change by more than a constant factor the time required by a CREW PRAM to compute
any boolean function. Moreover, it is shown that a seemingly weaker version of a CREW PRAM, the CROW
PRAM, can compute functions as quickly as a general CREW PRAM. This solves an open problem of
Dymond and Ruzzo.

Finally, the results have implications regarding the power of randomization in the boolean decision
tree model. It is shown that in this model, randomization may achieve only a polynomial speedup over
deterministic computation. This was known for Las Vegas randomized computation; it is also proven for
one-sided error computation (a quadratic bound) and two-sided error (a cubic bound).

Key words. PRAM, decision trees, block sensitivity

AMS(MOS) subject classifications. 68Q05, 68Q10

1. Introduction.
1.1. CREW PRAMs. The PRAM (Parallel Random Access Machine) is the "stan-

dard" model for parallel computation. In the PRAM model the processors communicate
via shared memory cells. We will be interested in the inherent limitations of this model
that are due to its basic communication mechanism, and will thus consider the "ideal"
PRAM, a model that has no other constraints.

An ideal PRAM consists of an unbounded number of processors and an unbounded
number of common memory cells that can be read and written by any processor. Each
processor has its own local memory and possibly unlimited computational power. A
PRAM computes a function in the following manner: The input is placed in the
common memory cells, and then the computation proceeds in cycles. At each cycle
each processor may read one memory location, do any computation using the informa-
tion it knows, and write any information into one memory cell. Several variants of the
PRAM model have been defined, which differ from each other in the way they handle
memory access conflicts. Perhaps the most natural variant, and the one we will be
considering, is the CREW PRAM. For a CREW (Concurrent Read Exclusive Write)
PRAM several processors may read from the same location at the same time, but two
or more processors may never attempt writing into the same location at the same time.

A key result bounding the power of ideal CREW PRAMs is the following theorem
by Cook, Dwork, and Reischuk [CDR]: Computing the OR function on n variables
by a CREW PRAM takes l(log n) parallel time. This result is tight since any function
can be computed in log n time on this model. Actually, [CDR] proved a more general
result as they gave a lower bound on the time needed to compute a function on a
CREW PRAM in terms of the function’s "critical sensitivity."
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We consider a generalization of the "critical sensitivity" measure: the "block
sensitivity." We show that the [CDR] lower bound can be extended to block sensitivity,
and, moreover, that the block sensitivity fully characterizes the complexity on the ideal
CREW PRAM model. We achieve this result by further relating the block sensitivity
to the decision tree complexity, and thus we alternatively characterize the CREW
complexity in terms of the decision tree complexity.

For a boolean function f, let CREW(f) denote the CREW PRAM complexity of

f (i.e., the time needed to compute f on an ideal CREW PRAM with an unlimited
number of processors and memory cells), let bs(f) denote the block sensitivity of f,
and let D(f) denote the boolean decision tree complexity off

THEOREM 1.

CREW(f) (R)(log bs(f)) (R)(log D(f)).

Moreover, the lower bound holds for an ideal PRAM with unlimited computational
power for each processor and unlimited capacity of the common memory cells, while
the upper bound requires only reasonable power for each processor and 1-bit memory
cells. As a corollary, we get that the computational power of a single processor, and
the capacity of the common memory cells, does not make a difference in this model
(as long as we do not limit the number of processors, and ignore uniformity questions).

These results also apply to a weaker model than the CREW PRAM: the CROW
PRAM (Concurrent Read Owner Write) introduced by Dymond and Ruzzo [DR]. For
a CROW PRAM, each memory cell is preassigned to some processor who is said to
"own" the memory cell. The only processor who may write into a memory cell is the
owner, although all processors may read it. This model is clearly a special case of the
CREW model, but we show that the parallel time needed to compute a function on
this model is equal (up to a constant factor) to the time needed by a CREW PRAM.
Let CROW(f) be the parallel time needed to compute f by an ideal CROW PRAM.

THEOREM 2.

CROW(f) (R)(CREW(f)).

This result is particularly surprising as it is not achieved by simulation, and only
applies to functions on a full domain. We actually show that a simulation result is
impossible by giving a function on a partial domain that separates these two models
by a factor of log n.

1.2. Boolean decision trees. The boolean decision tree model is perhaps the
simplest computational model for general boolean functions. A deterministic boolean
decision tree computes a boolean function by repeatedly reading input bits until the
function can be determined from the bits accessed. The decision of which bit to read
at any time may depend on the previous bits read, and is determined by them. The
only cost associated with this computation is the number of bits read; all other
computation is free. The cost of an algorithm is the number of bits read on the worst
case input, and the deterministic complexity of a function is the cost of the best
deterministic algorithm for this function.

A randomized decision tree algorithm is also allowed to flip coins in order to
determine the next input bit to be accessed. The cost of an algorithm is the expected
number of locations examined on the worst case input. The complexity of a function
is the cost of the best algorithm for this function. We distinguish between three kinds
of probabilistic algorithms: zero error, one-sided error, and two-sided error. In zero-
error computation of f, the algorithm must always be correct--no errors are allowed.
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For one-sided error computation the algorithm must always reject any string not in
the language, and must accept any string in the language with probability of at least
1/2. (Here we identify the function f with the language {xlf(x) 1}.) A two-sided error
algorithm may err in both cases, but must give the correct answer with probability of
at least .

This model has been studied extensively in several contexts. The complexity of
graph properties in this model has been investigated [Ro], [RV], [KK], [KSS]. The
relation to Oracle Turing machines has been pointed out several times [BI], [Ta], [IN].
It is also related to sublinear time Turing machine computations [IN]. The randomized
complexity in this model has also been studied [Y1], [Y2], [Sn], [K], [SW].

In this paper we deal with the power of randomization in the boolean decision
tree model. Snir, [Sn] (see also [SW]), first showed that randomization "helps": he
exhibited a function with deterministic complexity n, but Las Vegas (zero error)
randomized complexity of only O(n753). Saks and Wigderson [SW] conjecture that
this is the optimal speedup possible by randomization, and were able to prove it for
a particular subclass of functions; for general functions the conjecture is still open. A
more general result by Blum implies some bounds on the speedup possible by zero-error
randomization: zero-error randomized decision tree algorithms can give at most a
quadratic speedup. In this paper we show that even allowing error, randomization
may only give a polynomial speedup.

Let R(f) and R2(f) denote the one-sided error and two-sided error probabilistic
complexities of f, respectively, and D(f) the deterministic complexity in the boolean
decision tree model. We show the following for any function f

THEOREM 3.

D(f)<-2Rl(f)2.

THEOREM 4.

D(f)8R2(f)3.

Impagliazzo and Naor [IN] have considered the uniform analogue of decision
trees. Using our results, and paralleling some results in [BI], they showed that, if
P= NP, then DTIME(poly-log)= RTIME(poly-log). Here RTIME(t) is the class of
problems that can be solved in time on a randomized TM, even allowing bounded
two-sided error.

2. Critical sensitivity and block sensitivity. In this section we will discuss the
relationships between several complexity measures of boolean functions. The relation-
ships we show here will then have implications regarding CREW PRAM complexity
and boolean decision trees. The complexity measures we consider are the "critical
sensitivity," the "block sensitivity," and the "certificate" complexity. We will also
mention the relation of these to the boolean decision tree complexity.

NOWATON. Let w be a boolean string of length n, let S be any subset of indices,
Sc {1... n}, then ws) means the string w, with all bits in S flipped. That is, ws)

differs from w exactly on S.
DEFNWON. Let f be a boolean function, w any input string, and any index.

We sayf is sensitive to X on w iff(w) f(w(i)). The critical sensitivity off on w, Sw(f),
is the number of locations such that f is sensitive to xi on w. The critical sensitivity
of f, s(f), is the maximum over all w of the critical sensitivity of f on w.

This complexity measure of boolean functions has been discussed in the literature
under various names. It is sometimes called the "critical complexity" of the function
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[W]; sometimes a function with critical sensitivity k is said to have a k-critical input,
and is sometimes just called the sensitivity.

Simon [Si] shows that every function that depends on all its variables has critical
sensitivity of at least f(log n). Turan [Tu] showed that all graph properties have critical
sensitivity of at least fl(v). Cook, Dwork, and Reishuk [CDR] use the critical sensitivity
of a function to give lower bounds for the CREW PRAM complexity. What we do
here is consider a generalization of the critical sensitivity by allowing several bits to
be flipped together to change the value of the function.

DEFINITION. Let f be a boolean function, w any boolean string, and S any subset
of indices. We say that f is sensitive to S on w iff(w) f(w(S)). The block sensitivity
of f on w, bsw(f) is the largest number such that there exists disjoint sets
S, $2, , S, such that for all 1 -< i_-< t, f is sensitive to Si on w. The block sensitivity
of f, bs(f), is the maximum over all w of the block sensitivity of f on w.

Our main lemma will be the relation between the block sensitivity and the certificate
complexity.

DEFINITION. Let f be a boolean function, and w any input string. A 1-certificate
(0-certificate) for f is an assignment to some subset of the variables that forces the
value off to 1 (0). The certificate complexity offon w, Cw(f), is the size of the smallest
certificate that agrees with w. The certificate complexity off, C(f), is the maximum
over all w of Cw(f).

The certificate complexity of a function describes how many bits of the input must
be revealed to you (by someone who knows all the input bits) in order to convince
you of the value of the function. This complexity measure has also been widely used
in the literature, again under various names. It is sometimes called the sensitivity [VW],
[W], sometimes the boolean degree of a function; it can also be viewed as the
nondeterministic complexity in the boolean decision tree model. The 1-certificates of

f are the terms of f, and the 0-certificates of f are the terms of the complement of f
We will first mention the obvious relations between them (see [W]) in the following

proposition.
PROPOSITION 2.1. For any f:

s(f)<=bs(f)<=C(f).

Proof The left inequality follows directly from the definitions. The right inequality
follows from the fact that for any input w, any certificate for w must include at least
one variable from each set f is sensitive to on w.

It turns out that for a large subclass of functions these three measures of functions
are really equal.

PROPOSITION 2.2. For all monotone functions f:
s(f)=bs(f)=C(f).

Proof It is enough to show that C(f)<= s(f). Consider a minimal certificate of
size C(f); without loss of generality assume it is a 1-certificate. The string which has

in every bit of the certificate and 0 in all other places, will have critical sensitivity
of C(f). The reason is that turning off any of the 1-bits will change the value of the
function to O.

The following example shows that for general, nonmonotone, functions the
inequalities may be strict.

Example 2.3. Let f be the symmetric function on n variables defined to be true
if and only if exactly n/2 or (n/2)+ 1 of the inputs are 1 (for simplicity, assume that
4 divides n).
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It is not difficult to see that the worst case input for all three measures is an input
with exactly n/2 l’s. Flipping any 1-bit to a 0 will change the value of the function,
but flipping any 0-bit to will not change the value, thus the sensitivity is n/2. Flipping
any two 0-bits to will also change the value of the function, thus by pairing the 0-bits
in an arbitrary way we can get another n/4 blocks, which gives a block sensitivity of
3n/4. Finally, any certificate for this input must contain all the 1-bits and all but one
of the 0-bits. This gives a certificate complexity of n- 1.

A function with a quadratic gap between the critical sensitivity and the block
sensitivity was found by [Ru]; it is still an open problem whether the gap may be
bigger (superpolynomial?). Wegener and Azdori [WZ] exhibit a function with a

polynomial (but subquadratic) gap between the critical sensitivity and the certificate
complexity. Inspection of their results reveals that they actually give polynomial gaps
between the block sensitivity and the certificate complexity. Our main lemma shows
that the certificate complexity may only be polynomially bigger than the block sensi-
tivity.

LEMMA 2.4. For all boolean functions f:
bs(f)>=x/C(f).

Proof Let w be an input achieving the certificate complexity, i.e., every certificate._

for w is of length at least C(f). Let S be some minimal set of indices such that
f(w) f(w(S,)), let $2 be another minimal set disjoint from S, such that f(w) # f(w(S2)),
and in general we pick Si to be a minimal set disjoint from all previous sets picked
such that f(w)f(w(S,)). We continue picking these sets until at a certain point no
such set exists; call the last set S,.

The union of all sets has to be a certificate for w, since otherwise we could have
picked yet another set that changes the value of the function when flipped. Thus we
get that:

is, i_->
i=1

Now we can bound the block sensitivity of f in two ways:
(1) f is sensitive to each Si on w, thus bsw(f)>= t.

(2) Since for each i, Si is minimal, then on w(S’),f if sensitive to each element in
Si, thus bsw,,)(f)>= Is, I.

So if _-> V’C(f), then (1) gives us the desired result; otherwise at least one of the
sets has to be of size larger than q’C(f) and (2) will give us the result.

We conclude this section by mentioning the relationship between the certificate
complexity, and the boolean decision tree complexity. This result was independently
discovered by several people, perhaps first by Blum [BI].

LEMMA 2.5.

C(f) <-_ D(f) <- (C(f)).
We believe that the polynomial relationship between the block sensitivity and the

decision tree complexity given by Lemmas 2.4 and 2.5 is interesting in its own right.
Sections 3 and 4 give applications of this fact regarding CREW PRAMs and randomized
boolean decision trees, and we believe that further application may come. Let us just
mention a recent result of Szegedy [Sz].

Szegedy showed that any real polynomial approximating a boolean function f
requires a degree of at least ribs(f). Since it is also clear that a real polynomial of
degree D(f) can represent the function exactly, we get that the degree required to
represent f as a real polynomial is polynomially related to D(f) and to bs(f).
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3. PRAM complexity.
3.1. CREW PRAMs. Let CREW(f) denote the parallel time needed to compute

f on a CREW PRAM with an unbounded number of processors, each given arbitrary
power. [CDR] gave a general lower bound for CREW(f) in terms of the critical
sensitivity of f They showed that for all f:

CREW(f) >= log s(f),

where a is some constant less than 5.
We first note that this result may be strengthened to give a bound in terms of the

block sensitivity.
LEMMA 3.1. For all f:

CREW(f) >= log bs(f ).

Proof Let w be an input achieving the block sensitivity, and let S, $2," ", S, be
the sets f is sensitive to on w. We define a new function f’(X1, X2, , X,) as follows:
f(X1,’’’, X,) is equal to f(w’) where w’ is derived from w by flipping all the bits in
the set Si for each such that Xi 1. It is easy to see that f’ instantly reduces to f on
a CREW PRAM, and that the critical sensitivity off’ on the input 000 000 is t. Thus

CREW(f) >- CREW(f’) >= log s(f’) >= log t= log bs(f ).

The surprising fact is that Lemma 3.1 actually gives a tight lower bound for every
function f! That will be shown using decision trees.

LEMMA 3.2. A CREW PRAM can simulate a boolean decision tree of depth d in
log2 d timesteps (using 2d processors).

Proof We will have a processor for each node of the decision tree. In the first
step each processor will read the input variable that belongs to its node and set up a
pointer to point to the node that should be followed by this node according to the
value of the input. From now on, in each step all the processors will use the standard
"pointer doubling" method, and repeatedly copy the pointer of the node they are
pointing to into their own pointer. It is easy to see that after log2 d steps the root will
point to the last leaf reached in the computation. V]

The only thing left to note is that the upper and lower bound that we gave are
actually to within a constant factor from each other.

THEOREM 1. For all f:
CREW(f) (R)(log D(f)) (R)(log bs(f)).

Proof Lemmas 2.4 and 2.5 show that D(f) and bs(f) are polynomially related
to each other; thus the bounds given in Lemmas 3.1 and 3.2 are within a constant
factor of each other. V]

It should be noted that the upper bound simulation can be carried out by processors
limited to a reasonable instruction set, and on memory cells that contain only bit,
while the lower bound derived in [CDR] holds regardless of the instruction set of the
processors or the capacity of the memory cells. As a corollary, we get that this model
is insensitive to these issues as long as the number of processors is not limited.

3.2. CROW PRAMs. An extra bonus to be derived from the previous proof is
the equivalence in computation time between CREW PRAMs and the seemingly weaker
CROW PRAMs. (The connection between CROW PRAMs and decision trees was also
observed by [Ra].) Let CROW(f) be the time needed to compute f on an ideal CROW
PRAM (with an unlimited number of processors) then we get Theorem 2.
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THEOREM 2. For any boolean function f:

CROW(f) O(CREW(f)).

Proof The simulation of decision trees described in the proof to Lemma 3.2 can
also be carried out by a CROW PRAM.

It is interesting to note that this result does not yield a simulation. The relation
between CREW PRAM complexity and decision trees is a global one; there does not
exist a correspondence between specific stages of the computation and parts of the
decision tree. We can actually show that a CROW PRAM cannot simulate a CREW
PRAM step in constant time. We exhibit a problem on a partial domain that separates
these two models. Consider the following "promise" problem: Compute the OR of n
input bits when you are "promised" that at most one input bit may be 1. A CREW
PRAM with n processors can compute this function in one step; it turns out that a
CROW PRAM, however, cannot compute this function quickly. The following lemma
appears in [DR] and is attributed there to Snir.

LEMMA 3.3 (DR, Lemma 2.3). A CROW PRAM requires time (log n) to compute
the OR function even on this partial domain.

For completeness, we sketch the proof.
Proof We say a processor p depends on input location at time t, if its state on

the input consisting of all zeros is different than its state on the input consisting of a
1 in location and zeros everywhere else, at time t. (The processors’ state includes its
private memory as well as all memory owned by it.)

The following fact is easily proved by induction on t: A processor p at time
depends on at most 2’ locations. The induction step is proved by observing that at
time t, a processor p can depend on: (1) any location it depended on at time t- and
(2) any location that the memory cell it read during the last step depended on. The
induction hypothesis suffices to bound (2) since these locations are a subset of the
locations which the processor that owned the memory cell depended on. The lemma
follows since a processor that writes the answer on the all-zeros input must depend
on all locations in order to make sure that not one of them is one.

This lemma does not contradict Theorem 2, since Theorem 2 only holds for
functions on full domains.

4. Probabilistic versus deterministic decision trees. We first relate the one-sided
error randomized complexity of a function to its deterministic complexity.

THEOREM 3. For any boolean function f:
D(f)<-2(Rl(f))2.

This theorem will follow from the following more general lemma. Let C()(f) denote
the certificate complexity of f limited to the 1-instances, i.e., the maximum of Cw(f)
over all w such that f(w)= 1.

LEMMA 4.1. For any boolean function f:

D(f <- 2 C(l(f Rz(f).

Proof The proof is by induction on the following quantity: R*(f) is defined to
be the smallest integer greater or equal to twice the minimum over all randomized
decision trees that compute f with two-sided error of the maximum over all O-instances
of f of the expected running time of the randomzed decision tree on the 0-instance.
We will build a deterministic decision tree for f of depth at most Cl(f)R*(f). This
suffices since clearly R*(f)<= 2R2(f).
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In the base case R*(f)=0, which implies that a randomized algorithm exists
which makes no queries on 0-instances, which implies that the function is constant.
In the induction steps the deterministic algorithm for f will start by picking any
1-certificate off of size at most Cl(f) and asking all the variables in it. After this first
step we are left with an induced function f’ on the remaining variables, and the
algorithm will recursively solve this induced problem. Our claim is that (1) Cf <= Clf
and (2) R*(f’)<= R*(f)-1. The lemma follows since by the construction D(f)<=
C(1)(f) + D(f’).

The fact that the C (1) complexity cannot increase for an induced subfunction is
obvious; we now prove the second claim. Consider the randomized algorithm for f
running on any O-instance, w. The probability that this algorithm queries some variable
in the 1-certificate must be at least . The reason is that without querying some bit in
the 1-certificate, the algorithm cannot distinguish between w, for which f is O, and w

with all the bits in the 1-certificate flipped to conform with the 1-certificate for which

fis 1.
It follows that f’ can be solved by a randomized decision tree that makes an

expected of a query less than the one for f made on any O-instance (this is done by
taking the randomized decision tree for f and erasing any query that was already
asked). Thus the R* complexity decreases by at least one.

Proof of Theorem 3. Theorem 3 is an immediate corollary of Lemma 4.1 since
both Rz(f) and C)(f) are lower bounds for R(f). The first bound follows since
any one-sided error decision tree can be made into a two-sided error decision tree by
simply accepting with probability 3 at every reject leaf (this increases the acceptance
probability for any 1-instance from to ). The second bound follows since a one-sided
error decision tree must always be correct on 0-instances and thus must see a 1-certificate
before accepting.

The previous techniques do not carry over to the two-sided error case. In order
to give results here, we will need to use our results concerning the block sensitivity.
We first show that the block sensitivity can serve as a lower bound for the two-sided
error randomized complexity of a function.

LEMMA 4.2. For all boolean functions f:
bs(f)

R(f) >=.
2

Proof Let w be the input that achieves the block sensitivity, and let S, $2, , S,
be disjoint sets such that f is sensitive to S on w. For each 1 =<i_<- t, any randomized
algorithm running on w must query some variable in S with probability of at least
since otherwise it cannot distinguish between w and ws’. Thus the total expected time
has to be at least (t/2).

At this point we immediately get the following theorem.
THEOREM 4. For any function f:

D(f) <=8R(f)3.

Proof From Lemma 4.1 an upper bound for D(f) is 2C(f)Rz(f); using Lemma
2.4 this is bounded from above by 2bs(f)2R2(f). An application of Lemma 4.2
completes the proof of the theorem.

5. Acknowledgments. I would like to thank Russell Impagliazzo for his contribu-
tions to the paper; Amos Fiat, Valerie King, and Moni Naor for many helpful
discussions; and Avi Wigderson for pointing out the application to CROW PRAMs.
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ON THE EXACT COMPLEXITY OF STRING MATCHING: LOWER BOUNDS*

ZVI GALIL? AND RAFFAELE GIANCARLO:I:

Abstract. This paper provides several lower bounds on the number of character comparisons that any
string matching algorithm must perform in the worst case in order to find occurrences of a pattern string
in a text string. The class of algorithms that are considered need not know the alphabet.

Key words, string matching, string searching, text editing, computational complexity, worst case behavior
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1. Introduction. Given a text t[ 1, n] and a pattern p[ 1, m], both being strings over
an alphabet E, string matching consists of finding all occurrences of the pattern in the
text. Due to its relevance to many application areas, the problem has been extensively
studied and many linear, i.e., O(n + m), time algorithms are available. For a survey,
the reader is referred to [1]. Many of these algorithms acquire knowledge about the
text only through comparisons of the form "t[ i]---p[j]?" and therefore they work for
general alphabets. That is, they need not know the alphabet (it may even be infinite)
to work correctly and they have a running time independent of the alphabet size. For
this kind of algorithm, we provide several lower bounds for the number of character
comparisons that they must perform in the worst case. The best previously known
lower bound is the trivial one, i.e., n. Note that if E is a binary alphabet, one can use
the failure function used by Knuth, Morris, and Pratt [5] to derive deterministic finite
automata [2], which perform string matching in exactly n comparisons. Therefore, n
is a tight bound for binary alphabets. From now on, we consider only the case IEI _>-3.

We recall that Rivest [6] showed that any string matching algorithm must examine,
in the worst case, n m / text characters to find an occurrence of the pattern in the
text. A text character is examined when the algorithm knows to which character of
the alphabet it corresponds. Rivest’s model is not comparable to ours. On one hand,
it is stronger, as one character examination involves possibly many character com-
parisons. On the other hand, his algorithms must have prior knowledge of the alphabet.

Our model of computation is a RAM with uniform cost criterion [2] slightly
modified. We assume that the text t[1, n] is stored in a special random access buffer.
This buffer can be accessed only through a server that is not part of the algorithm
executing on the RAM. The server accepts only queries of the form "p[i] t[j]?" and
"t[ i]-- t[j]?" and it provides an answer to each request in one unit of time. We count
only the comparisons of the form just specified. Note that, on our model, any string
matching algorithm can have knowledge about the pattern, but it can acquire knowledge
about the relationship between characters in the text and characters in the pattern only
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through comparisons with the pattern. Alternatively, we could use a binary decision
tree model.

We say that a string matching algorithm is on-line if the portion of the text about
which it can ask questions is limited to a sliding window of size m. Moreover, the
window can be aligned with t[i, i+ rn- 1] if and only if the algorithm has already
decided whether an occurrence of the pattern can start at position k of the text, for
all k, 1 _-< k < i. Let c(n, rn) denote the maximal number of character comparisons made
by a string matching algorithm, given a text of length n and a pattern of length rn over
a general alphabet. We approximate it by (1 + C)n, where C is a universal constant.
We add the subscript "on-line" when we restrict attention to on-line algorithms and
the superscript 1 when we consider algorithms that find only one occurrence of the
pattern in the text. The results of this paper can be summarized as follows"

(i) For 0<m<-2, Con-line(n, m)>--n for infinitely many n’s. For m=>3 and odd,

Con-,ine(n, m)>=n+[2(n-m)lm+3
for infinitely many n’s. For rn _-> 3 and even,

Con-nne(n, rn)>=n+[2(n-m)Jm+4
for infinitely many n’s.

(ii) For 0<m<=3, Con_nne(n,m)>-n for infinitely many n’s. For m=>4,

Cln-line(n’ m)>----n+[n-m]m
for infinitely many n’s. This bound applies only to algorithms that perform comparisons
of the form "t[i]=p[j]?".

(iii) For 0<rn-<2, c(n,m)>-n for infinitely many n’s. For m->3, c(n,m)>=
n + [n/2mJ for infinitely many n’s.

In a companion paper [4] we have shown that C < Con-line <3 and that C on-line

IC11< C < Con_line-"-, - Therefore, we obtain a tight boundIt follows that = on-line=

of n comparisons for on-line algorithms that find all occurrences of the pattern in the
text.

The lower bounds are general enough to apply even to randomized algorithms
that use character comparisons to perform string matching. We use an "unrestricted"
adversary that need not know the strategy of the algorithm beforehand. It fixes the
pattern and then the text is chosen adaptively according to the questions asked by the
algorithm and in such a way as to force the algorithm to make mistakes, i.e., to compare
certain text characters twice.

The remainder of this paper is organized as follows. In 2, we provide lower
bounds for Con_line (n, rn) and Cm_line (n, m). In 3, we consider off-line algorithms, i.e.,
algorithms that have access to the whole text rather than being restricted to a sliding
window of size m, and we provide a bound for c(n, rn). The last section contains some
open problems.

2. On-line algorithms.
THEOREM 1. Assume that I[ >- 3. For 0 < rn <- 2, Con-line(n, rn >-- nfor infinitely many

n’ s. For m >= 3 and m odd (even, respectively),

Con_line n, m >-- n + Con_line n, m >-- n + respectively)
rn+3 m+4

for infinitely many n’s.
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Proof If rn 1 (m 2, respectively), the adversary chooses the text t[1, n] a
and the pattern/311]= a (/311,2]= aa, respectively). Any algorithm must perform n
comparisons. Thus, the bound follows.

Assume m _->3. We choose a pattern/311, m] alba for rn odd (/311, m] alba 1+1

for m even, respectively). We show that there exists a sequence of texts of increasing
length for which the lower bound holds. The adversary fixes the text on-line, as the
algorithm compares more text characters. The first step of our construction, for text
of length m, is as follows" The adversary sets t[ 1, m] =/3[ 1, m]. Any on-line algorithm
must perform at least m comparisons between text and pattern characters in order to
discover the occurrence at position 1. Therefore, the lower bound holds.

Now assume that there exists a text t[1, no] having/3[1, m] as suffix, for which
the lower bound holds and for which the algorithm already knows all occurrences of
the pattern in the text. Assume also that no comparison has been made beyond no.
We extend t[1, no] to a text t[1, nl] having/311, m] as suffix, for which the lower bound
holds and no comparison has been made beyond no. We extend t[1, no] to a text
t[1, n] having/311, m] as suffix, for which the lower bound holds and no comparison
has been made beyond n l.

Since the algorithm already knows all occurrences of the pattern in t[1, no] and
t[ 1, no] has/3[ 1, rn as suffix, t[ no + 1, no] a and t[ no l] b (t[ no l] a, respec-
tively). Since t[no-1] b does not match any character in/3[1, 1] (t[no-l, no] a !+1

does not match/3[I + b, respectively), the pattern can be shifted past text position
no-I. Moreover, since t[no-l+ 1, no] a , an occurrence of the pattern can start at

no- + 1. The on-line algorithm can ask questions involving text characters in t[ no- +
1, no + + (t[ no- + 1, no + + 2], respectively). Since the algorithm knows that t[no-
l+ 1, no] a and we are interested in finding a lower bound, we can assume it will
not ask questions involving these text positions.

The adversary fixes t[no+3, no+ l+ 1]= a -1 (t[no+3, no+/+2]= a, respectively)
and each question asked by the algorithm about these text positions is answered
consistently with that choice. Note that, if 1, t[ no + 3, no + + is the empty string.
The adversary fixes text characters t[no+ 1, no+2] as well as n and t[n] according
to the first question that the algorithm asks about these text positions. This is done as
follows.

(1) The algorithm asks first "t[ no + 1] b ?" or "t[ no + 2] a ?". The adversary
fixes nl no + + 2 (n no + + 3, respectively), t[no + 1, no + 2] ab, and t[n] a.
Therefore, the answer to the question is no. The algorithm can rule out text position
no- + 1, since no occurrence can be there. But it cannot rule out text position no- + 2,
since t[no-l+2, n]= aba (t[no-l+2, n]= aba+, respectively). The algorithm
must ask + 2 (l + 3, respectively) questions involving t[ no + 1, n] t[ no + 1, no + + 2]
(t[no+ 1, n] t[no+ 1, no+ + 3], respectively)to find such an occurrence ofthe pattern
in the text. Therefore, the total number of questions involving text positions in
t[no+ 1, n] is + 3 (l + 4, respectively). Since the algorithm has made at least

no + no + respectively
m+3 m+4

character comparisons for t[ 1, no], adding + 3 (l + 4, respectively) to this bound and
recalling that rn 21 + (rn 21 + 2, respectively) and that n no + + 2 (nl no + + 3,
respectively), we obtain a lower bound of

n + n + respectively
m+3 rn+4
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for text t[1, n]. Moreover, such text has the pattern as suffix and no comparison has
been made beyond n.

(2) The algorithm asks first "t[no+2]=b?" or "t[no+ l]= a?". We fix t[no+
1, no + 2] ba and n no + + 1 (n no + + 2, respectively). Therefore, the answer to
the question is no. There is an occurrence of the pattern in the text starting at no- + 1,
and any algorithm must perform at least + (l + 2, respectively) character comparisons
involving t[no + 1, n] t[no, no + l+ 1] (t[ no + 1, n] t[ no, no + 1+ 2], respectively) to
find it. Therefore, the total number of questions involving text positions in t[ no + 1, nl]
is at least + 2 (l + 3, respectively). Since the algorithm has made at least

no + no + respectively
m+3 m+4

character comparisons for t[1, no], adding l+ 2 (! + 3, respectively) to this bound and
recalling that m 21 + 1 (m 21 + 2, respectively) and that nl no + + (n no + + 2,
respectively), we obtain a lower bound of (more than)

n + n + respectively
m+3 m+4

for text t[1, n]. Moreover, such text has the pattern as suffix and no comparison has
been made beyond n.

(3) The algorithm asks first "t[n0+ 1]= t[j]?" or "t[no+2] t[j]?",j <- no+ l+ 1.
We discuss only the case "t[no+ 1]= t[j]?" since "t[no+2] t[j]?" can be handled
similarly. We consider three subcases.

mj _<_ no: If t[j] b, then a proof that the bound holds can be obtained as in (1).
If t[j] a, then a proof that the bound holds can be obtained as in (2).

mj=no+2: The adversary sets t[no+l, no+2]=ab. The bound follows by a
reasoning analogous to the one in (1).

nno+2<j<=no+l+l: Since the adversary sets t[no+3, no+l+l]=a I-, the
bound follows by a reasoning analogous to the one in (2).

Now, the theorem follows inductively.
Recall that a string x[1, m] is periodic of period if and only if is the minimal

integer such that x[ 1, m i] x[ + 1, m]. If so such < m exists, x[ 1, m] is said to be
nonperiodic.

We observe that for m 1, 2, 3, the lower bounds of Theorem are tight for any
pattern. Indeed, the algorithm by Colussi [3] performs at most

n+ (n-m) <=n+
z+z’ 2

character comparisons [4] for any pattern of length m z + z’ and period z > z’. For
any nonperiodic pattern of length 2 or 3, z’= 0 and the algorithm by Colussi performs
n comparisons to find all occurrences of those patterns in any given text of length n.
For/3[1, m] am, we can find all occurrences of/3[1] a and then determine where
/3[1, m] occurs in the text with no extra character comparisons. Since we can find all
occurrences of/3[1] a in a text of length n in n comparisons (z’= 0), a bound of n
holds also for/3[ 1, m a m, 1 -<_ .m <- 3. The last pattern we have to consider is/3[ 1, m
aba. Since z’--1 and m 3, the upper bound of Colussi’s algorithm and the lower
bound of Theorem 1 are equal. Therefore, Con_ti,e(n,m)=n for m= 1,2 and
Co,-li,e(n, m) n + [(n m)/3] for m 3.

Recall that eo,_li,e(n, m) denotes the minimum number of comparisons that any
on-line algorithm must perform in order to find the leftmost occurrence of the pattern
in the text. We prove a lower bound for algorithms that perform only character
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comparisons of the form "p[i] t[j]?" and consider only this kind of algorithm for
the remainder of this section. The Hamming distance d(x, y) between two strings x
and y of equal length is defined as the number of positions with mismatching characters
in the two strings. Given a string x, let Ex be the set of characters of that appear in
x. Assume that ]Ex] < IEI. Consider an algorithm that tests whether d(x, y)= 1, where
x is given and can be preprocessed while y is specified on-line. Assume that the
algorithm knows at the beginning of the computation that x and y match in exactly
k specified positions. Moreover, for each y[j], it also knows a proper subset of Ex of
size . < IE,l such that y[j] and x[j] are not characters in that subset.

LEMMA 1. There is an adversary that can choose y such that d(x, y)= and force
the algorithm to perform at least Ixl- k + rq r% character comparisons, where r > q
is the number ofdistinct characters ofZ that cannot be assigned to the unique y[ q] x[ q]
without violating the answers given to the questions of the algorithm and its initial
knowledge about y. Moreover, the algorithm does not know which character of Z is y[q].

Proof Let G V, E) be a bipartite graph with vertex partition V, { 1, 2,. .,
and V2 Z. E has two kinds of edges, red and blue. An edge (i, a) is red if and only
if y[i]=x[i]=a. An edge (i, a) is blue if and only if y[i] a. A red edge (blue,
respectively) (i, a) is initially in E if and only if the algorithm knows that y[i] a
(y[ i] a, respectively). Initially, the graph has k red edges. The adversary answers the
questions of the algorithm and updates E. In doing so, it also specifies which characters
must be assigned to y. Its strategy consists of two parts.

Part 1" While the number of red edges is less than ]x]-1, the question "y[i]
x[h]?" is answered "yes" and y[i] is set to x[i] if and only x[h]=x[i]. The edge
(i, x[h]) is added to E, if it is not already there. Its color is red if the answer is "yes"
and blue otherwise.

The first part adds at least Ix[- 1- k red edges. Let q be the only node of V that
has no red edge in common with a node of V2. We now consider only questions
involving y[q]. (The other symbols in y have been determined.)

Part 2: For each question "y[q] x[h]?", the answer is "no" and the blue edge
(q, x[h]) is added to E, if it is not already there.

Let rq be the number of blue edges incident on q after step 2. Note that since the
algorithm can ask only questions involving a character in each string, it must eventually
ask "y[q] x[h]?", where x[h] x[q]. After this question is asked, it can stop, since
it knows that d(x, y)= 1. This question also causes a new blue edge with endpoint in
q to be added to E. Thus, the second part adds rq-q > blue edges. Therefore, the
algorithm has made at least Ixl- k + rq q 1 comparisons to discover that d (x, y) 1.
Moreover, for each blue edge (q, a), a Z, y[q] a, and y[q] cannot be assigned rq
characters of Zx. (It may be assigned some character in -, since I,,[ < I1.) Since
y[ q] has been involved only in comparisons with a negative outcome and the algorithm
did not know which character of Z is y[q] when it started, it still does not have this
information.

Let v[1, m]= aba 1+1 (v[1, m]= alba +2, respectively), >= 1, and let w be a given
string such that d(v, w)-- 1, where v[j] w[j]. Let w’ be the longest suffix of w that
matches a prefix of v.

LEMMA 2. When j < m and w[j] c a, b, w’= a t-i+, where max (1, j 1-1)
(i max (1, j 2), respectively). When j m and w[m b # a v[m ], w’ a b and
w’ is empty when j m and w[m] c a, b.

Proof Assume that j < m and w[j] e a, b. When j-< l+ 1, w’= a , and when
j> l-k- 1, w’-- a2t-j+2 (w’= a21-j+3, respectively). Therefore, w’= a t-i+, where
max (1, j 1) (i max (1, j 2), respectively). The other cases are obvious.
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THEOREM 2. Assume that IEI >= 3 and that the algorithm can perform only character
comparisons of the form t[h]=p[j]?". For 0<m=<3, con_line(n,m)>=n for infinitely
many n’ s. For m >- 4,

Cm-line(n’ m)>=n+n-mJm
for infinitely many n’s.

Proof For m 1, 2, 3, we fix/311, m] a, ab, abb, respectively. Note that all the
chosen patterns are nonperiodic, i.e., there is no integer i< m such that/3[1, m- i]--
/3[i+ 1, m]. Assume that there exists a text t[1, no] for which the lower bound holds
and that satisfies the constraints: There is no occurrence of the pattern in t[ 1, no- m +
and the least integer for which an occurrence can start is no+ 1. Moreover, no com-
parison has been made beyond no.

Note that for no 0, the empty text satisfies those constraints. We extend t[ 1, no]
to a text t[ 1, n] for which the lower bound holds and that satisfies the same constraints
as t[1, no]. The adversary chooses n no+ m. Since the least integer for which an
occurrence can start is no+ 1, the algorithm must test whether t[no+ 1, n] =fi[1, m].
By Lemma 1, t[no+ 1, nl] can be chosen such that d(t[no+ 1, n],/311, m])-- and
such that the algorithm must ask at least m questions to compute d (since it knows
nothing about t[no+ 1, n]). Moreover, we can fix tin1-m+j]= cZ-{a, b}, where
t[ nl m +j] fi[j]. Since the pattern is not periodic, no c occurs in it, and t[ no + 1, n]
/311, m], there is no occurrence of the pattern in t[1, n-m+ 1] and the least integer
for which an occurrence can start is n + 1. Moreover, no comparison has been made
beyond n.

We now assume that m_>-4. We set/311, m]= alba l+ (/311, m]= aba +2, respec-
tively), => 1. The proof idea here is similar to the one used in Theorem 1 for the case
m=>3: We have a text t[1, no] for which the bound holds and we extend it to a text
t[1, n] for which the bound also holds, n and t[no+ 1, n] must be chosen so that
the algorithm is "fooled" at least once. However, there are some differences here that
make the proof more involved. In extending t[ 1, no] to t[1, n], the adversary in some
cases must force the algorithm to make at least two mistakes to rule out occurrences
of the pattern in two contiguous text positions. To achieve this goal, the adversary
takes advantage of the fact that when the algorithm has discovered that t[k] fi[j]
and kills an occurrence of the pattern in the text, the algorithm does not know which
character of E is t[k].

Assume that there exists a text t[1, no] that contains no occurrence of the pattern
and that satisfies the following constraints:

(a) d(t[no-m + 1, no],/311, m])= 1; the algorithm does not know which character
of E is t[no-m +j] /3[j] and no comparison has been made beyond no.

(b) If j< m or j m and if t[no] a but may be equal to b, then

c on-li,e no, m >= no +

(c) Ifj=m and t[no]a, b then Co,_li,e(no, m)>-no+ [no/mJ.
Note that for no m, Lemma 1 guarantees that there is a text satisfying those

constraints. Indeed, let x =/3[ 1, m] and y t[1, m] in Lemma 1. The algorithm knows
nothing about y. By Lemma 1, y can be picked such that d(x, y)= 1. Let y[j] x[j].
The algorithm does not know which character of E is y[j] and no comparison has
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been made beyond no-- m. Thus, (a) is satisfied. If r./= 1, the algorithm has performed
at least no comparisons and knows only that y[j] a (when x[j] a) or that y[j] b
(when x[j] b). Thus (b) is satisfied when j < rn orj rn and when t[m] a but may
be equal to b. If r 2, the algorithm has performed at least no + comparisons and it
knows that t[j] a, b. Thus (c) holds when j= m and t[m] a, b.

We extend t[1, no] to a text t[1, n] that contains no occurrence of the pattern
and that satisfies the same constraints as t[1, no]. We consider three cases" j < rn and
t[no-rn+j]#/3[j];j=m and t[no]a, but it may be equal to b; and j=rn and
t[ no] : a, b.

(1) t[ no- m +j] /3[j] and j < m. We first show that t[ no- rn +j] can be fixed so
that no occurrence of the pattern in the text can start in t[no-rn + 2, no-l+i-1],
where =max (1,j- l- 1) (i max (1,j-/-2), respectively). Indeed, since (a) holds
for t[1, no], t[no-re+j] is not known to the algorithm and can be any character
e E-{a, b}. The adversary sets t[ no-m +j] c and tells it to the algorithm for free.
By Lemma 2 (with w t[ no- rn + 1, no]), t[ no- + i, no] a !-i+1 is the longest suffix of
t[no-m + 1, no] to match a prefix of/3[1, m]. Therefore, the next candidate position
for an occurrence is no- + i. Since the algorithm knows nothing about t[ no + 1, no + +
+ (t[ no + 1, no + + + 2], respectively) and it is on-line, it must ask questions about

these text positions in order to rule out no-l+ as an occurrence. If the adversary
could allow an occurrence of the pattern in the text, it would set t[ no + 1, no + i-
a -1, t[no+i+2, no+l+i+l]=a (t[no+i+2, no+l+i+2]=a+, respectively), and
it would answer the questions about these text characters consistently with this choice.
Then it would choose t[no+ i, no+i+ 1] and nl according to the first question asked
about these characters and in such a way as to force the algorithm to make a mistake.
Unfortunately, the adversary cannot allow an occurrence of the pattern in the text.
Thus it cannot fix t[no+l, no+i-1] and t[no+i+2, no+l+i+l] (t[no+i+2, no+l+
+ 2], respectively) a priori, but it must fix these text characters on-line, as the algorithm

keeps asking questions about them. Assume that the algorithm has asked e questions
about t[no+l, no+i-1] and t[no+i+2, no+l+i+l] (t[no+i+2, no+l+i+2],
respectively) and it has discovered that e’_-< e of these characters are "a." (The strategy
of the adversary is to answer "yes" only to questions "t[j] a," for any j such that
no+l<-j<-no+i-1 or no+i+2<=j<=no+l+i+l (no+i+2<=j<=no+l+i+2, respec-
tively).) Let the e + 1st question be about t[no + i, no + + 1 ]. The algorithm asks:

(1.1) "t[no+ i] a?" or "t[no+ i+ 1]= b?". We discuss only the case "t[no+ i]
a ?", since the case "t[no+i+ 1] b?" can be handled similarly. The answer to the
question is "no." Let start no + i. The adversary sets n no+ + + 1 start + rn 1
(n no + + + 2 start + rn 1, respectively). Let y[ 1, rn t[ start, n] and x[ 1, m
/3[ 1, m ]. As in Lemma 1, at the time the question "y[ + t[ no + i] a ?" is answered,
the algorithm already knows that k e’+(no-start + 1) characters of y match the
corresponding characters of x. Moreover, s=/-i+2 ?.r e-e + 1 since the algorithm
has asked e+ 1 questions about t[no+l, n]=y[l-i+2, m] and it has discovered e’
matches with x[l-i+2, m]. In particular, r+= 1 since t[no+i] a and this is the
first comparison for t[no+ i]. By Lemma 1, the rn- k characters of y not known to
the algorithm can be chosen (on-line) so that d(y, x)= and so that the algorithm is
forced to ask at least m k + r,- ,- 1 questions to discover that d (y, x) 1, where r,
is the number of symbols in {a, b} that cannot be assigned to y[j’] x[j’]. Moreover,
the algorithm does not know which character of is y[j’]. The algorithm has asked
e preliminary questions about t[ no + 1, no + 1 and t[ no + + 2, no + + + (t[ no +
+ 2, no + + + 2], respectively), "y[ + 1 t[ no + i] a ?". Thus the number of ques-

tions asked to rule out an occurrence at start no + is e + (rn k + r,- ,- 1) + 1
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n,- no+ rj,- ,+ e- e’. Therefore, Cm_line(tll, m) Clon_line(tlo, m)+ tl,-- tlont- rj,-- j,nr-

e e’. Since we are considering the case j < m, we can use the bound in (b) and obtain

(I) clo_(nl, m)>-_ n + + ,- ,+ e-e’.

By Lemma 1, rj,-,>=l. Since e-e’>=0, n=no+l+i+l (n--no+l+i+2, respec-
tively), m 21 + 2 (m 21 + 3, respectively), and (I), we obtain that

n’-mlCo,,_li,e(n m)>= n +
m

for j’ < m. Thus, if j’ < m or j’= m and t[n] a but it may be equal to b, t[1, n]
satisfies the bound in (b). Assume now that j’= m and t[n] y[m] a, b. Note that
r 2. Since e e’ + 1 s=l-i+2 ?s >- r+ + ?m and r+ 1, e e’ ?m. Using the iden-
tities rm 2, n no + + + (n no + + + 2, respectively), m 21 + 2 (m 21 + 3,
respectively), the inequality e-e’ ? and bound (I), we obtain that Co,_i,e(n, m)
n + [n/m]. Thus t[1, n] satisfies the bound in (c). It also follows by Lemma 1 that
the algorithm does not know which character of Z is t[n-m +j’] and no comparison
has been made beyond n, so (a) holds for t[1, n]. Obviously, there is no occurrence
of the pattern in t[1, n].

(1.2) "t[no+ i] b?" or "t[no+ i+ 1] a?". The answer to the question is "no."
Therefore there can be no occurrence of the pattern at no- + i, but there may be one
at no- + + 1 since t[ no- + i, no] a -i+ . Let start no- + + 1. The adversary sets

n no + + + 2 start + m 1 (n no + + + 3 start + m 1, respectively). Using
arguments similar to the ones in (1.1), we can show that it is possible to choose
t[start, n] so that t[1, n] contains no occurrence of the pattern and it satisfies
constraints (a), (b), and (c).

(2) j= m, t[no]fi[m]= a, but t[no] may be equal to b. We first show that no
occurrence of the pattern can start in [no-m+2, no-l-1]. Let v=fi and w=

t[ no-m + 1, no] in Lemma 2. Indeed, if t[no] c, by Lemma 2 the next candidate for
an occurrence is no + 1. If t[ no] b, by Lemma 2, the next candidate for an occurrence
is no-I. Since t[no] is not known to the algorithm and the algorithm is on-line, it must
test the minimum of those two candidates, i.e., no- I. The adversary sets n no + + 1
start + m (n no+ + 2 start + m 1, respectively). Let y[1, m] t[start, n] and
x[ 1, m] fi[ 1, m]. As in Lemma 1, the algorithm knows that k no-start characters
of y match the corresponding characters of x. Moreover, r]+ since y[l+ 1] t[no]
Z-{a} and ..=+2 t.= 0, since no comparison has been made beyond no. By Lemma
1, the m-k characters of y not known to the algorithm can be chosen (on-line) so
that d(y,x)=d(t[start, n],fi[1, m])= and so that the algorithm is forced to ask at
least m- k + r,-?i,-1 questions to discover that d(y, x)= 1, where r, is the number
of symbols in {a, b} that cannot be assigned to y[j’] t[start +j’- 1] fi[j’]. Moreover,
the algorithm does not know which character of Z is t[ start +j’- ]. Thus the algorithm
has asked at least m- k + r,-,-1 n- no+ ,-, questions (all about t[no, n]) to
rule out an occurrence at start no I. Since we are assuming that j m, t[ no] fi[m
a and t[no]Z-{a}, the bound in (b) holds for Co,_,e(no, m), i.e.

C ,n-line nO, m) no +
m

and we obtain bound (I) for C,n.tine(rtt, m), with

e e’= Z.t--,+2 ?c 0.
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We can use the exact same arguments following bound (I) in case (1.1) (with i=0)
to show that t[1, n] satisfies constraints (a), (b), and (c) also in the case being
considered here.

(3) j m, t[no] #fi[m] a and t[n0] a, b. Since t[no] c, by Lemma 2 (with
w t[no-m + 1, no]), the next candidate position is start no+ 1. The adversary sets

n no + 21 + 2 start + rn 1 n no + 21 + 3 start + rn 1, respectively). Let
y[1, m] t[start, nl] and x[1, rn] =/311, rn]. The algorithm knows nothing about y since
no comparison has been made beyond no. By Lemma 1, y can be chosen (on-line) so
that d(y, x) d(t[start, n],/311, m]) 1 and so that the algorithm is forced to ask at
least m + rf-,-1 questions to discover that d(y, x)= 1, where r, is the number of
symbols in {a, b} that cannot be assigned to y[j’] t[start+j’-1]#/3[j’]. Thus, the
algorithm has asked at least m + r,- ,- 1 nl- no+ r,- ,- 1 questions (all about
t[ no, n]) to rule out an occurrence at start no + 1. Since we are assuming that j m,
t[no]#fi[m]=a and t[no]2,-{a,b}, the bound in (c) holds for Clon_line(no, m), i.e.,

Con_line(no, rn) _>-- no +

and we obtain

(II) Con_line(I’ll, m) >-- n, + + rj,- ,- 1.

By Lemma 1, rj,-,>-1. Since n- no+ m and (II), we obtain that

C,n_line (t/l, m) => n, +
m

for j’ <_- m. Thus, if j’ < rn or j’ rn and t[nl] # a but it may be b, t[ 1, nl] satisfies the
bound in (b). Assume now thatj’ rn and t[n]=y[m]# a, b. Note that r,= 2. Recall
that ?,--0. Using the identities r,-Fm =2, nl no+ m, and (II), we obtain that
C,n-line(nl, m) >- nl + [nl/m]. Thus t[1, n] satisfies the bound in (c). It also follows by
Lemma 1 that the algorithm does not know which character of E is t[n-m +j’] and
no comparison has been made beyond n, so (a) holds for t[1, n]. Obviously, there
is no occurrence of the pattern in t[1,

Now the theorem follows inductively.
We observe that for rn 1, 2, 3, the bound of Theorem 2 is tight for any pattern.

For m 1, 2, our claim follows from the fact that Con_line (M, m) n. For m 3, we have
already shown that if p[ 1, 3 aaa or p[ 1, 3] is not periodic, then the Colussi algorithm
can find all of its occurrences in any text of length n in at most n comparisons. Thus
we have to show that it is possible to find the leftmost occurrence of p[1, 3] aba in
n comparisons. In the pseudocode given below, is a potential start of an occurrence
of aba in t[1, n].

begin
i<- 1; found <-false;
while _-< n -2 and found false do
begin
if t[i+l]#b then i<-i+l;

else
begin
if t[i]#a then i-i+2;

else
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begin
if t[i+2] a then i-i+3;

else found true;
end

end
end

end

Letj > 1 be the smallest integer such that t[j] b in t[ 1, n ]. Note that the algorithm
performs j-1 character comparisons to find it since t[1] is not compared. If the jth
comparison is not successful, the next occurrence can start at t[j+ 1, n] and the
algorithm tries to find the leftmost occurrence of aba in t[j + 1, n and it has performed
at most j comparisons. If it is successful, the j + 1st comparison will either cause the
algorithm to stop or the algorithm tries to find the leftmost occurrence of aba in
t[j + 2, n] and, in any case, it has performed at most j + comparisons. By induction,
we get that the algorithm performs at most n comparisons to find out whether aba
occurs in t[ 1, n].

3. Off-line algorithms. We now consider algorithms that can ask questions of the
form "t[i]= t[j]?" or "t[i]=p[k]?" and have access to the whole text rather than
being restricted to a sliding window of size m.

THEOREM 3. Assume that IEI _-> 3. For 0 < m <= 2, c(n, m) >= n for infinitely man),
n’s. For m>=3, c(n,m)>=n+ [n/2mJ for infinitely many n’s.

Proof The case m 1, 2 is as in Theorem 1 and is therefore omitted. So assume
m => 3. The adversary chooses fi[ 1, m a lba !([ 1, m a Iba 1+1, respectively) for m
odd (even, respectively), => 1. The adversary chooses n m(2q + 1), q >- O.

The text is divided in 2q + consecutive blocks, each of size m. These blocks are
numbered 0, 1,..., 2q. The ith block is t[im+ 1, (i+ 1)m]. For each even-numbered
block, the adversary sets the corresponding text characters to a lba (alba I+1, respec-
tively). This will force any algorithm to perform at least m(q + 1) comparisons between
text characters in the even blocks and pattern or text characters. (Recall that the
algorithm can ask questions of the form "t[i] t[j]?" or "t[i]=p[k]?".)

We concentrate only on the questions that the algorithm asks in order to find
occurrences of the pattern in the text starting or ending in positions in odd-numbered
blocks.

The adversary puts in each odd block either the string a lbal (alba 1+1, respectively)
or al-lbalb (al-lbaba, respectively) depending on the questions that the algorithm
asks during its execution (we specify later how this is actually done).

Note that if a lba is placed in an odd block, an occurrence of the pattern starts
in the first position of that block. Given that even blocks t[(i-1)m+l, im]=
t[(i+ l)m+ l, (i+2)m]-- alba (alba l+, respectively), the placement of al-!balb
(a !-1 ba lba, respectively) in t[ im + 1, (i / 1)m] completes two occurrences of the pattern
in the text, one starting at im and the other at im + l+ 1. For each odd block t[im +
1, (i+ 1)m], the adversary sets t[im+ 1, im+ l- 1]= t[im+ /+2, im+21]-- a !-1 (and
t[(i+ 1)m] a, respectively), since, irrespective of which string is placed in t[im +
1, (i + 1)m], those parts of t[ im + 1, (i + 1)m] are equal to a !-1 (a1-1 and a, respectively).
Each question about those text characters is answered consistently with the choice of
the adversary. The placement strategy of a string in an odd block is such that the
algorithm must first waste at least one question on that block and then it can find the
occurrences of the pattern that start or end in the block. Therefore, the algorithm
receives at least one "no" and m "yes" answers for each odd block. From now on,
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we will describe the placement strategy and count the "no" answers that the algorithm
receives.

We say that t[k] is specified if the adversary has assigned a character to it. Similarly,
an odd block t[ im + 1, (i+ 1)m] is specified when the adversary has placed either a ba
(aba+, respectively) or a-bab (a-baba, respectively) in it. Otherwise, it is
unspecified. Let denote the concatenation operation. Let xi[ 1, 3
t[im+l, im+l+l]ot[jm+21+l], odd. For each position h in t[im+l, im+l+
1] t[im + 21 + 1] let h be its corresponding position in x i[1, 3]. Note that specifying
an odd block consists of setting either x=aba or x= bab, since the remaining
characters of the block have already been specified. Note also that if x x, and j
odd, then x[s] x-i[g] if and only if s--- g (mod 2). Similarly, if x x, then xi[s]
x[g] if and only if s g (mod 2). Unless otherwise stated, from now on, we refer to
odd-numbered blocks simply as blocks. While assigning one of the two strings to blocks
and answering questions, the adversary keeps the following invariant.

INVARIANT 1. At the time t[ im + 1, (i+ 1)m], odd, is specified, the algorithm has
received a "no" for at least one question involving characters in the block and knows
nothing about which characters of the pattern appear in x .

Initially, this invariant is trivially satisfied. The strategy of the adversary can be
outlined as follows. It dynamically maintains an undirected acyclic graph that encodes
the negative answers to the questions that the algorithm asked about unspecified blocks.
Such answers impose constraints on which string has to be placed in a block. Each
additional question involving two unspecified text characters in unspecified blocks is
answered consistently with the graph and then the graph is possibly modified to include
this new question. Each question of the form "t[ h =/3[ r] ?" or "t[ h t[ k] ?", t[ h
unspecified and t[k] specified, is answered so that the algorithm makes a mistake.
Then, the adversary specifies some blocks, including the one in which t[h] is. As is
shown later, this is equivalent to deleting a connected component from the graph.
Each node in the graph corresponds to an unspecified block and each edge corresponds
to a "no" to a question involving two unspecified characters in two unspecified blocks.
Each node in a connected component is assigned one of two colors by the adversary.
Each connected component has a different pair of colors. When the adversary has
enough information to specify a block, all blocks having its color in its connected
component will be assigned the same string. The remaining blocks in the connected
component will be assigned the other string (recall that the adversary has two strings
to choose from). Initially, the graph is composed of q nodes; each is colored differently
and is not connected to any other. The adversary maintains the graph and answers the
questions asked by the algorithm according to the following policy"

(1) The algorithm asks "t[h] t[k]?", where both text characters are unspecified
and they belong to unspecified blocks. Thus, h {ira + l, im+ + 1, im+ 21 + 1} and
k {jm + l, jm + + 1, jm + 21 + 1}, for some and j odd.

(1.a) t[h] and t[k] belong to blocks whose nodes are in the same connected
component and have the same color. The adversary answers "yes" if and only if/-=/.
(mod 2). Since x and x will both either get aba or bab, the answer is consistent.

(1.b) t[h] and t[k] belong to blocks whose nodes have different colors but are
in the same connected component. The adversary answers "yes" if and only if//
(mod 2). Since x will be assigned aba (or bab) while x will be assigned bab (or aba),
the answer is consistent.

(1.c) t[h] and t[k] belong to blocks that are in different connected components
of the graph. The adversary answers "no." Let C and Cz be the two connected
components and let R (R) be the set of nodes of C (C2) having the same color as
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the node of t[h] (t[k]). C1 and C2 must be united and the nodes of C2 must be

consiste,ntly,"painted" using the colors of C. It is done as follows"
h k (mod 2)" Blocks in RI and R2 must be assigned the same string. Since x

and x will both either get aba or bab, the answer is consistent. The graph must be
changed to account for this fact. All the nodes of R2 are "painted" with the color of
R. The remaining nodes in C2 are "painted" with the other color in C. An edge is
added between the blocks in R and Rz to which t[h] and t[k] belong, respectively.

/-=/ (mod 2)" Blocks in R and R2 must be assigned different strings. Since x
will be assigned aba (or bah) while x will be assigned bah (or aba), the answer is
consistent. The graph must be modified. All the nodes not in R are "painted" with
the color of R1. The nodes in R are "painted" with the other color in C. An edge
is added between the blocks in R and R2 to which t[h] and t[k] belong, respectively.

(2) The algorithm asks "t[h]=[r]?" or "t[h] t[k]?", where t[k] is specified
(it may belong to an unspecified block). The answer to the question is "no." The
adversary specifies which of the two strings must be assigned to the blocks represented
by nodes in the same connected component of the node representing block t[im +
1, (i+ 1)m]. Moreover, such a component is removed from the graph. This is done as
follows"

(2.a) /3[r] a. (The same procedure is applied to the case t[k] a.)
/ is odd" Block t[im+ 1, (i+ 1)m] is set equal to at-bab (at-baba, respec-

tively). Therefore, xi= bab and the assignment is consistent with the answer given.
Each block having a node of the same color as the node of t[ im+ 1, (i + 1) m] gets the
same string. The remaining blocks in the component get atba (aba+ respectively)
The com,ponent is removed from the graph.

h=2: Block t[im+l,(i+l)m] is set equal to atba (atba+ respectively)
Therefore, xi= aba and the assignment is consistent with the answer given. Each block
having a node of the same color as the node of t[ im + 1, (i + 1)m gets the same string.
The remaining blocks in the component get at-batb (a-baba, respectively). The
component is removed from the graph.

(2.b) /3[r]=b (the same procedure is applied to the case t[k]=b)" It is the
complement of (2.a) with respect to the parity of/.

(3) The algorithm asks "t[h] t[k]?", where both text characters are specified
(they may belong to unspecified blocks). The answer is "yes" if and only if t[ h t[ k].

Assume that Invariant 1 is satisfied immediately after a connected component is
removed from the graph. Then we show that it is satisfied immediately after the next
component is removed from the graph: Observe that once a connected component of
r nodes is removed from the graph, the algorithm has received at least r negative
answers to questions involving characters in the blocks belonging to the component
(r-1 correspond to edges in (1.c) and one corresponds to the question asked in (2)).
At the time t[ vm + 1, (v + 1) rn ], v odd, is specified, the algorithm knows nothing about
which characters of the pattern appear in x v, since those text characters either have
not been compared with pattern characters or the comparison is as in (2.a) and it has
received a negative answer. Therefore, the total number of negative answers is at least
q. Adding the m(2q+ 1) positive answers that the algorithm must receive to find all
occurrences of the pattern in the text (m(q + 1) for even blocks and mq for odd blocks),
we obtain that c(n,m)>-m(2q+l)+q=n+[n/2m] since n=m(2q+l) and q=
[(2q+ 1)/2].

4. Concluding remarks and open problems. We have shown lower bounds for
c ine(n, rn), Con_ine(n, rn), and c(n, rn), respectively. Combining the results of this
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IC1 1< C <: Con_line and on-linepaper with the ones of [4], we have that= Moreover,
Con_line= is the best possible. A number of open problems remain. It would be
interesting to obtain the exact value of C. It is still a challenge to close the gap between
the upper bounds reported in [4] and lower bound presented here for c(n, m),
Con-line(n, m) and Con-line(n, m), respectively. These gaps grow as m grows. Note that
our lower bound for Clon_line(n, m) holds only for algorithms that perform comparisons
of the form "t[i]=p[j]?". It would be interesting to extend it to algorithms that are
also allowed comparisons of the form "t[i] t[j]?". Note that we do not have a lower
bound for c l(n, m), the number of comparisons for off-line algorithms that search for
only one occurrence of the pattern in the text.
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SELF-P-PRINTABILITY AND POLYNOMIAL TIME TURIN(
EQUIVALENCE TO A TALLY SET*

ROY S. RUBINSTEINt

Abstract. The class of self-P-printable sets, those sets that are enumerable in polynomial time
relative to themselves, has been shown to be the same as the class of sets that have small generalized
Kolmogorov complexity relative to themselves [J. Hartmanis and L. Hemachandra, Proc. 3rd Annual
Symposium on Theoretical Aspects of Computer Science, Springer-Verlag, Berlin, New York, 1986,
pp. 321-333] and [J. Balczar and R. Book, Acta Informatica, 23 (1986), pp. 679-688]. This class
properly includes the sets of small generalized Kolmogorov complexity, including the tally sets. The
class of sets polynomial time Turing equivalent to a tally set includes the class of self-P-printable sets
[J. Balczar and R. Book, op. cit.], and the inclusion is clearly proper because every self-P-printable
set must be sparse while there are many nonsparse sets (such as all nonsparse sets in P) that are
polynomial time Turing equivalent to a tally set.

The question of whether or not the class of self-P-printable sets is the same as the class of
sparse sets that are polynomial time Turing equivalent to a tally set is addressed here. Necessary
and sufficient conditions for the equivalence of these two classes are presented. Also presented are
relativizations for all possible combinations of these necessary and sufficient conditions, suggesting
that the nonrelativized solution to the question of this equivalence will be difficult to determine.

Key words. P-printable sets, tally sets, sparse sets, Kolmogorov complexity, relativization,
computational complexity

AMS(MOS) subject classifications. 03D15, 68Q15, 68Q30, 68Q05

1. Introduction. Computational complexity theory is the study of the quanti-
tative aspects of computing. In particular, the time and space needed for the recogni-
tion of various sets has been of primary importance. This study has produced, among
many other things, the definitions of the complexity classes P and NP, the polynomial
hierarchy, and the theory of NP-completeness.

Associated with this is the study of various structural properties of sets. These
structural properties have known important relationships to computational complex-
ities, but they do not correlate exactly. Thus, a direct correspondence between struc-
tural properties and computational complexity does not always hold. We will call
classes of sets defined by these properties structural complexity classes. The most well
known of the structural complexity classes are the classes of sparse and tally sets,
both of which cut across all computational complexity classes. A summary of results
concerning these may be found in [21].

Other structural complexity classes that have been studied include the classes of
sets based on generalized Kolmogorov complexity, the P-printable sets, the self-P-
printable sets, and the class of sets polynomial time Turing equivalent to a tally set
[2], [4], [9], [10], [11], [12], [20].

It has been shown that the self-P-printable sets are precisely those sets that have
small self-relativized generalized Kolmogorov complexity [10], [4], and that the class
of sets polynomial time Turing equivalent to a tally set is the same as the class of sets
having self-producible circuits [4]. It is stated (correctly, though without proof) in
[4] that the class of self-P-printable sets is properly included in the class of sets that
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have self-producible circuits (and therefore are polynomial time Turing-equivalent to
a tally set). These two classes are shown to be different by showing a nonsparse set
that has self-producible circuits and noting that a self-P-printable set must be sparse.
In fact, all sets in P are polynomial time Turing equivalent to the empty set and
therefore have self-producible circuits, regardless of density.

The question of whether considering only sparse sets that are polynomial time
Turing equivalent to a tally set would still yield a proper inclusion then needs to be
addressed. That is precisely what this paper does. Section 3 includes the following
results.

THEOREM 1.1. If there is a sparse set that is polynomial time Turing equivalent
to a tally set and is not self-P-printable, then there exists a tally set T such that there
is a sparse set in FewPT pT.

This theorem has the following corollary.
COROLLARY 1.2. If there is a sparse set that is polynomial time Turing equivalent

to a tally set and is not self-P-printable, then P NP.
A partial converse to the above theorem is also found, giving us a sufficient con-

dition for the existence of a sparse set that is polynomial time Turing equivalent to a
tally set but not self-P-printable.

THEOREM 1.3. If there exists a sparse set in FewP- P, then there is a sparse set
that is polynomial time Turing equivalent to a tally set and is not self-P-printable.

Section 4 provides relativizations involving FewP, suggesting that it would be
difficult to solve the nonrelativized question of whether or not all sparse sets that are
polynomial time Turing equivalent to a tally set are self-P-printable. This includes
an oracle relative to which P FewP and there are no sparse sets in FewP- P, an
oracle relative to which there exist sparse sets in FewP- P, and others.

2. Preliminaries. It is assumed here that the reader has basic familiarity with
the standard notions and classes in complexity theory.

We use the standard lexicographic ordering <_ on strings, and Iwl denotes the
length of the string w. All strings here are elements of {0, 1}*, and all sets are subsets
of {0, 1}*. A tally language is a subset of { 1}*. The cardinality of a set S is denoted

IISII. A c B denotes A c_ B and A B.
Standard polynomial time pairing functions are used, and the pairing of strings x

and y, for example, is denoted (x, Y/. The pairing functions will have the property that
I(x, Y/I -< 2(Ixl + lYl), that (x, y} can be determined from x and y in polynomial time,
and that x and y can each be determined from (x, Y/ in polynomial time. This same

notation, when used for grouping more than two strings, actually denotes successive
applications of the pairing function. All logarithms are base 2.

PSV is the class of functions computable deterministically in polynomial time. For
any set A, PSVA is the class of functions computable deterministically in polynomial
time using A as an oracle.

DEFINITION 2.1. A set A is sparse if there exists a polynomial p such that the
number of strings in A of length less than or equal to n is less than or equal to p(n).

Generalized Kolmogorov complexity, a two-parameter version of Kolmogorov com-
plexity that includes information about not only how far a string can be compressed,
but how fast it can be restored, was introduced by Hartmanis ([9]), whose definition
is presented here.

DEFINITION 2.2. For a (deterministic) Turing machine M and functions g and
G mapping natural numbers to natural numbers, let

KM[g(n), G(n)] {x (Y)[lYl g(Ixl) and M(y) x in G([x]) or fewer steps]}.
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It was shown in [9] that there exists a universal Turing machine Mu such that for
any other Turing machine M there exists a constant c such that

KM[g(n), G(n)] C KM,, [g(n) + c, cG(n) log G(n) + c].

Dropping the subscript, K[g(n), G(n)] will actually denote KM.[g(n), G(n)].
relativizes in a straightforward manner, where

This

KA[g(n), G(n)] {x (y)[lyl _< g(Ixl) and MA(y) x in G(Ixl) or fewer steps]}.

DEFINITION 2.3. A set is said to have small generalized Kolmogorov complexity
if it is a subset of K[c log n, nc] for some c.

DEFINITION 2.4. A set S is polynomial time printable (P-printable) if there exists
a polynomial p such that all the elements of S of length less than or equal to n can
be printed by a deterministic machine in time p(n).

P-printability relativizes (as in a set being pA-printable) by allowing the printing
machine to use an oracle. A set is self-P-printable if it is P-printable relative to itself.

For any finite set A, we let c(A) denote an encoding of A. It is assumed that for
any string x and finite set A, computing c(A U {x}) from c(A) and x and deciding if
x e A from c(A) and x can both be done in time polynomial in Ic(A)l + Ixl. For any
set A and natural number n, let A<-n denote the set of all strings in A of length less
than or equal to n. Then, c(A-<n) denotes the encoding of an initial segment of A.

DEFINITION 2.5. For any set A, enumA is the function that, for each n, on input
0n, produces c(A<-n).

Note that enumA E PSV is equivalent to A being P-printable, and that enumA
PSVA is equivalent to A being self-P-printable.

Allender ([1], [2]) defined the complexity class FewP, a subclass of NP, as follows.
DEFINITION 2.6. FewP is the class of languages that are accepted by nondeter-

ministic polynomial time Turing machines M for which there is a polynomial p such
that for all inputs w, there are fewer than p(Iwl) accepting computations of M on w.

UP [6], [22], [8] is the class of languages in FewP which are accepted by nondeter-
ministic polynomial time Turing machines with unique accepting computations. Both
UP and FewP are subclasses of NP defined by restricting the number of accepting
computations. Densities of accepting computations were previously considered in [18].

We say that a function f majorizes a function g if for all but finitely many n,
f(n) > g(n).

Sets having self-producible circuits, a restricted version of P/poly, were introduced
in [14]"

DEFINITION 2.7. A set A has self-producible circuits if there exist a polynomial
length-bounded function h: {0}* -- {0, 1}* and a set B in P such that the following
conditions hold:

(1) for everyxe{0,1}*,xeA {x,h(01l)} eB;
(2) the function h can be computed relative to A in deterministic polynomial

time.
Note that without the second condition, the class defined would be the same as

e/poly.
For the remainder of this paper, unless otherwise stated, S will denote a sparse

set and T will denote a tally set.
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3. Self-P-printability and polynomial time Turing equivalence to a tally
set. Self-P-printability, a variation of P-printability, has close ties to relativized gen-
eralized Kolmogorov complexity and other structural complexities. It was shown in
[10], [41 that a set is self-P-printable if and only if it has small generalized Kolmogorov
complexity relative to itself.

Sets having self-producible circuits, a restricted version of P/poly, were introduced
in [14] and are studied in [4], where it is shown that the sets with self-producible
circuits are precisely those that are polynomial time Turing equivalent to some tally
set. Reference [4] states without proof that the class of self-P-printable sets is properly
included in the class of sets with self-producible circuits.

The following theorem shows the inclusion.
THEOREM 3.1. Every self-P-printable set has self-producible circuits.

Proof. Let S be a PS-printable set with h the enumerating function (i.e., h with
oracle S is enum and operates in polynomial time). Let B {(x, Y}IY is a list of
strings of length less than or equal to Ixl and x is in the list}. Clearly B P. Now
x S 4== (x, h(01l)} B, so S has self-producible circuits.

COROLLARY 3.2. Every self-P-printable set is polynomial time Turing equivalent
to some tally set.

This inclusion is clearly proper, as every self-P-printable set must be sparse, and
there are many nonsparse sets that are polynomial time Turing equivalent to a tally
set. All sets in P, regardless of density, are polynomial time Turing equivalent to the
empty set, for example.

The question naturally arises as to whether or not the class of sets with self-
producible circuits that are also sparse coincides with the class of self-P-printable
sets. Theorems 3.4 and 3.6 will suggest that this would be difficult to prove either
way. Several proofs will use the relativization of a result by Allender, so it will be
stated here as a proposition.

PROPOSITION 3.3 ([1], [2]). For any set A, there is a sparse set in pA which is
not pA-printable if and only if there is a sparse set in FewPA pA.

We will now compare the class of self-P-printable sets with the class of sparse sets
that are polynomial time Turing equivalent to a tally set.

THEOREM 3.4. If there is a sparse set that is polynomial time Turing equivalent
to a tally set and is not self-P-printable, then there exists a tally set T such that there
is a sparse set in FewPT pT.

Proof. Let S be a sparse set that is polynomial time Turing equivalent to a tally
set T and that is not self-P-printable. If there is sparse set in FewP P, then
there is a sparse set in FewPT pT, and we are done.

Assume then that there are no sparse sets in FewPs Ps. By Proposition 3.3,
our assumption that there are no sparse sets in FewPS P, and the fact that S is
sparse set in pS, S is pS-printable. This is a contradiction, so there are sparse sets
in FewPS pS, and therefore there exist sparse sets in FewPT pT.

COROLLARY 3.5. If there is a sparse set that is polynomial time Turing equivalent
to a tally set and is not self-P-printable, then P NP.

Proof. Let S be a sparse, non-self-P-printable set that is polynomial time Turing
equivalent to a tally set T. By Theorem 3.4 this implies that there exist sparse sets
in FewPT- pT, so pT ? FewpT and pT NpT. By a result in [17], this implies that
PNP. [:]

Corollary 3.5 was previously proven in [4] by other methods, and Theorem 3.4
improves upon this. A partial converse is also obtained.
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THEOREM 3.6. If there exists a sparse set in FewP- P, then there is a sparse set
that is polynomial time Turing equivalent to a tally set and is not self-P-printable.

Proof. The contrapositive will be proven here. Every set in P is polynomial time
Turing equivalent to q}, so if every sparse set that is polynomial time Turing equivalent
to a tally set is self-P-printable, then every sparse set in P is self-P-printable and
therefore P-printable. This implies, by Proposition 3.3, that there are no sparse sets
in FewP P.

The only thing preventing Theorems 3.4 and 3.6 from being converses of one
another is that Theorem 3.4 contains the condition "there exists a tally set T such
that there is a sparse set in FewPT pT,,, while Theorem 3.4 contains the condition
"there exists a sparse set in FewP P."

If we had a theorem that said "There are no sparse sets in FewP- P if and
only if for every tally set T, there are no sparse sets in FewPT pT,,, then the two
conditions would be equivalent, and thus Theorems 3.4 and 3.6 would be converses.
Unfortunately, the techniques of [17] used to prove "P NP if and only if for every
tally set T, pT NpT,, do not appear to work for the existence of sparse sets or for
FewP.

Theorems 3.4 and 3.6 are easily seen to be true converses, however, while restrict-
ing our attention to sparse sets in P as follows.

PROPOSITION 3.7. There exists a sparse set in P that is polynomial time Turing
equivalent to a tally set and is not (self-)P-printable if and only if there exists a sparse
set in FewP- P.

Proof. This follows directly from Proposition 3.3 with the observation that every
set in P is polynomial time Turing equivalent to the empty set.

4. Relativizations of FewP. Theorems 3.4 and 3.6 depend upon the relation
between P and FewP--whether they are the same or, if they are different, whether
there exist sparse sets in their difference. This section presents oracles relative to which
each of these possibilities hold. This suggests that the nonrelativized versions of these
relationships will be difficult to determine. Additional relativizations involving FewP
are also presented here.

First, let us consider the question of whether or not there are sparse sets in
FewP-P. Recall that this hypothesis has been shown to be equivalent to the existence
of sparse sets in P that are not P-printable (Proposition 3.3) and to be a sufficient
condition for the existence of a sparse set that is polynomial time Turing equivalent
to a tally set and that is not self-P-printable (Theorem 3.6).

THEOREM 4.1. There exists a sparse oracle S such that there are sparse sets in
FewPS p.

Proof. Long ([16]) has shown that there exist sparse sets that are not polynomial
time Turing equivalent to any tally set. These sets therefore are not self-P-printable.
Let S be such a set. S is trivially in pS. There is thus a sparse set that is in pS but
is not PS-printable: S itself. By Proposition 3.3 this implies that there is a sparse set
in FewP pS. D

Clearly, there are oracles relative to which there are no sparse sets in FewP- P,
such as the oracles relative to which P NP, but it is desirable to find one that is
not quite so trivial. Specifically, we want an oracle relative to which P FewP and
there are no sparse sets in FewP P. Kurtz ([15]) constructed an oracle relative to
which P NP and there are no sparse sets in NP P. It turns out that the oracle
he constructed in fact separates P from FewP as well.
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THEOREM 4.2. There exists a sparse oracle A such that pA FewpA and there
are no sparse sets in NPA pA.

Proof. The proof of this theorem is not a construction, but a proof that the oracle
constructed by Kurtz ([15]) which separates P and NP with no sparse sets in their
difference also separates P and FewP. The actual construction will not be shown here,
nor will the proof that relative to the oracle there are no sparse sets in NP- P. Only
the assertion that the oracle separates P and FewP will be proven.

To begin with, it is necessary to understand some of the ideas and notation used
in [15]. The following passages are from page 114 of that paper:

Let LA denote the language consisting of all strings a for which there exists
a - of the same length such that a- E A. In notation, LA (a (3-)[la
I-I & ,, A]}.

To ensure NP P we will construct A so that LA is not in pA. (It can be
easily seen that LA is in NPA for all oracles A.)

Our other goal is to ensure that there are no sparse sets in NPA pA. To
do this, we will attempt to code the sparse sets in NPA into A so that they
can be recovered in polynomial time. Let NpAe denote the eth NPA language in
some standard enumeration. Let pe denote the etA polynomial in some standard
enumeration of the polynomials. We can assume without loss of generality that
NPA is computable in nondeterministic time pe;

In order to describe the coding strategy, we first describe a tripling function
with certain technically important properties. Each triple e, i, n will determine
an odd integer ke,i,n unique to it. We will use the strings of length ke,i,n to code
elements of NPeA of length n whenever there are fewer than pi(n) such elements.
We may assume that ke,i,n is computable (in unary representation) in polynomial
time from n (also in unary representation) for fixed e and i, and furthermore that
ke,i,n is greater than pe(n), n, and pi(n)

Now, if NpAe has fewer than pi(n) members, we will include the string
q0ke,,’-n in A if and only if a is in NpAe. Notice that because this coding

string is of length ke,i,n, it can be uniquely parsed
By the definition of LA, it can be seen that if A is sparse, then LA is in FewPA.

It will be shown here that the oracle A constructed in [15] is sparse.
Let the notation A=ke,, denote the set of strings in A of length exactly k,i,n.

Only strings of length ke,i,n for some e, i, and n are added to A in the construction
in [15]. By the above, if A=,, is nonempty, then the number of strings in NpAe
of length n is bounded by p(n). This implies that IIA=k,’, - p(n). But ke,,, is
greater than pi(n), so IIA=k,’, < ke,i,n. This means that the number of strings in
A of length m (substituting m for ke,,n) is less than m, so A is sparse. 0

COROLLARY 4.3. There exists a sparse oracle A such that pA FewpA and
there are no sparse sets in FewPA pA.

Next it will be shown that there exist oracles for each of the four combinations
of equality/inequality between P, FewP, and NP. First, the oracle constructed in
[3] relative to which P NP clearly makes P FewP NP. Next, the oracle
constructed in [19] relative to which P - UP NP clearly makes P FewP NP.
The last two combinations require construction.

THEOREM 4.4. There exists an oracle B such that pB FewpB NpB.
Proof. This proof uses techniques similar to those found in [3], [19], and [13]. For

any set A, define L(A) {x (Y E A)(ly Ixl)}. The function e is defined as

e(0) 2 and e(n + 1) 22(). B will be constructed so that L(B) NPs -pS
and pB FewpS. p/A and NPA will, respectively, represent the deterministic and
nondeterministic ith oracle Turing machines in some standard enumeration with oracle
A. They will also represent the languages of these machines, as determined by context.
The running time of pA and NPA will be bounded by n. B(n) will represent the set
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of strings in B prior to stage n.
B will be constructed so that the following two requirements are met. First, for

all i, pS L(B), thus ensuring L(B) pB. Note that for any set B, L(B) e NPB,
so this requirement actually ensures L(B) E NPB pB. The second requirement is
that for all i and j, either there exists a string x such that NPB(x) has greater than

Ixlj accepting computations (i.e., NPs FewPB) or NPB e pB. This ensures that
pB FewpB.

This will be accomplished by considering two types of conditions and what it
means for them to be fulfillable, and then fulfilling some of them. The first type of
condition, condition i, is considered to be fulfillable at stage n if e(n) < 2e(’0. The
second type of condition, condition <i, Jl, is considered to be fulfillable at stage n if

there exists a string x and a set D of strings of length e(n) such that NpB()uD (x)
has more than Ixlj accepting computations and Ixl < e(n + 1). We assume a total
ordering on these conditions, such as letting the number 0i represent condition i and
letting the number 1 <i, j> represent condition <i, j). Initially, all conditions are marked
unfulfilled.

The construction is as follows. At stage 0, let B(0) A, where A is a PSPACE-
complete set containing only strings of odd lengths. We will add only even length
strings (specifically, only strings of length e(n) will be added at stage n), so B can be
considered to be the disjoint union of two sets: A and the sets of strings added later.

At stage n, find the least fulfillable condition not yet fulfilled. If no such condition

exists, go to stage n+ 1. Otherwise, if this condition is condition i, run pS() on 0e(n)

If this accepts, simply mark condition i fulfilled. If this rejects, put the least string of
length e(n) not queried in the computation of pS(n)(0()) into S and mark condition
i fulfilled. Because there are at most e(n) queries in this computation (there are at
most that many steps) and e(n) < 2(’) (by the definition of fulfillable), we know
that such a string exists.

If the least unfulfilled fulfillable condition is condition <i, jl, add the elements
of the set D (from the definition of the condition being fulfillable) to B and mark
condition <i,j fulfilled.

There are a number of observations to be made about the oracle B thus con-
structed. When fulfilling condition i, we ensure that pS L(B) as follows. If

pB(,) (0r(n)) accepts, then no strings of length e(n) are added to B, so 0(’) @ L(B).
If pS(n)(0(,)) rejects, some string of length e(n) not affecting this computation is
put into B, so all strings of length e(n), including 0(’0, are in L(B). Strings added to

B at stage n -t- 1 and later are of length e(n + 1) 22() and greater, so they cannot
be queried by pS() and therefore cannot affect the computation.

For every i there exists an n such that for all n’ > n, e(n’) < 2(’), so every
condition i becomes fulfillable and remains so until it is eventually the least unfulfilled
fulfillable condition, at which time it is fulfilled. Thus, for every i, pS L(B), so

L(B) pB.
NOW consider NP In fulfilling condition (i, j>, by adding D to B we are

tempting to keep NP out of FewPB. If for all j, condition ({, j> is fulfilled, then we
have succeeded in this.

It will now be shown tha if this is not the case, i.e., if NPB FewPB, then
NPB 6 pB, so pB FewpB. If condition <{,j> is not fulfilled, then for all j’ > j,
condition <i, j’> is also not fulfilled, so let j be he least j such that condition <i, j> is
unfulfilled.
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Membership in NPs can be determined using the following algorithm by a pB
machine. On input x, let n be the unique number such that e(n- 1) _< log Ix[ < e(n).
For sufficiently long x, Ix[ < e(n -b 1) and condition (i, J/is not fulfillable at stage n,
so we assume both of these to be true. Because all strings in B(n)-A have length less
than or equal to e(n- 1) _< log [xl, 2Ix queries to B (one for each string with length
less than or equal to log Ixl) is sufficient to deterministically construct B(n) A.
Strings added at stage n and later have length greater than or equal to e(n) >_ log ]x[,
so they cannot be inadvertently added in the construction of B(n) A.

If (W, W’) are disjoint sets of strings of length e(n), W C B and W’ C_ B, define
an accepting computation of NPi with respect to (W, W) as an accepting computation
by NPi where a query y is answered as follows. If [Yl <- e(n- 1), then answer "yes"
ify e S (i.e., y e B(n)) and "no" ify e B (i.e., y e B(n)). If [y[- e(n), then
answer "yes" if y E W, "no" if y E W, and consistently with the other queries in
the computation if y is in neither W nor W’. Because Ix[ < e(n -b 1), we know that
queries of length greater than e(n) cannot be in B(n), so they will always be answered
"no." Queries of odd length are answered according to their membership in A.

The queries in neither W nor W and their answers are stored in a table called the
core of the accepting computation. If S is the core of an accepting computation, Syes

and S" will denote those queries answered "yes" and "no," respectively, that appear
in the core. The same symbol will sometimes be used to denote both an accepting
computation and its core.

LEMMA 4.5. Let (W, W’) be disjoint sets of strings of length e(n), W c_ B and
W C_ B, and condition (i,j) not fulfillable at stage n. If S1,S2,’",S]x]J+I are the
cores of [xlJ -b 1 different accepting computations of NPi(x) with respect to (W, W’),
then there exists kl and k2, 1 _< kl < k2 _< Ix]j + 1 such that ((SklYes N ’k2Jcn U (S"yesSk )) (i.e., they have at least one query in common with different answers).

Proof. If this is not the case, then D (U__[+ iYes. U W) would fulfill condition
(i, j) at stage n, which is a contradiction. D

Continuing now with the algorithm, initially let W W }. Repeat the
following loop until x is either accepted or rejected, or until Ixl iterations of the loop
have been made. Guess a set of Ix[j accepting computations of NPi(x) with respect
to (W, W’) that are consistent with each other, if it exists. If there are fewer than [x[J
consistent accepting computations, guess instead a set with the greatest number of
mutually consistent accepting computations. This can be done deterministically using
oracle B because it includes a disjoint PSPACE-complete oracle. If no such accepting
computation exists, reject. For each accepting computation in the set, check the
strings in its core with the oracle B. If one or more of the cores agree with B, accept;
otherwise update W and W by putting the queries with "yes" answers into W and
the queries with "no" answers into W and repeat the loop.

If x NPB, let S be an accepting computation. Each iteration of the loop
determines at least one query in S in one of two possible ways. If [x]J consistent
computations are found, because S is also an accepting computation of NPi(x) with
respect to (W, W’), S along with the guessed computations makes [xlJ q- 1 accepting
computations, so the above lemma applies. Because the guessed computations are
mutually consistent, the disagreement must be with S. If fewer mutually consistent
accepting computations are found, there must be some disagreement between the
query answers of one of the cores in the largest set of mutually accepting computations
and S; otherwise S would be included in this set, in which case all the queries in S are
determined. Because S contains at most Ixl queries, that is the maximum number
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of iterations of the loop required to determine an accepting computation of NP(x)
with respect to (W, W’) that agrees with B, so x can be accepted.

If no such accepting computation is found within Ixl iterations, then there is no
accepting computation S, so x is rejected.

Finally, using techniques based upon those in [7], where an oracle was constructed
to separate UP from both P and NP, an oracle will be constructed relative to which
not only is FewP separated from both P and NP, but relative to which P
FewP NP.

Let us first describe a simple board covering problem, a variation on that in [7]
(where it is called a pebbling game). An m x m board is an m x m matrix over {0, 1}
with its m2 squares denoted bj, where 1 <_ i,j _< m. A square bj is pebbled (i.e.,
there is a pebble on that square) if and only if bj 1. An m x m board is said to be
covered if for all i and j, 1 _< i, j _< m, b 1 and either b 1 or b 1 (or both).
To cover an m x m board clearly requires at least m2/2 pebbles, the number to cover
half the squares. This is as described in [7].

We extend this with the following. For any k, an m x m board is said to be
k-weakly-covered if b 1 for all i inclusively between 1 and m and if for every set
I c {i 1 _< i _< m} with cardinality greater than (log m)k, there exist distinct
i,j E I such that bj 1 or bj 1 (or both). For all m > 1, 0-weakly-covering an
m x m board is equivalent to covering it. If a board is k-weakly-covered, it is also
(k + 1)-weakly-covered.

LEMMA 4.6. To k-weakly-cover an m xm board requires at least m(m-1)/z(z-1)
pebbles, where z- [(log m)k / lJ.

Proof. To k-weakly-cover an m x m board, it is necessary that for every I
1 <_ i _< m} with cardinality z [(log m)k + lJ there exist distinct i, j E I such that
bj 1 or b 1. If this property holds for I, we say that I is satisfied. We say that
a pair i, j is satisfied if bj 1 or bj 1. In this proof only I’s of cardinality z will
be considered.

So at least (m)z many I’s must be satisfied. A given pair i,j occurs in (m--2z_2)
many I’s, the number of ways the remaining z 2 elements of I can be chosen from
the remaining m- 2 numbers between 1 and m after fixing i and j. Thus, satisfying
a pair i, j satisfies at most (m-2z-2 I’s, so

pairs must be satisfied, requiring that many pebbles. D
This lower bound is not intended to be tight, and does not even take into account

the fact that the diagonal must be pebbled. It is, however, sufficient for its use in the
following theorem.

THEOREM 4.7. There exists a recursive oracle C such that pC upC
FewPC NPC.

Proof. The proof begins with the following definition.
DEFINITION 4.1. For any oracle X, we define the following three sets:
Lo(X) {0n there exists a y e X such that lYl- n and n modulo 3 is 0},
L1 (X) {0n there exists a y e X such that lYl- n and n modulo 3 is 1},
L2(X) {On there exists a y e X such that lYl- n and n modulo 3 is 2}.

Since this result was first presented in [20], Beigel ([5]) independently constructed an oracle that
provides finer separation of classes based on the number of accepting computations.
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We will say that a number is "m0" ("ml", "m2") if modulo 3 it is equal to 0 (1,
2, respectively).

For every oracle C with at most one string per m0 length and at most two strings
per ml length, Lo(C) e UPC, L(C) E FewPC, and L2(C) e NPC, so it suffices to
construct C as such, with the additional requirements that Lo(C) pC, L(C)
UPC, and L2(C) FewPc.

The construction will be done using three types of stages: stage s, stage s, and
stage s". At stage s we will ensure that pC Lo(C), where i s, adding only m0
length strings, at most one per length. Doing this for every s tells us that pC

_
upC.

At stage s’ we will ensure that either NPC L(C) or that NpC accepts some
string with more than one accepting computation, where i s. This will be accom-
plished while adding only m length strings, at most two per length. Doing this for
every s tells us that UPC FewPC.

At stage s", where s (i, j), we will ensure that either Npc LI(C) or that
NP accepts some string x with greater than Ixlj accepting computations. This will
be accomplished while adding only m2 length strings. For a given i, fulfilling the
second alternative for every j tells us that NpC FewPC. Because there must be
some i such that NpC L(C), satisfying every s" tells us that FewPc NPC.

The order in the construction will be stage 1, stage 1, stage 1, stage 2, stage 2,
stage 2, etc. Initially, m- 0 and C -.

At stage s, choose an m0 integer n large enough that n > m and n < 2n, where
i- s. Run pC(8) on On. If pC(8)(0n) accepts, set m 2n and. continue to the next

stage. If pC(s)(0n) rejects, add to C the least string of length n not queried during
the computation. Because there are at most n queries (there are at most that many
steps) and n < 2n, we know that such a string exists. Set m 2n and continue to
the next stage.

At stage s, choose an m integer n large enough that n > m and n < 2n-l,
where i s. If there is some string x of length less than or equal to n such that

NPC(’) (x) has more than one accepting computation, add nothing to C, set m 2n,
and continue to the next stage.

If for every x of length less than or equal to n, NpC(’)(x) has at most one

accepting computation, then run NpC(’) on 0n. If this accepts, add nothing to C,
set m 2n, and continue to the next stage. If NpC(’) (0n) rejects, add a nonempty
set X of strings of length n to C such that NpC(’)Uz either rejects On or accepts
On ambiguously, and IIXl[ 1 or IIXil 2. (Lemma 4.8 will show that such an X
exists.) Then set m 2n and continue to the next stage.

At stage s’, where s (i, j), choose an m2 integer n large enough that n > m,
u+j < 2n/4, and (nj + 1)(n) < 2n/4. If there is some string x of length less than or

equal to n such that Npc(’’) (x) has greater than [xld accepting computations, add
nothing to C, set m 2n, and continue to the next stage.

If for every x of length less than or equal to n, NP(s’’) (x) has at most Ixlj
accepting computations, run NpC(’’) on On. If this accepts, add nothing to C, set

m 2n, and continue to the next stage. If NpC(’’) (On) rejects, add a set X of strings

of length n to C such that NpC(s’’)Ui (On) either rejects or accepts with greater than
nd accepting computations. (Lemma 4.9 will show that such an X exists.) Then set
m 2n and continue to the next stage.

LEMMA 4.8. In stage s, where i s, at the point where Npc (s’)(On) rejects,
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there exists a set X of strings of length n such that NPCi (s’)UX (0n) either rejects or
accepts ambiguously, and IIXII 1 or IIXII 2.

Proof. The set X can be constructed as follows. For each string x of length n,
determine the number of accepting computations of NP/C(8’’)U{x} (On). If the number
is either 0 (i.e., it rejects) or is greater than one, X (x}.

Otherwise, we have a situation where NPi(’) (0n) rejects, but for each string

x of length n, NPCi("){X}(On) accepts unambiguously. An accepting path of

NP(s’){} (0n) is called a critical path .for x. Over all the x’s of length n, there
are then a total of at most 2n critical paths. Denote cr(x) as the set of queries of

length n in the critical path for x. For each x, x e cr(x) because NPCi(’) (0n) rejects,

while NP/c(’){x} (On) accepts.
Adding a string y of length n to the oracle cannot affect the computation of the

critical path for x if y cr(x). Thus, if we can find a pair of strings of length n
such that neither is in the critical path of the other, then the set of these two strings

qualifies as X so that there is more than one accepting computation of NpCi(8’)x (On).
To show that such a set exists, the problem of finding the strings of length n that

do not appear in each other’s critical paths can be modeled with the aforementioned
board covering problem. The board has dimensions 2n x 2n, where each dimension
represents the set of strings of length n in their standard lexicographical ordering.
For any pair of strings xl,x2, each of length n, bl 1 = x2 E cr(xl).

The total number of critical paths is at most 2n, each with at most n queries, so
the total number of queries in the critical paths is at most ni2n < 2n-12n 22n-1
(because we chose n large enough that n < 2n-l). The minimum number of pebbles
needed to cover a 2n x 2n board is 22n/2 22n-l, so there are not enough queries to
cover the board.

Because the 2n x 2n board cannot be covered, it must be that either for some
x, bxx 0 (which is not the case in this setting) or there exist x and x2 such that

blx bxxl 0. This implies that {x, x2} qualifies as X so that there is more than

one accepting computation of NpC(’)Ux (On). (The description for this stage, with
the exception of the restriction of the oracle to have at most two elements added, is
contained in different words in [7].)

LEMMA 4.9. In stage s", where s (i, j>, at the point where NPCi (’’) (On) rejects,

there exists a nonempty set X of strings of length n such that NPCi (’’)x (0n) either
rejects or accepts with greater than nj accepting computations.

Proof. The set X can be constructed as follows. For each string x of length n,
determine the number of accepting computations of NP/c(’’)u{} (On). If the number
is either 0 (i.e., it rejects) or is greater than nJ, X {x}.

Otherwise, we have a situation where NpCi(’’) (On) rejects, but for each string x

of length n, NP/(s’’){x} (On) accepts with at most nJ accepting computations. As
before, an accepting path of NP/(’’)u{x} (On) is called a critical path for x. Over all
the x’s of length n there are then a total of at most nJ2n critical paths. Let cr(x)
denote the set of queries of length n in all the critical paths for x, and again for each

x, x e cr(x) because NPei (’’) (On) rejects while NP/C(s’’)U{} (On) accepts.
Adding a string y of length n to the oracle cannot affect the computation along

any critical path for x if y cr(x). Thus, if we can find greater than nJ strings of
length n such that none of them is in the critical path of another, then the set of
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these strings qualifies as X so that there are greater than nJ accepting computations
of NPC (s’’)ux

As in stage s’, we show that such a set exists by using the board covering problem
to model the problem of finding the strings of length n that do not appear in each
other’s critical paths. The board has dimensions 2n x 2n, where each dimension
represents the set of strings of length n in their standard lexicographical ordering.
For any pair of strings xl, x2, each of length n, bxlx2 1 == x2 E cr(xl).

The total number of critical paths is at most nJ2n, each with at most n queries, so
the total number of queries in the critical paths is at most n+2n < 2n/42n 2(5/4)n

(because we chose n large enough that n+j < 2n/4). The minimum number of pebbles
needed to j-weakly-cover a 2n x 2n board is

(2n)(2n 1) 22n 2n 22n-(2n)(2n- 1) > 2(7/4)n_ 1

(nJ + 1)(nJ) 2n/4 2n/4 > 2n/4 > 2(5/4)n"

Thus there are not enough queries to j-weakly-cover the board.
Because the 2n 2n board cannot be j-weakly-covered, it must be that either

there is some x e {0, 1}n for which bxx 0 (which is not the case in this setting), or
there exists a set I c_ {0, 1}’ with cardinality greater than (log2n)j nJ such that
for all distinct x, x2 e I, bl,. b 0. This implies that the set I qualifies as X
so that there are greater than n accepting computations of NpC(s’’)ux (On).

The oracle simultaneously separating P, UP, FewP, and NP is thus constructed.

There are still four other combinations of equality/inequality regarding the re-
lationships between P, UP, FewP, and NP for which oracles have not been been
constructed here (or at least it has not been proven that the constructed oracles pos-
sess the desired property, though some of them must have been constructed). These
do not appear to come directly from the techniques used here, and require additional
consideration.
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versity/Boston University theory group, especially my thesis advisor Alan Selman, for
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Abstract. New upper bounds for the measure problem of Klee are given which significantly

improve the previous bounds for dimensions greater than two. An O(nd/2 log n, n) time-space upper
bound is obtained and used to compute the measure of a set of n boxes in Euclidean d-space. The
solution is based on a new data structure, which is called an orthogonal partition tree. This structure
has other applications as well.
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1. Introduction. In 1977, Klee [5] posed the measure problem: given a set of n
intervals (of the real line), find the length of their union. He gave an O(n log n) time
solution and asked if this was optimal. This generated considerable interest in the
problem, and shortly after, Fredman and Weide [4] proved that f(n log n) is a lower
bound under the usual model of computation. Bentley [2] considered the natural
extension to d-dimensional space where we ask for the d-dimensional measure of a set
of d-rectangles. He showed that the O(n log n) bound holds for d 2 as well, and,
for d > 2, the result generalizes to an upper bound of O(nd-1 log n). Thus the results
are optimal for d 1, 2. We refer to [7] for an account. Concerning these results for
d _> 3, Preparata and Shamos remarked in their book ([7, pp. 328-329])"

What is grossly unsatisfactory about the outlined method for d >_ 3 is the fact
that there is a "coherence" between two consecutive sections in the sweep that
we are unable to exploit Although it seems rather difficult to improve on this
result, no conjecture about its optimality has been formulated.

The only progress made since this account was published in 1985 was a small im-
provement by van Leeuwen and Wood [8], who removed the log n factor from Bentley’s
upper bound for d >_ 3. The test case seems to be d 3: is O(n2) really necessary
for computing the volume of a set of n boxes in 3-space? In this paper we show that
O(n1"5 log n) suffices.

The idea is to use a plane-sweep approach and dynamically maintain the measure
of a set of two-dimensional rectangles in time O(x/- log n) per update. Such a result
means that we can maintain the area of a set of rectangles implicitly without having
to represent the full boundary structure. This is because any explicit representation
of the boundary of n rectangles requires (n2) time in the worst case because of the
simple "trellis" example (see Fig. 1)" it consists of n long vertical rectangles which
are pairwise disjoint, superposed on n long horizontal rectangles, also disjoint among
themselves.

The first idea is to exploit the regularity of such trellis structures by maintaining
only O(n) amount of information (at the boundary of the box containing the trellis) to
keep track of the area of the trellis rectangles. Of course, a union of rectangles is too
irregular to be consistently exploited in this way, so the next idea is to partition the
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FIG. 1. Trellis.

plane into a collection of trellises. Using a generalization of the k-d tree of Bentley [1],
we are able to form such a partition with only O(n) trellises, each of size O(V). As
we shall see, extending this to higher dimensions requires a partition with interesting
properties that might be useful for other applications as well.

The rest of this paper is organized as follows: 2 describes the basic space sweep
algorithm we use and introduces the generalized k-d tree, which we will call an orthog-
onal partition tree, for storing the boxes. Section 3 contains the solution to the three-
dimensional measure problem. Section 4 generalizes this solution to a d-dimensional
method, using an interesting partition scheme of the d-dimensional space. This re-
sults in an O(nd/2 log n, nd/2) time-space upper bound. In 5 we exploit a streaming
technique of Edelsbrunner and Overmars [3] to reduce the amount of storage required
to O(n) only, for any dimension d. In 6 we briefly mention some other applications
of the method, e.g., computing the measure of the boundary of the union of a set of
boxes. Finally, in 7, some conclusions, extensions, and open problems are given.

Throughout the paper we will use the following terminology. A d-box is the
cartesian product of d intervals in d-dimensional space. The i-boundaries of a d-box
are the parts of the boundary that are perpendicular to the ith coordinate axis. Each
d-box has two/-boundaries for 1 _< i _< d. We refer to them as the left and right
/-boundary. The i-interval is the projection of the d-box on the xi-axis. For a d-box
R, we denote with Int(R) the interior of R.

DEFINITION 1.1. A d-box R1 is said to partially cover R2 if the boundary of R1
intersects Int(R2). R1 is said to (completely) cover R2 if R2 c_ R.

DEFINITION 1.2. For two d-boxes R and R2 we say that R is an i-pile with
respect to R2 if R partially covers R2 and, for all 1 <_ j <_ d with j i, the j-interval
of R2 is fully contained in the j-interval of R1.

In other words, in each direction, except for direction i, R completely covers R2.
/-piles will play an important role in this paper.

An extended abstract of this paper appeared in [6].
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2. General framework. The basic method for solving the d-dimensional mea-
sure problem is as follows. Let V be the set of n d-boxes for which we want to compute
the measure. Let V {al,..., an, be the set of all different Xd-Coordinates of ver-
tices of the boxes, i.e., all different endpoints of d-intervals. We sort the boxes both
by left and right d-boundary. We solve the measure problem using a space-sweep ap-
proach turning the static d-dimensional problem into a dynamic (d- 1)-dimensional
problem. We sweep a hyperplane along the dth coordinate axis stopping at each value
in V. During the sweep we maintain the (d- 1)-dimensional measure of the boxes
intersected by the sweep plane. At each step of the sweep we multiply this (d- 1)-
dimensional measure by the distance traveled with the sweep hyperplane and add this
to the measure found so far. The algorithm looks as follows.
S:=;
MEAS:-O;
for i:-1 to n- 1 do

Insert all d-boundaries of boxes that start at a in S;
M:=(d- 1)-dimensional measure of boxes in S;
MEAS:=MEAS / (a+ -a) M;
Delete all d-boundaries of boxes that end at a+ from S

end;
At termination, MEAS will contain the measure of the set of boxes. S will be a

dynamic data structure for maintaining the (d- 1)-dimensional measure. If insertions
and deletions in S can be performed in time Fd_(n), the method will take time
O(n log n -nFd_(n)). This approach is due to Bentley.

To maintain the measure of the set of boxes intersected by the sweep-plane, we
introduce a generalization of the k-d tree.

DEFINITION 2.1. A d-dimensional orthogonal partition tree is a balanced binary
tree. With each internal node is associated a region C of the d-dimensional space,
with the following properties:

Croo is the whole d-dimensional space.
For each node , C is a (possibly unbounded) d-box.
For each node , with sons and 2, Int(C)Int(C) and CC

C will be called the region associated with . When is a leaf we refer to C as
a cell. It immediately follows that for each full level of the orthogonal partition tree
all regions are essentially disjoint and their union is the d-dimensional space. From
now on we drop the qualifying word "orthogonal" and speak only of "partition trees,"
which are not to be confused with the "nonorthogonal" partition trees of, Willard [11]
and Welzl [10], for example.

To use partition trees for maintaining the measure of a set of d-boxes we store
the following extra information in the partition tree: With each leaf we store all
boxes that intersect Int(C) but do not cover the region associated with the father
of . For each internal node we store a counter TOT that contains the number of
d-boxes that completely cover C but only partially cover Cah(). Finally, with
each node we associate a field M that is defined as follows: If is a leaf, M contains
the measure of the boxes stored at restricted to C. Otherwise, if TOT > 0 then
M is the measure of C; otherwise M Mso() / Mson(). It is easy to verify that
Moo is the measure of the set of d-boxes.

To maintain the measure in a dynamically changing set, we have to be able to
insert and delete d-boxes in the partition tree. The basic insertion algorithm is the

following:
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procedure Insert(box,6);
if 6 is a leaf then

Store box at 5;
Recompute Me

else if box covers Ce then
TOTe’:TOTe + 1;
Me’:measure of Ce

else if box partially covers Ce then
Insert(box,lson(5)
Insert(box,rson(5));
if TOTe > 0 then Me:= measure of Ce else Me:=Mon(e) + Mo() end

end;
The routine is invoked via Insert(box,root). The deletion routine is similar:

procedure Delete(box,6);
if 5 is a leaf then

Remove box at 6;
Recompute Me

else if box covers Ce then
TOTe’=TOTe- 1;
if TOTe > 0 then Me’= measure of Ce else Me’=Mo(e) + Mo(e) end

else if boz partially covers Ce then
Delete(box,lson(5)
Delete(box,rson(5));
if TOTe > 0 then Me’= measure of Ce else Me:=Mtson(e) + Mrson(e) end

end;

The routine is invoked via Delete(box,root). Note the similarity with the methods
of Bentley [2] and van Leeuwen and Wood [8] for the one- and two-dimensional cases.
The main difference is that we no longer insist that the leaves be fully covered by the
boxes that intersect them. It is immediately clear that the amount of time required
depends on the number of nodes visited and the amount of time required for computing
the measure at the leaves. In the sequel of this paper we will show that partition trees
exist in which both are small.

3. Dynamic measure problem in two dimensions. To illustrate the general
solution that we will develop in the next section, we first solve the three-dimensional
measure problem. Solving the three-dimensional problem means that we have to
design a two-dimensional partition tree with good performance. To obtain such a
partition tree, we first define a subdivision of the plane into rectangular cells with
some interesting properties.

Let V be the set of the rectangles that will be inserted and deleted in the partition
tree. First we split the x1-axis into 2V intervals such that each interval contains
less than or equal to v l-boundaries of rectangles. This defines 2x/- slabs in the
plane. Each slab s will be split by horizontal line segments into a number of cells.
Let V be the set of rectangles that have a l-boundary inside s. Let Vs2 be the set
of rectangles that only have a 2-boundary intersecting s. (Note that the size of V
is bounded by x/, but the size of V2 can be almost n.) We draw a line segment
along each 2-boundary of a rectangle in V1. Moreover, we draw a line segment along
each v/--th 2-boundary of a rectangle in V2. In this way s is partitioned into _< 4x/
rectangular cells.



1038 M.H. OVERMARS AND C.-K. YAP

sl s2 s4 s5

FIG. 2. The two-dimensional partition tree.

LEMMA 3.1. The partition has the following properties:
1. There are O(n) cells.
2. Each rectangle of V partially covers at most 0(-) cells.
3. No cell contains vertices in its interior.
4. Each cell has at most O(x/-) rectangles partially covering it.

Proof. Property 1 follows from the fact that there are 2x/ slabs, each with 4v
cells.

To show property 2, note that each vertical line cuts through one slab, i.e., through
at most 4v/- cells. Each horizontal line cuts in each slab through one cell, hence,
through at most 2v/- cells in total. V partially covers a cell only if its boundary
cuts through the cell. This boundary consists of two vertical and two horizontal line
segments. Hence, it cuts through at most 12x/ cells.

Property 3 follows from the fact that, if a vertex lies in the interior of a slab s, it
belongs to a rectangle in V and, hence, it will lie on the horizontal segment drawn
through its 2-boundary, i.e., on the boundary of a cell.

Finally, property 4 follows from the fact that each slab contains at most
1-boundaries and each cell at most vr 2-boundaries.

We will use the cells of this partition as leaves of the partition tree. For each slab
s we construct a binary tree Ts that contains its cells ordered by x2-coordinate in
its leaves. Next we construct a tree T that contains the slab trees Ts ordered by
coordinate in its leaves. See Fig. 2 for an example. Each node in the tree, consisting
of T and the slab trees Ts, has an associated region, being the union of the cells at
the leaves in the subtree. It is easy to see that such a region is a (possibly infinite)
rectangle.

LEMMA 3.2. Let V be a set of n rectangles in the plane. There exists a partition
tree for storing any subset of V such that

1. The tree has O(n) nodes.
2. Each rectangle is stored in O(v/) leaves.
3. Each rectangle influences O(vf log n) TOT fields.
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4. No cell of a leaf contains vertices of rectangles in the interior.
5. Each leaf stores no more than O(v/) rectangles.

Proof. Properties 1, 2, 4, and 5 follow immediately from the above lemma. The
third property follows from the first two. If the tree has O(n) nodes, its depth is
bounded by O(logn). When a rectangle influences the TOT field of a node 5 it
partially covers Cfather(5), and there must be a leaf below father(5) that is intersected
by the rectangle. Hence, the number of internal nodes intersected by a rectangle is
bounded by O(log n) times the number of leaves where the rectangle is stored. As a
result, the rectangle can only influence that number of TOT fields.

It remains to show how the measure at a leaf is maintained when inserting and
deleting rectangles. Note that, due to property 4, the rectangles stored at a leaf 5 are
l-piles or 2-piles with respect to C5. In other words, they form a trellis. The measure
of such a trellis can be maintained in the following way. Let V1 be the projection of
the l-piles on the Xl-axis and let V2 be the projection of the 2-piles on the x2-axis. Let
M1 be the (one-dimensional) measure of V and M2 the (one-dimensional) measure
of V2. Assume that the cell C5 has measure L1 L2. Now the measure of the trellis
is L L2 (L M1) (L2 M2). This follows from the fact that a point inside C
is covered unless it is covered in neither M1 nor M2. Hence, we just have to maintain
the one-dimensional measure of V1 and V2. For this we can use a simple segment tree
that uses linear storage and maintains the measure in time O(log n) per insertion and
deletion (see [7]). So with each cell (leaf) 5 we associate two segment trees $1 and
$2. $1 contains the projections of the 1-piles in 5 on the x1-axis and $2 contains the
projections of the 2-piles on the x2-axis. Inserting (deleting) a rectangle at 5 now
consists of inserting (deleting) it in $1 or $2 (never in both). In this way, M1 and M2
get updated and we obtain the new measure in the leaf.

THEOREM 3.1. The measure of a set of n 3-boxes in three-dimensional space can
be computed in time O(nx/logn using O(nx/) storage.

Proof. We use the plane-sweep approach and maintain the partition tree described
above. To insert or delete a rectangle, we have to update O(x/log n) TOT fields.
This takes time O(v/ log n). Next, we have to insert or delete the rectangle at O(x/)
leaves. At each such leaf this causes an insertion or deletion in a segment tree which
takes O(log n) time. Hence, the total update time of the partition tree is O(vlog n).

The bound on the amount of storage required follows from the fact that the
tree itself takes O(n) storage and each leaf stores O(v) information (according to
property 5 of the above lemma). [3

In 5 we will show how to reduce the amount of storage used to O(n).

4. Dynamic measure in multidimensional space. We will now generalize
this method to d-dimensional space. To this end we will describe a d-dimensional
partition tree, based on a cell decomposition of the d-dimensional space.

DEFINITION 4.1. A slab at level 1,...,d is a subset of 7d of the form
11 12 Ii Td-i, where 11,..., Ii are intervals of T.

Let V be the set of all d-boxes that will be inserted or deleted in the partition
tree. We split the x1-axis in 2v/- intervals, each of whose interior contains at most
v/ 1-boundaries of boxes. This splits the d-dimensional space in 2/ slabs at level
1. For each such slab s let Vs be the set of d-boxes that partially cover s. We split Vs
in two subsets: V of d-boxes that have a 1-boundary inside s and V2 of d-boxes that
do not have a 1-boundary inside s. Note that VI _< x/. Each slab s we now split
with respect to the second coordinate. We split it at the 2-boundaries of each d-box
in V and we split it at every v/-th 2-boundary of d-boxes in V2. As a result, we
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split each slab s into O(v/) slabs at level 2. For each such slab s let Vs, be the set of
d-boxes that partially cover st. We again split Vs, into two subsets: V of boxes that
have a 1- or a 2-boundary intersecting Int(st) and V of boxes that have neither a 1-
nor a 2-boundary intersecting Int(st). (Note that there are no boxes that have both a
1- and 2-boundary intersecting Int(st).) Again, ]V]- O(x/-). We split s into slabs
at level 3 with respect to the third coordinate. Again, we split at each 3-boundary of
boxes in V and at every x/th 3-boundary of boxes in V. In this way we continue
for all coordinates.

LEMMA 4.1. The partition has the following properties:
1. There are O(nd/2) cells.
2. Each d-box of V partially covers at most O(n(d-l) cells.
3. Each cell only contains piles in its interior.
4. Each cell has at most O(v/) d-boxes partially covering it.

Proof. For each coordinate, every slab at level is split into O(v/-) slabs at level

/ 1. Hence the total number of cells we obtain is O(v/-d) O(nd/2).
If a d-box R partially covers a cell C, then an/-boundary B of R cuts through

C for some (1 _< _< d). At the moment we split slabs at level i- 1 with respect
to the ith coordinate, there are O(n(i-1)/2) slabs. Each of these slabs is split into

O(x/) slabs at level at this moment but B can cut through only one of them
(because the cutting is done with respect to the ith coordinate axis). So after the
ith step, B still cuts through at most O(n(i-1)/2) slabs at level i. In the next (d- i)
steps each slab at level is cut into O(n(d-i) cells. So B will cut through at most
O(n(i-)/2 n(d-i) --O(n(d-)/2) cells.

Property 3 follows from the fact that no d-box can have both an i- and an
i2-boundary intersecting a slab at level with i < i2 _< i. Hence, no d-box has
boundaries in more than one coordinate intersecting a slab at level d, i.e., a cell. So
each d-box forms a pile in a cell.

The last property follows immediately from the way we split the slabs. D
We will use the cells of this partition as leaves of the partition tree. It is easy to

see how the rest of the tree can be built on top of it. The tree consists of d "stages,"
where each stage consists of O(log n) levels of the tree. The top stage consists of a
tree T that stores the 2vf slabs at level 1 in its leaves, sorted on the x1-coordinate.
Each slab is represented by a slab tree that stores its slabs at level 2 (created in the
second step) sorted by x2-coordinate. For each of these slabs there is again a slab tree
that stores its subdivision by x3-coordinate, etc.

LEMMA 4.2. Let V be a set of n d-boxes in d-dimensional space. There exists a
partition tree for storing any subset of V such that

1. The tree has O(nd/2) nodes.
2. Each d-box is stored in O(n(d-l) leaves.
3. Each d-box influences O(n(d-1)/2 log n) TOT fields.
4. Each cell of a leaf only contains piles.
5. Each leaf stores no more than O(x/-d) d-boxes.

Proof. Properties 1, 2, 4, and 5 follow immediately from the above lemma.
The third property follows from the first two as the depth is again bounded by
O(log n). [:]

It remains to show how the measure at a leaf is maintained when inserting and
deleting d-boxes. As stated in property 4, the d-boxes stored at a leaf 6 are piles and
form a d-dimensional trellis. Let V/be the projection of the/-piles on the xi-axis for
each 1 _< _< d. Let Mi be the one-dimensional measure of V/. Let Li be the length
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of C5 in direction xi. The following result is easy to prove.
LEMMA 4.3. The measure of the trellis is

H Li- H (Li-Mi).
l<id l(id

When Mi is known for each i, the measure can be computed in constant time
(assuming d is a constant).

Hence, we just have to maintain the one-dimensional measure of V for each i. For
this we use d segment trees $1 Sd, one for each dimension. An insertion or deletion
in a leaf means inserting or deleting the/-pile in the correct segment tree Si. In this
way we obtain the updated measure Mi and we can recompute the above formula to
obtain the new measure in the cell. This will take time O(log n) (assuming that d is
a constant).

LEMMA 4.4. Updates in the d-dimensional partition tree take time O(n(d-l) log n)
and the tree uses O(n(d+l)/2) storage.

Proof. The proof follows from the above lemmas. D
THEOREM 4.1. The measure of a set of n d-boxes in d-dimensional space can be

computed in time O(nd/2 log n) using O(nd/2) storage.
Proof. We use the plane-sweep approach and maintain a (d-1)-dimensional parti-

tion tree. So we have to perform O(n) updates, each taking time O(n(d--)/2 log n).
The time bound follows. According to the preceding lemma, the structure uses
O(n(d-l+l)/2) storage. V1

5. Reducing the amount of storage. In this section we will show how the
amount of storage required can be reduced to O(n). To this end we use an instance
of the streaming technique introduced in Edelsbrunner and Overmars [3].

The idea of streaming is the following: Beforehand we know what updates have to
be performed and in what order. We can view the space-sweep method as traversing
in time (being the dth coordinate). Each update in the structure has to be performed
at a specific moment in time. Before each update we check what the current measure
is and we multiply it by the time passed since the last update. Rather than building
the structure and performing the updates one after the other, we will perform them
simultaneously and construct parts of the data structure when we need them. When
we are ready with the part we discard it again to free memory.

To formalize this, at any moment we are given a sequence of updates L over time
and a region of the space C. This region corresponds to some node in the tree and L
is the sequence of updates that will pass through this node. With each update in L
we have stored the time at which it has to be performed. In the beginning C is the
whole (d- 1)-dimensional space and L is the complete list of updates, time being the
dth coordinate. A counter MEAS will be used to collect all the measure found. In
the beginning it will be set to 0.

The technique now works as follows: When all (d- 1)-boxes in L are piles with
respect to C (i.e., we are at a leaf in the partition tree) we construct d- 1 segment
trees. We perform all the updates on the segment trees and compute the (d- 1)-
measure in the cell after each update. These measures we multiply with the time
period to the next update to obtain the d-measure in C. This d-measure we add to
MEAS. This will take time O(IL log n) and storage O(ILI). Afterwards we destroy
all the structures.



1042 M.H. OVERMARS AND C.-K. YAP

When not all boxes are piles (i.e., we are at an internal node) we first compute
during which periods of time C will be completely covered by one box. (This cor-
responds to the time when TOT : 0.) This can be done by simply walking along
the list of updates and maintaining the number of boxes that cover C. Whenever
this number is larger than 0, C is covered. This takes time O(ILI). We multiply
the (d- 1)-measure of C with the total amount of time C is covered and add it to
MEAS. Next we change time by collapsing the covered periods into a single moment,
performing all the updates in that period at the same moment. (This is necessary to
avoid measure being found lower in the tree during these periods again and counted
twice.) Boxes that are now inserted and deleted at the same moment are removed
from L. Again, this takes time O(ILI) only.

Next we split C into two cells, C1 and C2, in a way similar to how it would have
been split in the partition tree. This can be done in the following way. Remember
that in the first stage of the tree we split on the x-coordinate, in the next stage on
the x2-coordinate, etc., until, in the last stage we split on the Xd_-coordinate. Hence,
it is easy to remember on which coordinate we have to split at a particular moment.
So assume we have to split on the ith coordinate. We make two different splits: splits
along/-boundaries in V or splits along/-boundaries of boxes in V (see the previous
section). There is no problem in first making the splits along/-boundaries of V and
after that along/-boundaries in V. (The tree will get a depth that is at most twice
as large.) So making a split can be done as follows:

Let be the current splitting coordinate. Split L into V and V.
If V : 0, then split along the median/-boundary in V.
Else, if V contains more than v//-boundaries split along the median i-
boundary in V.
Else, increase and repeat the procedure.

Finding the splitting line can easily be done in time O(ILI). It is easy to see that
the resulting partition tree will still satisfy the properties in Lemma 4.2.

Now we construct the list L1 out of L containing the updates that influence C1.
In L we only keep the other updates. Hence, each update is either stored in L or in L.
We recursively call the routine for C1 and L1. When we get back from the recursive
calls, we join L1 and L to reconstruct L in its original form. Now we determine the
list L2 of updates that influence C2, again leaving in L the other updates. We now
recursively call the routine with C2 and L2. When we get back we again reconstruct L
(to be used one level higher in the recursion). Note that during the whole process we
never copy updates. We simply take a part of list L and send it down the recursion.
When we get back we take another part of L and go again in recursion. As a result,
each update is stored at at most one place.

The method does essentially the same work as the original technique, in which all
updates are performed one after the other. In fact, it is more efficient for two reasons.
When the whole list consists of piles, we immediately solve the problem rather than
splitting till the list contains fewer than v/ boxes. Second, we do not consider boxes
anymore when, during their whole period of existence, they are covered by some other
box.

THEOREM 5.1. The measure of a set of n d-boxes in d-dimensional space can be
computed in time O(nd/2 log n) using O(n) storage.

Proof. The amount of time used is essentially the same as when we performed
the updates one after the other.

To estimate the amount of storage, note that each update is stored at most once
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in a list L. The bound follows. [:]

6. Extensions. The partition tree and method described above can also be used
to solve a number of related problems. In this section we will briefly mention some of
them.

It is well known that the perimeter of the union of n rectangles in the plane can be
computed in time O(n log n). (See, e.g., [7], [9].) Computing the perimeter generalizes
to computing the (d- 1)-dimensional measure of the contour of the union of a set of
d-boxes in d-dimensional space. The contour consists of parts of/-boundaries of boxes
that do not lie in the interior of the union. We will only show how to compute the
measure of the parts of d-boundaries of the contour. The measure of the/-boundaries
for other i can easily be obtained by renumbering coordinates. The total measure of
the boundary is obviously the sum of the measures of the/-boundaries in the contour
for all 1 < < d.

To compute the measure of the d-boundaries of the contour we use exactly the
same method as in 4. We move a sweep plane along the dth coordinate axis and
maintain the measure of the intersection. At any d-boundary where the sweep-plane
halts, we update the (d- 1)-dimensional measure as in 4. The part of this d-boundary
that is part of the contour is obviously the absolute value of the difference between the
old and the new measure, except when more boundaries have the same dth coordinate
value. (In this case, some care has to be taken. The procedure below correctly treats
those cases.) To be precise, the main algorithm (as described in 2) is changed as
follows:

S:=0;
MEAS:-O;
for i:-1 to n do

M:=(d- 1)-dimensional measure of boxes in S;
Insert all d-boundaries of boxes that start at ai in S;
M+:=(d- 1)-dimensional measure of boxes in S;
Delete all d-boundaries of boxes that end at ai from S;
M_’-(d- 1)-dimensional measure of boxes in S;
MEAS:=MEAS + (M+ M) + (M+ M_)

end;

S is again stored as a partition tree and maintained in exactly the same way. The
correctness of the method is easily established. This leads to the following result"

THEOREM 6.1. The measure of the contour of the union of a set of n d-boxes in
d-dimensional space can be computed in time O(nd/2 log n) using O(nd/2) storage.

The method can also be used to compute the measure of lower-dimensional parts
of the contour. It is unclear how streaming can be applied here to reduce storage.

As a second application, consider the following query problem: Given a set of
d-boxes in d-dimensional space, store them such that for a given query box R it can
efficiently be determined whether R is completely covered by the d-boxes.

To solve this problem we store the d-boxes in a d-dimensional partition tree.
A query is performed using the procedure "filled," described below. It gets two
arguments, a node 5 and the query rectangle R, and returns whether the part of R
inside C is fully covered by d-boxes. Calling the routine with 5 the root of the tree
gives the required answer.

procedure filled (5, R):boolean;
if R completely covers C then
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return M5 measure of C
else if R partially covers C then

if 5 is a leaf then
search the segment trees to see whether in at least
one of them the projection of R is fully covered;
return the result

else
return filled(lson,R) and filled(rson,R)

else
return true

end;

The correctness of the method can easily be established. Searching the segment
trees in a leaf takes time O(log n). This has to be done in at most O(n(d-l)/2) leaves.
The total number of internal nodes visited is bounded by O(n(d-l)/2 log n). Theorem
6.2 follows.

THEOREM 6.2. Let V be a set of n d-boxes in d-dimensional space. One can
store V using O(n(d+)/2) storage, such that for a given d-box R one can determine
in time O(n(d-l)/2 log n) whether R is completely covered by the boxes in V.

The method can easily be extended to compute the measure of the union of the
d-boxes restricted to a given box R, in the same time bounds. Updates from a fixed
set of boxes can be performed in time O(n(d-l)/2 log n) using the same method as
described for maintaining the measure.

Other applications exist. For example, it is possible to use the techniques given
here to determine contours and/-contours (contour of the area covered by at least or
precisely i d-boxes).

7. Conclusions. We have given a new solution to Klee’s measure problem that
is much more efficient than previously known results, improving the time bound from
O(nd-) to O(nd/2 log n). The technique uses some new ideas, including a result on
partitioning space, a new type of partition tree, and the use of trellises. Streaming
was applied to reduce the amount of storage used to O(n).

The dynamic data structure we presented for dynamically maintaining the mea-
sure can be used for other problems as well. As we have shown, it is very simple to
compute, e.g., the perimeter. Moreover, the structure gives a compact representation
of the shape of the set of d-boxes. This can be used to answer certain classes of queries
efficiently.

Some open problems remain. First, it might be possible to shave off the factor of
log n. But, in fact, there is no reason to believe that the method is even near optimal.
Improvements or lower bounds should be worked on. It is also interesting to look at
the measure of other objects. For example, the best bound known for computing the
measure of the union of a set of triangles is O(n2).

REFERENCES

[1] J. L. BENTLEY, Multidimensional binary search trees used for associated searching, Comm.
ACM, 18 (1975), pp. 509-517.

[2] , Algorithms for Klee’s rectangle problem, unpublished notes, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, 1977.

[3] H. EDELSBRUNNER AND M. H. OVERMAIS, Batched dynamic solutions to decomposable search-
ing problems, J. Algorithms, 6 (1985), pp. 515-542.



UPPER BOUNDS IN KLEE’S MEASURE PROBLEM 1045

[4] M. L. FREDMAN AND B. WEIDE, The complexity of computing the measure of U[ai, bi], Comm.
ACM, 21 (1978), pp. 540-544.

[5] V. KLEE, Can the measure oSU[ai,bi] be computed in less than O(nlogn) steps?, Amer. Math.
Monthly, 84 (1977), pp. 284-285.

[6] M. n. OVERMARS, AND C.-K. YAp, New upper bounds in Klee’s measure problem (extended
abstract), in Proc. 29th IEEE Symposium on Foundations of Computer Science, White
Plains, NY, 1988, pp. 550-556.

[7] F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry, Springer-Verlag, Berlin, New
York, 1985.

[8] J. VAN LEEUWEN AND D. WOOD, The measure problem for rectangular ranges in d-space, J.
Algorithms, 2 (1980), pp. 282-300.

[9] P. M. B. VITNYI AND D. WOOD, Computing the perimeter of a set of rectangles, Tech. Report
79-CS-23, Unit for Computer Science, McMaster University, Hamilton, Ontario, Canada,
1979.

[10] E. WELZL, Partition trees for triangle counting and other range searching problems, in Proc.
4th ACM Symposium on Computational Geometry, Urbana-Champaign, IL, 1988, pp. 23-
33.

[11] D. E. WILLARD, Polygon retrieval, SIAM J. Comput., 11 (1982), pp. 149-165.



SIAM J. COMPUT.
Vol. 20, No. 6, pp. 1046-1067, December 1991

() 1991 Society for Industrial and Applied Mathematics
OO5

AN OPTIMAL RANDOMIZED PARALLEL ALGORITHM FOR
FINDING CONNECTED COMPONENTS IN A GRAPH*

HILLEL GAZITt

Abstract. A parallel randomized algorithm for finding the connected components of an undi-
rected graph is presented. The algorithm has an expected running time of T O(log(n)) with
P O((m + n)/log(n)) processors, where m is the number of edges and n is the number of vertices.
The algorithm is optimal in the sense that the product P T is a linear function of the input size.
The algorithm requires O(m + n) space, which is the input size, so it is optimal in space as well.
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1. Introduction. In this paper, the problem of finding the connected compo-
nents in an undirected graph G (V, E) is considered. There are several well known
and fast sequential algorithms like Depth First Search (DFS) and Breadth First Search
(BFS) for finding connected components. This paper presents a solution to the prob-
lem on a parallel model: the Concurrent-Read Concurrent-Write (CRCW) Parallel
Random Access Machine (PRAM). It is a synchronized parallel-computation model
where all the processors can read and write into a common memory. In the case of
concurrent writes into the same memory location, it is assumed that an arbitrary
processor succeeds. The algorithm has an expected running time of O(log(n)), using
O((m + n)/log(n)) processors, where n -IVI is the number of vertices and m -IEI
is the number of edges. The probability that the algorithm runs longer than expected

is at most (2/e)
n/’gk(n)

for some constant k < 4. The algorithm is as fast as the
best-known algorithms [11], [10], [3] and is optimal in the sense that P. T is equal to
the complexity of the sequential algorithm.

Shiloach and Vishkin [11] conjecture that the barrier of log(n) cannot be surpassed
by any polynomial number of processors. Assuming their conjecture holds, we have
achieved the lower bound for running time with an optimal number of processors.
The question of whether these bounds can be achieved by a deterministic algorithm
is still open.

The algorithm presented here can also be used to find a spanning forest, which is
needed for most algorithms for two-connectivity, three-connectivity, and four-connec-
tivity [12], [9], [8].

We approach the problem of finding the connected components in an undirected
graph by solving three successively harder cases: easy graph, dense graph, and sparse
graph. A solution for the easy graph case (so called because it allows a processor for
every vertex and a processor for every edge) was given by Shiloach and Vishkin [11]. A
variant of their algorithm is presented in 3, Fig. 1. The dense graph case is so called
because it allows a processor for every vertex but only one processor per log(n) edges.
This problem can be reduced in O(log(n)) time to the easy graph case. The reduction
is given in 4, Fig. 2. The sparse graph case is the most difficult one. It allows only
one processor per log(n) vertices and one processor per log(n) edges. This problem
can be reduced in O(log(n)) time to the dense graph problem, by repeatedly finding

Received by the editors May 31, 1988; accepted for publication (in revised form) January 4,
1991. This work was supported by National Science Foundation grant DCR-8514961.

Department of Computer Science, Duke University, Durham, North Carolina 27706.
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partial connected components of the graph until the number of connected components
is equal to the number of processors. The reduction is given in 5, Fig. 5. Thus we
can solve the general problem in O(log(n)) time and optimal number of processors.

The last two algorithms described are randomized. In a randomized algorithm,
each processor has access to a random-number generator which returns random num-
bers of log(log(n)) bits in unit time. The main idea in the reduction algorithms is
to find a way to separate vertices with a large number of incident edges, called ex-
trovert vertices, from those with a small number of incident edges, called introvert.
To separate them by counting the edges takes too much time. Therefore a statistical
test is used: a sample of edges is taken and only the vertices they hit are considered.
Obviously, an extrovert vertex is more likely to be chosen by this method because it
has more edges than an introvert vertex.

2. Preliminaries.
2.1. Previous results. The problem of finding connected components in a graph

has attracted much attention in the last ten years. In 1979, Hirschberg, Chandra, and
Sarwate [2] presented an O(log2(n)) parallel connectivity algorithm for a graph with
n vertices and m edges. Their algorithm uses n2/log(n) processors on the CREW
model. In the same year Wyllie [131 presented a more detailed version of their algo-
rithm. Shiloach and Vishkin [11] improved the result to O(log(n)) time and O(rn + n)
processors on the CRCW model in 1982. In 1984, Reif [10] found a simple probabilis-
tic algorithm with the same complexity as the Shiloach-Vishkin algorithm. In 1986,
Cole and Vishkin [3] presented a deterministic CRCW algorithm of O(log(n)) time
using O(((rn + n)/log(n)), a(rn, n)) processors, where a(rn, n) is an inverse Ackerman
function.

All these algorithms share the same basic problem, which also explains why the
number of processors is not optimal. In the early iterations the number of vertices
is reduced in each iteration, but the order of the number of edges may remain the
same. Therefore it is hard to accelerate the algorithm in the first iterations. One
exception can be found in the case of a planar graph, where the number of edges is
bounded by three times the number of vertices. Using this fact, Hagerup [7] gave an

optimal deterministic connectivity algorithm for a planar graph. However, the space
complexity of his algorithm is not linear.

In 1986, Gazit [6] presented an optimal randomized connectivity algorithm. This
paper contains a new version of that algorithm, with improved probability; in the new
version the probability of failure is exponentially inverse to the input size.

2.2. Definitions. An undirected graph G (V, E) consists of a set of vertices
V of size n and a set of edges E of size m. Each edge is an unordered pair (v, w) of
disjoint vertices v and w. In this paper it is assumed that there may be more than
one edge between two vertices. The edge (v, w) hits vertices v and w. The degree of a
vertex v is the number of edges that hit v. A path joining vl and vk in G is a sequence
of vertices vl, v2,..., vk such that (vi, Vi+l) E E. A partial connected component in
a graph is a subset U C_ V, such that for every pair of vertices v, u E U, there is a
path in U joining v and u. A connected component is a partial connected component
that is not contained in any other partial connected component. A vertex u is isolated
with respect to some vertex set V if there is no edge from u to any vertex v V.

The following notations are used"

A preliminary version of their algorithm was presented in 1976 at the ACM Symposium on

Theory of Computing, Hershey, PA.
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1. For convenience, define a /.
2. P Number of processors.
3. n Number of vertices.
4. m Number of edges.
Assuming there are at least (n + m)/log(n) processors, the following definitions

are given:
An easy graph is a graph with n + m _< P.
A dense graph is a graph with n _< P.
A sparse graph is a graph with n > P.

2.3. Data structure. The main data structure is a reverse-rooted tree called
supervertex. Every vertex has a unique pointer to its parent. Hence there is a directed
path from every vertex in the tree to the root of that tree. The root for vertex v,
denoted root(v), is defined to be the root of the supervertex tree to which v belongs.
There are no cycles in a supervertex tree, but each includes one self-loop: the root of
each tree points to itself.

We will see later that this data structure is a natural one for solving the connected
components problem and, indeed, it was used in previous algorithms [11], [3].

A supervertex of height 0 or 1 is a star.
Supervertices are viewed as vertex-disjoint partial connected components. At any

stage of the algorithm, the graph is a forest of reversed-rooted trees. An edge (u, v)
is live if u and v belong to different supervertices. (There can be more than one edge
between two supervertices.) A supervertex is live if there is a live edge incident on
one of its vertices. The degree of a supervertex is the number of live edges that hit its
vertices.

These supervertices are a reverse-rooted forest of vertices. Forming the union of
two supervertices makes the root of one supervertex a child of a vertex of the other
supervertex. Each vertex v has a pointer, parent(v), to its parent in the supervertex
tree.

Every vertex v has a single bit flag called extv, a memory cell ev to store an edge,
and a memory cell flag that can hold an integer of size 2. log(log(n)).

3. The easy case. In this section, we describe an algorithm for finding con-
nected components when there is a processor for every edge and a processor for every
vertex. This is a variant of Shiloach and Vishkin’s algorithm [11]; an outline is pre-
sented in Fig. 1.

The algorithm develops an inverse rooted tree for each partial connected compo-
nent. When all such trees are stars and there are no more live edges, the components
are maximal.

Each iteration performs two operations:
i. Reducing tree height.
2. Joining trees.

Reducing tree height is a simple matter of "jumping over" a vertex; each parent
pointer is reset to point to the grandparent. A tree that had height h before the jump-
over has height ] after it. Since the root is its own parent, stars are not affected;

and Height reduction isother trees are reduced in height by a factor between
Step 1 and Step 4 of each iteration.

Joining trees is more complicated. There are two cases. The first (Step 2) pertains
when the live edge connects vertices that are children of their respective roots. In
this case, to avoid creating cycles (i.e., to preserve the data structure), we make the
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procedure easy-case (V, E)
for all v E V in parallel do parent(v) := vod
while there is a live edge in the graph or some tree is not a star do
/* Step 1 */

for all v E V in parallel do
parent(v) := parent(parent(v))

od
for every live edge (u, v) using concurrent write in parallel do

/* Step 2 */
if parent(parent(v)) parent(v) and parent(parent(u)) parent(u)
then if parent(u) > parent(v) then parent(parent(u)):= parent(v)

else parent(parent(v)):= parent(u)
fi

fi
/* Step 3 */

if parent(u) parent(parent(u)) and
parent(u) did not get new incoming edges in Steps one and two

then parent(parent(u)) := parent(v)
fi
if parent(v) parent(parent(v)) and

parent(v) did not get new incoming edges in the first two steps
then parent(parent(v)):= parent(u)
fi

od
/* Step 4 */

for all v V in parallel do
parent(v) := parent(parent(v))

od
od

end easy-case

FIG. 1. Finding connected components: the easy case.

higher-numbered root the child of the lower. The second case (Step 3) involves a star
not affected previously in the current iteration and having a live edge. The root of
such a star becomes a sibling of the other vertex hit by that edge.

We will prove later that the total height of the live trees is reduced by a constant
factor in every iteration. Therefore, after O(log(n)) iterations the height is at most
1 and the algorithm stops because no live stars, or trees which are not stars, remain.
Some results from [11], which will be needed later in this paper, are presented here.
The detailed proofs can be found in the original paper.

LEMMA 3.1. Before using an edge in Step 2 or 3, determining whether it is live
takes O(1) time using one processor.

Proof. Consider some edge (u, v). If we are to use it in Step 2, both u and v are
children of their respective roots, so we can determine immediately whether it is live.
If we are to use it in Step 3, one vertex, call it v, must be the child of a root that
got no new edges in this iteration. If u is also the child of its root, determination is
immediate. If not, then u is not in a star; therefore root(u) got a new edge in Step 1,
so root(u) cannot also be root(v), which is to say that the edge is live. [:]

LEMMA 3.2. During the execution of the algorithm, the partial connected compo-
nents are always kept as reverse rooted trees.

Proof. We prove this by induction. The lemma is true before the while loop
starts because every vertex is itself a reverse-rooted tree of one vertex, and is itself a
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partial connected component.
In every iteration we link only trees that have some edges between them and

therefore belong to the same partial connected component.
It is also clear that the data structure remains a forest. The height reduction

process changes a grandparent into a parent, creating no new cycles. Nor can the
join operations create cycles. A Step 2 join links roots only, making the higher-
numbered the child of the lower. This consistency prevents cycles. In a Step 3 join,
one supervertex must be a star, so all of its edges point to the root. Resetting the
root’s parent pointer to a vertex in a different tree cannot create a cycle. F1

LEMMA 3.3. If a tree T has not been changed during an entire iteration, it
remains unchanged until the end. This tree is a star and its vertices are a maximal
connected component.

Proof. Every unchanged tree must be a star, otherwise it would have some vertex
v of depth 2, and then the operation parent(v) := parent(parent(v)) would change
the tree. By Lemma 3.2 this star represents a partial connected component. It is

maximal; otherwise it would have a live edge e that would be used in the second or
third step, thus changing it.

DEFINITION 3.4. The height of the forest is the sum of the heights of all the trees
that are either live or have height greater than one.

LEMMA 3.5. After the first iteration, the height of the forest is at most (2. n)/3.
Proof. After the first three steps, every vertex with a live edge is in a tree with

height one or more. The total height of all the stars is bounded above by half the
number of vertices in the stars (we may reach the upper bound if every star has only
two vertices). The total height of the nonstar trees is bounded by the number of

2 of itsvertices in these trees. After the fourth step, each of those trees has at most
original height. F1

LEMMA 3.6. The height of the forest is reduced by a factor of at least 5 in each
subsequent iteration.

Proof. If a tree is not a star, then the first step reduces its height to at most 3
of its original height. The second and third steps do not increase the height of the
forest, because we link roots to internal vertices (not leaves) of other trees.

The first and fourth steps do not change the height of the stars, but every live
star is linked by either the second step or the third step. If a tree of height h and
star are linked together, in the worst case the height of the new tree is h / 1. After
the fourth step, this height is at most

COROLLARY 3.7. The number of the live trees after iteration is bounded by

Proof. The corollary follows immediately from Lemma 3.6, because the minimum
height of each live tree is one. [:]

THEOREM 3.8 (Main Theorem of [11]). 1. The algorithm terminates after
[log (n)l iterations.

2. parent(u) parent(v) if and only if u and v are in the same connected
component.

Proof. By Lemmas 3.5 and 3.6 the height of the forest after [loga/2(n) iterations
is at most one. That means that there is at most one live supervertex and that
supervertex is a star. Therefore, there cannot be any live edges, so obviously there
are no live supervertices.

Subsequently, each tree is unchanged by further iterations because it is a
dead star. Therefore, by Lemma 3.3, each tree represents a maximal connected
component. F1
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4. Dense-to-easy reduction.
4.1. Informal description. We define a dense graph as a graph for which there

is a processor for every vertex and a processor for every log(n) edges.
We no longer have enough processors to check every edge in the graph in every

iteration, but, as we have a processor for every vertex, we can still reduce the height
of the supervertices. Therefore, our two basic operations in every iteration will be:

1. Reducing the height of all the trees.
2. Joining together some trees with a large number of live edges.
We prefer to join supervertices with many live edges because once all of these

supervertices are joined, all the live edges remaining in the graph will have at least
one endpoint in a supervertex of low degree; therefore the number of live edges will
be of the same order as the number of vertices.

We need a means of deciding which supervertices have a high degree, with respect
to live edges. We also need some method of finding at least one live edge for most
stars with high degree.

The method presented here repeatedly chooses a random sample of edges. A
supervertex of high degree (a dense supervertex) has a higher probability of having
at least one of its incident edges chosen than a supervertex of low degree (a sparse
supervertex). The goal is to join dense supervertices among themselves and leave out
the sparse ones.

It is possible that a supervertex has a live edge that was not chosen in some
iteration; but as the number of its live edges increases, so does the probability that at
least one of them will be chosen. Therefore, the probability that a given join involves
a dense supervertex, is greater than the probability that it involves a sparse one.

After the dense-to-easy algorithm is completed, all the remaining live edges are
connected to sparse supervertices. It will be shown later that the expected number
of live edges in the graph after the algorithm has been executed is O(n), so that the
easy-case algorithm can be used.

Every iteration is composed of four steps, similar to the steps of the easy-case
algorithm. In the first and the last iteration we reduce the height of all the trees.
These operations can be done in constant time using O(n) processors.

In the join steps we use a subset of edges. If a star has at least one edge to a
dense vertex in our subset, we can use that edge to link it to another tree. If the star
has an edge to a dense vertex with a smaller identification number, we link it in Step
2. If the star was not changed in the first two steps and it has an live edge to a dense
vertex, we link it in Step 3.

If a star was not changed in the entire iteration, then either it is a dead star or
none if its edges was sampled. We assume that the degree of that star is low and set
it aside, even if one of its edges is sampled later.

As noted above, when selecting a supervertex by edge sampling, the probability
that a sampled edge hits this supervertex is higher if the supervertex has many edges.
If one randomly picks a large enough sample of edges and considers some supervertex
v, and none of these edges hits the supervertex, then there is a high probability that
v is sparse.For each edge in the sample, an attempt is made to join its end-vertices.
In the next iteration another (smaller) sample is chosen, and the process is repeated.
Although several edges in the sample may hit the same supervertex, only one of them
may be used to join the root to another tree.
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To reduce the time complexity of successive iterations, the size of the sample
we choose decreases geometrically. This means that the probability that a given
supervertex has no incident edge (and therefore is classified as sparse) increases. We
will show later that the expected number of live edges hitting a supervertex classified
as sparse is inversely proportional to the sample size.

The upper bound for the number of dense supervertices also decreases geometri-
cally. We choose the samples so that the sample size decreases more slowly than the
number of supervertices, achieving two desirable results:

For each iteration, consider the set of all supervertices that were classified as
sparse during this iteration and the expected total number of live edges that
hit this set; we will show that this number decreases geometrically.
The time complexity of each step is proportional to the sample size. The
sample size decreases geometrically and the time complexity is equal to

rn

therefore the time complexity is bounded by the easy-case algorithm time
complexity.

The algorithm presented in Fig. 2 reduces a dense graph to the easy graph case.
After execution of the algorithm, every vertex in the graph points to the root of
the supervertex that represents the partial connected component to which it belongs.
All edges connect roots; and the expected number of live edges is O(n). Therefore,
the easy-case algorithm can be applied. The reduction algorithm always halts, but
the number of live edges that remain in the graph at the end may be greater than
expected. The time complexity is O(log(n)). The probability of failure is less than

4,1, Alysi8 of lhe dense-lo-esy redtmlio,

DETINIIONS,
1. An extrovert root r is a root with extr 1. At the beginning of the dense-to-

easy procedure, every vertex is an extrovert root.
2. An extrovert supervertex is a supervertex such that its root is an extrovert

root.
3. An extrovert vertex is a vertex that belongs to a tree whose root is an extrovert

root.
4. An introvert vertex v is a vertex that belongs to a star and eXtparent(v) O.

At the end of the dense-to-easy procedure, all the vertices are introvert.
5. An extrovert edge is a live edge that connects two extrovert vertices.
6. An extrovert edge becomes an introvert edge if one of its end supervertices

becomes introvert.
7. The random variable ni represents the number of extrovert supervertices after

iteration i.
LEMMA 4.1. Determining if a tree was changed in some iteration can be done

in O(1 + ((m. ai)lP)) time.

Proof. If a tree is not a star, then it is changed in the first step and the root gets
new incoming edges. If a tree was not changed in the first step, then it was a star
before the iteration started. In that case all the new incoming edges are connected
directly to the root.

Using Concurrent Write, we can notify all the roots that were changed when we
set the new incoming edges.
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procedure dense-to-easy (G(V, E)
for all v E V in parallel do extv := 1 od
for all v E V in parallel do parent(v) := v od
i:=O
while there is a root r such that extr 1 do
/* Step 1 */

for all v e V in parallel do parent(v):= parent(parent(v)) od
Pick a sample of edges of size max (P, m. ai)

/* Step 2 */
for every live edge (u, v) in the sample using concurrent write in parallel do

if eXtparent(u) --eXtparent(v) 1 then
if parent(parent(v)) parent(v) and

parent(parent(u)) parent(u)
then if parent(u) > parent(v) then parent(parent(u)):= parent(v)

else parent(parent(v)):= parent(u)
fi

fi
/* Step 3 */

if parent(u) parent(parent(u)) and
parent(u) did not get new incoming edges in the previous two operations

then parent(parent(u)) := parent(v)
fi
if parent(v) parent(parent(v)) and

parent(v) did not get new incoming edges in the previous two operations
then parent(parent(v)) := parent(u)
fi

fi
od

/* Step 4 */
for all v e V in parallel do parent(v):= parent(parent(v)) od
for every root r in parallel do

if the tree rooted at r was not changed during the iteration
then ext := 0 fi

od
i:=i+1

od
for every edge (u, v) in the graph in parallel do

if (u, v) is a live edge then replace it by an edge (root(u), root(v)) fi
od

end dense-to-easy

FIG. 2. Reducing a dense graph to an easy graph.

Let S be a subset of the extrovert stars. Define deg(S) as the number of extrovert
edges with at least one endpoint in a supervertex in S; that is,

deg(S) I{(u, v)l(u v) is an extrovert edge A (u e S V v e S)}

LEMMA 4.2. Given a subset of stars S, such that deg(S) x, the probability that
none of these x edges is chosen in iteration (i.e., that all the vertices of S and all

-.(yl.)
the x extrovert edges will become introvert) is less than or equal to e where
y max (P, Ira. ) is the size of the sample of edges chosen in procedure dense-to-
easy.

Proof. The probability that a particular edge is chosen by one processor is 1/m.
The probability that an edge is not chosen for the sample is bounded by (1 (l/m))y,
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where y is the sample size. The probability that none of the x edges is chosen is at
most"

.(y/m) --.(/m)
-----e D

LEMMA 4.3. For a given x, the probability that at least x edges will become
--e.(y/m) 2niintrovert in iteration is bounded by e where ni is the number of extrovert

supervertices after iteration and y max(P, Ira.
Proof. In every iteration a (possibly empty) subset of vertices becomes introvert.

By Lemma 4.2 the probability that a particular subset of vertices with x extrovert
--z.(y/m)

edges will become introvert is at most e We have at most 2* subsets with x
extrovert edges because a set with ni elements has at most 2’ subsets.

We find an upper bound on the probability that at least one such subset will
become introvert by summing up the probabilities of all these events. Therefore, an

--x.(y/m) 2nupper limit to the probability is e
Please note that the bound is not tight:
1. We consider all subsets, including those (like the empty set) which have fewer

than x edges.
2. We assume that a subset with more than x edges has the same probability

of becoming introvert as a subset with x edges. The actual probability is
smaller.

3. We sum the probabilities of events that are not mutually exclusive.
LEMMA 4.4. The number of extrovert supervertices after iteration is at most

Proof. The proof is similar to the proof of Corollary 3.7.
LEMMA 4.5. The while loop of the dense-to-easy algorithm will have terminated

after at most [log3/2(n) iterations.

Proof. The proof is similar to the proof of Theorem 3.8.
LEMMA 4.6. After the while loop of the dense-to-easy algorithm has finished, all

the trees are stars.
Proof. The while loop does not terminate until all trees have became introvert,

and only supervertices that are stars can become introvert.
DEFINITION 4.7. Let f be the probability that more than n. c extrovert edges

will become introvert during iteration i.
LEMMA 4.8. The probability fi is bounded by (2/e)
Proof. Set x n. ci, z m. a; by Lemma 4.4, n _< n. a2". Note that y >_ z.

_,.ai .i 2n.2.i n.o2.i
Then, by Lemma 4.3, fi <_ e -(2/e)

DEFINITION 4.9.

[--3" log(log(n))log(a)]"
Note that c

n _< log-3(n).
LEMMA 4.10. The probability that more than n/log2(n) extrovert edges will be-

come introvert during iteration >_ "Yn is bounded by (2/e)n/lg3(n).
Proof. Set x (n/log2(n)), y P, and n <_ n.c2"7 < (n/log3(n)) (by

Lemma 4.4). Then, x. (y/m) >_ (n/log3(n)); and by substitution into the formula of
Lemma 4.3, the result is obtained.
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LEMMA 4.11. With probability greater than or equal to

1- F(log3/2(n))l (2)
the number of edges that become introvert is less than 6.5. n.

Proof. Assume that the bounds expected in Lemmas 4.8 and 4.10 are obtained.

(The probability for this will be computed later.)
Lemma 4.8 is used to compute the number of edges that become introvert in the

first iterations, and Lemma 4.10 is used to compute this number for the last iterations.
The sum is bounded by:

n’i + E log,(n)

For a large enough n, the sum can be bounded by

n.o -+- .log2(n)-n+n.Ea-n+
i=0

lg2(n)
i=0

1- X-/3
< 6.5.n.

if:
Now we compute an upper limit to the probability of failure. Failure can happen

1. The number of edges that become introvert in iteration < 7n is more than

n. ai. By Lemma 4.8, the probability is bounded by (2/e)n/lg3(n).
2. The number of edges that become introvert in iteration _> "Yn is more than

log2(n). By Lemma 4.10, the probability is bounded by (2/e)n/lg3(").
An upper bound to the number of iterations (Flog3/2(n)l) is given by Lemma 4.5.

Let us assume that failure in any iteration causes the algorithm to fail. This assump-
tion may be false, but it gives us an upper bound on the probability of failure. By
adding up the probabilities of failure in all the iterations, we get an upper bound for
the probability that the algorithm fails. Multiplying the upper bound for the number
of iterations by the upper bound for the probability of failure in each iteration yields
the claimed probability.

THEOREM 4.12. The time complexity of the dense-to-easy algorithm is O(log(n)).
Proof. The time complexity of iteration i is O(1 + (m/P). ). By Lemma 4.5,

the number of iterations is O(log(n)). Therefore, the complexity of the for loop is

0 ((gon)) l+ffrn, c) O(log(n)).

COROLLARY 4.13. With probability greater than or equal to 1- [log3/2(n)]
(2/e)

"/g(n)
the running time of the connectivity algorithm for a dense graph is

O(log(n)).
Proof. The time complexity of the dense-to-easy algorithm is O(log(n)) (by The-

orem 4.12). The probability of having more than O(n) edges was bounded above
by Lemma 4.11. In a dense graph, O(n) < O(P); therefore, by Theorem 3.8, the
easy-case algorithm will run in O(log(n)) time. U
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5. Sparse-to-dense reduction. The easy case offered one processor per vertex
and per edge. The dense graph had too many edges for the number of processors,
relative to the algorithm of Shiloach and Vishkin [11] so we found a way of getting
a sparser graph. Clearly, we cannot use this approach if the graph is already sparse.
In the sparse-graph case, we have only o(n) processors, so we cannot have one per
vertex.

Our solution transforms the input graph into one with few enough vertices that
the dense-to-easy reduction can be used. We do this by a process of (repeatedly) par-
titioning the graph into a sparse part and a dense part. In the dense part, we combine
adjacent vertices into supervertices and replace all edges between nonroots by edges
adjoining the respective roots. We repeat the partitioning algorithm 2. log(log(n))
times, always on the remaining sparse subgraph. At the end, we have a transformed
graph that consists of the sparse subgraph that remains after the last iteration and
the accumulated union of all of the dense subgraphs returned by partitioning. The
size of this graph is O(n/log(n)). This permits us one processor per vertex, and we
proceed with the dense-to-easy reduction.

At each iteration we take a sample of edges from the sparse subgraph, starting
with the complete set. When we join the vertices into supervertices we reduce the

After 2-log(log(n)) applications ofsize of the remaining sparse subgraph by .
partitioning this sparse subgraph has only O(n/log(n)) vertices. Each iteration of
partitioning adds at most O(n/log(n)) vertices to the dense subgraph. The number n
decreases geometrically, so after 2.log(log(n)) applications of partitioning on the sparse
subgraph, the number of dense vertices is at most ’=o().(n/log(n)) (n/ log(n) ).

The process by which vertices are combined into supervertices presents some

problems. We must ensure fast (O(1)) transmission of information in any tree from
leaves to root, and the Shiloach and Vishkin approach [11] can create trees too deep
for this. We want trees of depth one, and present a deterministic algorithm to create
them.

5.1. Deterministic mating. Shiloach and Vishkin’s algorithm [11] creates trees
with a height of O(n). Cole and Vishkin [3] avoided this problem by using parallel
union-find, a method that increases the processors’ complexity of their connected
components algorithm by an inverse Ackerman function. Reif [10], who introduced
the term "mating" in his connectivity algorithm, solved the problem by using a ran-
domized procedure Random-Mate that creates trees of height one. His solution is

of creating too few trees. The ideal procedure is onesimple but has probability of
that will create trees of height one, such that most of the vertices will belong to those
trees. A similar idea was proposed by Hagerup [7].

Our algorithm, deterministic-mate, uses an auxiliary data structure, the next
graph. Each vertex v carries one additional pointer, next(v) to some adjacent vertex.
This allows us to classify vertices as follows:

1. V0--These vertices have input degree zero.
2. V--These vertices have input degree of one.
3. V2These vertices have input degree of two or more.

Vertices in V0 have only one adjacency and are therefore easy to handle.
The number of V2 vertices is bounded, as we shall see, by the number of V0

vertices. However, the V vertices can be a problem as they can form chains that take
O(log(n)) to rank. We manage by running only the first iterations of a list-ranking
algorithm.

Each processor selects a vertex v. If next(v) was not also selected at this step, a
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procedure deterministic-mate (V, k)
/* Every vertex v e Y has an edge ev (v, u). */
/* Every processor is responsible for at most k vertices (in a local array) */
for every vertex v with edge ev (v, u) do next(v):- uod
for every vertex v in parallel do

if v has indegree 0, then parent(v) := next(v) fi
if v has (in the next data structure) either

1. indegree 0
2. indegree 2 or more
3. is a parent of a vertex of indegree 0

then remove v from the graph and the array.
fi

od
/* Ranking the lists */
for i:= 1 to k + 2. [log(log(n)) do

every non-busy processor takes the next vertex v from its array.
if next(v) was not taken in this step
then parent(v):= parent(next(v)). Remove next(v).

else
/* If not, then we have a "chain" of v, next(v), and possibly next(next(v)),

break the "chain" of vertices into sublists of size 2 to 2. log(log(n)).
The processor which is responsible for the last element in a sublist s
(no vertex in the sublist s points to it) collects the vertices in sublist s.
for every vertex w in the sublist s do

parent(w) :=last element of the sublist s.
od

fi
od

end deterministic-mate

FIG. 3. Deterministic mating.

,/

jump-over is used: parent(v) is set to parent(next(v)), and next(v) is removed from
the graph to shorten the list. The vertex v remains in the graph. It is used to establish
the link between any descendants it may have in the next graph and the root of its
supervertex (which is reached through parent pointers).

Of course, if a vertex, its next, the next of its next, and so on, happen to be chosen
at the same iteration, we cannot use this method. Following Cole and Vishkin [3], we
break the list into small sublists. The processor responsible for the last element z of
some sublist s follows the pointers to pick up all the other vertices in s. This creates
a star with root z and the rest of the vertices of s as leaves.

Our procedure is based on Anderson and Miller’s deterministic list ranking [1].
(A similar algorithm was developed earlier by Cole and Vishkin [3].) The outline for
our joining procedure, deterministic-mate, is presented in Fig. 3.

DEFINITION 5.1. go,2 is the subset of vertices with indegree O, 2, or parents of
vertices with indegree O.

Every vertex points to some other vertex, with its next pointer. Vertices with
indegree 0 are easily managed, as there is no choice to make. We attach them to their
next’s and make stars from them. The following lemmas establish our claim about
the number of stars.

LEMMA 5.2. The number of vertices with indegree 0 is greater than or equal to
the number of vertices with indegree 2 or more.

Proof. We argue the pigeon-hole principle. There are as many pointers as vertices.
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If some vertex is pointed to by more than one pointer, then some other vertex is not
pointed to at all.

LEMMA 5.3. After the application of deterministic-mate, the number of stars
2composed of vertices of V0,2 is at most .

Proof. Every vertex of indegree 0 becomes part of some star, but not the root.
The number of roots, and therefore stars, is bounded by the number of vertices of
indegree two or more and the number of vertices having a child of indegree 0. By
Lemma 5.2, the first number is bounded by the number of vertices of indegree 0. Since
each vertex has only one pointer, so, clearly, is the second.

2Therefore the number of roots is at most
Once we have dealt with these stars, what remains are the V1 vertices. Some of

these have indegree 0 (if a child was removed). This leaves a simple structure to which
we can apply algorithms similar to those used for standard list ranking ([3], [1]).

Ideally, every processor would pick a vertex v and "try" to create a star of two
vertices, v and next(v). However, it might happen that a second processor, in the
same time slot, has chosen to create a star of next(v) and next(next(v)). This could
result in a long list (v, next(v), next(next(v))...). We want to break this list into
smaller sublists, and let one processor take care of each sublist.

LEMMA 5.4. We can break our structure into sublists such that no sublist is
shorter than 2 or longer than 2. [log(log(n)) in constant time using an optimal
number of processors.

Proof. This result was proved by Cole and Vishkin in [4]. We present here
an outline of their proof. Assume that a vertex j is the next of a vertex i. De-
fine SERIALI(i) as "the index of the rightmost bit in which i and j differ." If
SERIALI(i) SERIALI(j)= k, then the kth bit in is different from the kth bit
in j. We say that SERIALs(i) >SERIALs(j) if either SERIALI(i) is greater than
SERIALI(j) or they are equal, and the rightmost bit in which and j differ is 1 in i.

Note that:

SERIALI (i) is at most [log(n)] for i, next(i) <_ n.
For every i, SERIALI(i) and SERIAL (next(i)) cannot both be local maxima
in the next list.
Every 2. Ilog(n)] (or fewer) elements there is a local maximum of the SERIAL
function in the list.

Breaking the list into sublists in the locations of the local maxima results in
sublists of length 2 to 2. [log(n). Applying the SERIAL function to the sublists, this
time to the SERIAL numbers, yields SERIAL2 numbers.

By breaking each sublist at the local maxima of the SERIAL2 function, we get
the resulting sublists as claimed.

Every small list can be scanned by one processor in time complexity equal to the
length of list.

LEMMA 5.5. Every vertex v that was scanned in the first k iterations of the
list-ranking part of the deterministic-mate algorithm, will belong to a tree of height
1.

Proof. If v was removed, then it became a root for the vertex that pointed to v
through the next pointer (these two vertices create a star with two vertices). If it was
not removed, then it became either a leaf or part of a list. If it was a leaf, then it gets
a parent. If it was part of a list, then the list is ranked in 2. log(log(n)) iterations
(or less), and the vertex becomes a part of a star that represents the elements of
the list.
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LEMMA 5.6. The number of vertices that were not processed in the first k it-
erations is bounded by the number of vertices that became leaves in the list ranking
part.

Proof. The only reason that a vertex was not processed is because its processor
was busy compressing lists. Every vertex in a list can cause only one vertex not to be
processed. D

THEOREM 5.7. The number of stars in the resulting graph of the deterministic-
2mate algorithm is at most 5 IVI

Proof. Every vertex either belongs to V0,2 or V-V0,2. By Lemma 5.3, the number
of V0,of stars composed of V0,2 vertices is at most 5

Every vertex v in V V0,2 either became the root of a star or a leaf of a star or
was not processed at all by its processor. Every vertex that became a leaf prevented
one vertex (its parent) from becoming a leaf. By Lemma 5.6, the number of vertices
that were not processed is at most the number of vertices that became leaves as a
result of performing the list-ranking part of the algorithm.

Therefore, every leaf can cause at most two vertices to be roots, and the proof
follows. D

THEOREM 5.8. The time complexity of the mating algorithm is O(k+log(log(n))).
Proof. The for loop is executed k + 2. [log(log(n)) times, and each iteration

takes constant time.

5.2. Partitioning the vertices. The algorithm given in Fig. 4 takes a graph
G(V, Ei) and a number n as input and creates two sets of supervertices. Each
supervertex is a star and every edge (u, v) is replaced by edge (root(u), root(v)). The
advantage of this organization is that the nonroot vertices have no live edges and
therefore there is no need to deal with them. The two sets of supervertices are:

1. extrovert--A set of extrovert supervertices, each of which had at least one live
incident edge in every edge sample that we took throughout the execution of
the partitioning algorithm.

2. introvert--all the other supervertices.
We "mate" extrovert supervertices using the procedure deterministic-mate and re-

Afterduce the number of extrovert supervertices (roots) by a factor of at least 5"
2. log(log(n)) iterations, the number is reduced by a factor of at least

2.log(log(n))

2() <(1/log(n));

so the number of extrovert supervertices after the partitioning algorithm is at most
IVl/log().

In the partitionin9 algorithm we try to achieve three goals:
1. Reducing the number of vertices in the graph by a constant factor.
2. Reducing the number of edges in the introvert graph to
3. Setting aside a set extrovert that is smaller than the input by a factor of

log(n).
The first and the second goals are important because the time complexity of the

procedure is proportional to its input size. The third goal is important because we

want to reduce the number of vertices in the graph and therefore we want only a small
set.

The Mgorithm uses ideas similar to those of the dense-to-easy algorithm in 4. We
take a sample of edges and use it to join extrovert vertices. Using arguments similar
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to those we used in 4 we prove that we achieve the second and the third goals. The
first goal is achieved because the first sample includes all the edges of the graph and
therefore the number of live supervertices in the graph is reduced by .

The edges, whether live or dead, are stored in an array of length m. By keeping
the edges in blocks of equal size and assigning a processor to each block, a sample
of the edges (for the partitioning algorithm) can be picked in time proportional to
sample size/P. This way, a sample can be chosen without repetition. Note that to
simplify parts of the analysis, choosing with repetition is assumed; this is safe, for it
only decreases the probability of an edge being chosen.

By taking a geometrically decreasing sample of edges, the probability of a super-
vertex not having an edge in the sample increases geometrically. However, the number
of extrovert supervertices for each iteration decreases geometrically and the sample
size decreases more slowly than the number of extrovert supervertices.

Therefore the number of live edges connected to vertices in introvert is propor-
tional to the number of vertices in the input set.

We do not have enough processors to reduce the height of the trees. Their height
may increase by at most 1 every time that we perform deterministic-mate because we
always link roots.

We do perform a height-reduction operation once after the vertices are partitioned.
We do it in the reverse order of the joining process. We assume that. every vertex
v that was a root in some iteration j is either a root or a child of some root. The
children of v from iteration j 1 become children of root(v) after one jump over.
After all these trees become stars every live edge (u, v) in the graph is replaced by
edge (root(u),root(v)) in O(IEil/P time.

5.3. Analysis of the partitioning algorithm.
DEFINITIONS:

1. An extrovert root r is a root with a value of flag > j at the end of the jth
iteration in loop j. At the start of the partitioning algorithm, every root is
extrovert.

2. An extrovert supervertex v is a supervertex whose root is extrovert.
3. An extrovert vertex v is a vertex that belongs to a tree whose root is extrovert.
4. An introvert supervertex v is a supervertex whose root is not extrovert.
5. An introvert vertex is a vertex that belongs to a tree whose root is not an

extrovert.
6. An extrovert edge is a live edge that connects two extrovert vertices.
7. An extrovert edge becomes an introvert edge if one of its end supervertices

has become an introvert.
8. We say that a vertex or supervertex is introvert-isolated if it is in introvert

and has no live edge incident on any other supervertex in introvert.
9. V/and Ei are input variables to the partition procedure. V/is a set of vertices

and Ei a set of edges; ni IV/I and mi IEil are the sizes of the input
vertices and edges sets, respectively.

LEMMA 5.9. The number of introvert vertices that are not isolated with respect
to Ei after the partitioning algorithm stops is at most hi. o2.

Proof. In the first iteration we pick a sample of size mi. Therefore every non-
isolated vertex has at least one edge in the sample. By Theorem 5.7 the number

2 of the vertices thatof vertices after the deterministic-mate algorithm is at most
are mated. This number is an upper bound on the size of nonisolated introvert
vertices.
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procedure partitioning (V:set-of-vertices; E:set-of-edges; n:integer)
returns (extrovert, introvert)

for every vertex v E V in parallel do
parent(v) := v
flagv := 0

od
for j := 0 to [2. log(log(n)) do/* loop j */

Pick a sample of edges of size max(P, IlEal. a)
if (v, u) is a live edge in the sample and flagoot(u) flagoot(v) j then

using concurrent write in parallel do
eoot() := (v, u); eoot(u) := (u, v); flagoot() := j + 1; flagoot(,) := j + 1

od
fi

k FIEII
P

V := the set of roots v such that flagv j + 1
If a processor wrote the edge e then it puts v into its local array.
call deterministic-mate(V, k)

od/* loop j */
for j := [2. log(log(n)) 1 downto 0 do

for every v E V in parallel do
if v was mated in the jth iteration of loop j
then parent(v):= parent(parent(v))

fi
od

od
for every edge (u, v) in the graph in parallel do

replace edge (u, v) by edge (root(u), root(v))
od
for every vertex v V in parallel do

if flagv [2. log(log(n)) + 1 then mark v as extrovert.
else mark v as introvert.

fi
od
return (extrovert, introvert)

end partitioning

FiG. 4. Algorithm for partitioning of the vertices.

LEMMA 5.10. The number of extrovert supervertices in iteration k of loop j is at
most n c2k.

Proof. The proof follows immediately from Theorem 5.7 because every extrovert
root has an edge in the sample. F1

LEMMA 5.11. For a given x, the probability that at least x edges will become
introvert in iteration k of loop j is bounded by

_.(y/mi) ..a2"k
e 2

n"

where y max(P, Fm
Proof. In every iteration a subset of (possibly empty) vertices becomes introvert.

By Lemma 4.2, the probability that a particular subset of vertices with x extrovert
--’(Y/mi)edges will become introvert is at most e By Lemma 5.10, we have at most

o2Ok
n. (2.k extrovert supervertices, and therefore we have at most 2n’ subsets with x
extrovert edges.
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We find an upper bound to the probability that at least one such subset will
become introvert by summing up the probabilities of all these events. Therefore, an

--.(y/-) 2n
2.k

upper limit to the probability is e
Please note that the bound is not tight for reasons similar to those that explain

the looseness of the bound in Lemma 4.3.
DEFINITION 5.12. Let fk be the probability that the number of extrovert edges

that become introvert during iteration k of loop j is greater than ni ak.
LEMMA 5.13. The probability fk is bounded by (2/e)

nk

Proof. Set x ni ck, z rn ak; by Lemma 5.10, the number of supervertices
is bounded by n. O2"k. Note that y >_ z. Then, by Lemma 5.11,

ni .2.k
_ni.ak.ak 2.k

fk <_e .2n"

THEOREM 5.14. With probability greater than or equal to

log (n)

the number of edges that became introvert is less than 5.5.
Proof. Assume that the bound expected in Lemma 5.13 is obtained. (The prob-

ability for this will be computed later.)
The number of edges that become introvert is bounded by:

2.log(log(n))

n < 5.5 Hi.ok

k=0

Now we compute an upper limit to the probability of failure. Failure can happen
if the number of edges that become introvert in some iteration k of loop j is more
than Hi. ak. By Lemma 5.13, the probability is bounded by

4"lg(lg(n)) rti/ log (n)

Let us assume that failure in any iteration causes the algorithm to fail. This
assumption may be false, but it gives us an upper bound on the probability of failure.
By adding up the probabilities of failure in all the iterations, we get an upper bound for
the probability that the algorithm fails. Multiplying the upper bound for the number
of iterations by the upper bound for the probability of failure in each iteration yields
the claimed probability. [:]

Note that the number of iterations is 2. log(log(n)) + 1, but there can be no failure
in the first iteration because every live edge is in the sample.

THEOREM 5.15. The time complexity of the partitioning algorithm is-- + (log(log(n)))2)
Proof. Every iteration k in loop j is composed of
1. Taking a sample of edges and writing every edge (u, v) to root (u) and root
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procedure sparse-to-dense (G(V, E))
Extrovert-Set:= 0; V-1 := V; E_I := E;

for i:= 0 to [2. log(log(n))] do
(extrovert, introvert) := partitioning(V_l, El_l, n)
Extrovert-Set := Extrovert-Set U extrovert
V := vertices in introvert which are not introvert-isolated
Ei := {(v, u)l(v, u)is a live edge, and u, v E introvert}
Redistribute V and Ei evenly among the processors.

od
for every root v introvert in parallel do

if there exists an extrovert vertex u adjacent to v, then
parent(v) := u; replace every edge (v, w) by edge (u, w).

fi
od
V := introvert U Extrovert-Set; E := all live edges.
return G(V,E)

end sparse-to-dense

FiG. 5. Reducing the number of vertices.

2. Mating the extrovert trees using the deterministic-mate procedure.
The time complexity of the first term is bounded by the product of the sample

size and maximum height of the supervertex trees in that iteration (because we have
to write every edge in the sample to the roots). The sample size per processor is
bounded by 1 + ak (rn/P), and the height of every tree is at most k. Therefore the
amount of work executed by every processor is bounded by k. (1 / (k. (rn/P)).

By Theorem 5.8, the time complexity for the second term is

O(log(log(n)) / ck (m/P)).

Thus the time complexity for the partitioning is:

[2.log(log(n))]

E 1 +(1 + k). (m_ff_. ak) + log(log(n)) + --ff-.rn ak
k=0

< o + + o +
k=O

THEOREM 5.16. After performing the algorithm, the size of extrovert is at most
n/log(n).

Proof. The proof follows immediately from Lemma 5.10. E]

5.4. The algorithm for reducing the number of vertices. The algorithm
presented in Fig. 5 reduces the number of vertices in the graph from n to n/log (n).
The expected time complexity of the algorithm is O((n + m)/P + (log(log(n)))3).

Our goal is to reduce the number of supervertices in the graph. We call partition-
ing 2. log(log(n)). Each call returns extrovert and introvert sets. We set the extrovert
supervertices aside, and call partitioning again with the introvert set as the input.

After the ith call to partitioning, the number of new extrovert supervertices is
IV/I/log(n) (by Theorem 5.16). Since by Lemma 5.9, the size of introvert decreases
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geometrically, there are O(n/log(n)) supervertices in Extrovert-Set after performing
the loop.

The size of introvert (IVI) is reduced by a constant factor in each call of partition-
ing and therefore after O(log(log(n))), its size is reduced by a factor of log(n) from
the original size of the vertex set.

The number of introvert edges is also reduced in every call to partitioning (see
Theorem 5.14), and therefore the complexity of each iteration is reduced by a constant
factor.

5.5. Analysis of the algorithm that reduces the number of vertices.
LEMMA 5.17. After iteration i, the number of live supervertices that are not intro-

vert-isolated is bounded by n. a2"i.
Proof. The proof follows immediately from Lemma 5.9.
LEMMA 5.18. With probability greater than or equal to

1 ([2 lg(lg(n))) ( 2-)e
[gi I/ lg (n)

the number of edges that become introvert by the end of each iteration i is less than
5.5. Iv l.

Proof. The proof follows immediately from Theorem 5.14. [q

Note that by definition, introvert-isolated vertices have no edges incident to other
supervertices in introvert. Therefore the number of these vertices has no influence on
the number of edges that will become introvert in the next iteration.

LEMMA 5.19. With probability greater than or equal to

n/ log (n)

1 ([2 log(log(n))) (!)
2.(i-i)

the number of live edges in Ei is bounded by 5.5. max(n, a n/ log(n)).
Proof. If V > (n/log(n)), then the proof follows immediately from Lemma 5.17

and Theorem 5.14.
If Vi is smaller than n/log(n), the claim is true because we can, strictly for

purposes of analysis, add vertices with degree zero to V. They will not affect the
actual running of the algorithm, but we will be able to use Theorem 5.14 for that case
as well.

THEOREM 5.20. With probability,

n/ log (n)

1-4. ([log(log(n)))2- ()
the time complexity of the algorithm is O(log(n)).

Proof. The time complexity of the partitioning is O((IEI/P + (log(log(n))) 2)
(by Theorem 5.15). During the algorithm, for every edge for which it is responsible,
a processor can process the edge (that is, read information, update its status, etc.) in
constant time.

Our goal is for each processor to have about the same number of edges of E.
That is, in iteration of the algorithm, if Ei is the set of edges remaining for the next
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partitioning, then each processor should have O(IEil/P edges in order to balance the
work.

We use a technique developed by Cole and Vishkin [5] for their connected com-
ponents algorithm [3]. They gave an optimal algorithm to compute the prefix sum
of an array of size m in O(log(m)/log(log(m))) time using an optimal number of
processors.

The load balancing is done in the following way:
1. Every processor computes the number of live edges it has.
2. A PRAM array A of size P is allocated; every processor pi writes the number

of its live introvert edges in A[i].
3. The fast prefix sum algorithm is used on array A.
4. A PRAM array B of the size of the number of live introvert edges is allocated.
5. Every processor writes its edges in array B in the interval [A[i 1] + 1, A[i]].
6. B is divided into equal parts between the processors.
The first partitioning takes O(m/P) time. Therefore, the expected time complex-

ity is bounded by

m

P E if" + (lg(lg(n)))2 + log(log(m))
i--0

n)_<0 -+log(m)+ --O(log(n)).

We assume that if, in any iteration of the partitioning algorithm, more than the
expected number of live edges became introvert, then the algorithm failed. The sparse-
to-dense algorithm calls the partitioning algorithm [2. log(log(n))] times, and every
time the partitioning algorithm runs for [2. log(log(n)) iterations.

If V _< (n/log(n)), and all the previous iterations have succeeded, then every
processor has a constant number of edges and vertices, and every iteration takes
O((log(log(n)))2) plus load-balancing time.

If V > (n/log(n)), then by Theorem 5.14 the probability of failure in any call to
partitioning is bounded by

log (n)

We call partitioning I2. log(log(n))] times, and an upper bound for the probability of
failure is the number of calls times the probability to fail at each call.

THEOREM 5.21. The number of live supervertices at the end of the algorithm is

O(log(n) )"
O nProof. The number of introvert supervertices is (log(n)) (Lemma 5.17) The

set of supervertices that moves to the Extrovert-Set after iteration is bounded by
nil log(n) (Theorem 5.16), and ni decreases geometrically (Lemma 5.17).

Note that we do not know the number of edges after the algorithm stops. It is
possible that the extrovert supervertices have most of the edges of the original graph,
in which case we need the dense-to-easy procedure to reduce their number.

6. Algorithm for finding connected components. The algorithm presented
in Fig. 6 takes a graph G(V, E) as input, and finds its connected components. After
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execution, every vertex should point to the root of the connected component superver-
tex to which it belongs. However, the leaves of stars created by the sparse-to-dense
and dense-to-easy procedures point to arbitrary dense vertices, rather than specifi-
cally to the root of the appropriate supervertex. We fix this problem after completing
the easy-case algorithm by using a double jump-over operation, that is, making each
vertex point to its great-grandparent.

The connected components algorithm is a Las-Vegas algorithm in the sense that
it always gives the right answer but may take longer than expected.

procedure general-graph (G(V, E))
call sparse-to-dense(G)
call dense-to-easy(G)
call easy-case(G)
for every v E V in parallel do

parent(v) := parent(parent(parent(v)))
od

end general-graph

FIG. 6. Finding connected components in a graph.

6.1. Analysis of the algorithm for finding connected components.
THEOREM 6.1. The expected time complexity of the algorithm is O(log(n)).
Proof. The expected complexity of the sparse-to-dense procedure is O(log(n)) by

Theorem 5.20. If the procedure succeeds, then by Theorem 5.21, we have a constant
number of vertices per processor. In that case we can run procedure dense-to-easy
in O(log(n)) time (see Theorem 4.12). If dense-to-easy succeeds, then we can run
Shiloach and Vishkin’s algorithm in O(log(n)) time [11]. The total complexity is:

+ +
THEOREM 6.2. The probability that the algorithm will run longer than expected

is bounded by

(4. ([log(log(n))) + /log(n)]). (!)
n/ log (n)

Proof. The proof follows from Lemma 4.11 and Theorem 5.20.
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Abstract. This paper considers the problems of triangularizing and diagonalizing matrices over
rings, with particular emphasis on the integral case. It begins with a description of fast algorithms
for the computation of Hermite and Smith normal forms of integer matrices. Then it shows how to
apply fast matrix multiplication techniques to the problem of triangularizing a matrix over a ring
using elementary column operations. These general results lead to an algorithm for triangularizing
integer matrices that has a faster running time than the known Hermite normal form algorithms.
The triangular matrix that is computed has small entries like the Hermite normal form, and will
suffice for many applications.
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1. Introduction. A common theme when performing computations involving
matrices is to use a triangular or diagonal matrix that is equivalent for the com-
putational task at hand. For example, Hermite and Smith normal forms of integer
matrices (see 2 for definitions) have applications to a number of areas including solv-
ing systems of linear Diophantine equations (see [13]), integer programming (see [28]),
algorithmic problems in lattices (see [14] for an example), and the structure theorem
for finitely generated Abelian groups (see [15, Chap. 7-10]).

In this paper, we consider the problem of computing such special forms of matrices
over rings, with particular emphasis on the integers. In 2 we give deterministic
algorithms for computing the Hermite and Smith normal forms of integer matrices
which have fast and rigorously proved running times. While the emphasis of our
paper is on the asymptotic analysis of algorithms, we believe these algorithms are
quite practical.

The main results of this paper appear in 3 and 4. In 3, we consider the problem
of matrix triangularization over very general rings, employing the techniques of fast
matrix multiplication. In 4, these methods are then applied to the special case of
matrices over the integers to reduce the computational complexity of triangularization.
Note that in many applications, a triangular matrix can be used in place of the Hermite
normal form. In the last section, we discuss some open problems.

We, of course, require some notation. If A is a matrix over a commutative ring
R, we let (A) denote the R-module consisting of all R-linear combinations of the
columns of A. In the case R Z, :(A) is the lattice generated by the columns of A.
In this case, we let Det(/:(A)) denote the determinant of this lattice. We will say that
A is right unimodularly equivalent over R to a matrix B if there exists a unimodular
matrix K such that AK B. (A unimodular matrix K satisfies det(K) +1.)
Finally, we use the notation log to denote logarithms to base 2.

2. Hermite and Smith normal forms. Let A denote an m n matrix with
integer entries. A classical result says that if A has rank m, then there exists an m n
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lower triangular matrix H and an n n unimodular matrix K such that A HK,
and

hi > 0, 1 <_ <_ rn,
0 <_ hij < hi, 1 <_ <_ rn, 1 <_ j < i.

This was first proved for the case of square matrices by Hermite [17]. The matrix H
is unique, and is known as the Hermite normal form of A. Note that Det(t:(A))
1-I" hi-I

A related construction is the Smith normal form. Smith [29] proved that for every
m n matrix A of rank r, there exist unimodular matrices J, K and a diagonal matrix
S with A JSK, S diag(sl,...,sr,0,..-,0), and Sl Is2 I"" sr, with s > 0.
The matrix S is unique, and is known as the Smith normal form of A. The integers
s l, s2,..., s are called the invariant factors of A. If A has rank m, then the product
of the invariant factors equals Det((A)).

In this section we shall describe some algorithms for computing the Hermite and
Smith normal forms of integer matrices, and analyze the performance of the algo-
rithms. Numerous researchers have previously given algorithms for the calculation of
Hermite and Smith normal forms, as well as the related problem of solving systems
of linear Diophantine equations. These include Hermite [17]; Smith [29]; Blankin-
ship [2], [3]; Bradley [5]; Havas and Sterling [16]; Frumkin [12], [11]; Domich [9];
Kannan and Bachem [23]; Domich, Kannan, and Trotter [10]; Kaminski and Paz [22];
Hu [18, App. A]; Schrijver [28, Chaps. 4-5]; McClellan [24]; Chou and Collins [7]; and
Iliopolous [20].

The simplest algorithms for computing the Hermite normal form use a procedure
similar to the Euclidean algorithm, replacing the diagonal element in a given row by
the gcd of the elements in the same row to the right. This procedure takes O(m2n)
operations on rational numbers, but such algorithms are well known to suffer from
"intermediate expression swell," since the numbers that are encountered during the
calculation can become enormous, as was observed in [2] and [12], among others. As
an example of the kind of intermediate expression swell that can occur, the first author
used the software package Mathematica to run some trials on random 20 x 20 matrices
with integer entries between 0 and 10. After reduction to triangular form using the
standard Hermite procedure, they almost always gave at least one entry exceeding
10500 and after several such examples, the following rather spectacular example was
found. Consider the matrix

10 810
410 8
2 4 6

5 0
9 8 5

10 3
8 2 8
0 4 8
4 6 4
2 0 7
2 2
4 110
5 3 3
4 810
6 9 4
510 5

310
6 4
3 7 5

10 210

5 510 0 8 5 9 8 30 9 9 2
5 2 6 5 2 6 9 14 6 2 7
4 3 0 3 010 2 3 06 7 5 7
4 8 0 10 10 2 0 5 3 6 10 2 10
4 10 6 3 10 3 8 7 4 7 5 8
0 0 9 8 2 6 0107 4 9 2
0 0 9 3 0 7 8 0 34 5 3 8
6 0 5 0 0 3 4 69 51010
8 9 2 5 6 9 8 9 36 7 3 8
10 8 4 7 5 3 7 1106 2 2 9
5 4 4 4 6 7 0100 2 5
2 4 0 9 7 8 9 9 33 910
9 2 4 2 7 8 5 75 5 9 4

0 8 10 4 4 10 3 10 7 4 5 7
710 3 6 9 5 8 4 69 8 7 5
610 0 9 5 4 0 98 9 3 5
2 5 5 110 610 43 8 6
5 8 2 3 3 7 4 10 2 9 10 3
2 10 0 10 4 0 0 10 3 2 9 5
6 2 9 3 2 0 2 5 33 5 510

7 6 0 4
7 410
7 3 3 2
21010 2
6 8 3
310 2 9

4 4 9
3 5 9 9
510 7
9 9 110
910 2 5
7 3
5 410 6
3 2 2
9 8 9 7
2 2 0 8

2 6 9
3 6 5 8
710 5 3

0 7 3
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After reducing this matrix to triangular form, there is an entry exceeding 10TM By
contrast, the Hadamard bound for the determinant of this matrix is approximately
1033 and the algorithm that we present here would only require modular arithmetic
on integers of this size. It should be mentioned, however, that the bad reputation of
the classical Hermite algorithm is based on computational experience and heuristic
arguments, and that it remains an open question whether the length of the entries
remain bounded by a polynomial in the length of the input. See [12] for a more
thorough discussion of this.

Apparently, the first published algorithm for Hermite normal form that substan-
tially overcame this problem of large integer entries is due to Frumkin [12]. Frumkin’s
algorithm has a running time that is bounded by a polynomial of degree 6 in the
length of the input and uses an algorithm for the computation of solutions of linear
Diophantine equations. Shortly thereafter, Kannan and Bachem [23] published an-
other polynomial-time algorithm for the computation of Hermite and Smith normal
forms. The Kannan-Bachem method uses a rearrangement in the order of operations
of the classical Hermite algorithm, and in so doing they were able to prove a poly-
nomial time and space bound for the algorithm. Chou and Collins [7] modified the
Kannan-Bachem procedure and gave a better space bound.

Frumkin’s approach uses modular arithmetic to control the size of the entries that
arise. Others that have used modular arithmetic in various forms include Hu [18,
App. A]; Schrijver [28, Chap. 4]; Domich [9]; Domich, Kannan, and Trotter [10]; and
Iliopolous [20]. In 2.1 below, we present and analyze an algorithm for computing the
Hermite normal form that is an extension of the Domich, Domich-Kannan-Trotter,
and Iliopolous algorithms to nonsquare matrices, where the determinant is replaced
by a suitable modulus. We also give a different method for calculating the modulus.
The extension is relatively straightforward, but we present it here for completeness
and to illustrate the improvements given later in 3.

In 2.2, we extend the methods of Domich, Kannan, and Trotter to get a method
for calculation of Smith normal forms of integer matrices. This was first done for
square matrices of full rank by Domich [9], and independently by Schrijver [28,
Chap. 4]. A similar construction was given in [18, App. A], but it does not seem
to be complete. More recently, Iliopolous [20] has described a very similar algorithm
(at least for matrices of full rank).

2.1. An algorithm for computing the Hermite normal form. We shall
express our results in terms of a function B(t), which will bound the number of bit
operations required to do each of two different operations. The first operation is
to carry out the extended Euclidean algorithm on two It] bit integers. The second
operation is the application of the Chinese remainder theorem with moduli consisting
of all primes less than t. By Theorems 8.20 and 8.21 of [1], we can take B(t)
M(t) logt, where M(t) is a monotonic upper bound for the number of bit operations
required to multiply two It] bit integers. By a result of Schhnhage and Strassen [27],
M(t) << t log t log logt, so that

B(t) << t log2 t log log t.

We also assume that B(t)/t is nondecreasing.
Our first result is the following.
THEOREM 2.1. There exists a deterministic algorithm that receives as input an

rn n integral matrix A of rank rn and a positive integer h that is a multiple of
Det((A)), and produces as output the Hermite normal form of A. If the entries
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of A are bounded in absolute value by T, then the running time of the algorithm is
O(mnB(log T) + rn2nB(log h)) bit operations.

If only the matrix A is given, but not h, then the following corollary gives a bound
for the running time to compute the Hermite normal form of A.

COROLLARY 2.2. There exists a deterministic algorithm that receives as input an
rn n integral matrix A of rank m, and produces as output the Hermite normal form
of A. If the entries of A are bounded in absolute value by T, then the running time

of the algorithm is O(rn2nB(rnlog(rnT))) bit operations.
The corollary follows immediately from Theorem 2.1 and a special case of the

following proposition (the general case will be used in the next section).
PROPOSITION 2.3. There exists a deterministic algorithm that receives as input

an rn n (rn <_ n) integral matrix A and produces as output the rank r of A over
and a positive integer h such that h is a multiple of the product of the invariant

factors of A. If the entries of A are bounded in absolute value by T, then h <_ rr/2Tr,
and the running time of the algorithm is O(rrnnB(rn log(rnT))) bit operations.

We now give the proof of Proposition 2.3. Our goal will be to find a nonsingular
submatrix of dimension r, where r is the rank of A over Q. The number h will be
the determinant of this submatrix, which by the Hadamard inequality is bounded
by rr/2T. The first step in finding such a submatrix is to calculate a number z
O(rn log(rnT))such that

mm/2Tm < H P < rnmT2m’
p<z

p prime

and to calculate all of the primes up to z. Finding z can be done using the estimates
of [26] and the calculation of the primes can be done in time O(z) by the method
of [25]. The number r is the largest dimension of a nonzero subdeterminant of A. For
every prime p, the rank of A modulo p does not exceed r, and it equals r if and only
if p does not divide some r r subdeterminant. Since every nonzero subdeterminant
of A is less in absolute value than YIp<_z P, at least one of the primes p < z will have
the property that the rank of A modulo p is equal to r.

We now proceed as follows. For each prime p < z, we use row reduction modulo p
to find the rank of A modulo p, and we keep track of the prime p for which this rank is
maximal. We also keep track of the indices of a maximal set of linearly independent
columns. After exhausting all of the primes p < z, we will have a maximal set of
linearly independent columns of A over Q, the rank r, and a prime p not dividing
some r r subdeterminant of the matrix formed by this set of columns. We can
then apply column reduction modulo p to find a set of r rows which are linearly
independent modulo p. The selected rows and columns from the matrix A will form
an r x r nonsingular (over Q) submatrix. Up to this point the number of bit operations
is easily seen to be

Z
(1) << rmnE B(logp) << rmnB(clogz)log zp<_z

by the prime number theorem. Since B(t)/t is nondecreasing, this gives at most
O(rrnnB(z)) bit operations.

The final step in this algorithm is to compute h, the absolute value of the deter-
minant of this submatrix. For this we simply compute the determinant modulo p for
each prime p _< z, (actually we could use a smaller value for z if r < m but this is
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unimportant) and use the Chinese remainder theorem to find the determinant modulo
1-[p<z P. (We note that similar use of the Chinese remainder theorem can be found
in [] and [24].) Since the absolute value of the determinant does not exceed 1-Ip<z P,
this gives the correct integer value. The determinant can be computed modulo p in

O(r3) operations modulo p, giving a total of at most O(r3B(z)) bit operations, as in

(1). We have already noted at the beginning of this section that the Chinese remain-
der theorem takes only O(B(z)) bit operations. The following lemma (Lemma 2.4)
implies that the product of the invariant factors of A is the gcd of all r r subde-
terminants of A, so that it divides h. This will complete the proof of Proposition
2.3.
LEMMA 2.4. Let A be an rn n integral matrix of rank r, and let S diag(sl,..-, st,

0,---, 0) be the Smith normal form of A. For 1 <_ i <_ r, let "(A) be the gcd of all
subdeterminants of A. Then

s /I (A)
si ",(A)/’,-1 (A), 2<i<r.

The lemma follows immediately from the observations that the 7i’s are invariant
under unimodular row and column operations, and that S can be computed from A
by such operations (see [15, 7.7]).

We note that in the application of Proposition 2.3 to Corollary 2.2, we are as-
suming that the matrix has full rank rn. Thus we need only do the first search until
we find a prime p and m linearly independent columns modulo p. This will then form
the necessary submatrix whose determinant we calculate as above. The running time
of this procedure will differ from that stated in the proposition only by a constant
factor.

We now turn to the proof of Theorem 2.1. The first step is to reduce the entries of
A modulo h, and then to convert A into a lower triangular matrix L using unimodular
column operations followed by reduction modulo h. This proceeds in the standard
order, moving from top to bottom and left to right. In order to introduce a zero in
the i, j location (where < j), we use the extended Euclidean algorithm to calculate
integers r and t such that ra + taj g, where g gcd(aii, aj) and [r[, It[ <_ h. We
then replace column by r. (column i) / t. (column j), and we replace column j by
-aij/g. (column i) + aii/g. (column j). This is equivalent to postmultiplication by
the n n unimodular matrix constructed by embedding the matrix

r -aij/g

into the n x n identity matrix, and will replace aii by gcd(aii, aij) and aij by 0. After
each such column operation, we reduce the entries in the two columns modulo h.

This clearly produces a lower triangular matrix L. The following lemma shows
how to reconstruct the diagonal of the Hermite normal form of A from L.

LEMMA 2.5. Let A be an integral matrix of size m x n and rank m, H (hij)
its Hermite normal form, and h a positive integer multiple of Det((A)). Let 41 h,
and d+ d/hii, 1,..-,m- 1. If L (lij) is any lower triangular matrix
obtained from A by unimodular column operations followed by reduction modulo h,
then hii gcd(di, lii).

The proof of this lemma can be found in [14], but it also follows closely the
arguments in [10].
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To complete the construction of the Hermite normal form H (hj), we proceed
as follows. First we reconstruct the diagonal of H. Let lj, i,j 1,...,m be the
entries of L. Set dl h. Then for 1,.-., m, use the extended Euclidean algorithm
to find integers r and t such that rd + tl h where h gcd(d,/i), and put
d+l d/hi. For 1,..-, m, multiply the ith column of L by t and reduce modulo
d. This produces a matrix whose diagonal is the diagonal of H. It follows from [10,
Cor. 2.6] that the columns of the resulting matrix generate (A). The final step in
computing H is to use unimodular column operations to reduce each of the entries
below the diagonal modulo the diagonal entry in its corresponding row. The order
of operations is to work from top to bottom and from left to right, and after each
column operation we reduce the column entries modulo h.

The running time of this algorithm can be estimated as follows. First, the tri-
angularization modulo h takes at most O(m2nB(log h)) bit operations since we have
O(rnn) entries to zero out, and each requires at most O(mB(log h)) operations. The
reconstruction of the diagonal takes at most O(m2B(log h)) operations. Finally, the
remaining steps to reduce the entries below the diagonal takes at most O(rn3B(log h))
operations. The total number of operations is thus O(m2nB(log h)) bit operations,
as claimed.

2.2. An algorithm for computing the Smith normal form. In this section
we shall present and analyze an algorithm for computing the Smith normal form of an
integer matrix. Without loss of generality, we may assume that our matrix is m x n
with m _< n, since the Smith normal form of A is the same as the transpose of the
Smith normal form of the transpose of A.

THEOREM 2.6. There exists a deterministic algorithm that receives as input an
rn n integral matrix A and a number h that is a positive multiple of the products of
the invariant factors of A, and produces as output the Smith normal form of A. If A
has rank r and entries bounded in absolute value by T, then the running time of the
algorithm is O(mnB(log T)+ rrnnB(log h)log h) bit operations.

Once again, we can state a result for the case when the number h and the rank
r are not provided as part of the input.

COROLLARY 2.7. There exists a deterministic algorithm that receives as input an
rn x n integral matrix A, and produces as output the Smith normal form of A. If A
has entries bounded in absolute value by T, then the running time of the algorithm is
0 (rrnn{B(r log(rT))r log(rT) + B(m log(roT))}) bit operations.

The proof of this corollary is immediate from the theorem above and Proposi-
tion 2.3. Since r <_ m, a simpler but less accurate bound on the running time is
O (,B(, og(,T))og(,T)).

For the proof of Theorem 2.6, we begin by describing the algorithm to compute
the Smith normal form S of A. As in the Hermite normal form algorithm, there
are two parts to the algorithm. In the first part, we reduce to a diagonal matrix,
proceeding inductively down the diagonal, and in the second part we reconstruct from
this diagonal matrix the Smith normal form. To begin the diagonalization procedure,
we perform unimodular row and column operations on A followed by reduction modulo
h to construct a matrix of the form

(2) B
bal 0 0

B*
0
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with the further condition that bll divides every entry of the matrix B*. To accom-
plish this, we first set B A, and then perform unimodular column operations and
reduction modulo h in order to replace bll by the gcd of the entries in the first row,
and to introduce zeros into the rest of the first row. We then perform unimodular
row operations followed by reduction modulo h so as to replace the new bll by the
gcd of the entries in the first column. This may destroy the zeros in the first row,
but if so, then it reduces bll by a multiplicative factor of at least 2. We repeat this
process until all entries (except b11) of the first row and column are zero. If now there
exists an entry bi* of B* for which bll /bi*, then we add row back to row 1 and
repeat the procedure. Once again this will reduce bll by a multiplicative factor of at
least 2. Clearly, bll is replaced by a new entry at most O(log h) times. Hence after
O(mnB(log h)log h) bit operations, we arrive at a matrix of the form (2) with 511
dividing every entry of B*. We now apply essentially the same procedure to B* (note
that this will not change the first row or column of B).

This procedure could break down if at some point we encounter a first row with
all zero entries. In this case we interchange the first row with some nonzero row below
it, if such a row exists. If no such row exists, which will happen after at most r steps,
then we terminate the first part of the algorithm. The matrix is now a diagonal matrix
S diag(l,..., ,) with

r+l gr+2 grn --O.

The final part of the algorithm is to reconstruct the Smith normal form S from. To do this, we set d h, and then for i 1,..., r, we set si gcd(di, i), and
di+l di/si and si 0 for r + 1 _< <_ rn. The matrix S diag(sl,..., Sm) is now
the Smith normal form of A.

The running time of the diagonalization part of the algorithm requires at most
O(rmnB(log h)log h) bit operations. Clearly, time for the reconstruction phase is
much less, justifying our claim in the theorem for the running time of the complete
algorithm.

It remains to prove the correctness of this algorithm, in particular, the reconstruc-
tion procedure. But Lemma 2.4 and the proof of Lemma 2.5 can easily be adapted
to show this.

3. Triangularization over rings. From the previous section it is clear that the
computation of the Hermite normal form of an ra n matrix can be accomplished in
at most ran applications of the extended Euclidean algorithm, combined with at most
O(ra2n) operations on integers. The major portion of the work goes into bounding the
size of the integers that are involved. In this section we shall take a more theoretical
approach to the problem of computing right unimodularly equivalent triangular forms
of matrices, with the goal of reducing the total number of ring operations. This is
analogous to the results that relate the complexity of matrix inversion [6] and LU
factorization [19] to matrix multiplication over fields.

In 3.1, we will assume our ring is a commutative ring with identity in which
every ideal is principal (PIR). Under these assumptions we give a construction and
running time bound for computing matrices K and L with AK L, where L is lower
triangular and K is unimodular. This particular form, with the unimodular matrix on
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the left, has the advantage that we do not need to resort to matrix inversions (a more
subtle problem over PIRs than over fields). In 3.2 we add additional assumptions
on our ring and show how to get the factorization A LK, using matrix inversions.
Of course it is obvious that one can get to this formulation by inverting K and
multiplying, but the construction we give here yields a better running time.

3.1. Triangularization over principal ideal rings. We take the following
model. Let R be a commutative ring with identity in which every ideal is principal (a
PIR), and let M(m, n, k) MR(m, n, k) be a bound for the number of ring operations
required to multiply an m n matrix times an n k matrix over R. Here, by ring
operation we mean an assignment, or an addition, subtraction, or multiplication (but
later in 3.2 we shall include division as a ring operation). Over a general PIR, the
Hermite normal form of a matrix need not exist, since there is no notion of size. It is
still possible, however, to obtain a (not necessarily unique) triangularization AK L
over the ring R, where L is lower triangular and K is unimodular.

Let A be m n and let t be the number of columns of zeros of A which we
may assume are the last t columns. We define a primary triangularization of A as
two matrices L and K (over R) such that AK L, L is lower triangular, and K is
unimodular and of the form

0 It

Let T(m,n) TR(m,n) be the number of ring operations required to compute a
primary triangularization for an m x n matrix A. The major result of this section
is to give a bound for T(m,n) in terms of M(m,n,k) and T(1,2). We have writ-
ten the time bound in terms of the quantity T(1, 2), since that represents the most
primitive operation, other than a primary ring operation, which is required to do this
triangularization.

The quantity T(1, 2) can be described simply as the number of ring operations
required, given ring elements a and b, to find ring elements x, y, l, k, g such that g is
a gcd of a and b, with

(4) g ax + by, 1 kx + ly, 0 -al + bk,

t] such thator in other words, to find a unimodular matrix [y

The assumptions of a PIR guarantee that the equations (4) are solvable (see [30,
Chap. IV, Thm. 33]), but under these general assumptions it is not clear that there is
an algorithm in terms of basic ring operations for finding a solution. (Thus it might
be the case that T(1, 2) is infinite.) However, if the ring R is the homomorphic image
of a Euclidean ring E, then an algorithm for solving (4) over the ring R would be to
take any preimages of a and b in E, solve the equation there, and then project back
to R. The most important examples of this situation (for our purposes) are the rings
Z/hZ. We refer the reader to 4, where this is used.

We assume throughout that

(5) M(m, m, m) << me.
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From (5) and block decompositions, we may easily deduce the following consequences:

-1 if m > n,(6) M(m, n, n) << n2mO_2 if m < n.

The current record on the exponent is held by Coppersmith and Winograd [8], who
proved that 0 < 2.376 holds for all fields. An inspection of their proof reveals that,
in fact, it holds for all commutative rings with identity. It is also clear that >_ 2.

We can now state the primary result of this section.
THEOREM 3.1. If R is a PIR, then

n2T(1, 2) + mn-1T(m, n) << maT(l, 2) + m-ln log(2n/m)

For the sake of comparison, note that the approach of 2.1 implies a bound of the
form

T(m, n) << maT(l, 2) + mn2, mn.

The proof of Theorem 3.1 uses a block decomposition to get an improvement on the
second term. It is perhaps paradoxical that the output data includes a matrix K that
is n x n, but that the running time is almost linear in n. A careful examination of
the proof reveals that the matrix K that is produced is sparse.

We will prove Theorem 3.1 by reducing the problem to a special case for which we
require some notation. Let S, be the set of rn x 2m matrices A over R with aij 0,
for 1 < i < m- 1 and m / + 1 < j < 2m, that is, matrices of the form

Let T* (m) be the number of ring operations required to produce, for a given A E Sm,
a primary triangularization. We now have the following lemma.

LEMMA 3.2. We have

T* (m) << m2T(1, 2) + m.
Proof. By adjoining at most m rows and columns of zeros, we can assume that rn

is a power of 2 (this is because of the special form of the primary triangularization).
The proof proceeds inductively, by reducing the problem to several of half the size.
We claim

T* (m) <_ 4T* (m/2) + 4M(2m, 2m, 2m)
< 4T* (m/2) + cm,

for some absolute constant c. The second part of this inequality is immediate from
(5). To prove the inequality (7), we begin with a matrix A E Sm. The first step is to
put the top center part (in the dashed box below) of the matrix into triangular form.
This transforms the matrix as follows:

gl
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where K1 is m m unimodular. After this we triangularize the top left part and the
lower right part, giving

where K. and Ka are m x m unimodular. Finally, we triangularie the bottom center
part, which puts the entire matrix into triangular form:

where K is unimodular.
To compute the product of the unimodular factors on the left requires at most

an extra 4M(2m, 2m, 2m) operations. Totalling up all these operations, we get

T* (m) 4T* (m/2) + 4M(2m, 2m, 2m),
which proves the claimed inequality (7).

To complete the proof of the lemma, we iterate (7) to obtain

T*() 4T* (/2) +
T*(/a) + + 4(/2)

j=0

<< m2T (1) + m.
But trivially, T*(1) T(1, 2), and this proves the lemma.

We now return to the proof of Theorem 3.1, starting with the ce m n. By
adjoining m columns of zeros, we have the obvious inequality T(m, m) T*(m),
which by the lemma completes this case. Next, for the case n < m, we first put the
top n x n submatrix of A in triangular form. This gives the obvious inequality,

T(m, n) T(n, n) + M(m n, n, n),
and by (6) this completes the case n < m.

It remains to consider the case m < n. By adding at most n columns of zeros, we
may assume that n 2kin for some positive integer k. Our goal will be to prove the
inequality

(8) T(m, n) S 2T(m, n/2) + P(m, n)+ T* (m) + M(n, 2m, 2m),
where P(m, n) denotes the time required to interchange two m x n blocks in an n x n
matrix, so that clearly P(m, n) << ran. Before proving (8), we first deduce the theorem
from it. om Lemma 3.2 and (6), we obtain

T(m, n) 2T(m, n/2) + cmT(1, 2) +

k
n

j=0

<< mnT(1, 2) + km-ln,
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which is the conclusion of the theorem.
The proof of (8) should be clear from the following diagram:

A

A

A

K1

K1 K2] P-

where P is an n n unimodular matrix which interchanges two rn n blocks of an
n n matrix, K1 and K2 are n/2 n/2 unimodular, and K3 is 2rn 2rn unimodular.
The term M(n, 2m, 2m) in (8) comes from computing the products of the unimodular
factors to the right of A. This completes the proof of (8), and therefore of Theorem 3.1.

3.2. Triangular factorization over principal ideal domains. In this section
we impose an additional assumption on our ring and give two results about matrices
over the ring. More precisely, we shall assume throughout this section that the ring
R is also an integral domain, hence a Principal Ideal Domain (PID). In our operation
counts, we include division as a ring operation, with the following stipulation. If
a, b E R and a b, then we allow the "operation" b/a to return the k E R with b ka.

Let F(m, n) FR(rn, n) be the number of ring operations (including divisions
when possible) required to compute for an rn n matrix A a factorization A LK,
where L is lower triangular and K is unimodular of the form (3). Note that F(1, 2)
differs very little from T(1, 2), except that the k and in (4) can be recovered from g,
x, and y via k a/g and big. Finding g, x, and y requires solving the "extended
Euclidean problem" gcd(a, b) g ax + by (but of course we do not have a Euclidean
algorithm unless R is Euclidean).

We will show that a factorization A LK is possible with essentially the same
running time as in Theorem 3.1. Some result of this type would be obvious if one
could reduce the problem of matrix inversion to that of matrix multiplication. In the
case when R is a field, this was proved by Bunch and Hopcroft [6]. The following
extends that result to integral domains.

THEOREM 3.3. Let R be an integral domain, and let I(rn) IR(rn) denote the
number of ring operations required to compute the inverse of an m m invertible
matrix A over R. If (5) holds, then

I(m) << m.
The proof of this result over a field given by Bunch and Hopcroft [6] does not appear
to extend directly to integral domains. Specifically, their proof uses the fact that if a
matrix over a field is invertible, then every row of the matrix contains a unit. This is

23not the case for an arbitrary ring, as can be seen from the simple example [35] over
Z.
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Proof. In order to prove Theorem 3.3, we shall pass to the field of fractions of R
(see [15, p. 51]). Briefly, this field can be defined as follows. Define an equivalence
relation on the set of pairs (r, s) of elements of R with s 0 by

(r, s) (t, u) if and only if ru st.

The field of fractions then consists of the set of equivalence classes, with addition and
multiplication defined by

+ [(t, +
[(t,

so that the operations of the field are expressed directly in terms of R.
The first thing we need to show is that the exponent for matrix multiplication

OF over the field of fractions F is the same as that for matrix multiplication over
the ring R, namely, 0 in our notation. Let A and B be two rn rn matrices over F
and let a and b be two ring elements such that aA and bB are matrices over R (for
example, take a to be the product of the denominators of all entries in A). Then
the product AB can be computed by first computing (aA)(bB) as matrices over R
and then dividing every entry by ab. This requires at most O(m2) multiplications
and divisions to compute aA and bB and AB from (aA)(bB). This is of lower order
than the computation of (aA)(bB) over R and shows that 0F 0. Conversely, let A
and B be matrices over R. Interpret these matrices as defined over F by taking each
entry x and replacing it by [(x, 1)] in F. Then the product AB can be computed in
F. The final step is to reinterpret the entries of the product as elements of R, by
dividing each numerator by its corresponding denominator. This requires an extra
O(m2) operations (actually divisions) and proves the inequality 0 _< OF.

Let F be the field of fractions of R, and let A be an invertible rn rn matrix
over R. There is a natural way of viewing the matrices A and A-1 as matrices
over F, and according to the result of Bunch and Hopcroft, we can compute A-1 in

O(m) operations over F, and therefore also in O(m) operations in R. Once A-1

is computed over F, it remains only to interpret the result as a matrix over R, but
this can easily be done, since we know that the entries in A-1 must be of the form
[(r, s)], where s r. Hence it suffices to take the elements [(r, s)] and replace them by
the corresponding value r/s in R. This completes the proof.

We now state our result on triangular factorization over PIDs.
THEOREM 3.4. If R is a PID, then

n2F(1, 2) +mnO-1 if rn >_ n,<< e) + < n.

Note that a straight application of Theorems 3.1 and 3.3 would add an extra
factor of no to the above bound.

The proof of this is not much different than that of Theorem 3.1. We first de-
fine a quantity F* (m) to be the number of ring operations required to compute the
factorization of a matrix in S,. Next we claim

(9) F* (m) <_ 4F* (m/2) + 2I(m) + 4M(2m, 2m, 2m).

To see that the claim holds, we need an intermediate observation. Let

[Xl]X= X2
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be m x m, with X E -m/2. If X L1K1 is a factorization into lower triangular
times unimodular, then

where now

has the shape

L1
X2K

This procedure requires F*(m/2) + I(m) + M(rn/2, m, m) operations.
With this in hand, the proof of (9) is essentially the same as (7) except that the

unimodular factors are on the right sides of the equations.
We deduce from (9) and Theorem 3.3 the simple bound

F*(rn) << rn2F(1, 2)+ rn.
This and arguments similar to those in the proof of Theorem 3.1 are all that is needed
to complete the proof of Theorem 3.4. The only differences are that the unimodular
factors are again on the right sides of the equations and the case n < rn requires an
inversion of an n x n unimodular matrix.

4. Triangularization over Z. One application of the Hermite normal form is
to give a particular triangular basis for the lattice generated by the columns of an
integral matrix. In this section we prove a result that produces a triangular basis
with nice properties. It is stronger than the result of Theorem 2.1 in one sense, since
the running time is smaller, but weaker since it does not produce the unique Hermite
normal form. The output still has the property that the entries are moderate in size,
so it is useful in some lattice problems. The algorithm ties together methods similar
to Corollary 2.2 and the results of 3.1.

In this section we let 0 denote an exponent for which (5) holds for Z/NZ for every
integer N > 1. In particular, 0 < 2.376 by [8]. Our result is the following.

THEOREM 4.1. There exists a deterministic algorithm that receives as input an
m x n integral matrix A of rank m, and produces as output a triangular matrix L
that is right unimodularly equivalent to A. If A has entries bounded in absolute value
by T, then the entries of L satisfy 0 < lij < mm/2Tm, and the running time of the
algorithm is O(rn-ln log(2n/rn)B(rn log(roT))) bit operations.

Proof. The algorithm has three stages. In the first stage, we find the determinant
h of a nonsingular submatrix of the matrix A in a manner similar to 2.1, but using
fast matrix multiplication techniques. In the second stage, we use the algorithm of
Theorem 3.1 over Z/hZ to find a triangular matrix L that is right equivalent to A
over Z/hZ. Finally, in the third stage we reconstruct from L a triangular matrix L
that is right equivalent to A over Z.

To begin the first stage of the algorithm, we proceed as in the algorithm of
Theorem 2.1 to calculate the number z O(m log(roT)) and all of the primes p < z.
Now we search for a prime p < z for which the rank of A over Z/pZ is rn. For this,
we use an algorithm of Ibarra, Moran, and Hui [19]. Their algorithm gives (among
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other things) the rank of A and a maximal set of linearly independent columns over
Z/pZ. As soon as we find such a prime p, the set of m linearly independent columns
over Z/pZ provide our rn rn nonsingular submatrix of A when viewed over Z. The
running time of their algorithm is O(rnO-ln) operations in Z/pZ, for a total of at
most

<< m-inE B(logp) << m-lnB(z)
p<_z

bit operations.
We now calculate the determinant of this submatrix using the Chinese remainder

theorem and the calculation of the determinant modulo all of the primes p < z.
The calculation of the determinants modulo p can again be accomplished with the
algorithm of [19], with a total running time of O(mB(z)) bit operations, and the
Chinese remainder calculation takes O(B(z)) bit operations as before.

After this first stage, we have a number h < rnm/2Tm that is a multiple of
Det((A)). In the second stage we now apply the algorithm of Theorem 3.1 over the
ring Z/hZ (which is a PIR) to find matrices K’ and L’ over Z/hZ such that AK’ L’,
K is unimodular, and L is lower triangular. The only thing we need to describe is how
many bit operations are required to do T(1, 2). Since this can be done by the extended
Euclidean algorithm in Z on nonnegative integers bounded by h, this is B(log h). The
number of bit operations required for this stage is O(m-n log(2n/rn)B(log h)).

Finally, in the third stage we proceed as in the proof of Theorem 2.1 to reconstruct
from L a matrix L whose diagonal is the diagonal of the Hermite normal form of A,
and whose columns generate ,(A). Note that in this procedure, the entries are reduced
modulo some divisor of h (the di’s) and so will be bounded between 0 and h. The
number of operations for this stage is O(m2B(log h)), since we need m applications of
the extended Euclidean algorithm on integers less than or equal to h, combined with
O(m2) operations modulo h. This completes the proof of Theorem 4.1. [

5. A fast probabilistic method for Smith forms over Z, and some open
questions. The results of the previous section suggest an interesting problem, namely,
whether algorithms for constructing the Smith normal form can be constructed that
make use of fast matrix multiplication techniques, achieving a speedup over the meth-
ods presented in 2.2. Our results in 4 come close to achieving this for the Hermite
normal form, although we are only able to triangularize the matrix. We were un-
able to find a block decomposition of the Smith normal form that would allow us to
incorporate fast matrix multiplication methods, but if one is willing to consider prob-
abilistic methods, then the method of Kaltofen, Krishnamoorthy, and Saunders [21]
might be adapted to the problem at hand.

We will briefly describe such a probabilistic algorithm for computing the Smith
normal form, based on the method of Kaltofen, Krishnamoorthy, and Saunders. Let
A be an m m nonsingular integer matrix for which we wish to compute the Smith
normal form, and for a matrix B, let Bi denote the upper left i subdeterminant
of B. The algorithm uses a parameter k, and can be described as follows.

1. For i- 1,...,m, set gi Ai.
2. For i- 1,...,k, do

(a) choose random m rn unimodular matrices X and Y.
(b) calculate G XAY.
(c) set g gcd(G, g), 1 < < rn- 1.
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3. Output the matrix T diag(tl,-..,t,), where tl g and ti gi/gi_,
2<i<rn.

We should mention that in practice we can take X and Y to be triangular or the
product of an upper and a lower triangular matrix. The principle upon which the
algorithm is based is the following. In Lemma 2.4, each ")’i is a gcd of all x
subdeterminants of the matrix A. We should be able to calculate this gcd by taking
the gcd of a few "random" linear combinations of the x subdeterminants, and it
turns out that the Gi’s are good candidates for such random linear combinations.

The method of Kaltofen, Krishnamoorthy, and Saunders was originally stated
for the problem of computing Smith normal forms of matrices over the polynomial
ring Fix], where F is a field. In this case they were able to prove that the algo-
rithm has a good probability of producing the correct output, and thus were able
to prove that the problem of computing the Smith form over Q[x] or GF(p)[x] is in
RNC2. The method of proof that they use does not carry over to the integer case,
but we suspect that the probability of failure in the above algorithm decreases expo-
nentially with k. If this can be proved, then we could probably achieve an expected
running time of O(rnaB(rn log(rnT))) bit operations using standard matrix multipli-
cation. Using fast matrix multiplication methods, we might even be able to lower it
to O(nB(, lo(nT))).

It is perhaps interesting to note that even though we are not able to prove it, the
method given above seems to work very well in practice for integer matrices. It does,
however, sometimes produce a wrong answer which may be difficult to detect. In some
cases, incorrect outputs can be detected immediately because they may not have the
correct divisibility property or even be integral. There seems to be no immediate way
to always detect a wrong answer other than to run some independent algorithm such
as that in Theorem 2.6 and compare the answers.

We note that our algorithms for computing the Hermite and Smith normal forms
of matrices over Z do not produce the unimodular multipliers. For square matrices
of full rank the multipliers can be recovered with the same asymptotic running time
bounds (see, for example, [20]). For matrices that are not square or not of full rank, the
multipliers are not unique. The algorithms that are presented here can be modified
to produce these multipliers, but at the expense of increased running time. One
technique for doing this that was pointed out to us by Lenstra [31], is to permute the
columns of A so that A [A A2], where A1 is rn x rn and nonsingular. We then
apply the algorithm to the augmented matrix

This matrix is clearly square and nonsingular, and any unimodular multiplier that
triangularizes A* will also work for A.
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Abstract. This paper investigates the possibility of disposing of interaction between prover and
verifier in a zero-knowledge proof if they share beforehand a short random string.

Without any assumption, it is proven that noninteractive zero-knowledge proofs exist for some
number-theoretic languages for which no efficient algorithm is known.

If deciding quadratic residuosity (modulo composite integers whose factorization is not known)
is computationally hard, it is shown that the NP-complete language of satisfiability also possesses
noninteractive zero-knowledge proofs.
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1. Introduction. Zero-knowledge proofs. Recently, Goldwasser, Micali, and
Rackoff [GoMiRa] have shown that it is possible to prove that some theorems are
true without giving the slightest hint of why this is so. This is rigorously formalized
in the somewhat paradoxical notion of a zero-knowledge proof system (ZKPS).

Zero-knowledge proofs have proven to be very useful both in Complexity Theory
and in Cryptography. For instance, in Complexity Theory, via results of Fortnow [Fo]
and Boppana, Hastad, and Zachos [BoHaZa], zero-knowledge provides us an avenue
to convince ourselves that certain languages are not NP-complete. In cryptography,
zero-knowledge proofs have played a major role in the recently proven completeness
theorem for protocols with honest majority [GoMiWi2], [ChCrDa], and [BeGoWi].
They also have inspired rigorously analyzed identification schemes [FeFiSh], [MiSh]
that are as efficient as folklore ones.

The ingredients of zero-knowledge. Despite its wide applicability, zero-knowledge
remains an intriguing notion: What makes zero-knowledge proofs work?

Three main ingredients differentiate standard zero-knowledge proofs from more
traditional ones:

1. Interaction: The prover and the verifier talk back and forth.
2. Hidden Randomization: The verifier tosses coins that are hidden from the

prover and thus unpredictable to him.
3. Computational Difficulty: The prover embeds in his proofs the computational

difficulty of some other problem.
In sum, quite a rich scenario is needed for implementing zero-knowledge proofs.

Can one achieve the same results "with fewer ingredients"? Properly answering this
question is the goal of this paper. Any such answer is not only important from a purely
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theoretical point of view, but from a practical one as well: the ability to implement
zero-knowledge proofs in "poorer" settings would greatly enhance the applicability of
these ideas.

1.1. A newt simpler scenario for zero-knowledge. The new goal. Let A and
B be two mathematicians. A leaves for a long trip around the world, during which
he continues his mathematical investigations. We want to enable him, whenever he
discovers the proof of a new theorem, to write a postcard to B proving the validity
of his assertion in zero-knowledge. This is a noninteractive process. Better, it is a
monodirectional interaction: from A to B only. In fact, even if B would like to answer,
he couldn’t: A has no stable (or predictable) address and will move away before any
mail can reach him.

The new scenario. Achieving the new goal is a bit tricky. Without any shared
information, "monodirectional" and zero-knowledge proofs are possible only for trivial
statements. We shall see, however, that, under a complexity assumption, such proofs
exist for any "NP theorem" thanks to a simple, innocent-looking, ingredient: shared
randomness. That is, both prover and verifier have access to the same, short, random
string.

Past and present. Blum, Feldman, and Micali [B1FeMi] were the first to conceive
that zero-knowledge proofs could be based on the above, simple ingredient, and pro-
posed the name of noninteractive zero-knowledge proofs for them, and presented some
noninteractive zero-knowledge proofs. De Santis, Micali, and Persiano [DeMiPel] im-
proved on their results by using a weaker complexity assumption. The present paper
summarizes and improves on both these results.

First, we contribute a crisper formalization of noninteractive zero-knowledge; sec-

ond, we modify their algorithms and provide a full proof of correctness for them, thus
removing a subtle bug (pointed out by Bellare) in some part of their argument.

1.2. Shared random strings and public coins. As we have said, we have
prover and verifier share a common, random string. Actually, in our proof systems
the verifier will not toss any secret coins at all.

The idea of protocols with public randomness is not new. Protocols making use
of public randomness were already known in the literature, both in a cryptographic
and in a complexity-theoretic scenario. These protocols, however, were developed for
quite different ends, and differ from our scenario in the way the coin tosses are made
available.

Random beacons. In IRa3], Rabin presents the notion of a random beacon. This
is a source broadcasting random bits at regular time intervals. He used this device
for "achieving simultaneity" in contract signing.

Note, though, that sharing a common random string is a requirement weaker than
having both parties access a random beacon (e.g., sharing the same Geiger counter).
In this latter case, in fact, all made coin tosses would be seen by both parties, but the
future ones would still be unpredictable. By contrast, our model allows the prover to
see in advance the outcome of all the coin tosses the verifier will ever make. That is, the
zero-knowledgeness of our proofs does not depend on the secrecy or unpredictability
of a but on the "well mixedness" of its bits! 2

The part that presented a problem in their argument was the one relative to "many-theorems,"
that is, the equivalent of our 6.

2 This curious property makes our result potentially applicable. For instance, all libraries in the
country possess identical copies of the random tables prepared by the Rand Corporation. Thus, we
may think of ourselves as being already in the scenario needed for noninteractive zero-knowledge
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Note that sharing a random string a is a weaker requirement than being able
to interact. In fact, if A and B could interact, they would be able to construct
a common random string, for instance, by coin tossing over the phone [Bll]; the
converse, however, is not true.

Arthur-Merlin games. The question of the power of hidden randomness versus
public randomness has already been discussed in Complexity Theory in the context of
proof systems. Goldwasser, Micali, and aackoff [GoMiRa] and Babai and Moran [Ba],
[BaMo] consider proofs as games played between two players, prover and verifier, who
can talk back and forth. In [GoMiRa], the verifier is allowed to flip fair coins and hide
their outcomes from the prover. In [Ba], [BaMo], all coin tosses made by the verifier
are seen by the proverucalled, respectively, Arthur and Merlin in proof systems of
this type. Actually, each message from the verifier to the prover consists of a random
string. Thus in an Arthur-Merlin proof system, the verifier can be substituted by
a random beacon: rather than having the verifier send his next message, one waits
for the next transmission of the beacon. That is, once again, all made coin tosses
are publicly known, but future ones are still unpredictable. Only if the verifier is
guaranteed to send a single message are we in a shared-random-string scenario. The
class of languages recognized by such a restricted proof system is denoted by "AM2"
or "AM[2]" (to specify that there are exactly two rounds of communication). We
show that, under proper complexity assumptions, this class coincides with the set of
languages possessing noninteractive zero-knowledge proofs.

1.3. Applications of noninteractive zero-knowledge. Powerful computer
networks are in place, and can be used for executing a huge variety of cryptographic
protocols. Zero-knowledge proofs are crucial to these protocols and, at the same
time, interaction is the most expensive resource.3 Thus noninteractive zero-knowledge
proofs may be used to save precious communication rounds in cryptographic protocols.

Besides this, noninteractive zero-knowledge has been used by Bellare and Gold-
wasser [BeGo] as an alternative basis for secure digital signatures (in the sense of
[GoMiRi]). Also, following a hint of [B1FeMi], Naor and Yung [NaYU] exhibit public-
key cryptosystems secure against chosen cipher-text attack.

1.4. Organization. The next section is devoted to setting up our notation, re-
calling some elementary facts from Number Theory, and stating the complexity as-
sumption which suffices to show the existence of noninteractive ZKPS.

In 3 we define the notion of bounded noninteractive zero-knowledge; that is, the
"single theorem" case.

In 4 we show that a special number-theoretic language L possesses a bounded
noninteractive zero-knowledge proof. That is, if prover and verifier share a random
string, then it is possible to prove, noninteractively and in zero-knowledge, that any
single, sufficiently shorter x E L.

In 5, under the quadratic residuosity assumption, we prove that the "more gen-
eral" language of 3SAT is in bounded noninteractive zero-knowledge.

Only in 6 do we show that, if deciding quadratic residuosity is hard, the prover
can show in zero-knowledge membership in NP languages for any number of strings,
each of arbitrary size, using the same randomly chosen string.

In 7 we will discuss some related work.

proofs.
3 The internal computation of a typical cryptographic protocol can be performed in a few seconds,

but the time it takes to exchange electronic mail a hundred times may not be negligible.
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In 8 we will state an open problem that we would love to see solved.

2. Preliminaries.

2.1. Basic definitions. Notation. We denote by Af the set of natural numbers.
If n E Af, by in we denote the concatenation of n l’s. We identify a binary string a
with the integer x whose binary representation (with possible leading zeros) is a.

By the expression Ixl we denote the length of x if x is a string, the length of the
binary string representing x if x is an integer, the absolute value of x if x is a real
number, or the cardinality of x if x is a set.

If a and T are binary strings, we denote their concatenation by either a o T or aT.

A language is a subset of {0, 1}*. If L is a language and k > 0, we set Lk {x
L: Ixl _< k}. For variety of discourse, we may call "theorem" a string belonging to
the language at hand. (A "false theorem" is a string outside L.)

Models of computation. An algorithm is a Turing machine. An e]ficient algorithm
is a probabilistic Turing machine running in expected polynomial time.

We emphasize the number of inputs received by an algorithm as follows. If algo-
rithm A receives only one input, we write "A(.)"; if it receives two inputs, we write
"A(-, .)" and so on.

A sequence of probabilistic Turing machines {Tn}e is an efficient nonuniform
algorithm if there exists a positive constant c such that, for all sufficiently large n,
T halts in expected nc steps and the size of its program is less than or equal to nc.
We use efficient nonuniform algorithms to gain the power of using different Turing
machines for different input lengths. For instance, T can be used for inputs of length
n. The power of nonuniformity lies in the fact that each Turing machine in the
sequence may have "wired-in" (i.e., properly encoded in its program) a small amount
of special information about its own input length.4

A random selector is a special (random) oracle. The oracle query consists of a
pair of strings (s,S), where the second string encodes a finite set. Such a query is
answered by the oracle with a randomly chosen element in the set S. If the oracle is
asked the same query twice, it will return the same element. The role of the first entry
in the query is to allow us, if so wanted, to make random an independent selection in
a set 8. That is, if 8 is the same, and sl s2, then, in response to queries (sl, 8) and
(s2, S), the oracle will return two elements from S, each randomly and independently
selected.

A random selecting algorithm is a Turing machine with access to a random selec-
tor. Note that a random selecting algorithm is strictly more powerful than one with
access to coin or random oracle. For instance, a random selecting algorithm can select
with uniform probability one out of three elements. On the other hand, simulating
independent coin flips is easy with a random selector: If Select is a random selector,
to ensure the independence of bi, the ith coin flip, from all the other coin flips in a
computation on input x, one can set bi Select(x i, {0, 1}).

Random selectors will simplify the description of our algorithms. In fact, we desire
a prover in a noninteractive proof system to be "memoryless." That is, it needs not
remember which theorems it proved in the past to find and prove the next theorem.
However, for zero-knowledge purposes, it will be much handier to keep track of some
history, the history, that is, of previously made coin tosses. This will be crucial in

6. A random selector will, in fact, accomplish this record-keeping without having

4 This definition can be shown to be equivalent to the one of a poly-size combinatorial circuit and
to the one [KaLi] of poly-time Turing machine that takes advice.
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to consider provers "with history." As we shall point out, random selectors can be
efficiently approximated, and thus only represent a conceptual tool.

Algorithms and probability spaces. If A(.) is a probabilistic algorithm, then for
any input x, the notation A(x) refers to the probability space that assigns to the
string a the probability that A, on input x, outputs a.

Following the notation of [GoMiRi], if S is a probability space, then "x S"
denotes the algorithm which assigns to x an element randomly selected according to
S. If F is a finite set, then the notation "x F" denotes the algorithm which assigns
to x an element selected according to the probability space whose sample space is F
and uniform probability distribution on the sample points.

If p(.,-,...) is a predicate, the notation gr(x - S;y - T; p(x,y,...)) de-
notes the probability that p(x, y,...) will be true after the ordered execution of the
algorithms x - S, y ....

The notation {x S; y - T; (x, y,...)} denotes the probability space over

{(x, y,...)} generated by the ordered execution of the algorithms x - S, y - T,....

2.2. Number theory. Quadratic Residuosity. For each integer x > 0, the set
of integers less than x and relatively prime to x form a group under multiplication
modulo x denoted by Z. We say that y E Z is a quadratic residue modulo x if and
only if there is a w E Z such that w2 _= y mod x. If this is not the case, we call y a
quadratic nonresidue modulo x. For compactness, we define the quadratic residuosity
predicate as follows:

Qx(Y) { 01 otherwise.ify is a quadratic residue modulo x, and

FACT 2.1 (see for instance [NiZu]). If yl, Y2 Z, then
1. Qx(Yl) Q(Y2) 0 Q(YlY2) 0.
2. 1.
The quadratic residuosity predicate defines the following equivalence relation in

Z: yl Y2 if and only if Q(yly2) 0. Thus, the quadratic residues modulo x
form a x equivalence class. More generally, Fact 2.2 is immediately seen.

FACT 2.2. For any fixed y Z, the elements {yq mod x q is a quadratic
residue modulo x} constitute a equivalence class that has the same cardinality as
the class of quadratic residues.

The problem of deciding quadratic residuosity consists of evaluating the predicate
Q. As we now see, this is easy when the modulus x is prime and appears to be hard
when it is composite.

Prime moduli. Primes are easy to recognize.
FACT 2.3 ([AdHu] extending [Gogi]). There exists an efficient algorithm that,

on input x, outputs YES if and only if x is prime.
For p prime, the problem of deciding quadratic residuosity coincides with the

problem of computing the Legendre symbol. In fact, for p prime and y Z$, the
Legendre symbol (YlP) of y modulo p is defined as

+1 if y is a quadratic residue modulo x, and
-1 otherwise;

and can be computed in polynomial time by using Euler’s criterion. Namely,

(YlP) y(p-1)/2 mod p.
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Composites are easy to recognize. It is easy to test compositeness.
FACT 2.4 ([Ral], [SoSt]). There exists a polynomial-time algorithm TEST(., .)

such that
1. if x is composite, TEST(x, r) =COMPOSITE for at least s

3- of the strings r
such that Irl- Ixl.

2. if x is prime, TEST(x, r) =PRIME for all r’s.
We say that the sequence (PI, hi),..., (Pn, hA) is the factorization of x if the pi’s

n h
are distinct primes, the hi’s are positive integers, and x- 1-I=l pi

While it is easy to test compositeness, no efficient algorithm is known for com-
puting the factorization of a composite integer. In fact, the following assumption is
consistent with our state of knowledge.

Factoring assumption. For each efficient nonuniform algorithm C (Cn}nnf, let
puG denote the probability that, on inputing an integer x product of two randomly se-
lected primes of length n, Cn outputs--in some standard encoding--the factorization
of x. (This probability is computed over all possible choices of the two primes and
the internal coin tosses of CA.) Then for all positive constants d, and all sufficiently
large n, puG < n-d.

Often, computational problems relative to composite moduli are easy if their
factorization is known. For example, this is the case for the problem of computing
square roots modulo x.

FACT 2.5 (see for instance [An]). There exists an efficient algorithm that, given
as inputs x, its prime factorization, and y, a quadratic residue modulo x, outputs a
random square root of y modulo x.

FACT 2.6 (IRa2]). The problem of factoring composite integers is probabilistic
polynomial-time reducible to the problem of extracting square roots modulo composite
integers.

Another computational problem modulo x that is easy given the factorization of
x is deciding quadratic residuosity.

FACT 2.7 (see, for instance, [NiZu]). y is a quadratic residue modulo x if and
only if y is a quadratic residue modulo each of the prime divisors of x.

However, no efficient algorithm is known for deciding quadratic residuosity mod-
ulo composite numbers whose factorization is not given. Some help is provided by the
Jacobi symbol, which extends the Legendre symbol to composite integers as follows.
Let (Pl, hi),..., (p, hA) be the prime factorization of x, and y E Z. Then5

( lx) "’.
i=1

Define j+l and j-i to be, respectively, the subsets of Z whose Jacobi symbol is +1
and -1. It can be immediately seen that if y E J-1, then it is not a quadratic residue
modulo x, as it is not a quadratic residue modulo some prime pi dividing x. However,
if y j+l, no efficient algorithm is known to compute Qx(y). Actually, the fastest
way known consists of first factoring x and then computing Qx(y). This fact was first
used in cryptography by Goldwasser and Micali [GoMil]. We will use it in this paper
with respect to the following special moduli.

5 Despite the fact that the Jacobi symbol is defined in terms of the factorization of the modulus,
it can be computed in polynomial time. (This can be derived by a time analysis of the classical
algorithm presented in [NiZu]; see also [An].)
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Blum integers. For n EAf, we define the set of Blum integers of size n, BL(n),
as follows: x BL(n) if and only if x pq, where p and q are primes of length n,
both congruent to 3 mod 4. These integers were first used for cryptographic purposes
by [Bll].

Blum integers are easy to generate. By Fact 2.3 and the density of the primes
congruent to 3 mod 4 (de la Vallee Poussin’s extension of the prime number theorem
[Sh]), it is easy to prove the following.

FACT 2.8. There exists an efficient algorithm that, on input 1n, outputs the
factorization of a randomly selected x BL(n).

This class of integers constitutes the hardest input for any known efficient factor-
ing algorithm. Thus no efficient algorithm is known for deciding quadratic residuosity
modulo Blum integers, which justifies the following.

Quadratic Residuosity Assumption (QRA). For each efficient nonuniform algo-
rithm {Cn}ne, all positive constants d, and all sufficiently large n,

Pr(x - BL(n); y j:l
1 n-dCn(X,Y)-- x(Y) < --That is, no efficient nonuniform algorithm can guess the value of the quadratic resid-

uosity predicate substantially better than by random guessing.
It follows from Fact 2.7 and Euler’s criterion that, if x is a Blum integer, -1 mod

x is a quadratic nonresidue with Jacobi symbol +1.
FACT 2.9. On input of a Blum integer x, it is easy to generate a random quadratic

nonresidue in j+l: randomly select r Z and output -r2 mod x.
Regular integers. A Blum integer enjoys an elegant structural property. Namely,

Jx+ll J-l. More generally, we define an integer x to be regular if it enjoys the
above property. We define Regular(s) to be the set of regular integers with s distinct
prime divisors. By the definition of Jacobi symbol, Fact 2.10 is straightforward.

FACT 2.10. An odd integer x belongs to Regular(s) if and only if it has s distinct
prime factors and is not a perfect square.

Equivalently, by Fact 2.2, we have Fact 2.11.
FACT 2.11. An odd integer x belongs to Regular(s) if and only if it is regular and

Z is partitioned by x into 2s equally numerous equivalence classes. (Equivalently,
j+l is partitioned by x into 28-1 equally numerous equivalence classes.)

3. Bounded noninteractive zero-knowledge proofs. A bounded noninter-
active zero-knowledge proof system is a special algorithm. Given as input a random
string a and a single, sufficiently shorter theorem T, it outputs a second string that
will convince (noninteractively and) in zero-knowledge that T is true for any verifier
who has access to the same a. It is important in this process that a "brand new" ran-
dom string is employed for each theorem. The word "bounded" refers to the fact that
if the same a is used over and over again for convincing the verifier of the validity of
many theorems, the produced noninteractive proofs may no longer be zero-knowledge.

DEFINITION 3.1. Let A1 and A2 be Turing machines. We say that (A1,A.) is
a sender-receiver pair if their computation on a common input x works as follows.
First, algorithm A, on input x, outputs a string m. Then, algorithm A2 computes on
inputs x and m and outputs ACCEPT or REJECT. If (A, A2) is a sender-receiver
pair, A is called the sender and A2 the receiver. The running time of both machines
is calculated only in terms of the common input.

Thus m can be interpreted as a message sent by A1 to A2.
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Notation. In our sender-receiver pairs, the output of the sender is described in.
terms of s "send instructions," where s depends solely on the input length. If "send
v" is the ith such instruction, this is shorthand for "output (i, v)." Without explicitly
saying it, the receiver always checks that for each 1,..., s, exactly one pair with
first entry is received. If this is not the case, or if the second component of a pair
is not of the right form (i.e., is not of the proper length, is a string rather than a set,
etc.), the receiver immediately halts outputting REJECT. Thus if "send v" is the ith
instruction of the sender, "check that v..." means "check that the second component
of the pair whose first entry is i...." That is, the receiver parses without ambiguity
the sender’s output.

DEFINITION 3.2. Let (Prover, Verifier) be a sender-receiver pair where Prover(., .)
is random selecting and Verifier(.,., .) is polynomial time. We say that (Prover, Ver-
ifier) is a bounded noninteractive zero-knowledge proof system (bounded noninterac-
tive ZKPS) for the language L if there exists a positive constant c such that:

1. Completeness. For all x E Ln and for all sufficiently large n,

2
Pr(a n_ {0, 1}n; Proof J- Prover(a,x) Verifier(a,x, Proof) 1) > .

2. Soundness. For all x Ln, for all Turing machines Prover, and for all
sufficiently large n,

Pr(ey {0, 1}nc
1

;Proof - Prover’(a, x)" Verifier(a, x, Proof) 1) < .
3. Zero-Knowledge. There exists an efficient algorithm S such that for all x E

Ln, for all efficient nonuniform (distinguishing) algorithms D, for all d > O,
and, all sufficiently large n,

]Pr(s View(n,x) Dn(s)- 1)- Pr(s S(ln,x) Dn(s)- 1)[ < n-d,

where

View(n, x) {a Z- {0, 1 }nc Proof- Prover(a, x) (x, , Proof) }
We call Simulator the algorithm S.

We define the class of languages Bounded-NIZK as follows:

Bounded-NIZK {L: L has a bounded noninteractive ZKPS}.

A sender-receiver pair (Prover, Verifier) is a bounded noninteractive proof system for
the language L if there exists a positive constant c such that completeness and sound-
hess hold (such a c will be referred to as the constant of (Prover, Verifier)). We let
bounded noninteractive P be the class of languages L having a bounded noninteractive
proof system.

We call the "common" random string a, input to both Prover and Verifier, the
reference string. (Above, the common input is a and x.)

Discussion. Proving and verifying. As usual, we do not care how difficult it is
to prove a true theorem, but we do insist that verifying is always easy. Thus, we
have chosen our prover as powerful as possible, though it cannot use its power to find
"long" proofs, since the verifier is polynomial time (in the common input).
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Arthur-Merlin games. It is immediately seen that the notion of a bounded non-
interactive proof system is equivalent to that of a two-move Arthur-Merlin Proof
System [Ba], [BaMo]. Thus, letting AM2 denote the class of languages accepted by
a two-move Arthur-Merlin Proof System, we have Bounded-NIZK c_ AM2. Actually,
as we shall prove in 5.5, this containment is an equality under a proper complexity
assumption.

Deterministic verification. Note that our verifiers are defined to be deterministic.
Thus, if they want to perform some probabilistic computation, they are forced to use
part of the reference string. A cheating prover may thus try to exploit this fact to his
advantage.

Probability enhancement. As for the case of BPP algorithms and interactive
proofs, the definition of completeness and soundness is independent of the constants
2 and In fact these (or other "bounded away") probabilities can be pumped
up (and down) easily by repeating the proving process sufficiently many times, each
using a distinct segment of a sufficiently longer reference string. This process is called
"parallel composition." However, as noted by Micali, for the case of interactive zero-
knowledge proofs, parallel composition may also enhance the amount of knowledge
released! Indeed, zero-knowledge proofs do not appear to be closed under parallel
composition. The reason for which straightforward parallel composition fails in the
case of interactive zero-knowledge proofs is precisely that the interaction may be
exploited in subtle ways by a "cheating verifier.’’6 One advantage of noninteractive
zero-knowledge is exactly the fact that one does not have to worry about "cheating"
verifiers" as is immediately seen, bounded noninteractive zero-knowledge is closed
under parallel composition.

Completeness means that (after a sufficient enhancement) the probability of suc-
ceeding in proving a true theorem T is overwhelming. This is so even if T is selected
after the string a has been chosen. More precisely, a simple counting argument shows
that completeness is equivalent to the following:

11. Strong completeness. For all probabilistic algorithms Choose-in-L(.) that, on

inputting an nO-bit string, return elements in Ln, and all sufficiently large n,

A {0, 1}n ; x Choose-in-L(a);

Proof 2- Prover(a, x) Verifier(a, x, Proof) 1) > 1 2-n

That strong completeness holds can be seen by first using parallel composition so as
2 of completeness with 1 2-2n and then noticing thatto replace the probability 5

there are at most 2 theorems of length n.

Actually, completeness can be replaced by an even simpler property. Namely,
111. Perfect completeness. For all x E Ln,

Pr(a - {O, 1}nC;Proof Prover(a,x) Verifier(a,x, Proof) 1)= 1.

In fact, we have Theorem 3.3.
THEOREM 3.3. Let L Bounded-NIZK. Then L has a bounded noninteractive

ZKPS with perfect completeness.
Proof. Furer et al. [FuGoMaSiZa] have proved that any AM2 language has an

interactive proof system with perfect completeness. Now let (P, V) be a bounded

6 Elaborating on this subtle point is not within the scope of this paper. For an explanation of it

(and pointers to related results) see [BeMiOs].
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noninteractive ZKPS for L for which completeness holds with overwhelming proba-
bility. Then modify P as follows. Whenever the proof generated by P is not accepted
by the verifier (something that can be easily computed), as bounded noninteractive
P-AM2, the new prover interprets the reference string as an Arthur move, and re-
sponds with a Merlin move so as to achieve perfect completeness. This extra step
guarantees that the verifier will always be convinced (of a true theorem), and thus
perfect completeness holds. It is immediately seen that soundness keeps on holding.
Also, zero-knowledge keeps on holding: the extra step may be "dangerous," but it is
performed only too rarely.

Soundness means that the probability of succeeding in proving a false theorem T
is negligible. This still holds if T is chosen after a has been selected. More precisely,
a simple counting argument shows that soundness is equivalent to

2. Strong soundness. For all probabilistic algorithms Adversary outputting pairs
(x, Proof), where x Ln, and all sufficiently large n,

Pr(a {0, 1}nO; (x, Proof) J- Adversary(a)" Verifier(a,x, Proof) 1) < 2-n.

Zero-knowledge guarantees that the proof gives no knowledge but the validity of
the theorem. All the verifier may see in our scenario, a and Proof, can be efficiently
computed with essentially the same odds without "knowing how to prove T."

Note that in our scenario, the definition of zero-knowledge is simpler than the one
in [GoMiRa]. As there is no interaction between verifier and prover, we do not have
to worry about possible cheating by the verifier to obtain a "more interesting view."
That is, we can eliminate the quantification "V Verifier’’ from the original definition
of [GoMiRa].

Analogously to [GoMiRa], we may define a bounded noninteractive proof system
(Prover, Verifier) to be perfect zero-knowledge if the following more stringent condition
holds:

3. Perfect zero-knowledge. There exists an efficient algorithm S such that for all
x E Ln and all sufficiently large n,

View(n,x)-= (ln, X),

where

View(n, x) {a -- {0, 1 }no; Proof- Prover(a, x) (a, Proof) }.

Thus the notion of perfect ZK is independent of the computing power of "the
observer/distinguisher."

While for completeness and soundness it is not important whether the true/false
theorem is chosen before or after the reference string, this need not to be the case for
zero-knowledge. It is actually important that the prover chooses the true theorem T
he wants to prove independently of a. This, in practice, is not a restriction, since a
does not have any special meaning. The sole purpose of a is to provide a common
source of randomness, and thus it can be accessed only after the prover has chosen
which theorem to prove, in which case the "independence" condition is automatically
satisfied. Should the prover want to prove a statement "about" the reference string,
there is no guarantee that no knowledge would be revealed, while there is still a
guarantee that the statement cannot be false.
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4. A bounded noninteractive ZKPS for a special language.
DEFINITION 4.1. Set QT UnQT(n) and AfQT- unAfQT(n), where

Qn(n) {(x,y) x e Regular(2), Ixl <_ n, and Qx(Y) 0}

and

AfQT(n) {(x, y) x e Regular(2), Ixl <_ n, y e j+l, and Qx(y) 1}.

If one restricts the modulo x in the definition of QT and AfQT to be a Blum
integer, then the quadratic residuosity assumption states that it is hard to distinguish
the languages QT and AfQ.

For x E Regular(2), QRx denotes the set {y[ (x,y) E QT} and NQR the set
(x, e
DEFINITION 4.2. If (x, y) AfQ:R and z Jx+1, we say that s Z is an (x, y)-

root of z if z s2 mod x or zy s2 mod x. (Note that only one of the two cases may
apply.) If s is an (x, y)-root of z, we write s -(’Y/.

In this section we prove that AfQT has a bounded noninteractive proof system
that is perfect zero-knowledge. The proof system below is based on an earlier protocol
of Goldwasser and Micali [GoMi2].

The Sender-Receiver Pair (A,B)
Input to A and B:

(x, y) e AfQT(n)
A n3-bit random string p.
(Set p- PlP2""P., where each pi has length n.)

Instructions for A:
For 1,..., n2, if pi E J+l, then randomly choose and send si (’Yfii.

Instructions for B:
B.0. If pi J+ for less than 3n of the indices i, then stop and ACCEPT. Else,
B.1. Verify that x is odd and that y J+. If not, stop and REJECT. Else,
B.2. Verify that x is not a perfect square. If not, stop and REJECT. Else,
B.3. If x is a prime power, stop and REJECT. Else,
B.4. For each pi e J+ verify that s (’-fi. If not, stop and REJECT. Else

ACCEPT.

THEOREM 4.3. (A, B) is a bounded noninteractive ZKPS for AfQT.
Proof. First, (A, B) is a sender-receiver pair. Second, B runs in polynomial time.

In fact, the Jacobi symbol can be computed in polynomial time, steps B.2 and B.4
are trivial, and step B.3 can be performed as follows"

B.3.1. Compute the largest integer c for which x wa for some w Af. (Only
values 1,..., Ixl should be tried for a and a binary search can be performed
for finding w, if it exists.)

B.3.2. Compute z such that za -x.
B.3.3. If for all 1 _< _< n2, TEST(z, Pi) =PRIME, stop and REJECT.

Third, properties 1-3 of a bounded noninteractive ZKPS also hold.
Completeness. We actually prove that strong completeness holds. This implies

that the weaker property 1 also holds. If (x, y) E AfQ(n), then step B.1 is trivially
passed. Step B.2 is passed because of Fact 2.10. B.3 is passed with probability
greater than 1 2-n. This can be argued as follows. For any fixed 5 Regular(2),
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the probability that TEST outputs PRIME on a single p is at most 85-, and thus
(since the p’s are independent) the probability that B.3 is not successfully passed is

{5 n Since there are at most 2 x’s such that (x, z) E AfQT(n) for someat most

z, the probability that step B.3 is not successfully passed is at most 2n(-)n
_

2-n.
Finally, step B.4 is passed with probability i. In fact, as x Regular(2), by Fact 2.11,
there are exactly 2 x equivalence classes in Jx+. That is, either p is a quadratic
residue modulo x or p is in the same equivalence class as y, in which case yp is a
quadratic residue.

Soundness. As for the completeness property, we actually prove that strong
soundness holds.

First, observe that B stops at step B.0 only with negligible probability. Indeed,
By the Chernoff boundfor a fixed 5, the probability that p J+l is greater than .

(see [AnVa] and [ErSp]) the probability that Pi j.+l for fewer than 3n of the indices
is (for large n) less than 2-2n. Thus, the probability that there is an x for which B
stops at step B.0 is at most 2n2-2n 2-n.

Assume that (x,y) AfQT. Then, either (a) x Regular(2) but Qx(y) O,
or (b) x

_
Regular(2). For any fixed input (,) for which case (a) occurs, the

probability that B.4 is successfully passed is at most 2TM. (In fact, B.4 is passed if
and only if all pi’s are quadratic residues modulo x.) Thus, the probability that step
B.4 is passed, for any input for which case (a) occurs, is at most 2n2-3n 2-2n.

Consider now the case that (x, y) AfQT because of reason (b). Then either
(b.1) x is not regular, or (b.2) x Regular(I), or (b.3) x Regular(s) for s >_ 3.
In case (b.1), due to Fact 2.10, an odd x must be a perfect square which would be
detected in step B.2. In case (b.2), x is a prime power which would be detected by
step B.3. Let us now argue case (b.3). For any fixed (5, ) with 5 Regular(s), s >_ 3,
the probability that step B.4 is successfully passed is at most 2-. (In fact, this would
happen only if, for each pi j.+l either pi or py is a quadratic residue modulo 5.
This happens with probability smaller than or equal to since, because of Fact 2.11,
there are at least four x equivalence classes in J.+l .) Thus the probability that, for
any input outside AfQT because of reason (b.3), step B.4 is successfully passed is at
most 22n2-3n 2-n.

Zero-knowledge. Let us specify a (simulating) efficient algorithm M that, on input
(x, y) AfQT, generates a random variable which no algorithm can distinguish from
B’s view on input (x, y) AfQ74.

Ms program
Input: (x, y) A/’Q(n).
1. Set Proof- empty string.
2. Fori-lton2

Randomly select an n-bit integer si, with possible leading O’s.
If si Jx+1 then set Pi si.

else
Toss a fair coin.

2 mod x and append si to Proof.If HEAD set pi s
If TAIL set pi y-si2 mod x and append si to Proof.

3. Set p- p pn2.

Output: (p, Proof).

Now, let us prove that M is a good simulator for the view of B when interacting
with prover n on input (x,y) AfQT. Actually, (A,B) is perfect zero-knowledge.
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That is, the random variable output by M is the very same random variable seen by
B (and thus the two random variables cannot be distinguished by any nonuniform
algorithm, efficient or not). In fact, it can be easily seen that p is randomly distributed
among the n3-bit long strings. Moreover, if Pi E j+l, the corresponding si is a random
(x, y)-root of p. Thus s has the same probability of belonging to M’s output as it
has of being sent from prover A to verifier B on inputs (x, y) and p. [:]

Note that the proof system (A, B) does not have perfect completeness; that is,
there is a negligible probability that the prover, following the protocol, may not
succeed in proving a true theorem. We can achieve perfect completeness and still
retain perfect zero-knowledge at the expense of further complications which are not
necessary in our context.

Robustness of the result. The above proof system is zero-knowledge if the reference
string p is truly random. We may rightly ask what would happen if p is not truly
randomly selected. Fortunately, we shall see that the poor randomness of p may
perhaps weaken the zero-knowledgeness of our proof system, but not its completeness
and soundness. In fact, all we require from p is that it contain a not too low percentage
of quadratic residue and nonresidues modulo any integer in Regular(2) of a given
length. The same remark applies to all proof systems of this paper. This robustness
property is important, as we can never be sure of the quality of our natural sources
of randomness.

5. A bounded noninteractive ZKPS for 3SAT. In this section we exhibit
a bounded noninteractive ZKPS for 3SAT. A boolean formula (I) 1 A 2 A... A

in conjunctive normal form over the variables ul,’’’,uk, where each clause
has three literals, is in the language 3SAT if it has a satisfying truth assignment
t: {Ul,.", Uk} -- {0, 1} (see [GaJo] for a more complete treatment). If e 3SAT,
we say that (I) is 3-satisfiable.

The following definition was informally introduced in [B1FeMi], but used in a quite
different way.

DEFINITION 5.1. For any positive integer x, define the relation x on j+l
j+l j+ as follows:

(hi, a2, a3) x (bl, b2, b3) == ai x bi for 1, 2, 3.

Let (al,a2, a3) (b,b2,b3). An (a,a2,a3)-root modulo x (more simply, an

(al, a2, a3)-root, when the modulus x is clear from the context) of (b, b2, b3) is a triplet
(sl, s2, s3) such that (s2 mod x, s mod x, s mod x) (abl mod x, a2b2 mod x,
a353 mod x). If Q(b) Q(b2) Qx(b3) 0, a square root modulo x (more
simply a square root, when the modulus x is clear from the context) of (bl, b2, b3) is
a triplet (s, s2, s3) such that (s mod x, s mod x, s mod x) (b, b2, b3).

From Fact 2.11, one can prove the following fact.
FACT 5.2. For each odd integer x Regular(s), is an equivalence relation on

J+ J+l J+ and there are 23(s-) equally numerous equivalence classes.
We write (al, a2, a3) (b, b2, b3) when (al, a2, a3) is not equivalent to

(b, b2, b3).
We now proceed s follows. In 5.1, we describe a sender-receiver pair (P, V). In

5.2, 5.3, nd 5.4 we will prove that (P, V) is a bounded nonintemctive ZKPS for
3SAT.

5.1. The sender-receiver pair (P,V).



NONINTERACTIVE ZERO-KNOWLEDGE 1097

Input to P and V:
A random string p o T, where [Pl 8n3 and IT 2n4;
O 1/2/’’"/ Cn a 3-satisfiable formula with n clauses over the variables
Ul,U2,’",uk, k < 3n.

Instructions for P.
P.1. Randomly select x E BL(n) and y NQRx.
P.2. "Prove that (x, y) 3/2n(2n)."

Send the auxiliary pair (x, y) and run algorithm A of 4 on inputs (x, y) and
p. (Call Proof1 the output.)

P.3. "Prove that 3SAT."
Let t: {Ul,.-., uk} - {0, 1} be the lexicographically smallest satisfying as-
signment for O.
Execute procedure Prove(O, t, x, y, T) (see below). (Call Proof2 the output.)

Procedure Prove(O, t, x, y, T)
"O 1 A 2 A-.. A Cn is a 3-satisfiable formula with n clauses over the variables
ul,u2,’",uk, k <_ 3n. t: {ul, uk}
(x, y) A/QT(2n) and, moreover, x e BL(n). T is a 2n4-bit long string."

begin{Prove}
1. "Break T into members of j+l.,,

Consider T aS the concatenation of n3 2n-bit integers. If there are fewer than
33n2 integers in J+l then stop. Else, let T ,..., T33n be the first 33n2 integers
belonging to J+l.

2. "Assign triplets of elements with Jacobi symbol +1 to clauses."
Group the Ti’S in lln2 triplets (T1, T2, T3) (T4, Th, T6),"" The first lln triplets
are assigned to 1, the second lln triplets are assigned to 2, and so on.

3. "Label the formula
For each variable uj, randomly select rj Z and compute the pairs (uj, w)
and (, ywj mod x), where

wj { r md x

yry mod x
if t(uj O, and
if t(uy) 1.

We refer to these pairs as the labeling of and to wj (ywj mod x) as the label
of the literal uj (gj).
"Since y is a quadratic nonresidue, by Fact 2.1, yry is a quadratic nonresidue.
Therefore the label of a literal is a quadratic nonresidue if the literal is true
under t."
Send the labeling of O.

4. "Prove that is satisfiable."
For each clause of do:

"Randomly select the verifying triplets."
Let (c1,/31,3’1) be the labels of the three literals of .
Choose at random seven triplets (c2,/32,’Y2),.. ", (c8, C/s, 3’8) in j+l x
j+l x J+l such that
(a) (i,i,"i) x (Cj,j,’j) for 1 <_ < j _< 8, and
(b) Q(c2)= Qx(/32)= Q(’y2)- 0.
Send (c1,/31, "yl ), , (c8,/3s, "y8).
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The triplets (c1,/1, ’1),’" ", (C8,/8, /8) are the verifying triplets of .
"We omit writing (al,/1, ,),..., (c8,/8, 9,8) not to overburden our
notation, hoping that clarity is maintained."
"Prove that (a2,/2, "2) is made of quadratic residues."
Randomly choose and send (Sl, s2, s3), a square root of (c2,/2, /2).
For each of the assigned triplets (Zl, z2, z3) of b, choose i, 1 _< _< 8, so
that (zl, z2, z3) x (c,/, ). Randomly choose and send a (,/, /)-
root of (zl, z2, z3).

end{Prove}

Instructions for V.
"V receives from P the auxiliary pair (x, y) and two strings Proof and Proof2."

V.0. Compute n from p o T and verify that (I) has at most n clauses and each of
them has three literals. If not, stop and REJECT. Else,

V.1. Run algorithm B of 4 on inputs p, (x, y), and Proof1.
If B stops and rejects, stop and REJECT. Else,

V.2. If Check_Prove((I), x, y, ,Proof2)=ACCEPT then ACCEPT, else REJECT.

Procedure Check_Prove((I), x, y, T, Proof2)
"(I) 1 / 2 /k’’" /k (n is a formula with n clauses over the variables ul, u2,..., Uk.
x, y are 2n-bit integers. T is a 2n4-bit long string. Proof2 is a string."

begin{Check_Prove}
1. "Verify that the assigned triplets are proper."

Consider T aS the concatenation of n3 2n-bit integers. If there are fewer than
33n2 integers in j+l stop and ACCEPT. Else, let -1,’", T33n be the first
33n2 integers belonging to J+l.
"This happens with very low probability."
Group the -’s in lln2 triplets (7"1, 7"2, "]’3)’ (T4, T5, T6),"" The first lln triplets
are assigned to 1, the second lln triplets are assigned to 2, and so on. Verify
that they have been properly computed by P.

2. "Verify that (I) has a proper labeling."
For each variable uj, verify that the label of the literal j is equal to the label
of the literal uj multiplied by y modulo x.

3. For each clause of (I) do:
3.1. Let (a,/, ?), 1,..., 8, be the verifying triplets of sent by P.
3.2. Verify that (cl,/1, ?) is formed by the labels of the three literals of .
3.3. Verify that (Sl, s2, s3) is a square root of (c2,/2, "2).
3.4. Verify that for each assigned triplet (zl,z2, z3) of , you received a

((i,/i, ?)-root of (zi,z2,z3), for some i, 1 _< _< 8.
4. If all the above verifications have been successfully made, return ACCEPT;

otherwise return REJECT.
end{Check_Prove}

5.2. (P,V) is a bounded noninteractive proof system for 3SAT. First,
note that (P, V) is a sender-receiver pair. Further, all checks of V can be performed
in polynomial time, since only simple algebraic computations modulo x and a scanning
of the strings p and 7 are needed.

Completeness. The same reasoning done in Theorem 4.3 shows that the proba-
bility that V does not REJECT at step V.1 is overwhelming. Let us now consider
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step V.2. The verification of the proper labeling of (I) is always passed. Since t is a
satisfying truth assignment for (I), each clause has at least one literal true under t.
This implies that the label of contains at least one quadratic nonresidue. Because of
this, and because there are eight x equivalence classes, P can compute eight verify-
ing triplets satisfying properties (a) and (b). Moreover, since each x equivalent class
contains a verifying triplet, each assigned triplet is equivalent to some (ci, i,
and thus possesses an (ai,/i, 7i)-root. Therefore, if check V.1 is passed, so is check
V.2.

Soundness. An honest prover chooses the pair (x, y) randomly. A cheating one,
though, may choose this pair as function of the reference string. All arguments below
thus have the following form. First, we compute the probability that the verifier can
be mislead with a fixed pair, and show that this probability is suitably small. Then,
we prove that, even summing up over all possible choices of pairs, we still obtain a
small probability.

Assume that, in a computation with a cheating prover Provert, V accepts a
formula (I) 3SAT. Then, one of the following three events must happen: (a) the
pair (x, y) chosen by Prover’ is not in AfQT(2n); (b) (x, y) E AfQT(2n), but Prover’
stops at step P.1 in lrove; and (c) (x, y) E AfQT(2n), Prover’ does not stop at step
P.1 in Prove, but (I) is not 3-satisfiable. We shall prove that each of these events
is very improbable. The probability that (a) occurs has already been computed in
Theorem 4.3 and shown to be exponentially vanishing in n. Now, consider event (b).
For each fixed 5 Regular(2),-2 <_ n, since each Ti has probability greater than or
equal to 1 of being in J+l, we expect n3/8 such elements in j.+l_. By the Chernoff
bound (see [AnVa], [ErSp]), the probability that no more than 33n2 belong to J+ is,

nfor large n, at most e- Thus, the probability that there is an integer x such that
case (b) occurs is, for large n, at most 22he--n2. Let us now consider event (c). If (c)
occurs, then the following event (d) must also occur: at least 11n consecutive assigned
triplets (Ti,Ti+,Ti+2) must belong to the union of seven equivalence classes. In
fact, if (I) is not satisfiable, for every labeling of O, one of its clauses is labeled with
a triplet of quadratic residues (else, all clauses would be satisfiable). Let be such a
clause. Since verification step 3.3 must be passed, Prover must exhibit a square root
of (a2,/2,/2), and thus this triplet is equivalent to ’s label, (o1,/1,1). Thus,
all verifying triplets of are contained in the union of at most seven equivalence
classes. Since each (Ti, -i+l, ’i+2) is proved in step 3.4 to be x equivalent to one
verifying triplet, then event (d) must be true. The probability of event (d) is at most
7n(0.93)n. Indeed, for each fixed 5 the probability that at least 11n assigned triplets
belong to the union of 7 equivalence classes is less than 7n()ln; this can be
explained as follows: is the probability that each triplet belongs to the union of
seven fixed equivalence classes, there are 11n triplets, there are at most () 8 ways
to choose seven classes out of eight, and there are n clauses altogether. Therefore,
the probability that there exists an integer x such that case (d) occurs is at most

7 ln 7n(0.93)n. This concludes the proof of soundness.22nTn()
Remark. (P, V) can be modified in the same way as (A, B) was to achieve perfect

completeness. This is the reason why the verifier in step 1 of Check_Prove accepts if
there are fewer than 33n2 integers in J+. Note also that the prover need not have
infinite computing power. In fact, an efficient algorithm can perform all required
computations provided that it has as an additional input the satisfying assignment
for .

We show now that the proof system (P, V) is also zero-knowledge over 3SAT.
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We first exhibit a simulator for V’s view and then prove that it works.

5.3. The simulator. The following algorithm S, on input a formula E 3SAT
(but not a satisfying assignment for (I,) generates a family of random variables that,
under the QRA, no efficient nonuniform algorithm can distinguish from the view of V.
Note that the view of Y consists of a quadruple (p o T, (X, y), Proof1, Proof2); thus,
the task of the simulator is to produce a quadruple that cannot be distinguished,
under the QRA, from a correct quadruple. Looking ahead, the two crucial points in
the strategy of the simulator are:

1. To choose the auxiliary pair (x, y) so that x BL(n) but y is a quadratic
residue modulo x.

2. To choose a portion of the reference string not at random. Rather, select it
from among the strings that do not contain any quadratic nonresidue modulo
xin j+l.

This strategy is viable because the simulator can choose the reference string (which
is instead fixed for the prover) and because it is hard to distinguish between random
members of J+l and random quadratic residues modulo x.

For a clearer presentation, S’s program has been broken down into procedures.
To give informal help in reading these procedures, we write z’ for a value computed by
the simulator, when we want to emphasize that this value is "fundamentally different"
from the "corresponding" value z computed by the prover P, though an exponentially
long computation may be required to determine this fact.

S’s program

Input: a 3-satisfiable formula 1 A 2 A... A Cn over the variables Ul, u2,..., Uk,

k<3n.
1. Randomly select two n-bit primes p, q _= 3 mod 4 and set x pq.

Randomly select r Z and set y’= r2 mod x. "Call (x, y’) the auxiliary
pair."

2. Execute procedure Gen_p_and_Proof l(x, y’) obtaining the strings p’ and Proof1.
3. Generate a random 2n4-bit string T.

4. Execute procedure Gen_Proof2(, x, y’,p, q, 7) obtaining the string Proof2.
Output: (p’ o T, (X, y’), Proof1, Proofs)
Procedure Gen_p_and_Proof 1 (x, y)
"This procedure is used both by the simulator S and, later on, by some probabilistic
algorithm. In any call, x BL(n) and y J+l. When the procedure is called by the
simulator S, y is a quadratic residue modulo x."

begin{Gen_p_and_Proof 1}
1. Set Proof empty string.
2. Fori-lto4n2

Randomly select a 2n-bit integer si, with possible leading O’s.
If si j+l then set pi si.

else
Toss a fair coin.

mod x and append si to ProofIf HEAD then set pi s
If TAIL then set p y-s2 mod x and append s mod x toProofs.

3. Set p p ---p42.
4. Return(p, Proofs)

end{Gen_p_and_Proof 1}
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Let us now see that sometimes Gen_p_and_Proof 1 "generates what the legitimate
prover would generate."

LEMMA 5.3. Define Spacel(x, y) as the probability space generated by the output
of (]en_p_emd_Proof 1 on input x, y. Then, for all x E BL(n) and y NQRx

Spacel(x, y) {p {0, 1}su3; Proof1 P_Proofl(x, y, p)" (p, Proof1)},
where P_Proofl is P’s procedure to compute Proof1 (i.e., step P.2).

Proof. Fix x BL(n) and y NQRx. It can easily be seen that the first
component of Gen_p_and_Proof l’s output is randomly distributed among the 8n3-bit
long strings. Moreover, if pi j+l, the corresponding si is a random (x,y)-root
of pi. Thus si has the same probability of belonging to Gen_p_ad_Proofl’s output
as it has of being sent, at step P.2, from prover P to verifier V on inputs (x,y)
and p.

Procedure Gen_Proof2(O, x, y’, p, q, T)
"This procedure is used both by the simulator S and, later on, by some probabilistic
algorithm. In any call, x BL(n) and yP QR. It returns a string Proof2 that
’proves’ that the formula (I) 1 A 2 A... A Cn is 3-satisfiable using the string T and
the pair (x, y) even without knowing any satisfying assignment for (I)."

begin{en_Proof2}
0. Set Proof2 empty string.
1. Consider - as the concatenation of n3 2n-bit integers. If there are fewer than

33n2 integers in j+l, stop. Else, let 71,... 7"33n be the first 33n2 integers
belonging to J+l.
Group the T’s in lln2 triplets (T1, %, -3), (T4, T0, %),-... The first lln triplets
are assigned to 1, the second l ln triplets are assigned to 2, and so on.

2. For each variable uj, randomly select wj NQR and label the literal uj
with wj and the literal j with y wj mod x.
"Since y is a quadratic residue, all labels are quadratic nonresidues."
Append the labeling of (I) to Proof2.

3. For each clause of (I) do:
Let al,/31, and 1 be the labels of the three literals of . Thus,
NQR.
Choose at random seven triplets (a2,/32,72),’" ", (as,/s, %) in j+l
j+l j+l such that (a,, 7) x (aj,j, 7j), for 1 _< < j _< 8 and

0.
Append the triplets (al,/1,71),’" ", (as,/s, 78) as the verifying triplets
of to Proof2.
Randomly choose and append a square root of (a2, f12, 72) to Proof2.
For each of the assigned triplets (Zl,Z2, Z3) of , choose i, 1 _< _< 8,
so that (Zl,Z2,Z3) (ai,fli,7i). Randomly choose and append an

(hi, fli, 7i)-root of (zl, z2, z3) to Proof2.
4. Return(Proof2)

end{en_Proof2}
LEMMA 5.4. Algorithm S is efficient.
Proof. The main body and procedure Gen_p_androofl are computationally

trivial. The first two steps of procedure Gen_Proof9. are also quite easy as, due to
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Fact 2.9, generating a random quadratic nonresidue in j:l is easy when x E BL.
Let us now see also that step 3 can always be completed, and efficiently as well.
Given that the first verifying triplet has been chosen to be composed by quadratic
nonresidues in j+l and the second by quadratic residues, it is certainly possible to
choose the other six verifying triplets so that all of them belong to eight distinct x
equivalence classes. Moreover, given that the factorization of x is an available input,
the remaining part of step 3 can be efficiently executed. [

5.4. (P,V) is zero-knowledge.
THEOREM 5.5. Under the QRA, (P, V) is a bounded noninteractive ZKPS for

3SAT.
Proof. All that is left to prove is that (P, V) satisfies the zero-knowledge condition.

We do this by showing that algorithm S of the previous section simulates the view of
the verifier V.

We proceed by contradiction. Assume that there exists a positive constant d, an
infinite subset Z c_ Af, a set {On}nE:y such that each O is a 3-satisfiable formula with
n clauses, and an efficient nonuniform "distinguishing" algorithm {Dn},ez such that
for all n E Z

where

Ps(n) Pr(8 - S(1n, On)" On(8 1)

and

Py(n) Pr(s View(On): Dn(s) 1).

We derive a contradiction by showing an efficient nonuniform algorithm {Cn}nz
violating the QRA. On input randomly chosen x BL(n) and y j+l, Cn constructs
a string SAMPLE which is distributed according to o(1n, On) if y QRx, and ac-

cording to View(On) if y e NQR. Thus, as the nonuniform algorithm {Dn}n:r is
assumed to distinguish the two probability spaces, this is a violation of QRA.

The Algorithm Cn
"Cn has "wired-in" a formula On along with t, the lexicographically smaller satisfying
truth assignment for On, a description of On, and the probabilities Ps(n) and Pv(n)."

Input: (x, y) such that x e BL(n) and y j:l.
1. Execute procedure (len_p_and_Proofl(x, y), thus obtaining p and Proof1.
2. Execute procedure Sample_T_axd_Proo:f2(On, t, x, y), thus obtaining T and

Proof2.
3. Set SAMPLE (p o T, (X, y), Proofl, Proof2).
4. If Dn(SAMPLE) 1 then set b 1 else b 0.
5. If Ps(n) > Pv(n) then Output(b) else Output(1 -b).

Procedure Sample_T_and_ProoI2(O, t, x, y)
aO 1 / 2 /’’" / Cn is a 3-satisfiable formula with n clauses over the variables
Ul, u2,.’-, uk, k <_ 3n. t {u, u2,..., uk} -- {0, 1} is a satisfying truth assignment
for O. x e BL(n) and y j+l.,,
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begin{Sample_T_and_Proof2}
1. For 1 to rt3 do:

randomly select a 2n-bit integer ri (with possible leading O’s)
if ri j+l then set s r

2 mod x; if TAIL thenelse toss a fair coin: if HEAD then set s r
2 mod x.set si--r

2. Set Proof:= empty string.
3. Let jl,... ,j33n be the indices of the first 33n2 si’s belonging to J+.

If there are fewer than 33n2 such integers set T s’"Sna and stop.
Else, set Ti si for all indices not in {jl,’", J33n }.

4. Group the ji’s in lln2 triplets (jl,j2,j3), (jn,j5,j6),"’. Assign the lln2

triplets to the clauses in the following way: the first 11n triplets are assigned
to the first clause, 1, the second 11n triplets are assigned to the second
clause, :, and so on.

5. For each variable uj, randomly select vj E Z and assign the label wj to the
literal uj and the label ywj mod x to the literal y, where

2 rood x if t(uj) 1, and
wj -V;v modx ift(uj)=0.

Call (i) the labeling of (I). Append (I) to Proof2.
6. For each clause of (I) do:

Let -ya2 mod x,-yb2 mod x,-c2 mod x be the label of the three literals
of gb, and a, b, c previously computed values in Z.
"We consider only one case, not to overburden our notation. The other
cases are treated similarly."
Randomly choose 21 elements al, b, Cl,..., aT, bT, c7 E Z, and con-
struct the following eight triplets

(-ya: mod x, -yb2 mod x, -c2 mod x)
(a2 mod x, b mod x, c mod x)
(a mod x,-b22 mod x, c2 mod x)
(a mod x,-b] mod x,-c] mod x)
(-a42 mod x, b42 mod x, c mod x)

2 2 2(-as mod x, b5 mod x,-c mod x)
2 2 Z(-a6 mod x,-b6 mod x, c mod x)

2 2 z(ya mod x, yb mod x,-c mod x).

Construct the eight verifying triplets of as follows. Set

(, ill, "/1) (-ya2 mod x,-yb2 mod x,-c2 mod x),
(c2, f12, 3’2) (a21 mod x, b21 mod x, c mod x).

Randomly permute the remaining six triplets and assign them to

Append (o1,/1, ’1),’’’, (O8, f18, ")’8) to Proof2.
Append the triplet (al, bl, Cl) to Proof: as a square root of (a2,/32, ")’2).
For each of the assigned indices (ll,l:,13) of ,

Randomly choose one of the eight verifying triplets, say, (ak,/3k, "yk).
Randomly choose Vl,V2,V3 Z and set Tll V21ak mod x, Tl2
V3k mod x, and ’ta v/k mod x.
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Compute and append to Proof2 (VlOk mod x, v2k mod x, v3k mod x)
as an (k,/k, "k)-root of (T, T., TZ).
Set T T "’’Tn.

7. Return(T, Proof2).
end{Sampie__and_Proof2}

There is no question that {Cn}neI is an efficient nonuniform algorithm. Now let
Space:2(On, t, x, y) be the probability space generated by the output of
Sample_7_and_Proof2 on input On, t,x, y. Then, for all n E :Y and for all x BL(n),
Space:2(On, t,x, y) is equal to

(.){ {- {O, 1}2n;Proof2 2- PrOVe(On, t,x,y,T): (T, Proof2)} if y e NQR,
{7 {O, 1}2n4;Proof2 - Gen_Proof2(On, X,y,p,q,T): (T, Proof2)}if y e QRx,

where p, q are the prime factors of x.
To see (,), note that if y NQRx, then the label wj assigned to each literal uj

by Cn is a random element selected from either NQRx or QR depending on whether
t(uj) is true or false, respectively (this is the same computation performed by Prove).
If y QR, then the label wj of literal uj is always a random element selected from
NQR (in the same way as Gen_Proof2 computes it). In both cases the label of is

ywj mod x.

Regardless of the quadratic residuosity of y modulo x, for each clause of 0, the
eight verifying triplets of computed by Cn are always selected at random among
the triplets of elements in J+ that are pairwise not equivalent. The first triplet
consists of the labels of the three literals of , and the second triplet is made of three
quadratic residues.

The string - output by C is truly random (regardless of the quadratic residuosity
of y modulo x). Indeed, each - is randomly selected from the 2n-bit long strings, and
independently of the remaining 7j’s.

Finally, for each clause and each of its assigned triplets (71,-2,n3) the cor-
responding (vlck mod x, V2k mod x, v3k mod x) is a random (ak,/k, k)-root of
(7tl, Tt2, -t3)" This completes the proof of (,).

Since SAMPLE (po T,(x,y),Proofl,Proof2), because of (,) and because of
Lemma 5.3, for randomly selected x BL(n) and y J+, SAMPLE is distributed
as View(On) if y NQRx and as S(1n, On) if y QR. Given our assumption about
the efficient nonuniform algorithm {Dn}neI, it is immediately seen that, for all n

Pr(x - BL(n); y - j+l Cn(x,y) Q(y)) >_ 1/2+ 1/(2nd), which contradicts the
QRA.

Remark. The reader is encouraged to verify that if the same reference string
a and the same (x, y) are used by the prover to prove that two formulae and
are 3-satisfiable, then "extra knowledge may leak," for instance, that there exist a
satisfying assignment for and a satisfying assignment for for which the literal u
in and the literal 2 in have the same truth value.

The moral is that one must be careful when using the same set-up, i.e., common
reference string, and the same pair (x, y), to prove an "unlimited" number of formulae
to be satisfiable. This is indeed the goal of 6.

5.5. Arthur-Merlin games and bounded noninteractive zero knowl-
edge.

THEOREM 5.6. If 3SAT Bounded-NIZK, then Bounded-NIZK AM.
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Proof. Since Bounded-NIZK C_ Bounded noninteractive P AM2, it only remains
to show that AM2 C_ Bounded-NIZK. Let L E AM2. Then, there exist a positive
constant c and a sender-receiver pair (Prover, Verifier) such that

1. for all x

2
Pr(a - {O, 1}nC; Proof -- Prover(a, x) Verifier(a, x, Proof 1)

and
2. for all x Ln, for all Turing machines Prover, and for all sufficiently large

n,

1
Pr(a

Moreover, by the result of [FuGoMaSiZa], the proof system (Prover, Verifier) enjoys
perfect completeness. Define now the language L’-UnL’(n), where

L’(n) {(r, x) lr --nc, x e Ln, and w, Iwl _< n such that Verifier(r, x, w) 1}

and L and c are as above. Then x L if and only if (r, x) L’(n) for most he-bit
strings r. 7 Moreover, L NP, thus there is a fixed polynomial-time computable
reduction R such that

(r, x) e L’(n) R(r, x) e 3SATb,

where b > 0 is a fixed constant depending only on the reduction R.
We now describe a bounded noninteractive ZKPS (P, V) for L. On input x Ln

and the reference string - r o a, where ]r] n and a has the proper length, P con-
structs the formula R(r,x) and, if it is 3-satisfiable, then runs the
algorithm for the prover P of 5.1 with input and a, to prove that, indeed,
q e 3SATnb.

THEOREM 5.7. Under the QRA, Bounded-NIZK AM2.
6. Noninteractive zero-knowledge. We now want to capture the ability of

giving noninteractive and zero-knowledge proofs of "many" theorems, using the same
common reference string, in an "on-line manner." That is, each theorem can be
proven independently of all previous and future theorems.

We will present our formal definition when the theorems to be proven are state-
ments about 3-satisfiability.

DEFINITION 6.1. Let (Prover, Verifier) be a sender-receiver pair, where
Prover(., .) is random selecting and Verifier(.,., .) is polynomial time. We say that
(Prover, Verifier) is a noninteractive zero-knowledge proof system (noninteractive
ZKPS) if the following three conditions hold.

1. Completeness. For all 3SAT and all n,

Pr(a -- {O, 1}n;Proof - Prover(a, ) Verifier(a, ,Proof) 1) 1.
\ /

7 Thus an alternative way of proving that x E Ln consists of showing that, for a random string r
of the proper length, (r, x) E L (n). Note, though, that there may be two different strings x and y in

Ln such that (r, x) e L’ (n) for all r, but (r, y) L’(n) for some r’s. Thus the fact that for a given
string r, (r,x) L’(n) constitutes additional information about x than just membership in Ln, and
this additional information cannot be hidden by a zero-knowledge proof that (r, x) L(n)! This is

why we impose the conditions that (Prover, Verifier) possess perfect completeness.
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2. Soundness. There exists a constant cl > 0 such that, for all probabilistic
algorithms Adversary outputting pairs (0’, Proof’), where 0’ 3SAT, for
all d > 0, and for all n > Cl,

Pr(a n_ {0, 1}n; (O’,Proof’) - Adversary(a)" Verifier(a, O’,Proof’)= 1) < n-d.

3. Zero-knowledge. There exist constant c2 > 0, an efficient algorithm S such
that for all 01,02,... E 3SAT, for all efficient nonuniform algorithms D, for
all d > 0, and all n > c2,

IPr(s - View(n, 01,01)2,

where

")’On(s)- 1)-Pr(s - S(1n, O1, O2,.. ")’Dn(s)-- 1){ < n-d

O1, O2,...) {a _n {0, 1}n; Proof1 - Prover(a, O1);View(n,

Proof2 - Prover(a, 02);

(a, Proof1, Proof2,...) }.
A sender-receiver pair (Prover, Verifier) is a noninteractive proof system for 3SAT
if completeness and soundness hold.

Discussion. First, note that we have set the probability of acceptance of true
theorems to be 1, since 3SAT NP. Note also the generality of our definition as
it handles any number of formulae of arbitrary size in completeness, soundness, and
zero-knowledge. That is, every true theorem can be proven, no matter how long. Of
course, longer theorems will have longer proofs. Since the verifier is polynomial-time
in the length of the common input, it will have more time to verify that a longer
formula is 3-satisfiable. Every false theorem, no matter how long, has negligible
probability of being "successfully proved"; however, though the length of the proof
grows with the length of the theorem, "negligible" is defined only as a function of the
length of the reference string,s Finally, every theorem, no matter how long, possesses
a zero-knowledge proof. Of course, a longer theorem will have a longer proof and
thus the polynomial-time simulator will have more time to simulate the proofs. The
zero-knowledgeness of the simulator’s proofs holds only for a nonuniform "observer"
bounded by the length of the reference string.9

The definition of noninteractive ZKPS might be more general if perfect complete-
ness is relaxed to completeness as in 3. In this case the adversary choosing algorithm
Choose-in-L should be given a and access to Prover’s random selector.

6.1. The sender-receiver pair (P,V). In this subsection we describe a
sender-receiver pair (P, V). P can prove in zero-knowledge the 3-satisfiability of any
number of 3-satisfiable formulae with n clauses each. Later, we shall show how to use
the same protocol to prove any number of formulae, each of arbitrary size.

Before going into a formal description of the proof system, we give an informal
view of the protocol.

8 Which, de facto, is a security parameter.
9 In particular, if a theorem and its proof are exponentially long (with respect to the reference

string), the distinguishing algorithm can compare the actual "view" and the output of the simulator
only for a polynomially long prefix.
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An informal look at (P,V).
Observation. A crucial observation that will be (implicitly) proved in this section

is the following. If many certified auxiliary pairs (x, y) (x E BL and y NQRx) are
available, one can use each (x, y) to prove in zero-knowledge that any single formula
(I)(x,y) with n clauses is 3-satisfiable using the same random string -. For what we
remarked in 5, the same T and the same auxiliary pair should not be used to prove
the 3-satisfiability of two different formulae.

In the light of the above observation, we want to construct a mechanism to achieve
the following two goals:

(1) Associating to each formula (I) an auxiliary pair (x, yO), of "bounded" size,
so that, with overwhelming probability, different formulae are associated to
different pairs.

(2) Certifying (xe, y), i.e., proving that x BL and y NQR.
The first goal could be achieved by using the random selector, but the problem of the
certification remains. The current mechanism for certifying in zero-knowledge a single
auxiliary pair (x, y) using p can be extended to handle "a few" more pairs, but not
arbitrarily many.1 Instead, we use a mechanism of recursive nature to simultaneously
achieve (1) and (2).

Let us first describe this recursive mechanism for a prover "with memory." Such
a prover can construct and store a binary tree of depth n. The left child of each node
will also be denoted as the 0-child, and the right one as the l-child. Thus each node
in the tree is labeled with a binary string of length at most n + 1. The root is labeled
0, and each other node is labeled with string describing the unique path from the root
to it. Thus, for instance, the left child of the root has label 00 and rightmost leaf
of the tree has label 01n. With each node (labeled) i, the prover stores a randomly
selected auxiliary pair (x, y). The prover uses (x, y) for certifying auxiliary pairs of
the children of node i, that is, (xio, Yio) and (xil, yil). The first auxiliary pair (x0, Y0)
is certified using string p as in 4. For each i, the two pairs (XObl...bO,YObl...bO),
(XOb...bl,YOb...bl), are certified together as in 5, using the same string T1. That is,
consider the language L UnL(n), where

L(n) {((Uo,Vo),(u,vl)) Uo,U e BL(n), vo e NQRo, v e NQRv}.

Then L NP. Thus, there exists a fixed polynomial-time computable function CR
such that

((u0, v0), (tl, Vl)) e L(n) ====v CR(uo, v0, ul, Vl) e 3SATan,

where e is a fixed constant depending only on the reduction CR. More precisely, let
T be a polynomial-time Turing machine such that x L if and only if there is a
"witness" (string) w such that Iwl _< Ixl e and T(x, w) 1. Then, the formula is
obtained by encoding the computation of T as in Cook’s theorem, and then reducing
it to a 3-satisfiable formula, as Cook suggested [Co]. A well-known property of this
reduction is that to each "witness" w one can associate in polynomial time a satisfying
assignment for . In our case the witness consists of the primes in the factorizations
of uo and u and their proof of primality. The proof (witness) of the primality of

10 Recall the way p is used. If pi QRz, a square root of pi mod x is given; if pi NQRz a square
root of ypi mod x is given. In our simulation, however, all pi will be chosen in QRx. Thus, if we
want to carry on the simulation for many pairs (xi, yi) we need to construct a p solely consisting of
quadratic residues modulo x,x2,..., which appears very hard to do when the number of xi’s grows
large.
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a prime p is probabilistically constructed in a standard way: by running algorithm
[AdHu] on input p, flipping coins as needed.

We will thus certify (XObl...b,O, YObl...b,O), (XObl...bl, YObl...b,I) by showing that the
so constructed

Ob...b CR((XOb...bO, YOb...bO), (XOb...bI, YObl...b)) E 3SATn.

For each Obl...bi, this is done using the proof system of 5, and the same string
which in fact has length 2na, with a 4e.

What have we gained by this? Essentially, we have transformed the problem
of certifying (XOb...biO, YOb...bO), (XObl...bl, YOb...bI) into the problem of proving that

Ob...b 3SATn, and we have observed (but not yet proved) that one can prove
in zero-knowledge arbitrarily many theorems of size n given arbitrarily many inde-
pendent certified pairs (x,y)’s. Since these pairs are randomly and independently
selected, with overwhelming probability, each pair (xob...b, YOb...b) is used only once
with T to prove Obl...bi 3SATn.

In sum, this mechanism provides each formula (I) with a certified auxiliary pair
(x,y) that is uniquely determined from (I) and the reference string, though still
random.

The prover we just described need not remember the labeled full binary tree;
it can, in fact, (re)grow its branches as needed. It must, though, remember which
auxiliary pairs it had associated with the nodes of the tree. In fact, if it does not keep
track of these pairs, it may use the same auxiliary pair and the same reference string
to prove different theorems, which may not be zero-knowledge. To avoid this, and to
avoid "memory," the prover uses the random selector to associate a random pair with
the node of the tree. Namely, on input a formula the prover chooses n bits bl b2 bn
by querying the random selector with a pair whose first entry is and the reference
string a poT1 oT2, and whose second entry is (a description of) the set {0, 1}n. This
way, if the same formula is considered twice, the same random n-bit string would be
selected. Then the prover computes a random, first auxiliary pair (x0, Y0) (again using
the random selector so that it could recompute the same pair whenever it wanted to).
Then, for i 0,-.., n, the auxiliary pairs (XOb...bO, YOb...biO), (XObl...bl, YOb...bI), are
chosen by the random selector on input 0b... bi0 and 0b... bil, respectively. The
pair associated with (I) is (xob...b, YObl...b).

We now proceed more formally.

Description of (P,V).
"a 4e, where e is the constant of reduction CR. Select is P’s random selector.
PAIR(n) is the set of pairs (x, y) such that x e Bn(n) and y e NQRx."

Input to P and V:
A random string a, a poT %, where IPl 8n3, ITI 2ha and I%1 2n4.
A formula (I) 3SAT with n clauses.

Instructions for P:
P.1. "Choose and certify the first auxiliary pair."

Compute auxiliary pair (Xo, Yo) Select(a, PAIR(n)).
Send (Xo, Yo) and run algorithm A of 4 on input (Xo, Yo) and p. "Call Proofo
the output."

P.2. "Choose and certify other auxiliary pairs."
Set bo 0. Compute and send bo bl b2.’- b =Select((I), {0, 1 }n).
For 0,--.,n do:
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Set s b ...b.
Compute and send (xso, yso) Select(sO, PAIR(n))and (x8l,yl)
Select(sl, PAIR(n)).
Compute CR(xso, yo,x, y) and t, a satisfying assignment for
I/s

Execute Prove(, ts,x, y, T1). "Call Proof the output."
P.3. "Prove (I) E 3SAT."

Set s bo bn. Let t be the lexicographically smaller satisfying assignment
for (I).

Execute Prove((I), t, x, y, %). "Call ProofO the output."

Instructions for V:

"V receives from P the bits bo, b,..., bn, (Xbo ybo ), (Xbo0, Ybo o), (Xb01, Ybo 1), ",

(Xbo...n_lo, yo...n_lo) (Xo...b_11, yo..._11) the formulae bo,... ,ol...b and
the strings Proofo Proofq2b ,..., Proofo... Proof(."

V.1. "Verify first auxiliary pair."
Run algorithm B of 4 on input p, (Xo, Yo), and Proofo.
If B stops and rejects, stop and REJECT. Else,

V.2. "Verify other auxiliary pairs."
For 1,...,n do:

Set s b ...bi.
Compute CR(xso, y0, x, y).
If Check_Prove(, x, y, 71, Proof)=REJECT then stop and RE-

JECT. Else,
V.3. "Verify Proof(."

Compute n from p o T o % and verify that (I) has at most n clauses, and each
of them has three literals. If not, stop and REJECT. Else,
Set s b bn.
If Check_Prove ((I), xs, y, %, Proof()=REJECT then stop and REJECT. Else
ACCEPT.

6.2. (P,V) is a noninteractive proof system for 3SAT. The proof system
(P, V) of 5 constitutes the main building block of the just-described sender-receiver
pair (P, Y). Therefore, the completeness of (P, V) can be easily derived from the
analysis of completeness in 5.2.

Let us now focus our attention on the soundness. We shall show that, if the for-
mula (I) is not 3-satisfiable, then for any Turing machine Adversary (even a "cheating"
one that chooses (I) after seeing the reference string), V will accept the proof provided
by Adversary with sufficiently low probability. The proof closely follows the reasoning
done in 5.2 to prove the soundness of the proof system (P, V) described in 5.1. We
distinguish two cases:

1. For some w, (xw, yw) AfQT(2n).
2. All the pairs (x, y) belong to AfQT(2n) but 3SAT.

If (Xo, Yo) AfQT(2n), we are in the very same situation analyzed in case (a)
in the proof of soundness of 5.2. By the same reasoning, we conclude that the
verification of step 1 is passed with sufficiently low probability. Suppose that for w
sb, where b E {0, 1}, (x,y) AfQT(2n), and (xw,y) AfQ(2n). Then,
3SAT and therefore the procedure Check_Prove invoked for returns REJECT
with sufciently high probability.
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Now, suppose that all pairs (x, y) belong to AfQT(2n) but 3SAT. Since
(xs,ys) e AfQT(2n), s 5o51.. "bn, following the reasoning done for cases (b) and
(c) in the proof of soundness in 5.2, we conclude that verification step V.3 is passed
with very low probability.

Now, we show that the proof system (P, V) is also zero-knowledge over 3SAT.

6.3. The simulator. In this section, we describe an efficient algorithm S; in
the next section we will prove that, on input of a sequence of 3-satisfiable formulae,
S’s output cannot, under the QRA, be distinguished from V’s view by any efficient
nonuniform algorithm.

S’s Program
Input: An integer n > 0. A sequence 1, (1)2, of 3-satisfiable formulae with n
clauses each.

0. Set Sire_Output empty string and Tree empty set.
1. "Choose p and choose and certify first auxiliary pair."

Randomly select two n-bit primes Po, qo 3 mod 4 and set xo Poqo. Ran-
domly select Yo E QRxo
Execute procedure Gen_p_and_Proofl(Xo,Yo), thus obtaining the strings p
and Prooffo.

2. "Choose -1 and ’2."
Randomly select two strings T1 and % so that ITI= 2na and IT.I 2n4.

3. For each input formula do:
3.1. "Choose and certify other auxiliary pairs"

Set b -0 and randomly select bl... bn. Append (Xo, Yo), Prffo, and
bobl bn to Sim_Output. For 0,..., n do:

Let s bobl ...bi.
If s Tree then

Add s to Tree.
Randomly select four n-bit primes Ps0, qs0,pl, ql -= 3 mod 4.
Set x0 psoqso and Xsl pslqsl.

Randomly select ylo QRxso and YI QRx8.
Compute CR(xso yYso, Xsl sl).
Execute procedure Gen_Proof2(, x, y, p, q, - ), thus obtain-
ing Proofq2.

Append (xs0, Y0), (xl, YI), and Proof to Sire_Output.
3.2. "Prove 3SAT."

Set s bob1 bn. Execute Gen_Proo2(,Xs, y,ps, q, %) obtaining
ProofS’.
Append Proof(’ to Sire_Output.

Output: (p T %, Sire_Output)

LEMMA 6.2. Algorithm S is efficient.
Proof. The running time of S is proportional to the number of input formulae.

For each single input formula, all operations can be efficiently computed. Thus, S is
efficient. (Note, again, that the running time is polynomial with respect to the input
size, though it may be exponential in the parameter n.) r?

The random variable output by S is certainly different from View and, before
proceeding any further, let us compare them. In View the string p is truly random,
while the corresponding string p constructed by S does not contain any element in

NQR%. In View, each y is a quadratic nonresidue modulo the corresponding x,
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whereas in S, yl is chosen among the quadratic residues modulo xs. Because of the
different quadratic residuosity of the y’s, the two distributions differ also in the ’s
and in the strings Proofq2 and ProofO. In fact, the formula s is satisfiable if and
only if both (xs0, ys0) and (xl, ysl) are of the prescribed form. This is certainly the
case in View. But in S, as all ys’s are quadratic residues, none of the pairs (xs, y)
is of the prescribed form and therefore none of the 8’s is satisfiable. Moreover, the
y’s are also used to compute the labeling of the literals in the strings Proofs’S and

ProofO’s and thus in S all literals are labeled with quadratic nonresidues.
In the next section, we shall prove, using a reasoning similar to the one in Sec-

tion 5.3 that, despite the differences described above, the two families of random
variables cannot be distinguished by any efficient nonuniform algorithm, under the
QRA.

6.4. (P,V) is zero-knowledge.
THEOREM 6.3. Under the QRA, the sender-receiver pair (P, V) of 6.1 is a

noninteractive ZKPS.
Proof. All that is left to prove is that (P, V) satisfies the zero-knowledge condition.

We do this by showing that the output of algorithm S of the previous section cannot
be distinguished from the view of the verifier V by any efficient nonuniform algorithm.

We proceed by contradiction. Assume that there exists a constant d > 0, an
infinite subset 27 c_ Af, a set {(O, O,.. ")}n of sequences of 3-satisfiable formulae,
where O has n clauses, and an efficient nonuniform algorithm D {D,}nZ such
that for all n E Z

where

and

IPy(n) Ps(n)l >_ n-d,

Pv(n) Pr(s - View(O, O,...)" Dn(s) 1)

Ps(n) Pr(s - (1n, 0, O,...)" Dn(8) 1).

Let R(n) be a polynomial such that the running time and the size of the program
of each algorithm Dn is bounded by R(n). Without loss of generality we can consider
R(n)-tuples of 3-satisfiable formulae (I), onn(n), instead of arbitrary sequences of
3-satisfiable formulae O, O,....

As we have seen in the last section, the main difference between S’s output and
the view of the verifier is in the ys’s: they are all quadratic residues modulo the
corresponding x’s in S’s output, while they are all quadratic nonresidues in View.
We will now describe an efficient nonuniform algorithm C {Cn}n:Y. Each Cn takes
two inputs: j _> 0 and (x,y) PAIR(n) {(u,v) u BL(n),v J+}; and
has "wired-in" the formulae O, n

"", R(n) along with their lexicographically smaller
satisfying assignments. Roughly speaking, Cn produces as output a "random" string
and "proofs" for all formulae O’s. Cn selects the input pair (x, y) as the jth auxiliary
pair. All prior pairs are selected as simulator S does and all subsequent pairs as prover
P does. Thus, Cn "knows" the factorization of the Blum modulus for all auxiliary
pairs except (x, y). Nonetheless, algorithm Cn will use (x, y) as S would if y QRx,
and as P would if y NQRx. More formally, Cn is designed so as to enjoy the
following properties. Set

Space(n, j, QR) {x BL(n); y - QR; s Cn (j, X, y) S},
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Space(n,j, NQR) {x - BL(n); y - NQRx; s - Cn(j,x,y) s}.

Then,
Property, (1) Space(n, O, NQR) View(n, O,..., O(,)),
})roperty (2) Space(n, nR(n) + 1, QR) {s 2- S(1n, O, onR(n)) 8},
Property (3) Space(n, j, QR) Space(n, j + 1, NQR).

From these properties we will conclude that the existence of D violates the QRA.
We now formally describe the algorithm, and then prove all the stated properties.

The Algorithm Cn
"Cn has "wired-in" the R(n)-tuple ((I) nR(n)) and, for each e ((I) OR(n)},
the lexicographically smaller satisfying assignment t."
Input: "An integer j e [0, nR(n)+ 1]. A pair (x, y) e PAIR(n)."

1. "Choose p and choose and certify first auxiliary pair."
Ifj 0 then set x x and Yo Y.

Else randomly select two n-bit primes Po, qo 3 mod 4, set x Po qo,
and select Yo E QRx
Execute procedure Gen_p_and_Proof l(Xo, Yo), thus obtaining p and Proofo.

2. "Choose other auxiliary pairs."
"Tree contains the indices of auxiliary pairs that are used to certify two others
auxiliary pairs. Count contains the number of all selected auxiliary pairs."
Set Tree empty set and Count 1.
For each formula e (O,..., O(n) } do:

Set bo -0 and randomly select n bits b,..., bn.
For 0,...,n do:

Set s bo...b/
If s Tree then

Add s to Tree. Randomly select four n-bit primes
ps0, qs0, pl, ql -= 3 mod 4.
"Choose 0-child."
If Count j then set x0 x, Y0 Y.
If Count < j then set xso poqo and randomly select
Yo QRxso.
If Count > j then set xo Psoqo and randomly select
Yo NQRso.
Count Count + 1
"Choose 1-child."
If Count j then set xl x, yl y.
If Count < j then set xs pq and randomly select
y QRxsl.
If Count > j then set x psq and randomly select
y NQRsI.
Count Count -}- 1

3. "Choose T and %."
Let w be the index of (x, y), that is (x, y) (x, y). If there is no such w,
set w empty string.1

If w Tree then

It may happen that fewer than j (different) auxiliary pairs will be chosen. To give an extreme
example, it may happen that, for all (I), the bits b... bn are always the same.
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Compute v CR(xwo, yv0, Xwl, ywl) and a satisfying assignment
t for .
Execute procedure Sample_T_and_Proof2(, t, x, y) obtaining T
and Proof.
Randomly select a 2n4-bit string T

Else, if w bo... b, for (I) E {(I),..., (I)(n)}, then
Execute procedure Sample_-_and_Proof9.((I), t, x, y) obtaining % and
ProofS.
Randomly select a 2na-bit string T

Else, randomly select a 2na-bit string -1 and a 2na-bit string
4. "Choose proofs with respect to T and T2."

Set PROOF= empty string and Tree-
For each formula (I) E {(I) (I)n

R(n) } do:
4.1. "Certify auxiliary pairs."

Append (x0, Yo), Prfo, and bo... b to PROOF.
For 0,...,n do:

Set s bo...b.
If s Tree then

Add s to Tree.
If Y8 NQRxs then

Compute q28 CR(xso, ys0, x81, y81) and a satisfying as-
signment t8 for 8.
Execute procedure Prove(8, ts, xs, Ys, 71) obtaining
ProofS8.

If y8 QRxs then execute Gen_Proof2(8,xs,ys,ps,qs, -) ob-
taining ProofS8.

Append (xs0, Y0), (x81, Ys), and Proofq28 to PROOF.
4.2. "Prove (I)."

s
If s : w then

If Y8 NQRx then execute procedure Prove((I),t,xs, Ys, %) ob-
taining Proof(.
If Y8 QR then execute Gen_lroo:9.((I), xs, Ys, ps, qs, -) obtaining
Proof(.

Append Proof( to PROOF.
Output:(p -1 T., PROOF).

First note that {Cn}ne: is an efficient nonuniform algorithm. All xs’s (except
the jth) are selected along with their prime factors and thus all related computations
can be performed in expected polynomial time. All operations concerning x and y
are simple multiplications and testing of membership in J+. The size of the set
Tree is never bigger than nR(n), and thus membership and add operations are easily
performed.

The strings T and T constructed by Cn are random. Indeed, either they are
randomly selected or they are generated by Sample_T_Proof9-. The analysis in 5.4
shows that in the latter case the resulting string T is random.

Proof of )ropert, (1). Assume j 0 and y NQR. All ys’s are quadratic
nonresidues in Cn’S output. (x, y) is set equal to (Xo, Yo) and used twice: at step 1 to
produce p and Proofo and at step 3 to construct Proof Both the strings Proofo
and Proofo have the same probability of being chosen as in View when the first
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pair is (x0, Yo). From Lemma 5.3, each string p is equally likely to be constructed at
step 1. Thus, Space(n, O, NQR) View(n, 0 nR(n))"

Proof of Property (2). Suppose j nR(n) + 1. To prove R(n) formulae, at most
nR(n) auxiliary pairs are needed. Thus, each Y8 constructed by Cn belongs to QRx.
All the strings Proof8’s and ProofO’s are constructed in exactly the same way, both
by S and by Ca. Hence, Space(n, uP(n)+ 1, QR) {s 2- S(1n

Proof of eoperty (3). Consider now the two probability spaces Space(n,j, QR)
and Space(n, j + 1, NQR). In both spaces the auxiliary pairs are randomly chosen so
that the first j y’s are quadratic residues modulo the corresponding x’s and, from
the (j + 1)st on, all the y’s are quadratic nonresidues. All computations concerning
pairs (x, ys) different from (x, y) are performed in the same way. The pair (x, y) is
used to construct either a proof Proofq2 for a formula derived from a reduction
or a proof ProofO for one of the formulae O, or is never used. In the former
two cases the proof is generated using the procedure Samp:[e_T_and_Proof2. When
y NQRx (y QR), this procedure returns a string Proof that has the same
distribution as if it where generated by the procedure Prove (gen__Proof2). Thus,
Space(n, j, QR) Space(n, j + 1, NQR).

We now conclude the proof of Theorem 6.3. We have assumed that D distin-
guishes between S(1n O O OR(n))’S output and View(n, 07 R(n)) From
properties (1) and (2), then, this is tantamount to saying that D distinguishes be-
tween Space(n, 0, NQR) and Space(n, uP(n)+ 1, QR). By the pigeon-hole principle,
and because of Property (3), for all n - there exists j j(n), 0 <_ j <_ uP(n) + 1,
such that D distinguishes between Space(n,j, QR) and Space(n,j, NQR). That is,
for all n ’,

IPj(n, QR)- Pj(n, NQR)I >_ 1/((nR(n) + 2)nd)

where Pj(n, QR) Pr(s Space(n,j, QR) Dn(s) 1) and Py(n, NQR)
Space(n,j, NQR) On(S) 1). Thus, composing each Cn(j(n),’,’) with On, one
obtains an efficient nonuniform algorithm that violates the QRA.

6.5. Proving theorems of arbitrary size. Given a reference string of 8n3

2n + 2n4 bit, the proof system (P, V) of 6.1 can be used to prove in zero-knowledge
the 3-satisfiability of an arbitrary number of 3-satisfiable formulae, but each of them
must have at most n clauses. However, the same proof system can be used to prove
3-satisfiable formulae with any number of clauses. The idea is perhaps best conveyed
in an informal manner. Given a formula with k clauses, the prover computes
certified auxiliary pair (x, y) and the lexicographicMly smaller satisfying assignment
t for O. To label each literal uj of the prover randomly selects rj Z and, if

2y,I, mod xt(uj) 1 he associates with uj the label wy rj otherwise the label

wj rj2 mod x. The label associated with j is wjyOmod x
literal has an element in NQR as label if and only if it is made true by t. To
prove that 3SAT, the prover proves that each clause has at least an element
of NQR among the labels of its three literMs. That is, consider the language
L {(yl,y2, Y3,X): at least one of Yl,Y2,Y3 belongs to NQR}. Then L NP and
therefore there exists a fixed polynomial-time computable reduction RED such that

0’ RED(y, Y2, Y3, x) 3SATns == (y, Y2, Y3, x) L,

where f is a fixed constant depending only on RED. Therefore, to prove that the ith
clause is satisfied, the prover computes the formula Oi using the reduction RED and
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proves that Oi E 3SAT. By the property of the reduction the length of the formula
is upper bounded by nf and can thus be proved 3-satisfiable using the previously
described proof system (P, V) with a reference string of 8n3f + 2nsl + 2n42 bits.
Therefore, we have reduced the problem of proving the 3-satisfiability of one formula
with many clauses to that of proving the 3-satisfiability of many formulae, each with
at most n clauses.

6.6. Efficient provers. In the proof system of 6.1, for convenience of presen-
tation, the prover P was made quite powerful. For instance, P needs to find the
lexicographically first satisfying assignment of a formula for proving that it is in
3SAT. This, however, is not necessary. It is easily seen that, under the QRA, the
verifier would obtain an undistinguishable view [GoMiRa], no matter which satisfying
assignment the prover may use. Also, it is possible for the prover to have access to
a random oracle instead of a random selector and still generate essentially the same
view to a polynomial-time verifier. In fact, by well-known techniques, a random oracle
can be transformed to a random function associating each string with a a "polynomi-
ally longer" random string. This random string may be used to select the necessary
primes and quadratic residues and nonresidues with essentially the same odds as for
a random selector. Actually, if one replaces a random oracle with a polyrandom func-
tion as in Goldreich, Goldwasser, and Micali [GoGoMi], the view of the verifier would
still be indistinguishable from the one it obtains from P. These functions exist under
the QRA12 and the replacement only entails that the same short, randomly selected
string should be remembered throughout the proving process.

In sum, the prover may very well be polynomial time, as long as it is given satis-
fying assignments for the formulae that need to be proved satisfiable in noninteractive
zero knowledge.

This is an important point, and can be shown to hold not only for our specific
noninteractive ZKPS, but also for any other that shares our algorithmic structure.
Since, however, systems with a different structure and relying on weaker intractability
assumptions have already been found (see below), we decline to formalize this point
in our paper. Our goal, at this point, is making precise the notion of noninteractive
zero-knowledge and showing its feasibility.

7. Recent improvements and related works. Two main open problems were
posed in [DeMiPel], namely,

1. whether many provers could share the same random string and13

2. whether it is possible to implement noninteractive zero-knowledge with a

general complexity assumption, rather than on our specific number-theoretic
one.

Recently, both our questions have been solved in a beautiful paper by Feige, Lapidot,
and Shamir [FeLaSh]. They show that any number of provers can share the same
random string and that any trap-door permutation can be used instead of quadratic
residuosity. They also show that one-way permutations are sufficient for bounded
noninteractive zero-knowledge, but the prover needs to have exponential computing

12 In fact Blum, Blum, and Shub [B1B1Sh] show that the QRA implies the existence of a polyrandom
generator in the sense of Blum and Micali [B1Mi] and Yao [Ya], and [GoGoMi] show that any
polyrandom generator can be used to construct a polyrandom function.

13 Indeed, if this had been done in our protocol, completeness and soundness would still hold.
However, it is not clear that the zero-knowledge would be preserved. Without changing our proof
systems, we can handle only a moderate number of provers. This number is limited for the same
reasons outlined in footnote 6.
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power. Our first question was also independently solved by De Santis and Yung
[DeYu].

Noninteractive zero-knowledge has been shown to yield a new paradigm for digital
signature schemes by Bellare and Goldwasser [BeGo].

De Santis, Micali, and Persiano [DeMiPe2] show that, if any one-way function
exists, after an interactive preprocessing stage, any "sufficiently short" theorem can
be proven noninteractively and in zero-knowledge.

Kilian, Micali, and Ostrovsky [KiMiOs] have shown that, if any one-way function
exists, after a preprocessing stage consisting of a "few" executions of an oblivious
transfer protocol, any theorem can be proven in zero knowledge and noninteractively.
(Namely, after executing O(k) oblivious transfers, the probability of accepting a false
theorem is 1 in 2k.) Bellare and Micali [BeMi] show that, based on a complexity
assumption, it is possible to build public-key cryptosystems in which oblivious transfer
is itself implementable without any interaction.

8. A general open problem. An obvious open problem in noninteractive zero-
knowledge consists of finding more efficient proof systems. However, in our opinion,
a more important one is decreasing the needed complexity assumption. This effort
should be extended to all of cryptography at this point in its development.

Introducing new cryptographic primitives is crucial, but would be essentially im-
possible without first relying on some special, though hopefully well studied, com-
plexity assumptions. It is important, though, to later find the minimal assumptions
for implementing these primitives. In fact, "extra structure" may make proving that
the desired property holds easier, but may also force the underlying complexity as-
sumption to be false. Personally, Micali finds a dramatic difference between one-way
functions and one-way permutations. (Breaking a glass is quite easy. Putting it back
together is certainly harder, but what if we were guaranteed that there is a unique
way to do so?)

We believe noninteractive zero-knowledge to be a fundamental primitive, one
deserving the effort to establish the minimal assumptions needed for it to be se-
curely implemented. We thus hope the following question will be settled: If one-way
functions exist, does 3SAT have noninteractive zero-knowledge proof systems whose
prover, given the proper witness, needs only to work in polynomial time?
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AVERAGE CASE PERFORMANCE OF SATISFIABILITY
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Abstract. Preprocessing a random instance I of CNF Satisfiability in order to remove infrequent
variables (those which appear once or twice in an instance) from I is considered. The model used to
generate random instances is the popular random-clause-size model with parameters n; the number of
clauses, r; the number of Boolean variables from which clauses are composed; and p, the probability
that a variable appears in a clause as a positive (or negative) literal. It is shown that exhaustive
search over such preprocessed instances runs in polynomial average time over a significantly larger
parameter space than has been shown for any other algorithm under the random-clause-size model
when n re, e < 1, and pr < ln(r). Specifically, the results are that random instances of

2Satisfiability are "easy" in the average case if n r, > e > 0, and pr < (ln(n)/4)l/3r2/3-; or
2 (1 i) ln(n)/e for any i > 0; or pn 0, pr < lnln(n) for any > 0.

Key words. Satisfiability, NP-complete, probabilistic analysis, resolution

AMS(MOS) subject classification. 68B10

1. Introduction. The Satisfiability problem is to determine whether there exists
a truth assignment to the variables of a given CNF Boolean expression which causes
it to have value true. If such a truth assignment exists, we say the expression is
satisfiable; otherwise it is unsatisfiable. The problem is NP-complete so there is no
known polynomial-time algorithm for solving it. Several papers have been concerned
with the analysis of algorithms for Satisfiability that run in polynomial average time.
These results depend on an assumed probabilistic input model. One popular model
is the "random-clause-size" model, which we refer to as M(n, r, p).

Let L {vl, 1, v2, V2,’", vr, Vr} be a set of 2r literals. According to the model
M(n, r, p), n disjunctions (called clauses) are generated as follows: for each clause Ci,
for all literals E L, put in Ci with probability p, independently of the placement of
other literals and clauses. Note that it is possible for a pair of complementary literals
(associated with the same variable) to be present in a clause. It is also possible to
generate an empty (or null) clause using this model. If an instance contains a null
clause, it is trivially unsatisfiable. The preponderance or absence of null clauses in
random instances is controlled by the product pr, which is half the average number of
literals in a clause. From [2] a random instance possesses a null clause with probability
tending to 1 if the product pr < ln(n)/2.

In the literature, polynomial average time results for Satisfiability algorithms are
known only if n r, 1 > > 0, pr < v/ln(n) r1/2-e [4]; or n r, 7 > 1,
pr < (7- 1)ln(n)/(2) [5]; or n =/r,/ a positive constant, and pr < f(), where f
is some complicated function of ; or pr > v/r ln(n) [3]. This space of parameters is
depicted as region I in Fig. 1 (the scale of the figure is such that factors of ln(n) are
not distinguished). Furthermore, no polynomial average time results are published
for parameters set in region II or region III of Fig. 1. Also of interest is a result in [1]
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hi

n-2 n- 1 n/r
FIG. 1. Regions of the parameter space of model M(n,r,p). Random instances generated

using parameters which fall into region I are solved in polynomial time by some previously analyzed
algorithm. The algorithm PLR requires superpolynomial average time for parameters set in regions
II and III. Algorithm INFREQ solves random instances in polynomial average time in region II.
No known algorithm takes polynomial average time for parameters set in region III.

which shows that an algorithm based on the pure literal rule, called PLR, requires
and pr > V/w(r)ln(n). r1/2-esuperpolynomial average time if n r, 1 > e > ,

where w(r) is any growing function of r. In Fig. 1, this range of parameters includes
region II. Thus, there is a significant range of pr for which null clauses exist in random
instances with high probability but no published polynomial average time analysis
exists and at least one nontrivial algorithm, namely, PLR, requires superpolynomial
average time. This range is depicted in Fig. 1 as the part of region II below the
extension of the lower boundary between regions I and III.

In this paper we extend the parameter space over which polynomial average time
results are known. We present an algorithm called INFREQ and show that it has
polynomial average time performance over a range of parameter values including re-
gion II of Fig. 1; no published analysis has shown this region covered by a polynomial
average time algorithm.
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INFREQ uses substitution rules to eliminate or combine clauses containing in-
frequent variables: that is, variables occurring only once or twice in an instance.
Infrequent variables are also eliminated by applying these rules. In addition, IN-
FREQ checks the input for a null clause before processing. If one is found, INFREQ
immediately stops with the result that the input is unsatisfiable. Otherwise, INFREQ
does an exhaustive search over all remaining variables for a solution.

The results of this paper show that exhaustive search over the variables which are
not infrequent is, for certain relationships between the parameters p, n, and r, speeded
up considerably as a result of the null check and the preprocessing. The idea seems
to be generalizable and may represent the first of a family of such results that will
take care of a large portion of the remaining parameter space for which polynomial
average time results are not now known. The result of such a generalization, to the
extent that it is possible, is apparent from the analysis presented here.

Specifically, the results of this paper are that random instances of Satisfiability
are "easy" in the average case if n r 2 > > 0, and pr < (ln(n)/4)l/3r2/3-;
or n r 1 > e > 2 and pr < (1-e-5)ln(n)/e for any 5 > 0; or pn -- 0,
and pr < 71nln(n) for any / > 0. These results include region II in Fig. 1, a
region not covered by a published polynomial average time result. The first of these
results is due to the resolution component and does not depend on the presence of
null clauses in an instance. Thus, in Fig. 1, the left boundary of region III is due
to limited resolution. As will be explained in the remarks following Theorem 3.1,
random instances generated according to the parameter space of the first result have
relatively few variables that are not infrequent. Therefore, the exhaustive search in
INFREQ is over a sufficiently small number of variables to obtain polynomial average
time. The second result depends on checking for null clauses and the elimination of
infrequent variables. In Fig. 1, the portion of region II that is below an imaginary
extension of the lower boundary of region III is due to this effect. In this case the
average number of variables that are not infrequent is considerable, but INFREQ
has polynomial average time because of the combination of null clause check and
exhaustive search.

2. The algorithm. For convenience, we write a clause as a tuple of the literals
it contains. For example, the clause (x V y V z) is written as (x, y, z). Similarly, we
write the conjunction of two clauses C1 A C2 as C, C2.

Let a variable which appears exactly once in an instance I be called a unit variable.
Let a variable which appears exactly twice in I be called a double variable. Let a
variable which appears at least three times in I be called a serious variable. Table
1 defines substitutions for clauses in I containing unit and double variables. In the
table we use v to denote a positive literal taken from a unit or double variable, a
negative literal so taken, and x and y either a positive or negative literal which is not
necessarily taken from a unit or double variable.

When we say apply unit elimination we mean, according to Table 1, look for a
clause containing a unit variable v and replace it with the logical value true; if no
such clause exists, do nothing. Similar statements hold for applying any of the other
substitution rules listed in the table. It is possible that, after repeated applications
of double-variable substitution rules, some double variables will occur only once in I.
By clean up double variables we mean eliminate all clauses containing double variables
that appear once in I.

Consider the following algorithm for solving instances of Satisfiability.



1122 JOHN FRANCO

TABLE

Var type
unit

double

Substitution name
unit elimination

double elimination

trivial elimination
pure literal rule

resolution

Occurrence

(x,.-.,y,...)

INFREQ(I)"

1. If I has a null clause then return "unsatisfiable"
2. Otherwise,

a. repeatedly apply double variable substitution rules in order until oppor-
tunities vanish

b. clean up all remaining double variables
c. repeatedly apply unit elimination until opportunities vanish
d. for all truth assignments t to serious variables in I, if t satisfies I then

return "satisfiable"
3. Return "unsatisfiable"

In step (2d) INFREQ terminates as soon as the first satisfiable truth assignment is
discovered. It should be apparent that the size of I is not increased by the application
of INFREQ to I. It should also be apparent that all unit and double variables are
eliminated from I in steps (2a), (2b), and (2c) of INFREQ (these are the preprocessing
steps). Thus, in step (2d), the truth assignment t is an assignment to all variables
which appear in the processed I.

LEMMA 2.1. INFREQ returns "satisfiable" if and only if I is satisfiable.
Proof. The proof is straightforward and is omitted.

3. The analysis. To simplify the analysis, we show that the expected number
of iterations in step (2d) of INFREQ is bounded by a polynomial in n under several
conditions. Since the complexity of each step is polynomially bounded, the average
running time of INFREQ must then be polynomially bounded under those conditions
as well.

Let I-(y) denote the event that the input contains exactly y serious variables.
Let I> (y) denote the event that the input contains at least y serious variables. Let I
denote the event that the input contains a null clause. Let T(n, r, p) denote the average
number of steps executed by INFREQ given that instances are generated according
to model M(n, r, p). Then, since the number of steps required by exhaustive search
on an input with exactly y serious variables is at most 2y, we can write

T(n,r,p) <_ Pr(I) + 2y Pr([ A I=(y))
y--1

Pr(I) d- 2Pr( A/_-(1)) / 2y. Pr( A I=(y))
y--2
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Interchanging the order of summation in the double sum gives

T(n, r,v) < Pr(I) + Pr(I A/=(1)) + Pr(I A I>_ (1))

+ 2. Pr( A I=(y)) + EPr( A Z-(y))
x----1 y--x+l y=2

Pr(Ic) + Pr(I- A I=(1)) + Pr([c A I=(y)) + Pr(f A I>(1))
y=2

r--1

+E 2x E Pr( AI=(y))
x--1 y--x+1

r--1

Pr(I) + 2Pr([ A 1> (1)) + E 2" Pr([ A I>(x + 1))
x=l

r--1

<_ 1 + 2Pr([+ A I>(11) + E 2x" Pr([ A I>_(x + 1)/
x=l

L6_I r--1

< 3 + E 2" Pr([) + E 2x. Pr(I>(x + 1))
x=l x=[6ttJ+l

LJ
(1) 3 + E 2x" Pr([) + 2x-1. Pr(I>(x)),

x=l [6ttJ +2

where # is the mean number of serious variables in an instance. The appearance of
the number 6 in (1) will be explained below.

First, we obtain a bound on the second sum in (1). Since variables are placed
independently in clauses, the number of serious variables in an instance is binomially
distributed. By the Chernoff bound for binomial distributions [6],

Pr(I>_((1 + )#)) < e in(l+--)9

> 0. Below we shall make use of this and the easily verified fact that x ln(2)
ln()(- 1)2 < 0 if x_> [6# +landp > 0 (this is the reason why6 appears in

(1)). Thus,

_ln(_p)(_l)2x-l" Pr(I>(x)) < 2e \ 1--p -x=L6J+2

e ln()(-l) 2+x ln(2)

x-- [6p,] +1
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x-- [6tt-t-1

Next, we obtain an upper bound on the first sum in (1). The probability that
a clause is null is (1- p)2r. Hence, the probability that all clauses are not null is

Pr([) (1 -(1 -p)2r),. Thus, we write

L6tJ L6tJ L6tj

E 2x" Pr(]) Pr() E 2x (1 -(1 -p)2r)n E 2x"
x:l x--1 x:l

HenceIt may be verified that (1 -p) >_ e-p-p2 if 0 _< p < 3"

L6tJ

x=l

2. Pr([) _< (1 -(1 -p)2r)n2[6#j+l

(3) _< (1 e--2rp(l+p))n2 [6tj+l

e--He
-v(I+p)+ln(2)(6/z+l),

Now, we compute # and obtain upper bounds on (3). The probability that a
variable is not in a particular clause is the probability that neither literal associated
with the variable is in that clause and is equal to (1- p)2. Since clauses are indepen-
dently chosen, the probability that a variable is not in a given instance is (1 -p)2n,
the probability that a variable appears once in an instance is 2pn(1- p)2n-1, and
the probability that a variable appears twice in an instance is (22n)p2(1- p)2n--2.
Therefore, the probability that a variable is a serious variable is

1 (1 p)2n 2p71(1 p)2n--1 n(2n 1)p2(1 p)2n-2,

which may be reduced to

1 -(1 -p)2n(1 / 2pn/(1 -p)+ 2(pn)2(1 1In)l(1 -p)2).
2 andTHEOREM 3.1. INFREQ runs in polynomial average time if n- r, e <_ -,

2 and pr < (1 e 5) ln(n)/e, for anypr <_ (ln(n)/4)1/3r2/3-; or if n- r, 1 > e > -,
> O; or if pn -- 0 and pr < 3’ In ln(n) for any > O.

Proof. If n r,,e<,2 and pr _< (ln(n)/4)l/ar:/-, then

pn pr re-1 (ln(n)/4)l/3r2/3-+- (ln(n)/4)l/3r-/3 O.

Ifl>e>_ 2 and pr _< ln(n), then pn pr. r- _< eln(r)r- -- 0. So, we assume
Then the probability that a variable is serious ispn -- O. This implies p < 3"

4 31 (1 p)2(1 + 2pn/(1 p) + 2(pn)2(1 1/n)/(1 p):) ()(np) / O((np)4).

From now on, we ignore the small term for simplicity. Since variables are placed
independently in clauses, the number of serious variables in an instance is binomi-

4ally distributed with parameters r and (5)(rip)3 Thus, the mean number of serious
4 3r.variables in an instance is # ()(np) Substituting into (3) gives

--He
-2p(+p)r +ln(2)(8(np)3r+l)
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which is polynomially bounded if e--p(l+p)q-ln(2)(8(np)3r) is. Therefore, we require

(4) --2p(l+p)r
__

5.545(pn)2(pr) <_ ln(n)/n.

Let n- re, 1 > e > 0. Then, after rearranging, (4) becomes

5.545(pr)3r2(-1) G e-2pr(I+p) + er ln(r)
5.545(pr)3r3-2 G tee-2pr(I+p) q- ln(r)

2 and pr (ln(n)/4)/3r, c a constant. Then (5) becomesLet e G

(6) 5.545 ln(n)r3a+3e-2/4
_
ree-2r-2r-i q e ln(r).

2 2 andClearly, (6) is satisfied if 3a+3-2 < 0 or a < -. Thus, if e <
pr < (ln(n)/4)/3r2/3-, then (2) is polynomially bounded.

Now let 1 > e > 2/3 and pr c ln(n)- celn(r). Then (5) becomes

(7) 5.545(aln(r))3r3-2 _< re-2ae(l+ln(n)/r) -- e ln(r).

Inequality (7) is satisfied if 3e- 2 <_ e- 2ce- 26 for any positive constant 6 and this
2 and pr < (1 e 6)ln(n)/e thenis satisfied if c _< (1 -e- 6)/e. Thus, if 1 > e >

(2) is polynomially bounded.
The remaining case, pn --, 0 and pr < ln ln(n), is straightforward. D
We make four remarks about the proof of Theorem 3.1. First, in (6), only the

term -2r-2r-re is due to the presence of null clauses in I. But this term is
2ignored when determining that c _< -e in the sentence following (6). Thus, the

2polynomial average time result for n re, e < , is not due to the presence of null
clauses in I.

Second, in (7) the term re-2ae(l+ln(n)/r) is due to the presence of null clauses and
the term r3e-2 is due to the removal of infrequent variables. Both the null clause
check and removal of infrequent variables account for polynomial average time when

2pr < (1- e)ln(n)/e, < e < 1. That is, neither checking for null clauses alone nor
removing infrequent variables without checking for null clauses is powerful enough to
achieve this result.

2 then the average number of seriousThird, if pr < (ln(n)/4)/3r2/3- 0 < e < -,
variables, although possibly an increasing function of n, is small compared to the
number of infrequent variables. Thus, in this case it can be said that INFREQ works
well because nearly all the variables are eliminated by resolution, the pure literal rule,
unit elimination, double elimination, and trivial elimination. On the other hand, if

2pr < (1- e)ln(n)/e and < e < 1, then it can turn out that many variables are
2serious. In fact, if pr (1 e) ln(n)/e, < e < 1, then the average number of serious

variables is O(ln3(r)r3-2). Exhaustive search over so many variables would require
superpolynomial time. However, INFREQ works well on the average in this case too.

Removing resolution (recall this is on double variables only) and the null clause
check from INFREQ leaves essentially the algorithm that was analyzed in [1] called
PLR. But PLR requires superpolynomial average time if pr < (1 -e)ln(n)/e, 32- <
e < 1. Thus, resolution and the null check account for the good average performance
of INFREQ in this case. Moreover, PLR requires superpolynomial average time even
if pr > v/ln(n) rl/2-e, < <.12 Thus, in the case where v/ln(n) r1/2-e < pr <
(ln(n)/4)/3r2/3- 1

2 < e < -, only the addition of resolution on double variables to
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2 largePLR accounts for polynomial average time. This means that with < e < ,
samples of instances with up to r literals per clause on the average, 0 < a < , can be
solved in polynomial average time with INFREQ, whereas with PLR, superpolynomial
average time is required even if the average number of literals per clause is vanishingly
small. It is perhaps surprising that such a small change to PLR can have such an
effect on average case performance.

The fourth remark concerns the scope of infrequent variables. From the paragraph
preceding Theorem 3.1, it should be evident that, ifpn -- 0 and only unit variables are
eliminated in INFREQ, then # ((np)2r) and, up to constant factors, (6) becomes

ln(n)r2a+z-I _< r--2"a--2r2a--1 + e ln(r),

which is satisfied if a < e. If we could use substitution rules to eliminate triple
variables, those which appear three times in an instance, then # 0((np)4r) and
a < () -e. If we could eliminate all variables occurring or fewer times in I, then
we would have # O((np)(i-1)r) and polynomial average time if pr < ri/(+1)-,
< i/(i + 1). Clearly, i does not have to be very large to make a major impact

on the parameter space supporting polynomial average time. Unfortunately, trying
to eliminate even triple variables can cause an exponential explosion of the size of
I. In this event the assumption that the complexity of each step of INFREQ is
polynomially bounded is not valid. We ask: are explosions so infrequent that they
do not significantly affect average time performance? An affirmative answer would
have a major impact on polynomial average time results under the random-clause-size
model. We leave investigation of this question for a future paper.

The next theorem shows where INFREQ runs in polynomial average time when
n =/r,/ a positive constant.

THEOREM 3.2. INFREQ runs in polynomial average time if n/r , where 1 is
a positive constant, and 4.15(1 -(1 -p)2Zr(1 + 2pr + 2(pr)2)) </e-2pr.

Proof. Since p < 1, 1/(1- p) > 1, and 1/(1- p)2 > 1, then

# (1--(1--p)2n(l+2pn/(1-p)+2(pn)2/(1--p)2))r <_ (1--(1--p)2n(l+2pn+2(pn)2))r.

Thus, (3) is polynomially bounded if

-he
-2p +/n(2)(6(1 (1 p)2’(1 + 2pn + 2(pn)2)))r <_ In(n)

(8) -3e-2pr + 4.15(1 (1 p)2r(1 + 23pr + 2(3pr)2)) <_ ln(n)/r.

The theorem follows. Cl

According to Theorem 3.2, INFREQ has polynomial average time if 2pr < ln()-
ln(4.15) (this is fairly tight if is large). If 1, then INFREQ has polynomial
average time if pr < .5.

4. Conclusions. We have investigated a simple strategy for solving instances of
CNF Satisfiability with respect to average case performance. The important idea is
the elimination of infrequent variables before applying, in this case, exhaustive search.
We have shown that this strategy is superior in average case performance to all other
algorithms analyzed under the random-clause-size model when pr < vQr ln(r), n < r,
and e < 1. The strategy may be generalizable, to some extent, and the analysis seems
to suggest the outcome of an investigation of such a generalization.
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Abstract. This paper applies the parallel tree contraction techniques developed in Miller and
Reif’s paper [Randomness and Computation, Vol. 5, S. Micali, ed., JAI Press, 1989, pp. 47-72]
to a number of fundamental graph problems. The paper presents an O(logn) time and n/logn
processor, a 0-sided randomized algorithm for testing the isomorphism of trees, and an O(log n) time,
n-processor algorithm for maximal subtree isomorphism and for common subexpression elimination.
An O(log n) time, n-processor algorithm for computing the canonical forms of trees and subtrees
is given. An Ologn time algorithm for computing the tree of 3-connected components of a graph,
an O(log2 n) time algorithm for computing an explicit planar embedding of a planar graph, and an

O(log3 n) time algorithm for computing a canonical form for a planar graph are also given. All these
latter algorithms use only n0(1) processors on a Parallel Random Access Machine (PRAM) model
with concurrent writes and concurrent reads.

Key words, parallel algorithms, tree contraction, graph isomorphism, graph connectivity,
subexpression, elimination

AMS(MOS) subject classifications. 05C05, 05C10, 05C40, 68Q25, 68R25

1. Introduction. In the previous companion paper [29], we introduced a bottom-
up technique for processing a tree which we named Parallel Tree Contraction. This
technique is in many cases preferable to previously utilized top-down techniques for
processing trees which require a precomputation to find the nodes of a tree that sep-

2 the tree size. Our first paper consideredarated the tree into pieces of size at most
expression evaluation as our first example and prime application of CONTRACTION.
Our main results were an O(log n) time using n processor deterministic algorithm, as
well as an O(log n) time using n/log n processor randomized algorithm for tree con-
traction. The example and application of tree contraction given in Part I [30] were

dynamic expression evaluation. Part II will give some further applications. This sec-
ond paper presumes that the reader has knowledge of our companion paper. The goal
of this paper is to apply CONTRACTION to a wide variety of graph problems.

We will assume throughout this paper the Parallel Random Access Machine Model
(PRAM), which we also assume can perform concurrent reads and writes (see [40]).

The discussion begins in 2, where we present a zero-sided randomized algorithm
which tests the isomorphism of trees in O(log n) time using n/log n processors, and
which tests the isomorphism of maximal subtrees and subexpressions in O(logn)
time using n processors. We also exhibited a deterministic O(log n) time algorithm
which uses n log n processors for computing the canonical forms of trees. Previously,
Ruzzo [33] showed that isomorphism of trees of degree at most log n could be tested
in O(logn) time. No polylogarithmic parallel algorithm was previously known for
isomorphism of unbounded-degree trees.
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In 3, the tree of 3-connected components (as defined by Hopcroft and Tarjan
[16]) is constructed in O(log n) time on a PRAM. Previously, Ja’Ja’ and Simon [18]
gave an O(log n) time PRAM algorithm for finding maximal subsets of vertices, which
are pairwise 3-connected; but they did not address the problem of finding the tree
of 3-connected components. In the case of 3-connected graphs, they constructed
the planar embedding in O(log2 n) time on an Exclusive Read and Exclusive Write
(EREW) PRAM, but it is easy to see that their algorithm required only O(logn)
time, using the Concurrent Read and Concurrent Write (CRCW) model. They did
not construct embeddings of general planar graphs. In 3, an O(log2 n) time PRAM
algorithm is given that computes the explicit planar embedding of planar graphs even
if the graphs are not 3-connected.

Section 4 presents an O(log3 n) time PRAM algorithm that computes a canon-
ical form for planar graphs. No polylogarithmic parallel algorithm for testing the
isomorphism of planar graphs previously existed.

Section 5 presents an NC reduction from the problem of computing canonical
forms of a general graph to the problem of canonical forms for 3-connected graphs.
This is an O(logn) time reduction using n(1) processors on a PRAM.

Finally, 6 references extension and further applications of the parallel tree con-
traction technique that have been done since the original writing of this paper.

All our PRAM algorithms use only a polynomial number of processors. Effort
shall be taken to minimize the number of processors used. Most of these results can
also be expressed in terms of circuits with simultaneous depth: (log n)c and nk size,
for fixed constants c and k.

2. Isomorphism and canonical labels for trees. Let T and T be two rooted
trees with roots r and r’ and vertex sets V(T) and V(T’), respectively, where IV(T)I
n. T is isomorphic to T’ if there exists a bijective map from V(T) to V(T’) which
preserves the parent relation. A map L from trees to strings such that T is isomorphic
to T’ if and only if L(T) L(T’) is called a canonical label. A subtree T’ of a rooted
tree T is said to be an induced subtree if there exists a vertex v of T such that the
vertices of T are v and all the descendants of v in T. This paper considers only the
induced subtrees. Thus, a subtree is assumed to be an induced subtree (note induced
subtrees are also termed maximal subtrees in the literature). Canonical labels for all
induced subtrees of a tree T is a map L from V(T) to finite strings such that for all
x, x E T the subtree rooted at x is isomorphic to the subtree rooted at x if and only
if L(x) L(x’). All results to follow will apply to unrooted trees as well.

Canonical labels for all induced subtrees can be used for code optimization. Here,
one merges all nodes with common labels producing an acyclic digraph. This process
is called common subexpression elimination. First, a randomized algorithm for tree
isomorphism is presented.

The height h(v) of a node v in a tree T is the maximum distance from v to any
of its leaves. That is, h(v) 0 if v is a leaf; otherwise, if v has children, vl,..., vk,

then h(v) 1 -4- max{h(vi)ll < < k}. It is a straightforward exercise to see that
the height of all nodes in a tree with n nodes can be computed deterministically by
Parallel Tree Contraction (PTC) in O(log n) time using n processors, or alternatively,
by using n/log n processors by the randomized version of Parallel Tree Contraction,
as discussed in the first part of this paper [29].

A multivariate polynomial Qv is canonically associated with each vertex v of the
tree T. Let Xl,X2,... be distinct independent variables. For each leaf v, set Qv 1

kFor each internal node v of height h with children vl,..., vk, set Q rIi=l (Xh -Qi
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using induction on the height h. Thus, the polynomial Qr of the root r with height
h is a polynomial QT(Xl," ,Xh) of degree less than or equal to n. Qr is viewed as
a polynomial over a finite field F. Using the fact that polynomial factorization is
unique over F, Lemma 2.1 follows.

LEMMA 2.1. The subtrees rooted at v and v are isomorphic if and only if Qv
Qv, over a field F.

To test if a polynomial Q(xl,..., Xh) of degree less than or equal to n is identically
zero, an old idea, which goes back at least as far as Edmonds, is used [34]. The
polynomial is evaluated at a random point and checked to see if the value is nonzero.
In this section the following technical lemma is used which is similar to a lemma in

LEMMA 2.2. If F is a finite field of size p, p prime, such that p >_ nS+lh, ( >_ 1,
is a random element of Fh, and Q(x,... ,Xh) is a polynomial of degree less than

or equal to n which is not identically zero over F, then Prob[Q(g) 0] <_ 1/us.
Proof. We first show by induction on h (see [17]) that the polynomial Q has at

least (p- n)h points for which it is not zero. For the case h 1, Q has at most
n roots out of a possible p elements. Thus, Q has at least p- n nonzero points.
Suppose the claim is true for all polynomials with h variables, and Q is polynomial
in at most h + 1 variables. In this case, Q can be written as a polynomial in the first
variable x with coefficients being polynomials in at most h variables. At least one of
the coefficients Q must be a polynomial which is not identically zero. Thus, there
are at least (p-n)h points for which Q is not zero. Now, for each one of these points
there are p- n values of x in F for which Q is not zero. Therefore, Q has at least
(p- n)h+l points for which it is not zero. Since is a random element of Fh, the
above can be written as a probability: Prob[Q( 0)] >_ (p- n)h/ph (1 n/p) h.

Substituting nS+lh <_ p for p yields Prob[Q() 0] >_ (1- (1luSh)) h. Since
(1- (1luSh))h >_ (1- 1/uS), the desired inequality, Prob[Q(g) 0] <_ 1Ins, is
obtained. [:]

The tree isomorphism algorithm is described in procedure form (see Fig. 1). Two
different procedures have actually been given, depending on whether one implements
step (1) or step (1’). If step (1’) is implemented, it must have access to a very
small table of at most O(logn) prime integers. This table of prime integers, PT,
needs to only contain one prime between 2 and 2TM for each t. The existence of
the primes is guaranteed by Bertrand’s postulate (see [15]). As Theorem 2.3 will
show, isomorphism of trees of size less than or equal to n can be tested using a table
of O(logn) primes, each of value less than or equal to n(). This table can be
generated in random polynomial time. To generate the table of primes, we need an
estimate on the number of primes in an interval of size n to 2n (see [32] and a random
polynomial-time primality test, [35], [24]). However, if only step (1) is used, a uniform
algorithm in the usual sense is obtained. Our analysis of the uniform algorithm shows

On the other hand, the probabilityonly that the probability of error is less than 5"
of error using the table of primes is at most 1In. In step (4), the Asynchronous Tree
Contraction algorithm [29] is used, since the time to RAKE a node with k children
will be O(log k).

THEOREM 2.3. Randomizedl Tree Isomorphism using step (1) tests tree noniso-
morphism in O(log n) time using n/ log n processors with the probability of error less
than or equal to 1/2. If a table of primes is given, then the procedure works with a
probability of error of at most 1Ins.

Proof. The case when a table PT of primes is used follows by a straightforward
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Procedure Randomized1 Tree Isomorphism (One-Sided)

(1) Pick a random integer rn in the range (hn+l)2 _< m _< 2(hn+)2.
(11) Pick a prime m in the range hn+1 <_ m <_ 2hn+1 of the given list of

primes PT.
(2) For each node v of T or T/, assign the polynomial Qv to v as

described above.
(3) Assign to each xi a random value between 1 and m.
(4) Evaluate QT and QT, using one of our dynamic expression evaluation

algorithms [29] and return w and wI, respectively.
(5) If w : w/, then output "not isomorphic,"

else output "isomorphic."

FIG. 1. A one-sided randomized tree isomorphism test.

calculation using the last lemma. In this case, the algorithm tests if the polynomial
Q QT- QT, is identically zero or not. By the last lemma, the probability that a
random element is a zero of Q is at most 1In.

Suppose a random integer is used instead of picking a prime from a table. In this
case, the probability that the largest prime factor of a random integer rn has size at

2 (see [20]). For Q to be zero at some point modulo rn, it mustleast v/ is at least
2 of the time, m will have a prime factor of sizebe zero modulo p. Thus, at least

at least hn+, in which case steps (2)-(5) will be executed with an error of at most

1Ina. For a sufficiently large n the probability of error is at most .
Note that the main source of error is step (1), not steps (2)-(5). This fact is used

in the next algorithm. Next, the algorithm is modified into a zero-sided randomized
algorithm, i.e., one that never makes an error. The idea of the algorithm will be to
modify Procedure Randomized Tree Isomorphism so that it outputs a value for each
subtree of T and T/. Assuming that these values are the correct labels for each subtree,
these values are used to find an isomorphism. Note that we can easily test whether or
not this map is an isomorphism. This modified procedure is called Randomized1 Label
Generation. More precisely, steps (4) and (5) are replaced with a step that evaluates
all subpolynomials.

This new algorithm will also canonically label the set of all induced subtrees of a
tree. But this does not give a canonical label for trees, since there is an exponential
number of trees and only a polynomial number of labels. This last problem will be
addressed later on in the paper.

The problem of testing the isomorphism of trees can be reduced to the problem
of canonically labeling all induced subtrees of a tree, as follows:

Viewing the two trees as subtrees of a larger tree.
Asking for the labeling of all its subtrees.
Checking whether or not the labels on the two roots of the subtrees are the
same.

Thus, our attention is restricted to the problem of canonically labeling all induced
subtrees. The following lemma will be used here.

LEMMA 2.4. A map L is a canonical labeling of all induced subtrees of T if and
only if:

1. If v, v’ are leaves, then L(v) L(v’);
2. L(v) L(v’) if and only if {L(v),-.. ,L(vk)} {L(v),--. ,L(v)}, where

Vl,..., vk are the children of v and v,-.., Vk are the children of vI.
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Proof. The proof is a straightforward induction on the height of subtrees. One
must show that two subtrees are isomorphic if and only if they have the same labels.
Condition 1 states that subtrees of height 0 (leaves) are isomorphic, while condition
2 gives us the inductive step. D

The labels generated by Procedure Randomized1 Label Generation clearly sat-
isfy condition 1. Only condition 2 remains. Note that if {L(vl),...,L(vk)}
{L(Vl),...,L(Vk)}, then, clearly, L(v) L(v’). Thus, one tests only that nodes
with the same label have the same set of labels on their children. One simply sorts
the nonleaf vertices by their label value obtaining ordered linked lists of vertices with
the same labels. It will suffice to check that consecutive vertices with the same label
have children that have the same set of labels. To test this latter condition for each
node, one must sort the labels of each node’s children. Next, only pairs of linked lists
are checked for equality. Thus, all subtrees can be canonically labeled in the cost of
two sorts of less than or equal to n numbers where each number is of the size O(log n).
Both randomized and deterministic algorithms using O(log n) time and n processors
are known for sorting [2], [31], [8].

Using this result yields the following theorem.
THEOREM 2.5. Tree isomorphism and common subexpression elimination can be

performed with a O-sided randomized algorithm in O(logn) time using n processors
with an error probability of l/n, given a table of O(logn) primes each of value less
than or equal to n() otherwise, the error probability is at most 5"

Proof. The tree T to be labeled will have n associated polynomials, one for each
subtree. Procedure Randomized1 Label Generation must be run with enough reliability
so that any two of the n polynomials will have distinct values if their subtrees are not
isomorphic. In the worst case, the difference of all pairs of polynomials must have a
nonzero value. This implies that a 3 can be picked so that the probability of any
one of the n2 polynomials being nonzero will be at most 1/n3. In the case where a
random integer is picked; i.e., step (1) is executed, simply note that the probability

and it comes only for the first step, not the others. Thus, theof error is at most
random integer case works with a probability of error of at most 5" D

The remainder of this section exhibits a fast deterministic algorithm for canonicM
labelings of trees. Note that the randomized procedure developed in Theorem 2.5
does not produce canonical forms for trees. Canonical forms can be obtained by using
sorting. The idea is to assign canonical labels to the nodes inductively by height. The
leaves are labeled with zero. Suppose, inductively, that the children, v,..., vk, of v
have labels L(Vl),..., L(vk); then the label of v will be the concatenation of the sorted
list of labels L(vl),..., L(vk), including a left and right parenthesis. By Lemma 2.4
this gives a canonical label for trees. This definition of the label for T seems hard
to implement in parallel since a label which takes a long time to compute may have
a small lexicographic value. This problem is solved by first sorting the children of a
node based on the time in which its label was computed and then sorting the children
on their label value.

The discussion begins with a simpler O(log2 n) time parallel algorithm. Here, the
children of a node are sorted when all but at most one child has its label. If this final
child exists, it is placed at the end of the list. A fixed place in the list is left for the
missing value. A node at an intermediate point of the algorithm which has one child
may be viewed as having a label with one free variable. The intended value of the
variable is the label of the child. Thus, if its child also has only one child and its label
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has been computed up to a free variable, then the labels may be composed; i.e., apply
COMPRESS.

Since the labels may be as large as O(n) long, it is unreasonable to expect that
two labels can be compared by one processor in unit time. However, two characters
can certainly be compared in O(1) time by one processor. This implies the following
well-known lemma.

LEMMA 2.6. The comparison of two strings of length n can be performed in O(1)
time using n processors.

Theorem 2.7 follows from the preceding lemma.
THEOREM 2.7. Canonical labelings for trees can be computed in O(log2 n) time

using n processors.
To see that the above algorithm works in O(log2 n) time, simply note that each

RAKE takes at most O(log n) time and that CONTRACT is applied at most O(log n)
times by the results of [29]. The bound of n on the number of processors is obtained
as follows. Initially only the leaves have their labels, and the sum of their lengths is
at most n. The labels on internal nodes will be the concatenation of the leaf labels
below it plus separating symbols, say, left and right parentheses. Thus, the length of
the label of an internal node is linear in the number of nodes in its subtree. Since only
leaves are ever sorted by the algorithm, the sum of the length of the strings sorted in
any RAKE is at most O(n). Thus, we need only n processors.

Our O(log n) time algorithm is slightly more complicated. Our approach begins
by sorting labels at a node as soon as they arrive. That is, we first order the children of
a node based on the time each child’s label arrives. Among those children whose labels
arrived at the same time, we further order them by their label values. In general, this
labeling returns a different canonical form and label from the previous algorithms, but
it is also canonical, since the ordering of the tree is, up to isomorphism, independent
of how the tree is given.

Ignoring for the moment the cost of collecting labels together so that they may
be sorted in parallel, the algorithm will take O(log k) steps to remove the k leaves of
a node. Thus we have an algorithm which removes the k leaves of a node in O(log k)
and, therefore, by the results of [29], it will run for only O(logn) time when run
asynchronously.

The labels that arrive at the same time must be coalesced so that they are "ready"
to be sorted. We cannot afford to coalesce the labels after they arrive, since the cost
to coalesce the labeled children may be a function of all the children of the node; thus,
the overall running time may grow faster than O(log n). We circumvent the problem of
coalescing the labels on-line by simply computing when the labels will arrive, without
sorting, followed by a second phase where we sort these "times" offiine.

Recall that each nonleaf node v has associated with it an array of storage locations,
one for each child. Each storage location is used for the label of the child and will
be used when its label has been computed. In the preprocessing phase, the storage
locations are rearranged by sorting the children by arrival times.

As mentioned above, the time when a given value will arrive in the preprocessing
phase is determined without actually computing the values. These times are then
used to sort the children of each node. Let c be an integer greater than or equal
to 4, such that deterministic parallel sorting of k >_ 2 numbers can be performed in
f(k) clog k / 2 / time on a Concurrent Read and Concurrent Write (CRCW)
PRAM, where 5 is a constant yet to be determined. Since f(k) can be easily computed,
the parallel sorting algorithm can be slowed down so that it takes exactly f(k) time
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to sort a string of length k. Let the label-time of a node in a tree T be the time at
which the node gets its label when the hypothetical canonical labeling algorithm is
run on T. Next, the label-time for each node is computed.

Both RAKE and COMPRESS of the above algorithm assume the labels that need
to be sorted are consecutive. COMPRESS is a straightforward simulation, since each
COMPRESS step takes only unit time. The simulation of RAKE is more subtle. We
will now show how to determine when each node becomes either a leaf or a parent of
a single child. The label-time of a leaf is 1. If a node v is at no time the parent of
a single child, then the label-time of v is max{f(K) + i}, where K is the number
of children of v whose label-time is i. If, at some point, v becomes the parent of a
single child, then that time will be max{f(K) + i}, where the maximum is over all
children except for the last child processed. Then label-time can be computed by
the simulation of COMPRESS. In either case, only the value max{f(K) + i} need
be computed on or before time max{f(K) + i}. The value is actually computed by
time max{2[logK +i + 4} (see Lemma 2.8). First, the K’s are computed, then the
max{f(K) + i} is computed from the K’s in unit time.

By the results from [29], the largest value of any label-time will be at most
O(logn). A vector of integers is initially associated with each storage location of
a nonleaf node v, and all entries are zero. If the label-time for the child of a node
arrives at time i, then I is added to position of this vector, and the vector is marked to
indicate that its time is known. A marked vector can be combined with a neighboring
left or right vector, either marked or unmarked. The combination of the two vectors is
simply the vector sum, and this procedure is considered a COMPRESS-like operation
applied to consecutive vectors. If only one of the two vectors is marked, then the
combined vector is considered unmarked; otherwise, it is considered marked. We
assume that we have O(log n) processors per node.

We shall implement the above compress-like operation using a variant of Wyllie’s
algorithm for list-ranking [40]. We consider our list of vectors as a linked-list. As in
Wyllie’s algorithm, the last element points to nil. For booking reasons, add a new
pointer at the beginning of the list. The algorithm finishes when the new beginning
pointer points to nil. At each stage, a node may update its pointer if it is pointing
to a marked vertex that is not nil. When a node updates its pointer, it also adds the
value of the parent’s vector to itself. Therefore, this is a CREW algorithm.

A maximal consecutive sequence of marked vectors is called a run. Note that the
above procedure applied to a run will decrease the length of the run by at least .
At some point, the sequence of vectors will be reduced to a single vector (the new
vector added to the beginning of the list) whose ith value is K. In unit time, K
is replaced with f(K) + i. Also, in unit time, the maximum of logn values can be
computed using O(log2 n) processors. We use a processor P for each pair of values.
The processor P will cancel the smaller of its two values. The remaining value is the
maximum. We will assume that the above two-unit time calculations are performed
in at most 5 machine steps.

It remains to show that the vector values K are computed "on time." That is, the
vector of values K is computed by time max{f(K) +i-5} <_ max{4[log K] +i +4}
for each node. The problem is abstracted to the following conceptually easier problem:
a list of characters, each of which is initially the letter I for inactive, is presented;
i.e., the string In is given. At time i, a subset of Ki of the characters I change, to A.
Each A is now thought of as an active character. At each time step, a run of t A’s is
replaced by a run of [t/2J A’s. This process is called ACTIVATE and COMPRESS.
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LEMMA 2.8. The process ACTIVATE and COMPRESS will terminate in the
empty string by a time of at most max{2 logK + i + 2}.

Proof. Suppose that K1,..., K, is a sequence of activations where m equals the
maximum i such that K 0. Further, let max{21ogK + i}, for i 1 to m.
Note that > m > 1.

Let A be the number of A’s in the string at time i after the ith list activation. At
time i, there are K A’s added to the string while COMPRESS reduces the number
of A’s by one-half. Thus, the contribution of the K As at time t _> i is bounded by
K/2t-. This gives the following inequality for t _> m:

K1 Km(1) At _< +"" + 2
Using the fact that for all i, 2 logK + _< implies K <_ 2(l-i)/2, we substitute this
inequality into (1), yielding

1 1
At _< 2-U/2 +"" + 2(t-m)/2"

Since the right-hand side is a geometric series in 1/x/ beginning with 1/xfl, it follows
that At _< 1/(x/- 1) < 3. Since A decreases by at least 5 at each time step, and it
is integral, we get Al+2 0. Therefore, + 2 max{2 logK + + 2}; this proves the
lemma. [:]

THEOREM 2.9. Canonical labelings for trees can be computed in O(log n) time,
using O(n log n) processors.

Proof. The algorithm consists of three majors steps, as summarized below:
1. Compute the label-time of each vertex.
2. Sort and order the children of each node up to their label-time value.
3. Compute the final ordering of the children by computing vertex labels using

sorting.
Using Lemma 2.8, the label-time values for each node can be computed on or

before its label-time. The label-time of a node is not passed to its parent until the
actual time of the label-time value, thus preserving the invariant property that label-
time values arrive at the actual time of the label-time value. Therefore, step 1 takes
O(log n) time using O(log n) processors per node (n log n in total).

In step 2, the children can be sorted at a node by their label-time values in
O(log n) time using n processors. Finally, in step 3, the labels can be computed by
sorting label values. As in Theorem 2.3, the timing analysis of Theorem 6.1 from
[29] can be applied to give an O(log n) time bound. Again, using the analysis from
the proof of Theorem 2.3 to step 2 of procedure Randomized Tree Isomorphism, this
algorithm requires at most n processors to achieve the O(log n) time bound. [:]

This motivates another generalization of Parallel Tree Contraction which will be
used to compute the 3-connected components of a graph in O(log n) time, instead of
O(log2 n) time.

Consider Asynchronous Parallel Tree Contraction, as defined in Part 1 [29], ap-
plied to an ordered tree of unbounded degree, where the RAKE operation is restricted
to removing a constant proportion of consecutive leaves. In particular, assume that
RAKE replaces a run of length k by a run of length [k/2J in unit time. Thus, COM-
PRESS acts on chains, and RAKE acts on runs. Recall from Part I that a chain in
a rooted tree is a sequence of vertices v,..., vt such that v+ is the only child of v,
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for 1 <_ i < t. If the tree is undirected, a chain will be a sequence of vertices Vl,..., Vt
such that v-I and v+l are the only neighbors of v, for 1 < i < t. It is crucial that
a vertex be processed under COMPRESS when it has one child that is not a leaf, or
possibly two children that are leaves, a leftmost and, possibly, a rightmost child; i.e.,
one or two runs of length 1. This procedure is called Parallel Tree Contraction with
RAKE restricted to runs.

THEOREM 2.10. Parallel Tree Contraction with RAKE restricted to runs requires
only O(log n) applications to reduce a tree to a single vertex.

3. Computing the 3-connected components. The main goal of this section
is to give a new parallel algorithm for decomposing a graph into a tree of 3-connected
components. To this end, we first discuss the decomposition of a graph into a tree of
2-connected components. We then discuss prior work on the decomposition of general
graphs into their tree of 3-connected components, including a definition of brides and
Hopcroft and Tarjan’s use of virtual edges. Finally, we give our definition of the 3-
connected components of a graph, and relate how to use Parallel Tree Contraction to
find these components.

Two vertices v and w in an undirected graph G- (V, E) are k-connected if there
exist k paths in G from v to w which are pairwise vertex disjoint, except at their
endpoints v and w. Thus, two vertices sharing k-edges are k-connected. The graph
G is k-connected if every pair of vertices is k-connected.

Before giving our algorithm, which decomposes a connected graph into its tree
of 3-connected components, we will discuss the decomposition of a connected graph
into its tree of 2-connected components. This decomposition consists of three types
of components. First, there are the proper 2-connected components. These are the
subgraphs induced by a maximal subset of vertices which are pairwise 2-connected.
Second, there are the articulation vertices or separating vertices. Finally, there are
separating edges. The vertices of the tree consisting of 2-connected components are the
components described above. An articulation vertex is adjacent to another component
if it is contained in the component. Recently, Tarjan and Vishkin [36] have shown how
to construct the 2-connected components of a graph in O(log n) time using a linear
number of processors on a PRAM. These components form a tree where a component
and a separating vertex are adjacent if the vertex is contained in the component.
However, the 3-connected components are more difficult to define and seem to require
a more sophisticated algorithm.

Hopcroft and Tarjan [16] give a precise algorithmic definition, which will be re-
viewed below, of the 3-connected components and show how any graph can be de-
composed uniquely into a tree of 3-connected components. In the same paper, they
also give a linear time algorithm for finding the tree of 3-connected components. Un-
fortunately, it is a highly sequential algorithm. A related distinct question is finding
the maximal subsets of vertices of size greater than or equal to 2 which are pairwise
3-connected. These subsets shall be called the 3-sets of G. Ja’Ja’ and Simon [18] give
an algorithm using O(log n) time and nO(1) processors for finding these 3-sets. There
is a unique 3-connected graph associated with each 3-set. The proof and construction
can be obtained by Lemma 3.1.

First, we will define the notion of a bridge. Let C c V. Two edges e and e of G
are C-equivalent if there exists a path from e to e avoiding C. The induced graphs
on the equivalence classes of the C-equivalent edges are called the bridges of C. A
bridge is trivial if it consists of a single edge. A pair of vertices is a separating pair
if it has 3 or more bridges or 2 or more nontrivial bridges. A 3-connected separating
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pair is a pair of vertices which is both 3-connected and a separating pair.
LEMMA 3.1. If C C V i8 a 3-set of G, then each bridge of C contains at most 2

vertices in C. If G is 2-connected, then the bridge contains exactly 2 vertices of C.
Proof. Suppose that some bridge B of C contains three vertices Xl,X2,X3 in C.

Let p be a simple path from x to x3 in B. Let P2 be a simple path from x2 to a
single vertex, y of p, such that P2 Y is disjoint from p. Let Pl, P3 be the disjoint
simple subpaths of p from y to xl,x3, respectively. Then P,P2,P3 are disjoint paths
from y to distinct vertices Xl,X2, X3 of C. It follows that y is 3-connected to all the
elements of C. This contradicts the assumption that C is a (maximal) 3-set.

Throughout the discussion of the 3-connected components, we let G be the un-
derlying graph, which is assumed 2-connected. The tree of 3-connected components
consists of a tree of graphs called components. Two components are adjacent if they
share an edge. These shared edges will not be edges from G, the original graph, but
rather, from new edges called virtual edges. There will be exactly two copies of each
virtual edge. Any vertex may appear in many components.

First, the graphs that will be the nodes in T will be described. The reader should
be cautioned that, counter to intuition, the components are not always 3-connected
graphs and separating pairs. The nodes of T are of three types: proper components,
cycles, and m-bonds. The m-bonds lie between the components (proper components
and cycles). They are precisely described below in Fig. 2, where the decomposition
of a graph into components is shown. Note that the virtual edges are indicated by
dotted lines.

A proper component C is a simple 3-connected graph. C can be defined in
terms of G as follows: the vertices of C consist of a 3-set S of size greater
than or equal to 4 (proper 3-set). Two vertices of C share an edge in C if they
shared one or more bridges in G. Note that C is simple; it has no multiple
edges. An edge from x to y of C will be an original edge from G if x and y
share exactly one trivial bridge; otherwise, the edge will be a virtual edge.
A cycle component C is a simple cycle. C can be defined in terms of G as
follows: the vertices of C are a maximal subset of the vertices S, such that
the bridges of S in G form a simple cycle of size 3 or more, with possible
pairs in S containing multiple bridges. As in the case of proper components,
a unique trivial bridge e of S becomes an edge of C; otherwise, a virtual edge
is formed.
An m-bond component C is a graph on two vertices sharing two or more
edges. C can be defined in terms of G as follows: x and y are the vertices
of C if they are 3-connected and separating. There is one edge in C for each
bridge of {x,y} in G. If the bridge is trivial, the original edge in C can
be used. Otherwise, a virtual edge is used. Note that 2-bonds have been
introduced between two proper components or a proper component and a
cycle component, which do not appear in the Hopcroft-Tarjan [16] definition.

We say a component is associated with another component if the two have a
nonempty intersection.

We will now describe a parallel method for constructing the tree of components
from the above three types of components. Our idea is to apply Parallel Tree Con-
traction; chains are not compressed, but, rather, every other component is removed
from a chain. Since every other component on a path in the tree T is an m-bond, we
can remove every other component on a chain by eliminating the proper and the cycle
components. Thus, proper and cycle components associated with either zero, one, or
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FIG. 2. The decomposition of a graph into its 3-connected components.

two other components are removed, as are m-bond components associated with either
zero or one other component. All these components are removed in unit time except
for the cycle components, which may take as much as O(logn) time; we will show
how to amortize the cost in such a way that the total time decomposition is still only
O(log n).

Using the work of Ja’Ja’ and Simon [18] we compute the 3-sets and their bridges,
along with the separating pairs and their bridges, in O(logn) time using n(1) pro-
cessors. Note that they also determine which separating pairs are 3-connected.

Assume that G is stored in memory as an incidence matrix and that the following
information is maintained: a list of proper 3-sets; a list of 3-connected separating pairs;
a forest indicating which 3-connected separating pairs are contained in which proper
3-sets; and, for each 3-connected separating pair {x, y}, a list of edges associated with
it, partitioned according to which bridge of {x, y} they belong. An edge e from x to
y is free if x and y are not 3-connected. Note that the free edges will belong to the
cycle components. A list of free edges is also maintained.

Let T be the tree of components of G. As components are removed from G,
G will no longer be connected. Therefore, intuitively, G should be a collection of
2-connected graphs. But for technical reasons, the connected components of G may
not be 2-connected. This complication will be discussed when the COMPRESS part
of the algorithm is discussed.

The discussion will begin with RAKE. Here, one must determine when a compo-
nent becomes a leaf in T, at which time it is removed. Note that a component is a leaf
if and only if it contains zero or one nontrivial bridge. The case when a component
has exactly one nontrivial bridge will be discussed first. Note that a leaf component
is a bridge to its parent. Thus, removing a leaf component decreases the number
of nontrivial bridges by one. Suppose the component C is an m-bond with vertices
{x, y}. Using a concurrent write and the fact that we maintain for C a list of all its
bridges (and whether or not they are trivial), we are able, in unit time, to determine
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that C is a leaf. To remove C from G, simply remove the trivial bridges of C from
G, leaving x and y in G and adding to G a new virtual edge from x to y. The data
structures are also updated as described above.

Suppose that C is a proper component. It is a leaf when it is associated with
at most one 3-connected separating pair. Thus, one can test, in unit time, whether
or not C is a leaf. If C is common to no 3-connected separating pairs, then simply
ignore C, and do nothing to G or C. However, C is removed from all the other data
structures. Suppose that C is common to one pair {x, y}. To remove C from G: (1)
remove all vertices in C except x and y, (2) remove all edges with both end points in
C except those between x and y, and (3) add a virtual edge in G from x to y.

To finish our discussion of RAKE, cycles will be considered. Suppose that C
is a cycle. Since the vertices on C are unknown, they will be computed "on the
fly." Suppose further that (xl,.--,Xk) are the vertices of a cycle component C in the
order in which they appear on the cycle. The component C is a leaf if (1) each pair
(xi, xi+l) for 1 _< < k contains exactly one bridge and that bridge is trivial; and
(2) the pair (xk,xl) contains at least a trivial bridge. In other words, there exists an
adjacent pair of vertices {x, y} with a nontrivial bridge that consists of a path. The
time required to remove each cycle component that is a leaf seems to require time
logarithmic in the length of the its path to detect. We will show how to amortize this
cost to achieve an overall time of O(log n). The edges (xi, x+l) for 1 _< < k form a
chain of free edges. Our idea is simply to "compress" these chains of free edges either
by the deterministic or by the randomized methods discussed in [29]. In general, any
chain can be compressed. Note that a chain of length two may be replaced by a chain
of length one, which was formally not free, but it shall be considered free anyway.
In this case, the cycle C has been "compressed" to a cycle of size two, a free edge
common to a 3-connected separating pair {x, y}, and a virtual edge from x to y.

Thus, RAKE for cycles consists of compressing chains and removing free edges
associated with a 3-connected virtual edge, and then replacing them with a new virtual
edge. Other than this timing analysis, we have described RAKE.

The COMPRESS operation is very similar to RAKE. Here, each proper and cycle
component associated with exactly two m-bonds is removed. Suppose that C is a
proper component associated with 3-connected separating pairs {x, y} and {z, w}. If
x, y, z, and w are distinct, then the construction is very similar to the RAKE case.
If, on the other hand, y- w, the situation is slightly more complicated, since simply
removing the edges of C will not separate G. To remove C from G" (1) remove all
vertices in C except x, y, z, and w; (2) remove all edges with both end points in C
except those between x and y or between z and w; and (3) add a virtual edge in G
from x to y and one from z to w.

Suppose C is as described above, except that it is a cycle component. C is
removed only when it is a four-cycle component for the case when x, y, z, and w are

distinct, or a three-cycle component for the case when y w.

CONTRACT decomposes G into a tree T of 3-connected components after O(log n)
applications. CONTRACT as defined (at least for the sake of analysis) can be viewed
as simply CONTRACTION on trees of unbounded degree where RAKE is performed
only by combining consecutive children. A case of CONTRACTION very similar to
this was analyzed in Theorem 2.10 and shown to require only O(log n) steps.

Thus, G can be decomposed into a tree of 3-connected graphs, simple cycles, and
m-bonds in O(log n) time using n() processors. This can be stated in the following
theorem.



1140 G.L. MILLER AND J. H. REIF

THEOREM 3.2. The tree of 3-connected components is constructible in O(log n)
time, using n(1) processors.

Note that decomposition has been described only where the graph is 2-connected.
In general, one must first decompose the graph into a tree of 2-connected components,
which will consist of isolated vertices and 2-connected graphs. Second, one must
further decompose a 2-connected graph into a tree of 3-connected components.

Ja’Ja’ and Simon [18] tested whether or not a 3-connected graph is planar and,
if it is, it constructs its planar embedding. However, the construction of a planar
embedding for general planar graphs was an open question.

The next section shows how to construct the embedding of a planar graph given
the tree of 3-connected components, and how to construct the embedding of each
component by viewing it as a tree contraction problem. In this section, we will also
define what we mean by "oriented embedding," and will show how to construct planar
embeddings that will be used in isomorphism testing.

4. Graph embeddings and some applications. We will use the following
combinatorial definition of an embedding, which is amenable to implementation on a
machine.

DEFINITION 4.1. Let G (V, E) be an undirected graph. Two darts, (x, y) and
(y,x), are associated with each edge, e {x, y}. The vertex x is the tail and y is
the head of the dart (x, y). The graph G is oriented by fixing a permutation of the
darts which sends tails to tails and cyclically permutes darts with the same tail. Let
R be the permutation of the darts sending (x, y) to its reflection (y, x). A planar
embedding of G can be specified by an orientation of G. See [26], for example. In
Fig. 3 we give a small example.

FIG. 3. A graph with four vertices embedded in the plane. The permutation that determines the
orientation at the vertices is - (18)(264)(397)(510), written in cycle notation. The reflection
of the edges is R- (12)(34)(56)(78)(910) and face boundary written as a permutation is dp*
(16107)(283)(495).

This definition of a combinatorial embedding is similar to ones described in [10]
and is sometimes called an Edmonds embedding; see also [26]. The importance of
this definition of embedding is that it is both very simple to understand and easy
to represent on a machine. For example, the faces are given by the permutation

* . R. The orbits of * are the faces of the embedding. Also note that a
permutation is stored as an array; thus, most operations on the permutation can be
performed in constant time using a linear number of processors.
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Ja’Ja’ and Simon [18] give a parallel algorithm which constructs a planar embed-
ding of a triconnected planar graph as defined above (note that they call this planar
mesh embedding. They also construct a straight line embedding, which they call a
barycentric embedding, which we do not use).

Using Parallel Tree Contraction proves the following theorem.
THEOREM 4.2. Given the planar embeddings of the 3-connected components of a

graph G, one can compute a planar embedding of G in O(log2 n) time, using O(IVI)
processors.

Proof. As described in Part 1 of this paper [29], Parallel Tree Contraction can be
run "backwards" in an expansion mode which is called Parallel Tree Expansion. Here
the 3-connectivity algorithm is run in the expansion mode. Thus, one initially starts
with a collection of isolated components. The embedding of the isolated graphs is
simply the embedding of the individual components. The inverse operation to both
RAKE and COMPRESS, in this case, is simply combining two embedded graphs, T
and T, by identifying two copies of a virtual edge {x, y}. The order in which the
identification is performed is determined by Parallel Tree Contraction. Thus, the only
procedure that needs to be shown is how to obtain the embedding for the new graph.
Suppose embeddings of T and T are both common to a virtual edge e (x, y). Here,
the cyclic permutation of T at x is combined with the cyclic permutation of T at x,
which is done by determining a face F of the embedding of T which contains both x
and y, and then determining a face F of the embedding of T which contains both
x and y. The new cyclic order around x will begin by enumerating the darts of x
in T as they appear in the embedding of T, starting with the dart in F, and then
enumerating the darts of x in C as they appear in the embedding of T, starting with
the dart in F. At the same time, the cyclic permutations of T are combined at y,
and the cyclic permutations of T are combined at y in the same way (see Fig. 4).

To see that this construction can be performed in unit time we write out the
permutation explicitly. Since T1 and T2 are disjoint graphs, we view them as having a
single embedding . Lt * .R be its dual. It will suffice to show how to construct
the dual embedding * for the identified graph. For simplicity we leave both copies
of the virtual edge in the graph and embed them as parallel edges. The parallel edges
can at a later time be removed. Let el be an arc in T1 from x to y and e2 be an arc
in T2 from y to x. The dual embedding is as defined below:

e2 if e el,
el if e e2,

* * (e2) if * (e) el,

* (el) if * (e) e2,
*(e) otherwise.

This gives the following corollary.
COROLLARY 4.3. A planar embedding of a planar graph with n vertices is con-

structible in O(log2n) time, using n(1) processors.

4.1. Canonical forms of oriented graphs. Whitney [39] has shown that every
3-connected planar graph has exactly two planar embeddings: an embedding and
its reflection -1. Ja’Ja’ and Simon [18] have shown that a planar embedding can
be constructed in O(log2n) time on a PRAM for a 3-connected planar graph. Any
isomorphism of a planar 3-connected graph must preserve its planar orientation up to
reflection. More formally, two oriented graphs, (G, ) and (G’, ’), are isomorphic if
there exists a bijective map f from the darts of G to the darts of G’ which preserves
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FIG. 4. Combining the embeddings of two components to get a common embedding.

both adjacency and orientation: R’f fR and f f. Using Whitney’s theorem,
two 3-connected planar graphs, G and G, are isomorphic if and only if (G, ) is
isomorphic to (G, ) or (G, -1).

Note that an isomorphism of one embedded graph onto another embedded graph
is determined by the image of a single dart. Given a sequence of k numbers, u
(Ul,. ’’,uk), and a dart e, there exists a unique path of length k, e- e0,... ,ek,

where ei i/(ei-1) for 1 _< _< k. Note that the length is the number of vertices
on the path, and no is the number of edges. Given a path of darts, a unique sequence
of integers can be constructed by choosing the minimum ui _> 0 such that ei
iR(ei_l). Next, we will show how to compute canonical sequences that will be used
to compute the canonical forms for embedded graphs.

THEOREM 4.4. Canonical numbering for oriented graphs is computable in O(log n)
time, usin9 n(1) processors.

A canonical form M(e) for each dart e can be constructed in (G, ). One simply
picks the lexicographically least such form. For each dart, e e, the lexicographically
least number sequence over the shortest paths from e to e are found. Suppose that the
graph G has d darts. Consider a d x d matrix where each entry is a number sequence
or is blank. Here, the basic scalar operations will be lexicographically minimum and
concatenation, which replace the operations, + and x. Initially, one starts with
the matrix containing all paths of length two by storing a sequence of numbers of
length one. A matrix product over minimum and concatenation can be computed
in O(1) time using dO(I) nO(I) processors by Lemma 2.8. Computing O(logn)
iterated powers of this matrix, up to the d power of the original matrix, yields the
lexicographically minimum of all shortest paths between all pairs of vertices. Thus, a
canonical matrix M(e) is obtained for each dart e in (G, ). The minimum canonical
matrix M(e) (under lexicographical order) will be a canonical form for the embedded
graph (G, ).

Note that there is an isomorphism if and only if the matrices M(e), as described
above, are equal. By also constructing the adjacent matrices for the reflection (G, -1)
and computing the minimum over the larger set of matrices, canonical forms for
embedded graphs have been constructed up to reflections. Using the additional fact
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that one can compute a planar embedding for a 3-connected graph in O(log2n) time
on n(1) PRAM processors, the following theorem is derived from the above.

THEOREM 4.5. Canonical numbering of 3-connected planar graphs can be done
in O(log2 n) time using n(1) PRAM processors.

5. Reducing the problem of finding canonical forms of planar graphs
to the 3-connected case. In this section we give an O(log n) time reduction from
finding canonical forms for general graphs to that of finding canonical forms for 3-
connected graphs.

The term "computing canonical forms" means that an oracle accepts as input a 3-
connected graph with labels on its darts and vertices and returns an incidence matrix
unique up to isomorphism; i.e., it returns canonical linear ordering of the vertices.
We also assume that there is a list of new labels that can be added to the darts or
vertices.

By using the methods in the last section, one can find up to isomorphism a unique
decomposition of a graph into a tree of 3-connected components. In this section, the 3-
connected components are simply called "components." Two components are related
if one identifies either (1) a virtual edge with orientation (a dart) in one with a virtual
edge with orientation in the other, or (2) a vertex in one with a vertex in the other. We
will discuss the case where the identifications are edges; i.e., the graph is 2-connected.
The general case is a straightforward generalization.

Recall that not all components in a tree of 3-connected components are 3-connect-
ed; in particular, they can be either a 3-connected graph, a simple cycle, an m-bond,
or an isolated vertex. Canonical forms for these latter graphs can easily be constructed
in O(log n) time.

LEMMA 5.1. The canonical form for labeled cycles and m-bonds can be constructed
in O(log n) time using n() processors.

A node of maximum height (at the center of the tree) in a tree of 3-connected
components can be found in O(log n) time by tree contraction, [29]. If the center of
the tree is an edge, simply introduce a 2-bond, which will become the center of the
tree, as a new component. Thus, without loss of generality, we may assume that the
tree is rooted at either a 3-connected component, a virtual edge, or a 2-bond.

Since the rooted tree of 3-connected components is unique up to isomorphism, the
vertices shall be ordered into blocks according to the component to which they belong.
The separating pair is in the same block with the parent component. The blocks are
ordered in postorder (see [36]). However, the children of a component must first be
ordered. As in our construction for canonical orderings for regular trees, children will
be first ordered at the time when labeled. The characteristic that distinguishes this
from a regular tree case is the fact that the children are coupled to their parent by an
edge and not a vertex. Thus, more information about the children must be passed to
the parent.

Let C be a component and e (x, y) be the virtual edge of C common to its
parent. The edge e is written as two darts d and d2 (the reverse of dl). If C is
a leaf and a proper component, then, by labeling either d or d2 with a new label,
one gets two labels, L1 and L2, respectively, for C. Note that L L2 if and only
if there is an automorphism sending d to d2. Thus, RAKE is implemented in a
straightforward way: (1) compute the labels L1 and L2, (2) use the label of each leaf
C to label the corresponding darts in the parent of C, and (3) remove C. These labels
for C also give us the ordering of the vertices in C, excluding {x, y}. If L > L2,
then use the ordering from L; the case is similar if L2 > L. On the other hand,
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if they are equal, then both orderings are the same, and it does not matter which
one is picked. This completes the discussion of RAKE. Note that this computation of
RAKE can be executed in unit time, given an oracle for generating the labels L1 and
L2. COMPRESS will be discussed next.

Let C be a component of degree two where darts el and e2 are common to the
parent and darts dl and d2 are common to the only child. Using two new labels, L
and L, assigning L to either e or e2, and assigning L to either d or d2 yields four
labelings of C. Use the labeling with maximum value to determine the order of the
vertices in C, excluding the end vertices of e. As before, if two labels are equal, then
C has a symmetry; either order is the same up to isomorphism. This completes our
discussion of COMPRESS.

It is important to point out that we have not determined where, in the final
ordering, a given vertex was mapped, since finding this map was not required. This
lack of information occurred when one of several orderings for a given component was
arbitrarily picked in COMPRESS, and when the children of a component were simply
sorted by label. One can determine up to a permutation of order two the ordering of
components by using a tree expansion phase [29].

To compute the image of each vertex in the new ordering, it will suffice to de-
termine the orientation induced on the virtual edges by the new ordering; i.e., is a

given virtual edge left alone or is it reflected in the new ordering? COMPRESS will
be discussed here (the case of RAKE is very similar). Let C be a component with
two virtual edges e and d. The possible symmetries consist of reflecting e and inde-
pendently reflecting d, the Klein 4 group K4. The actual symmetries will be one of
five possible subgroups. Thus, the canonical orderings will be a coset of one of these
groups. There are thirteen such cosets, which can be determined by using a parallel
call to the oracle for proper components (by applying Theorem 4.4) or which can be
determined directly for cycles or m-bonds (by applying Lemma 5.1).

To implement COMPRESS, one need only compute the coset of canonical order-
ings for a consecutive pair of components from the coset of canonical orderings for
each component. Let C and C be two consecutive components of degree two with
virtual edges, d, e, and f, respectively. Further, let A and B be the cosets of canonical
orderings of C and C’, respectively. Note that A acts on {d, e} and B acts on {e, f};
one wants to return an appropriate coset acting on {d, f}. If the natural intersection
is not empty, it will be returned as the coset of the canonical ordering for C and C.
It will be empty when A and B fix e in opposite orientations. In this case, the coset
of the canonical orderings for C and C consists of a cross-product pair. One acts on
d according to A and acts on f according to B. Thus, a method for computing the
coset of canonical orderings for the virtual edges of C t2 C has been presented which
uses O(logn) time and n() processors.

In summary, the CONTRACTION phase consists of the following steps:
1. Compute the canonical labels for all components with degree one or two and

determine the coset of canonical orderings on their virtual edges.
2. For leaves, pass the canonical label to the parent.
3. For chains, combine pairs of components as described above, computing both

canonical labels and cosets of canonical orderings.
Note that there will be missing cosets when we execute chain contraction. After

the tree of components has been reduced to a single component, we perform a tree
expansion phase as described in [29] to compute the missing cosets from this further
information obtained. Each step can be executed in unit time and thus, by the analysis
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in [29], the total time is O(log n).
We have just given an O(log n) time reduction from finding canonical forms for

general graphs to that of canonical forms for 3-connected components.
O(log2 n) time, n(1) processor algorithms used for finding canonical forms for

3-connected graphs have already been presented. This reduction implies an O(log3 n)
time, n(1) processor algorithm that can be used to compute canonical forms for all
planar graphs. We summarize our results as a theorem.

THEOREM 5.2. The problem "Computing canonical forms for a general graph"
is O(log n) time using n() processors reducible to the problem "computing canonical

forms for its 3-connected components."

6. Conclusion. Since the original writing of this paper, many other applications
of Parallel Tree Contraction have been found. Similarly, many extensions, improve-
ments, and simplifications of the work in this paper have been found. The basic
parallel tree contraction can now be done on an EREW PRAM in O(log n) determin-
istic time using n/log n processors, [9], [21], [13], [1]. All of these algorithms use the
fact that list-ranking can be performed optimally in deterministic time O(log n) on
an EREW PRAM, [3], [9]. Very simple randomized algorithms for the list-ranking
problem are also known, [5]. Parallel Tree Contraction can be performed optimally by
a randomized algorithm on a parallel model that is more restrictive than an EREW
PRAM [4].

In this paper, we restricted our attention to maximal subtree isomorphism. The
more general problem for determining if one tree is a subtree of another was first
addressed by Matula [22], who gave a polynomial-time algorithm for the problem. A
randomized NC algorithm for this problem was given in [14] using the parallel tree
contraction technique.

PTC has also been used for efficient parallel evaluation of arithmetic circuits.
Prior to the parallel tree contraction technique, the best algorithms for the circuit
problem used divide-and-conquer, [37]. Using PTC, one can evaluate circuits on-line
in the same time and size as [37] achieved off-line [28], [23].

PTC can be used to design efficient parallel algorithms for problems where the
tree is known only implicitly. Examples of such problems occur in the context-free
language parsing, constructing Huffman codes, and optimal binary search trees. See
[33] for an example of a divide-and-conquer algorithm for such problems and see [6]
for a PTC-based approach.

Other applications include: testing triconnectivity of a graph [27], [11]; testing
graph planarity [19]; finding separator for planar graphs [25], [12]; and finding algo-
rithms for reducible flow graphs [30].

This is not an exhaustive list, and we apologize for the works which we have
neglected to reference.
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Abstract. This paper completely characterizes the complexity of implicit membership testing
in terms of the well-known complexity class OptP, optimization polynomial time, and concludes that
many complex sets have polynomial-time implicit membership tests.
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1. Introduction. Deterministic polynomial time, P, is one notion that has been
proposed as loosely defining the sets that are efficiently computable [11], [12]. By
definition, for sets in P one can quickly check whether a given element is a member.
Unfortunately, not all sets of interest are in P.

For sets outside of P, it seems natural to ask which properties can be quickly com-
puted, and, conversely, for properties slightly less revealing than membership, it seems
natural to characterize the sets for which that property can be quickly computed. In-
deed, the study of exactly which sets are simple under various operations other than
membership testing is an emergent theme in theoretical computer science. Though it
has long been known that many complex problems can be efficiently approximately
solved, current research efforts show that fundamental algorithmic operations--data
compression, perfect hashing, and enumeration--can be efficiently performed on many
complex sets [20], [16], [21]. The present paper shows that even sets of extremely high
complexity may have polynomial-time algorithms for implicitly testing membership.

The recent work of Goldsmith, Hemachandra, Joseph, and Young [15] can be
viewed from the perspective of this paradigm of finding efficient operations for complex
sets. Goldsmith, Joseph, and Young [17] defined and extensively studied the behavior
of near-testable (NT) sets--those sets L for which on input x one can quickly compute
which of (a) (x e L)(R) (x_ e L) or (b) NOT[(x e L) (x_ e L)] holds. 1 That is,
one can quickly test whether exactly one of an element and its predecessor are in the
set. [15] showed that NT is essentially the same as the class @P, "parity polynomial
time" [28], [14].

In this paper, we consider a property that in some sense combines aspects of P
and NT. Fix a set L. It is clear that for each x e, exactly two of the following four
statements hold:

(1) x e L,
(2) x L,
(3) (x e L)(R) (x_ e L),
(4) NOT[(x e L)(R) (x_ e n)].
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If we could determine in polynomial time which of the third or fourth of the above
statements (henceforth 3/4) holds, L would be in NT. If we could determine in
polynomial time which of the first or second of the above statements (henceforth 1/2)
holds, L would be in P. Clearly, of 1/2, exactly one holds, and of 3/4, exactly one
holds. Thus, even though we know that for each x exactly two of 1/2/3/4 hold, if we
could compute which two hold in polynomial time, then L would be in P.

Nearly near-testable sets (NNT) allow us to capture a more modest amount of
information about a given element x. We define a set to be nearly near-testable if for
each x, we can find, in polynomial time, one of 1/2/3/4 that holds. More formally,
we have Definition 1.1.

DEFINITION 1.1. A language L is in NNT if there is a polynomial-time com-
putable function f such that for each x, either:

(f(x)= "x E L") and (x E L), OR
(f(x)= "x L") and (x L), OR
(f(x)= "(x L) (x_ L)") and ((x L)O (x_ L)), OR
(f(x) "NOT[(x E L) (x_ e L)]") and (NOT[(x L) (R) (x_ L)]).

When one nearly near-tests an element of a nearly near-testable set, one obtains
partial information that does not, in general, suffice to immediately compute mem-
bership; nonetheless, with an exponential number of tests, one can (trivially) recover
membership information. Thus, NNT sets have implicit membership tests. The in-
formation is there, but the cost of extraction is high. It follows immediately from the
brute force testing just referred to that NNT is contained in PSPACE.

Clearly, NT c_ NNT. This paper shows that, just as NT has been shown to be
related to (R)P [15], so also is NNT related to the optimization complexity class OptP
[23], [9]. In particular, Theorem 1.5 says that NNT is the same (within the flexibility
of

_
reductions) as P altered by allowing an OptP function as a second argument

to the underlying nondeterministic TM.2

DEFINITION 1.2 ([23]).
(1) An NP metric Turing Machine, N, is a nondeterministic polynomial-time

Turing machine such that every branch writes a binary number and accepts;
for x E* we write optN (x) for the largest value on any branch of/ on
input x.

(2) t function f is in OptP (optimization polynomial time) if there is an NP
metric Turing machine N such that"

f(x) -optN (x) for all x E E*.

DEFINITION 1.3 ([26]). COUttN(Wl) (COUntN(Wl, W2)) represents the number of
accepting paths of machine N running on input Wl (on input Wl, w2).

DEFINITION 1.4. L is in (R)OptP if and only if there is a nondeterministic
polynomial-time Turing machine N and a function f OptP such that:

x e L countN(f(x)) is odd.3

THEOREM 1.5. (1) NNT C_ (R)OptP.

2 Thr.oughout this paper, the maximum function is always applied to sets of strings (which are
in fact integers encoded in binary), and returns the integer value that the lexicographically largest
string encodes; we adopt the convention that max(0) 0.

3 Lemma 2.1 of the next section proves that (R)OptP remains unchanged when this condition is
replaced with the perhaps more natural condition: x E L z countN(x, f(x)) is odd.
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(2) OptP -<Pm NNT; indeed, OptP -<-1 NNT. That is, for each language L
in OptP, there is a language L in NNT such that L reduces to L via a
one-to-one reduction computable in deterministic polynomial time.

This paper’s proof of Theorem 1.5 extends the techniques of [17] and [15] by
showing that one can construct a way for the maximization performed by the OptP
functions within OptP sets to be encoded in the instant jackpot options (options
1/2) of some nearly near-testable set.

Finally, by proving that with probability one relative to a random oracle A,
NTA NNTA, we suggest that NT may differ from NNT. Probability-one separa-
tions of pairs of classes in this range of complexity are usually attempted via circuit
techniques, or via the techniques, now believed to be invalid [6], used in the Bennett-
Gill probability-one separation of (R)P and PP [7]. In contrast, we prove our new
result by a novel and simple approach: we "reduce" the probability-one separation of
these two complex classes to a well-understood task--that of separating a parity-like
language from P with probability one.

2. Results. This section shows that implicit membership testing is closely re-
lated to the optimization class OptP.

We start with a preliminary lemma that both shows the robustness of (R)OptP--
(R)OptP can be defined in terms of OptP, A, or maximization--and also translates
(R)OptP into a form that will be used in the proof of Theorem 1.5. In the following
lemma, parts 2 and 3 can be shown to be equivalent using the notions developed in
[23] (see also [27]). The equivalence of parts 1 and 4 establishes the version of (R)OptP
to be used in the proof of Theorem 1.5. Just as parts 1 and 2 are related by showing
that the "x" argument is superfluous, so also could one add to the lemma below new
parts 3’ and 4’, by replacing "countN(x,...)" with "countN(...)."

LEMMA 2.1. The following are equivalent:
1. L is in (R)OptP.
2. There is a nondeterministic polynomial-time Turing machine N and a func-

tion f E OptP such that:

x e L ===v countg(x, f(x)) is odd.

3. There is a nondeterministic polynomial-time Turing machine N and a func-
tion f computable by a pNP machine (i.e., in FPNP, in the notation of [23])
such that:

x L countg(x, f(x)) is odd.

There is a nondeterministic polynomial-time Turing machine N, a polynomial
r(.), and a polynomial-time computable predicate R(., .), such that:

x L countN(x, Izl=r(Ixlmax ){z_ R(x, z)}) is odd.

We defer the proof of Lemma 2.1 until after that of Theorem 1.5.
THEOREM 1.5 (1) NNT C_ (R)OptP.
(2) (R)OptP <-Pm NNT; indeed, (R)OptP <__1 NNT. That is, for each language L

in (R)OptP, there is a language L in NNT such that L reduces to L via a
one-to-one reduction computable in deterministic polynomial time.

Due to the fact that (R)OptP (but not necessarily NNT) is closed downwards under
-<-1, we immediately obtain the following corollary.
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COROLLARY 2.2. (1) The downward closures of NNT and (R)OptP under <P are

identical. That is, {L (3L’ e NNT)[L -<Pm L’]} {L (3L’ e (R)OptP)[L --<Pm L’]}.
(2) The downward closures of NNT and (R)OptP under <--1 are identical.

It follows immediately from Theorem 1.5, the obvious inclusions of Proposi-
tion 2.3, and Toda’s [30] recent results,4 that it is extremely unlikely that nearly
near-testable sets have efficient membership tests.

PROPOSITION 2.3. (R)P C_ (R)OptP and NP c_ (R)OptP.
COROLLARY 2.4. (1) If NNT P, then P NP PH (R)P.

P(2) If NNT C_ E, then Ek+l PH"
(3) PH C_ BP.NNT.5

Proof of Theorem 1.5. Part (1) is straightforward, via using the maximum to find
the largest element less than the current element that yields absolute membership
information, and then counting the parity of the number of changes in membership
status between it and the input value.

Now, let us show that for each L E (R)OptP, there is an L’ E NNT such that L <--1
L’. Consider an arbitrary set L in (R)OptP. By Lemma 2.1, let N, r(.), and R(., .)
be a machine, polynomial, and predicate for L, in the sense of Lemma 2.1, part 4.
Without loss of generality, for all x and rn let N(x, rn) not have any member of 0* as
an accepting computation path. Without loss of generality, let r(.) be monotonically
increasing. Without loss of generality, there is an integer k _> 2 such that for all x and
rn, all computation paths of N(x, rn) are of length exactly Ixl k + k,6 and all paths of
this length are present. Without loss of generality, R(x, 0r(Ixl)) holds for all x.

We define a (nonstandard but) very simple non-onto pairing function. Let x, rn,
p {0, 1}*, and let be an integer greater than zero; define tweakt(x, rn, p) to be xrnp
(the concatenation, without any separation characters, of x, rn, and p) if
and IPl Ixl + l, and let tweakt(x, rn, p) be undefined otherwise, tweakt(x, rn, p)
is one-to-one everywhere it is defined, and given a string z, we can determine in
polynomial time whether z is in the range of tweakt, and, if so, what its inverse is.

We define the set L as follows, using lex as a subscript to denote operations
performed with respect to the standard lexicographical order"

If there are no x, rn, p such that z tweakk(x, rn, p), then z L.
Otherwise, let x, rn, p be the unique strings such that tweakk(x, rn, p)
z. Let z be in L if:

(1) p 0Ixlk+k and R(x, m), or

(2) there are an odd number of strings p such that:
p’ p(a) p’ <tx where p if R(x, m) holds and p"- 11lk+k if R(x, rn)

does not hold, and

(b) p’ >t 0Ixl/k, and

4 Namely, that (a) PH C BP.@P, and (b) if P C E, then the polynomial hierarchy collapses
to k+l"

5 In fact, for the same reason, the stronger result holds that PH C BP.NT, where NT is defined
as in [17]. The BP operator is defined in [29].

6 We assume that Turing machines of two inputs are organized so that the machine may read
its first argument quickly even when the second argument is long; for example, the inputs might be
placed on different tracks of the input tape, or the input tape might contain inputl#input2. Looking
at Lemma 2.1, part 4, it is clear that in such a model the fact that Irnl does not appear in xl k + k
is not problematic.
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(c) N(x, t) has p’ as an accepting path, where

max {j R(x j)}.7
and j<_em

All strings not granted membership in L by the above rules are not
members of LI.

We claim that L E NNT, and L -<-1 L. Let us show that L is nearly near-
testable by explicitly presenting the polynomial-time procedure for nearly near-testing
L (see Definition 1.1).

Given an input z, check if there are x, rn, and p, such that tweakk (x, rn, p)
z. If not, print "z L/. If such x, rn, and p exist (and thus are, perforce,

unique), then:

If R(x, rn) and p- 0Ixlk+k then print "z E Lr";
else if R(x, rn) and p 0Ixlk+k-11 then print "z Lr’’ if p is an

accepting path of N(x, rn) and print "z LTM if p is a rejecting
path of N(x, rn);

else if p is an accepting path of N(x, rn) and R(x, rn) then print
"(z e L’)(R) (z_ e L’)";

else print "NOT[(z e L’)(R) (z_ e L’)]."
It is easily seen (by looking at the definition of L) that this polynomial-time procedure
nearly near-tests L. Finally, x L if and only if tweakk(x, 1r(ll), 1 Ixl+) is in L;
thus, L <_1 L; this is because tweakk(x, 1r(Ixl), 1 Ixl+k) counts the parity of the
number of paths of N when its first input is x and its second input is the true
maximum.

It is clear from the proof that L reduces to L by a <__ reduction that is triv-
ially invertible, and whose range is in P. Via straightforward alteration of the given
construction, one can show that every (R)OptP set L reduces to some NNT set L by a

P reduction that is trivially invertible and whose range is E*.1--1

Proof of Lemrna 2.1. The equivalence of parts 2 and 3 follows immediately from
Theorem 3.1 of [23] (3 = 2 is instant; 2 = 3 by having N assume the role of comput-
ing the h function of Krentel’s theorem 4 [23]). It is also clear that 4 = 2, as OptP
functions can easily find the maximum value on which a polynomial predicate is true,
by having each path guess a value and if the predicate is true, print the value. And
it is immediate that 1 = 2. It is also clear that 2 = 1. To see this, let L2 be a lan-
guage satisfying part 2, via OptP function f2 and nondeterministic polynomial-time
Turing machine N2. Then L (R)OptP via OptP function fl and nondeterminis-
tic polynomial-time Turing machine N, where It(x) Ix, f2(x)} and N (y) starts
by decoding its input into y /z, z} and simulates N2(x, z). The pairing function
must be chosen with care, so as not to interfere with the optimization; the venerable
function (x, z} Xl0X20... xlz...z, is fine, where xi (zi) is the ith bit of x (z).

We now turn to showing that 2 = 4. Let L be an arbitrary set satisfying part 2
of Lemma 2.1.

Choose machines that certify this; in particular we will use N2 to denote the
machine N of part 2 of Lemma 2.1, and we will use N to denote the (metric) Turing
machine (see Definition 1.2) for the OptP function f of part 2 of Lemma 2.1. Without
loss of generality, for some integer k, 2 has, on inputs of length n, exactly 2nk+ paths,

7 Recall footnote 2.
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each of length exactly nk + k. We will now define N4, r4, and R4, as in part 4 of
Lemma 2.1, in order to show that L satisfies part 4.

Set ra(n) 2(nk + k). Let the predicate R4(x, z) accept if and only if:

(1) Izl 2(Ixl k + k) and,
(2) if we view z as z concatenation(zstart, Zend), IZstartl IZend[, then path Zend

of the computation tree of N(x) prints the integer value that Zstart, viewed
as a binary string, encodes.

Let N4(x, y) reject if lYl 2(Ixl k + k). Otherwise, N4 (x, y) computes , the value of
the first Ixl k + k bits of y viewed as an integer, and then simulates N2(x, ).

Why does this work? The first and second halves of z hold, respectively, the
values and paths of the OptP function. The maximization finds the largest value and
the path on which it is obtained. N4 starts by throwing away the superfluous path
information (which, in allowing the max to find the value of the OptP function, has
already served its purpose), and proceeds to exactly simulate the machine N2 of part
2 of our lemma. [:]

The above results give evidence that NNT and (R)OptP are the same class, given
the flexibility provided by many-one (or even one-to-one) polynomial-time reductions.
One might naturally ask whether NNT and (R)OptP are identical. As an anonymous
referee has pointed out: if NT (R)P, then the polynomial hierarchy (and indeed
ppPn) equals P (combining an observation of [15] with Toda’s recent result [30]),s
and, by the same argument, the following holds.

PROPOSITION 2.5. If NNT (R)OptP, then the polynomial hierarchy (and indeed
ppPn) equals P.

This paper has studied the class NNT. However, the class NT has been extensively
investigated in earlier papers [17], [15]. If NT NNT, there would be no need for a
separate study of NNT; and indeed, at first NNT seems very closely related to NT. In
fact, if one looks not at the classes of polynomial-time near-testable and nearly near-
testable sets, but rather at the classes of sets with exponential-time9 near-testing and
nearly near-testing functions, it is immediate that they are the same, and both are
equal to exponential time. Similar results hold for many other classes, such as for
recursive near-testers and recursive nearly near-testers.

Nonetheless, we give evidence that NT and NNT are not the same.
One traditional way of opening the possibility that classes differ is to present a

relativized world in which they do differ [4].l Somewhat stronger evidence can be
presented by showing that classes differ relative to almost every oracle ([7], see also
[10], [3], [25]), though even this level of evidence does not ensure that the classes
are different in the unrelativized world [24]. Our proof proceeds by "reducing" to a
simpler task the problem of separating NT from NNT.

THEOREM 2.6. NTA NNTA with probability one relative to a random oracle A.
Proof of Theorem 2.6. By NTA (NNTA), we mean the sets that have a near-

testing (nearly near-testing) function computable in pA. Consider the following nearly
near-testing function, which will implicitly define the language, LA, that it nearly

s Further discussion of the relationship between NT and P can be found in [5].
9 The claim holds for either of the standard definitions of exponential time, E Uc>0 DTIME[2cn]

and EXP U>o DTIME[2nc].
10 To be conservative about such claims, one should make only the claim that conflicting relativiza-

tions show that a problem will not be resolved by relativizable techniques; then one can discuss in
detail the extent to which present and possible future techniques are or are not relativizable, keeping
in mind Shamir’s recent nonrelativizing IP PSPACE result [18], [1], [19].
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near-tests.

"x E LA" if x E 0* and x A,
"x LA"
"(x

if xe0* and
f(x) eLA) (R) (x_ eLA)"

)]"
if x0* and xeA,

"NOT[(xeLA) (R) (x_ eLA if x0* and xCA.
It is important to note that the definitions of fA and LA are not circular, as outputs of

fA--such as "(x E LA)(R) (x_ LA)"--are purely syntactic statements, which are made
to be true by defining LA appropriately. Note that (trivially) for all A, LA NNTA,
since there is a nearly near-testing function (namely, fA).

Now let us ask how likely it is that, relative to random oracle A, the set LA is in

NTA. Consider an oracle A such that LA, NTA’, and let the near-testing function
be called fr ( pA’). Clearly, A will have an odd number of strings of length n if and
only if 1n E LA,. (This is because, in the case where 0n LA,, we will have 1n LA,
only if the second line of the definition of f occurs an odd number of times; in the
case where 0n LA,, we will have 1 LA, only if the second line of the definition of
f occurs an even number of times, but 0 itself will contribute to the parity to make
the parity odd.) However, 1n is in LA, if and only if

(0n+l e A’)(R) (f’(0n+l) prints "(0n+l e LA,)( (1 e LA,)"),

since fl is a near-tester. The test just given is a pA’ test that computes the parity
of the number of strings of a given length in AI. That is, we have shown that if
LA, NTA’, then there is a polynomial-time deterministic Turing machine that on
input 1n computes the parity of the set {w] n [w] and w e A}. By standard
techniques [7], 11 the class of such oracles has measure zero. Thus with probability
one relative to a random oracle A, NNTA NTA (indeed, NNTA NTA, since the
fact that NT C_ NNT relativizes).

3. Conclusion. This paper shows that NNT is essentially the same as (R)OptP.
Thus, the complexity of implicit membership testing is closely related to the complex-
ity of optimization.

We note that it has recently been shown that NT and NNT are related to no-
tions of polynomial enumerability [21], [22], and that probabilistic reductions--whose
surprising power has been demonstrated by Toda [30J--relate NT and NNT [22].

One interesting open question concerns the downward closure properties of (R)OptP.
Though it is well known that (PP OP [28], it is not clear whether (OptPOptP

(R)OptP, though it is not hard to see that12 RPtruth_table(OptP (R)OptP. Can one

show that (OptP@OptP (R)OptP, or at least that p@OptP (R)OptP? We suspect
that these equalities do not hold.
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11 There has been some confusion in this area recently. Beigel [6] has noted that Bennett and Gill’s
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techniques of [7], in particular their Lemma 1, easily suffice to show that for random oracle A, one
cannot compute the parity function of A in polynomial time relative to A.

12 Rp (C) denotes the class of all sets L such that there exists a set L E C that Ltruth-table
polynomial-time truth-table reduces to; such classes have attracted some interest recently [8], [2],
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Abstract. This paper describes a new approach for solving the subset-sum problem. It is useful
for solving other NP-hard problems. The limits and potential of this approach are discussed. The
approach yields an algorithm for solving the dense version of the subset-sum problem. It runs in
time O(log), where is the bound on the size of the elements. But for dense enough inputs and
target numbers near the middle sum, it runs in time O(m), where m is the number of elements.
Consequently, it improves the previously best algorithms by at least one order of magnitude and
sometimes by two. The algorithm yields a characterization of the set of subset sums as a collection
of arithmetic progressions with the same difference. This characterization is derived by elementary
number-theoretic and algorithmic techniques. Such a characterization was first obtained by using
analytic number theory and yielded inferior algorithms.
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1. Introduction. There are several ways to cope with the NP-hardness of op-
timization problems. One is to look for an approximate solution rather than the
optimum. There is a vast literature about approximation algorithms and approxi-
mation schemes. For some problems there are very good approximation algorithms,
for others, the problem is still NP-hard even if we settle for an approximate solu-
tion. Another way to cope with complexity is to settle for the average case or to
allow probabilistic algorithms. There are cases where this approach has paid off and
faster algorithms have been discovered. But this has not been the case with NP-hard
optimization problems.

A third approach of coping with NP-hardness is to try to restrict the problem and
design a polynomial-time algorithm. Here too, there have been mixed results. Some
problems remain NP-hard even when restricted quite severely; others become feasible.
In this paper we follow and extend the third approach. A restriction of the problem
that allows a polynomial-time algorithm is known. However, the resulting algorithm
has cubic time bound. We impose an additional restriction that allows much better
algorithms and consequently much larger instances can be solved by these algorithms.

A novelty of our algorithm is the use of elementary number theory to design
algorithms for solving an integer programming problem. It might be expected that
this would be the natural tool for solving such problems. But we do not know of other
such examples.

We use the following notations: given a set D of integers, SD aEn a is the
sum of the elements of D and D* {SE E C_ D} is the set of subset sums of D.
The subset-sum problem is: Given a set A of rn distinct integers in the interval [1, g]
and an integer N, find a subset B C_ A such that SB <_ N and there is no C c_ A such
that SB < SC

_
N.

This problem is known to be NP-hard [14] but not in the strong sense: there is
a pseudopolynomial algorithm for solving it [8]. A simple rn stage dynamic program
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solves the problem. The ith stage finds all subset sums of the ith prefix of A which
are not larger than N. The time is O(N) per stage, for a total time of O(rnN). The
worst case is when N is (grn); in this case the time is O(rn2g). The space needed by
this algorithm can be as large as O(gm) just to find SB, and O(rn2) for finding B
itself.

We derive an algorithm that is two orders of magnitude better than the dynamic
programming approach, but works in a slightly more restricted domain. We impose
two restrictions: we consider only dense instances, and we consider only an interval
of target numbers around SA/2. Note that the target numbers near the middle sum
are the hardest cases for the dynamic programming algorithm. In our case g > t0,
rn2 > clog2g, and L < N < SA-L for L << SA. Our algorithm runs in time
O(tlog g), but for dense enough instances and target numbers near the middle sum,
its time bound is linear (O(rn)).

The algorithm consists of a preprocessing stage, which is followed by a stage that
depends on N and can be repeated for different target numbers. The preprocessing
stage takes between O(rn) and O( log ) time. The second stage (for a given N) takes
only constant time to find SB and O(log2 rn) time to obtain a characterization of B
(only log rn for dense enough inputs). Of course, we may need O(rn) time to list the
elements of B.

Our paper essentially concludes an interplay between analytic number theory
and algorithm design. In the Appendix we sketch this history of "back and forth"
between analytic number-theoretical methods and elementary ones. Freiman [10],
using methods from analytical number theory, analyzed the structure of A* for dense
subset-sum problems. More recently, the structure was used to derive algorithms
which improved the dynamic programming approach. The final algorithm derived
using analytic number theory [7] requires O(g2 log g) time. This bound is the same
as for dynamic programming for the lowest density and as the density increases, its
improvement increases. Our new algorithm is faster by at least one, sometimes two,
orders of magnitude. Moreover, our algorithm yields an elementary proof of the
characterization of A* by constructing the sets whose sums are the corresponding
elements of A*.

In 2 we give a sketch of our algorithm. In 3 and 4 we describe the two major
steps of the algorithm. In 3 we describe an efficient algorithm that constructs a
set A which has no small "almost-divisors" (this terminology is defined there) and
prove an important property of this set. In 4 we describe an efficient constructive
algorithm for finding a long arithmetic progression with small difference in the set of
subset sums. This part is the heart of our algorithm. In 5 we fill in all the details of
a weak version of the algorithm. In 6 we improve the performance of our algorithm:
we speed it up and enlarge the interval (L, SA L) in which it operates.

In 7 we investigate the limits of our approach. We prove that for lower density
the characterization does not hold. We also show that several NP-hard problems
cannot have an efficient solution even for the dense cases. In 8 we summarize our
results and discuss open problems for future research.

2. A sketch of the algorithm. We describe the algorithm that computes B.
A modification of the algorithm (obtained by deleting several steps) can compute
only SB. The algorithm consists of six steps. The first five are the preprocessing.
The algorithm partitions the input set A into three parts: A Alhj A2U A3. It first
constructs A1. A2 consists of the tt smallest elements in A \ A (# will be defined
later). A3 contains the remaining elements: A3 A \ (Alt9 A2). We show that
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1 SA. We now list the six steps of the algorithm.SA _>

1. In 3 we show how to reduce the problem to the case where A satisfies
A* (mod d) -[0, d) for every small enough integer d.

A (mod d) d--el{0 <_ < d" a e A, a i(mod d)}.

We then explain how to compute a not too large set A satisfying

(A1) (mod d)= [0, d)

for every small enough integer d.
2. In 4 we generate a sequence of sets B C_ A2 for 0 _< < 2t, such that

SB s / ido, for some integer s and a specific small integer do.
3. Using dynamic programming (modulo do) we construct for all 0 _< < do,

sets B c_ A such that SB.1 --i (mod do) and S _< gd0.
4. We then join the output ofthe two previous steps to obtain for 0 _< < the

sets B12 c_ A U A2 such that Ss2 + i, where s + d0 <_ L.
5. We compute the list {al,a2,...,alA31} where cri is the sum of the first

elements in A3. The elements of this list satisfy cri+l-hi _< t (since max A3 <_
).
Step 6 is performed for any given N. In our case (assuming A* (mod d)
[0, d)) g S e A* (as will be shown).

6. If N > qA/2 then we solve the complement problem: N SA N and take
B A \ B/. To find B, we use binary search on the a-list to find ay such
that N- ,- t < cry _< N- ,. Then,

3 12B _= {al, a23, ay } t2 BN__L
satisfies SB N and solves our problem.

In steps 3 and 4 we actually obtain a characterization of {B/ } and {B12}. This
characterization enables us to compute the corresponding set if i is given. (Note
that for a given N we compute only one such set for one particular i.) We compute
a representation of B in O(log2 m) time: the binary search for cr takes O(logm)
and we get a representation of BN_ai_L12 in time O(log2 m) (only O(log m) for dense
enough inputs). The latter follows from the constructions of the following sections.
The details that are omitted from this description will be given in 5.

We use the fact that t > 0 in several cases throughout the paper without com-
puting it (0) precisely.

There is a small improvement that can be added to speed up the algorithm. The
bottleneck of time complexity of this step, is building the arithmetic progression from
the set A2. To reduce the time complexity of this step we take a subinterval A c_ [1, g]
of length A and choose A2 from A C! A. There is a trade-off between the time of the
solution and the quality of the algorithm since on one hand we want to take A as small
as possible (to save time), but on the other hand we need A to be large enough so
that A2 will contain enough elements to build the long arithmetic progression. These
two contradicting constraints become harder to fulfill as the density of A decreases.
This time improvement is described in 6.
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3. A subset with no small almost-divisors. An integer d is an almost-divisor
of a given set if almost all the elements of the set are divisible by d. The form of
the theorem proved using analytic number theory is the following: If the set A has
no small almost-divisors, then (L, SA L) C A*; i.e., there is a complete interval of
subset sums. Note that the condition that A has no small almost-divisors is necessary,
because if all the elements are divisible by some d, so are all subset sums, and if
almost all are divisible by d, it is to be expected that some residues modulo d are
not in A* (mod d) and therefore some integers near the middle sum cannot be subset
sums. For arbitrary A, this theorem is then transformed into the characterization
of A* A (L, SA L) as a collection of arithmetic progressions with the same small
difference.

The theorem mentioned above has required a proof that uses analytic number
theory. As a result of our new algorithm, it now has an elementary proof which is quite
complicated. In contrast, a similar-looking theorem can be very easily proved using
elementary means: If the set A has no small almost-divisors, then A* (mod d) [0, d)
for all small enough d. (Note that this theorem follows from the theorem above,
which we are not allowed to use.) This simple theorem is from Chaimovich [4] and
for completeness is proved here as Lemma 3.3.

The algorithm computes all small almost-divisors of the given set A, and then it
computes do, their least common multiple, which is also shown to be a small almost-
divisor of A. This computation has to be done carefully to achieve the claimed
time bound because the obvious way is far too inefficient. We build several sets of
candidates for do, each set more accurate than its predecessor. First we examine only
prime powers as candidates for do and check them against a small subset of A. Then
we slowly enlarge the subset and finally drop the prime power restriction.

If do 1 we then choose enough (but not too many) elements of A to form the set
A1" we choose enough nondivisors for every potential small divisor d. Thus A has
no small almost-divisors and therefore it satisfies (A1) (mod d) -[0, d) for all small
enough d. The main algorithm uses this property for one specific d, the difference of
the arithmetic progression obtained in the next section.

If do > 1, then all but a small number of elements of A are divisible by do.
Let A(do) be those elements of A divisible by do. Applying dynamic programming
modulo do to A \ A(d0), we solve the subset-sum problem modulo do obtaining M
SB (mod do) (note that SB is not known yet) and a set C c_ A\A(do) with Sc M. It
follows that SB is the maximal number not larger than N satisfying SB M (mod d0).
Then we are left with the task of finding D C_ A(do) with So SB M (B C t9 D).
Dividing all these elements by do, we observe that A(do)/do has no small almost-
divisors; i.e., the corresponding do is 1. (This needs a proof.) Thus, the remaining
task is solving the subset-sum problem for a set with no small almost-divisors. This
explains why we may assume without loss of generality that the given set A has no
small almost-divisors.

Note that in the case that do 1 we obtain an interval of subset sums, and if
do > 1 we obtain a collection of arithmetic progressions with difference do. Each
arithmetic progression corresponds to an element of A* (mod do). This indicates how
the characterization is obtained from our algorithm and how the theorem about the
interval of subset sums is transformed into a characterization of A* near SA/2 as a
collection of arithmetic progressions.

Notation.

X(r) stands for the first smallest r elements of X.
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X(i, r)d-----ef{x e X’x i(mod r)}.
d r X (read as d r-almost-divides X), if and only if ]X \ X(0, d)l < r.
p denotes a prime number and q a prime power.

Now we prove some simple properties of the "Mmost-divides" relation.
LEMMA 3.1. Let X be a set of different integers and d and r two integers such

that d r X. Then d < max(X)/(IX r).
Proof. If dr X then IX(0, d)l > IXI- r, but there are only [max(X)/dJ different

integers divisible by d in the interval [1, max(X)] which contains X, so

max(X)
>d [max(X)J>lX(0d,d)l>lX -r.

LEMMA 3.2. Let X be a set of different integers and x, y, and T be integers such
that x, y < T, X x X, y y X, and T(IX 2T) > max(X); then z < T and z z X where
z lcm(x, y).

Proof. If z e {x, y}, the lemma obviously holds. So assume z {x, y} and thus
z > x + y. By definition, Z(0, z) Z(0, x) N Z(0, y), so

[X \ X(O,z)l _< x \ X(O,x)l + IX \ X(O,y)[ _< x- 1+ y- 1 < z.

So z z X. Since z xTy-1 X, from Lemma 3.1,

max(X) max(X)z -. D
IXl-(x+y-1) IXI-2T

LEMMA 3.3. Let t be an integer and X be a set of integers such that

1 < d < t, -d ld X;

then for all d < t, X* (mod d) [0, d).
Proof. We prove that X* (mod d) [0, d) by induction on d. The induction base

(d 1) is trivial. The induction step is: Let x1,..’, x, r > d be elements of X which
are not divisible by d. Define a sequence of sets:

Ci Ci-1 q- {0,xi} (mod d).

If Ci Ci-1 for 1 _< <_ d, then ICdl >_ d and the proof is complete. Otherwise, for
some 1 <_ _< d, we have Ci Ci-1, which implies that

if cEC then c + xi (mod d) E Ci.

Applying the above k times we get that

if cC then V k, c + kxi (mod d) Ci.

Let d’de gcd(xi, d). Since d’ < d, by induction assumption, X* (mod d’) [0, d’).
Assume x rd. Now xi/d has an inverse modulo d, so there is an integer u such

that uxi/d’ 1 (mod d) and therefore uxi d’ (mod d), and there is an integer r
such that rx x (mod d). Hence if c C, then c + x (mod d) e C. Since

X* Cr B + Ci (mod d)(Bd--ef{xi+l, Xk}*),

we also have that if c e X* (mod d), then c + x e X* (mod d).
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We showed that all residues modulo d’ are in X* and that adding a multiple
of d’ preserves membership in X* (mod d). Therefore, all residues modulo d are in
X* (mod d).

The main theorem of this section follows.
THEOREM 3.4. Given a set of integers A {l <_ a < a2 <... < a, <_ g} and

an integer t such that

(1)
5g rn
<t<
rn 30 log2 g’

we can find, in O(rn + t2) time, an integer do < t such that

(2) do do A,

(3) Y d < t, d d
A(0, do)

and

(4) SA\A(O,do) < ,_, SA.
)

If do 1, we find, in the same time, a subset A c A such that

(5) V d < t, --d ld /,

1
(6) Szx < SA,
and

1
(7) Il < glAI

Note that condition (1) is not vacuous because of the density assumption rn2 >
150g log2 g. We will use the theorem as follows. First apply it to the original set.
Then if do > 1, by part (2) do almost-divides A and by part (3) A(0, do)/do has no
almost-divisors smaller than t. In this case we apply the theorem again to the set
A(O, do)/do, so without loss of generality do 1 and we can find the relatively small
subset of A which has no almost-divisors smaller than t.

Our proof is constructive: we design an algorithm for computing do and A and
prove its correctness. We show that do is the maximal element in [1, t) which d-
almost divides A. Computing do in the straightforward way takes too much time,
since we should check ]A] divisibility tests for each one of the t candidates for do. So
we compute do in several steps. We use the fact that the almost-divide relation is
monotone in the following sense"

if X _D Y and d r X then d r Y.

We build several sets of candidates for do. Each set is based on more checks and thus
is more accurate. At first we examine only prime powers as candidates for do and
check them against a small subset of A. Then we slowly enlarge the subset of A, and
finally we drop the prime powers restriction on do.

THE ALGORITHM
Recall that q stands for a prime power.
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1. Compute B1 de-f { 1 < q < t’q It A(2t)}.
Denote bdef3t log2 g.

2. Compute B2
def { 1 < q < t’q t A(b)}.

3. Compute B3de-f {1 < q < t’q t A(m/4)}.
4. Compute B4d-ef { 1 < d < t" d t A(m/4) }.

def
5. Compute/5 {1 < d < t" dd A}.

A defDenote d0
def max(Bh), 0 max(B4). Apply step 6 if do 1.

6. Build Ade-e-fA(m/4 U UdEB4 Cd where Cd are d elements from A \ A(0, d).

It is easy to see that B1

_
B2

_
B3 and B4

_
Bh.

LEMMA 3.5. [B1] < 2 log2 g.

Proof. Any integer n I]ip has iki divisors which are prime powers and

n- Hp/k >_ H 2k

Therefore, each a E A cannot be divisible by more than log2 g prime powers. Denote

((i q)de__f { 1, qlai,
0, otherwise.

Counting the divisors in two ways we get:

2t 2t

2t log2 e _> EE 5(i, q) EE 5(i, q)
i--1 q q i--1

and

q. 5(i,q)>t
i--1

< 2 log2 g.

LEMMA 3.6. lcm(B2) < e/(t loge).
Proof. Clearly A(b)(O, lcm(B2)) ClqEB2A(b)(O, q) SO

IA() \ A(b)(0, lcm(B2))l (A(b) \ A(b)(0, q))l <_ IBel-t < 2tlog2 t.

Therefore

lcm(B2) 2t logg. A(b)

and by Lemma 3.1,

lcm(B2) <

LEMMA 3.7. lcm(B3) O(g/m).
Proof. Since B3 C_ B2, we get, as in the previous lemma,

lcm(B3) 2t log A(m/4).
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By Lemma 3.1 (2t log2 t < m/15)

lcm(B3) < []
m/4-m/15

LEMMA 3.8. d lcm(B3) lcm(B4) < t and do lcm(Bh) < t.
Proof. Clearly B3 C_ B4, so lcm(B3)llcm(Ba). Let d E Ba and d i=lPi be the

prime factorization of d. d 2t A(m/4) implies

P 2t A(m/4),

so pk e B3 for all 1 <_ <_ n and hence dllcm(Ba), which proves that lcm(B4)[lcm(Ba)
and thus lcm(B3)= lcm(B4).

From condition (1), t(m/4- 2t) _> t. So we can use Lemma 3.2 and get that
B4 is closed under lcm; therefore lcm(B4) B4. Similarly t(m- 2t) >_ implies
lcm(Bh) Bh.

Part (2) of Theorem 3.4 follows from Lemma 3.8. The following lemma shows
that part (3) of Theorem 3.4 holds.

LEMMA 3.9. For all 1 < d < t, d 2d A(0, do)/do.
Proof. Denote xd--efA(0, do)/do. Assume d < t and d2dX. By definition, X(0, d)

A(0, ddo)/do, so ddo 24+4o-1 A. From Lemma 3.1 we have

ddo < < < t.
m.-d-do+ 1 m-2t

and from the definition of do we get ddo <_ do, so d 1.
LEMMA 3.10.

<

Proof. From (2) it follows that

IA \ A(0, d0)l < do,

SO

SA\A(O,do) < do.

On the other hand,

m do)SA

_
SA(O,do) > do 2

Combining these two inequalities yields the desired result. S
The last lemma proved (4) since do < t. The rest of the proof is for the case

do 1. The construction of Cd in step 6 is valid, because there are d nondivisors for
each d < t. The following lemma shows that (5) of Theorem 3.4 holds for the set A
constructed in step 6.

LEMMA 3.11. For all 1 < d < t, -,d 24 A.
Proof. If d B4, then -,d 54 Cd and thus -d 54 A; otherwise -,d 2t A(,/4) and thus

d2d A.
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Lemma 3.12 proves (7).
LEMMA 3.12. [A[ < 1/2[A[-

Obviously, B4 C_ {d" d[do}. Denote C(do)de=fJdld, Cd,Proof. so

m

d[do

Using the approximation

do 1
(8) d< <do 1+ -d <do

did;

we get:
m

< + do log(ed)

and from Lemma 3.8, d < t < m/(30 log2 ) and

( ())m m
logm-log 301og2/ <IZXl < q-/ 301og2e T 3

LEMMA 3.13. SA > m2do/8.01.
Proof. A(m/4) has more than (m/4)- d different elements which are divisible

by d. Therefore

d)SA(m/4) >
2 do"

Using the fact that d < t (d is an order of magnitude less than m and we are using
here the fact that > 0) and SA 4SA(,/4) we get that SA > (m2/8.01)do D

1SALEMMA 3.14. Szx <
Proof. A C_ A(m/a) U C(do). We bound the sum in parts. The first part obviously

satisfies
1

iA(m/a ( -SA.We bound the second part by approximating the sum as the product of the cardinality
and the maximal number:

Sc(d,o) < .d’o log(ed).

Using the previous lemma and the density condition implied by condition (1) we get:

8.01.1.5 18.01SA 1.5e log2 e < SA 150 -Sc(d,o) < m2 < SA.

Combining the two parts we get:

(1 1

The lt lemma proved (6). To complete the proof we analyze the time com-
plexity by elaborating some algorithmic details. Note that computing lcm of a. set
of n elements can be done in O(n log n) operations (O(log n) per lcm computation).
Computing the divisors of a given integer d is even simpler: it takes O(d) time. These
costs are negligible because d, n < t.
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1. O(t2): There are less than t candidates for B1 and for each one of them we
check 2t divisibility conditions.

2. O(tlog2 g): There are b 3tlog2g divisibility checks for each one of the

IBll < 2 log2 g candidates. (Because B2 c_ B and from Lemma 3.5.)
3. O(m + (g/t)): First compute, in O(m) time, IA(i, lcm(B2))l for all/in the

interval [0, lcm(B2)); this can be done by taking all the elements of A one by
one and computing the remainder modulo lcm(B2). Checking all the elements
of B2 as candidates for B3 takes O(lcm(B2)) per element since

lcm(B2)/q

for q e B2, IA(0’ q)l E IA(iq, lcm(B2))l.
i--0

The time complexity follows from Lemma 3.6 (lcm(S2) O(g/t log g)) and
from Lemma 3.5, (since IB21 _< ISl < 21og2).

4. O(m / t/m): As in the previous step we compute, in O(m) time,

{IA(i, lcm(B3)) )cm(B3)-I
Ji--O

and then use them to check all t candidates for Ba in lcm(B3) O(g/m)
divisions each (Lemma 3.7).

5. O(m + t/m): in step 4.
6. O(m + t2): This step consists of two substeps. The first substep computes

A(i, d) for i e (0, d). The second builds the sets Cd. The first substep takes
O(m) time, before. The second substep fills up the sets Cd in the obvious
way:

for d {divisors of d} do Cd .
for i:=l to d 1 do

for d {divisors of d} do
if (d 0 (mod i) and ]Cd] < d) then
Cd Cd A(i, do)(min{d_]V],]A(i,d)]}).

The second substep takes O(d2) O(t2) time.
The total complexity is:

(0 t2+tlog2g+m++t
If t > log2 g then t log2 g < t2, otherwise t log2 < m (here we use again the fact that
g > go), so that in any case t log2g O(m + t2), g/t O(m), and tg/m O(t2),
which makes the total complexity O(m + t2).

4. Constructing an arithmetic progression. In this section we describe an
efficient algorithm for finding an arithmetic progression; more precisely, we construc-
tively prove the following theorem.

THEOREM 4.1. Given a set of # distinct integers in an interval of length ) and
an integer >_ ik, where

(9) it
2 > 50A 10g22 A + 200g log2 A,

we can find in O(AlogA + #log2 A) time a characterization of subsets {B 2}i=1 (: (I

such that SB So + igr .for some integers So and gr. This characterization can be
translated into an elements list in time proportional to the cardinality of the set.
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There is a simple way to generate several short arithmetic progressions" For
1 _< _< A, consider the sets Pi of pairs, Pi {(a, b) E O21 a-b-i}. There are t(#2)
pairs (a, b) and thus (by the pigeon-hole argument) there are many pairs with the same
difference. We first take enough of the largest P’s. The pairs in each P are disjoint,
but pairs in different P’s may intersect. We clean these P’s by deleting pairs to
restore the disjointness property (see step 4 in the algorithm below). The new sets P[
are still large enough. Now, we take from each pair in P and P one of its elements,
either the large one or the small one. Taking k- i large elements from P and large
elements from P gives us a sequence of sets Di c with Sos + kp + i(a p)
an arithmetic progression. ( is the sum of the small elements in P and P.)

The arithmetic progression generated this way is far too short, but we can generate
many of them and then combine them in two different ways in order to generate
longer and longer arithmetic progressions. We start with the progression of minimal
difference. We inductively combine the (i+l)st progression to the combined arithmetic
progression of the first progressions. Our construction guarantees that the difference
of the (i+ 1)st arithmetic progression is a multiple of the difference of the ith combined
arithmetic progression and the length of the i combined arithmetic progression should
be at least as long as the difference of the (i + 1)st progression. This join process
is illustrated in Fig. 1. An element of the combined progression is the sum of an
appropriate element from each of the two progressions.

We guarantee that the difference in the (j + 1)st step will be a multiple of the
difference of the jth step by taking a and p from the same residue class modulo the
previous difference. Actually we choose them from the same residue class modulo
twice the previous difference so that the difference will be strictly increasing. We
choose them from the largest residue class, to make the arithmetic progression as
long as possible, and restrict ourselves to this residue class to save time. More details
are given in step 3 of the algorithm below.

The resulting arithmetic progression has a small difference and is sufficiently long
for high densities (# > c(1og)2/3). For smaller densities we repeat the process
above a number of times and combine the resulting progressions. Now we do not have
the divisibility property. We combine two arithmetic progressions with differences
dl and d2 and length of at least lcm(dl, d2) to generate an arithmetic progression
with difference gcd(dl, d2) as shown in Fig. 2. Here too, an element of the combined
progression is the sum of an appropriate element from each of the two progressions.

d2

FIG. 1. Combining when dl divides d2.

Notation.
For 1 <_ _< A, Pd=ef{ (a, b) e O21a--b i} and

Mde_=f(1/21og(e)))().
For the set I defined below,
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gcd(dl, d2)

FIG. 2. Combining when di does not divide d2.

def,
ad= I{r "I(r, d) q)}l (recall that I(r, d)de{i e I" i r (mod d)}).
Let {s + id}’=o be an arithmetic progression. We define the length of the
progression as nd.

The algorithm below computes certain sets R, S. Each such set is contained in
a set P8 for some s. All these sets are disjoint. These sets will be used as building
blocks for generating arithmetic progressions, which will be combined to produce the
desired arithmetic progressions. In step 1 we compute the Pi’s using the FFT to
multiply polynomials. In step 2 we compute a subset I of the largest pi’s satisfying a
certain condition. Step 2 is justified by Lemma 4.2. Step 3 computes pairs of elements
of I, {p., aji=oj=l in a double loop. They are used later to construct arithmetic

progression of difference d, indicated above, and proved in Lemma 4.6. In the
inner loop we combine ki arithmetic progressions together shown in Fig. 1. The
progressions are combined one by one, keeping the intermediate arithmetic progression
with the same difference d and making it longer and longer. In the outer loop we
combine the output of the inner loop in the same accumulative manner to a single
arithmetic progression. The combining process is shown in Fig. 2. This time we
make the difference smaller (gi) while keeping the arithmetic progression long. Step 4
computes the disjoint sets

R Pp and S} a}
of a predetermined size (flj). The obvious way to compute these sets is too costly. A
more efficient way is the following: generate the sets R and S one by one; each such
set is chosen from the elements of which were not used before. We compute each
set Pp in O(m) time. Lemma 4.8 shows that this process works correctly.

THE ALGORITHM
1. Compute {pi}i by using the Ft Fourier ansform and the following equa-

tion

oE oE i=1 i=1

2. Compute I in the following way:
Sort {p )’ > }.}i=1 {Pjl -> Pj. ""Pjx
Let s be the minimal integer such that spy > M,
then idef{j j2 "’’,js}.

3. Compute {(p. a})}r k
i=oj=l as follows:

def,
gO --0. (Remember that gcd(0, i)= and 01i for all/_> 1.)
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While (l{s: I(s, gi) > 1) do
begin

i-i+l.
Choose a, p e I such that a > p, a p (mod gi), and

a p is minimal under these constraints.

def
0 a0 P.

1; 00.
Wil ( , 50 (mod 5), ](,d}), > 1) do

begin
Choose 0 s} < 2d} such that s} 5o (mod 5) and

]I(sj, 2dj)] is mimal under these constraints.
5 2d; o sj.
jj+l.
Choose a 2d such that, p I(s_,

_
a > p, and

is minimal.aj pj
def= p.

end
kij.

def
god

end
ri.

4. Compute subsets R} Po}, S P} follows"

Denote j

(d+l/d)) otherwise.
Sort {1 ..., ,}; mark all the elements of unused.
or 1 to r do

or j 0 to ki do
begin

i1.

begin
While (il + i > P) do

i i- 1.
If (il + i } and both ’s are marked unused)
then begin

R} R}U{(iI,i)}.
Mark both ’s used.

end
il i + 1.

end

i1+- 1.
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i2 --/z.
While (ISjl < flj) do

begin
While (il "- i2 > 0") do

i2 - i2- 1.
and both ’s re marked unused) then

begin

Mark both ’s used.
end

i i + 1.
end

end

Correctness proof.
LEMMA 4.2. Step 2 of the algorithm is valid (i.e., s exists) and the resulting set I

satisfies:

(10) minpi>
1 ()iEI

(11) III mippi > M.
i1

M
(12) [I >

Proof. If s does not exists, then for all 1 _< T _< A, Tpi

_
M, so by the definition

of M,

(13) pi
-:1 -:1

T

This contradiction proves that s exists and therefore part (11) holds. Part (12) follows
from part (11)"

mipPi <_ maxPi <_ #
iEl iEl

SO

M
ii >_ [I[ miniipi >

s--1Using a computation similar to (13) yields E=I Pi < 1/2 ()" Hence Pi8 is chosen from
more than () remaining pairs, which proves (pigeon-hole argument) that

so (10) holds.
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LEMMA 4.3. Olab a(b.

Proof. The proof is obvious.
LEMMA 4.4. d satisfy

For all l <_ i <_ r and l

_
j <_ ki,

(15) 2< d. <2A
-IZl

and

(16) V 1 < i < r, d >III d
2

Proof. Obviously, by (12), the definition of M, and (9), III> 1. By the pigeon-
hole argument there exist two elements in I whose distance is not larger than i/lII,
thus (14) holds. Using the same argument again (I has O2d congruent classes mod-
ulo 2d) and Lemma 4.3 we get that

III IIldGII(so,2do)l >

This proves the base hypothesis (j --0) of

(17)

The induction step is proved by another pigeon-hole argument: I(s}_l,2d}_l) has

2d)/2d)_i classes modulo 2d} so

Thus, as long as

2 Cd

we can iterate at least one more iteration (since > and find d.. This

proves (16). The first half of (15) is immediate, since by the definition of d., for j > 1,

Using the pigeon-hole argument again we get a. and p. in I(s}_l, 2d_) such that

def "
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and by using (17) it follows that

d} 2ACd) 2A-< 1114 -<

This completes the proof of the lemma. D
LEMMA 4.5. d+1 _< A/Cg.
Proof. d+1 is chosen as the minimal difference in I not divisible by gi. Therefore

we can partition I into s subsets as follows. Sort the set I:

I- {il < i2 <... < illi}

and define

j0 1,

Each "interval" ijk_l,

jk+ m.in{ij 7 ik (mod gi)}, j =III + 1.
3

.., i-1 has the same remainder modulo gi

and d+1 is the minimal distance satisfying this property, hence ij -ij_ >_ d+1.
From

>_ i8 -ijo >_ (iy -ijk_) >_ sd+1
k=l

we get d+1 _< )/s. Each "interval" has the same reminder modulo gi, therefore
Cg <_ s; hence d+1 _< /cg.

LEMMA 4.6. Let R, S be subsets of go such that R c_ Po and S c_ Pa; then (RUS)*
contains an arithmetic progression with difference a- p and with k

elements. (Recall that x*de=f{Sy Y C_ X}.) One can generate in constant time a
description of the arithmetic progression from which an elements list can be built in
time proportional to the set cardinality.

Proof. Recall that R and S contains pairs of elements with the same difference.
Denote by R{i}(S{i}) the set which contains the large element of i pairs and the
small element from the other pairs of R(S). It is easy to see that SR(_us(
+ (k i)p + ia + kp + i(a p), where ( is the sum of all the small elements of
R and S.

LEMMA 4.7. maxi{ki} + r 1 N log2 .
Proof. Using the fact that d} _> 2d}_ ki times we get

(18) >_ d, >_ 2’d) >_ 2’d.
Since gi divides gi-1 and is not equal to it we get gi N -12gi_1, so

1 1
(1) 1 < <

_
1 -;:f_ld.

Substituting (19) into (18) we get , _> 2k’2r-l, so log2 , _> k + r- 1.
LEMMA 4.8. Step 4 in the algorithm above is valid; i.e., before setting R} (S),

there are at least pairs in Po} (PI that do not contain elements of X.
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Proof. Let nyIi=lyi Y and 2 < yi < y for all 1 < i < n, then

(y+l)
> yi

log y log yi

(the 1 is for the case where yi < e). Therefore

yi < (1 + y) logy yi,

so

y < (y + 1) logy Y.

Let yi d/d}_ 1, y 2/k/lI I, and Y dik,/dio" We have 2 _< Yi < Y by (15) and hence

We estimate the sum of all ’s:

Since by (19) and (14), r < 1 4-log2 d < log2(2A/llI) it follows that

((2 + e)A log2 + 8g).

Using (11) and the definition of M (and then (9)) we get that

i=1 j=O

miniei Pi (12.5A log A + 50/log2 A) <
#2

minieI Pi

and

r

4- _< minpi.
iI

i=1 j=O

Therefore, in step 4 we always have flj pairs for R} and flj pairs for Sj. v]

Lemma 4.9 shows how to combine two arithmetic progressions in case they are
long enough. It applies in both cases: when dl divides d2 (Fig. 1) and when d does
not divide d2 (Fig. 2). The first case is used by Lemma 4.10 for each 1,.-., r
to combine the arithmetic progressions with difference d, j 0,-.., ki (obtained by
Lemma 4.6) in the inner loop of step 3 of the algorithm. The resulting progression
has difference d. The second case is used by Lemma 4.11 to combine the resulting
progressions and derive a long enough arithmetic progression of difference gr.
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LEMMA 4.9. Let X1 and X2 be two sets of integers such that

and n2X2

_
{82 2t- id2}i=2

where

d2(20) nl > and
gcd(dl, d2)

dl
n2 _>

gcd(dl, d2)

then

(X1 t_J X2)* _D {s3 + id3}=l

where

s3 Sl + s2 + lcm(dl, d2), d3 gcd(dl, d2),

and

it3
n2d2 lcm(dl, d2) + d

gcd(dl, d2)

The sets forming the arithmetic progression can be described in constant time and any
one of these sets can be built in time proportional to its cardinality.

Proof. We construct the desired arithmetic progression by showing:

(21) V 1 < i < n3, s3 + id3 (s + fl (i)dl) + (s2 + f2(i)d2).

Let e be the inverse of dl/gcd(dl, d2) modulo d2/gcd(dl, d2); then

d2 ) d2(22) fl(i)de=fie mod
gcd(dl, d2)

0 < f (i) < gcd(dl, d2)"
Note that we chose fl (i) so that 1 <_ fl (i) < nl and therefore sl + fl (i)d e X.

(23) f2(i)de=flcm(dl, d2) + i gcd(dl, d2) fl (i)dl
d2

It follows from (22) that

fl(i) gcd(dl, d2)
mod

gcd(dl, d2)

and therefore fl(i)dl igcd(dl,d2)(mod d2). Hence the right-hand side of (23) is
an integer and

(s3 + id3) (sl + fl(i)dl + s2 + f2(i)d2) 0

(by substituting (23), s3 and d3). Since 1 _< i _< n3, by the definition of n3 we have

f2(i) <
lcm(dl, d2) / n3 gcd(dl, d2) 1. d

d2
and

f2(i) >
lcm(d, d2) + 1. gcd(dl, d2) (d2/gcd(d, d2))dl > 0.

d2
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Hence 1 < f2(i) < n2 and s2 4- f2(i)d2 e X and therefore s3 4- id3 E (X: tO X2)*.
Again, the time is constant for a description and linear for an elements list. [3

LEMMA 4.10. For 1 < i < r and 0 < j < k one can build an arithmetic
progression with difference d and length d( 1). The description of the sets whose
sums give the arithmetic progression takes O(log A) time and for each set B, listing
its elements takes time proportional to its cardinality.

Proof. The proof is by induction on j. The base hypothesis (j 0) follows from
Lemma 4.6 by taking R R and S S. For the induction step we use Lemma 4.9
as follows: The first arithmetic progression is the combined arithmetic progression
formed from the first j arithmetic progressions (0, 1,... ,j- 1). This progression
follows from the induction hypothesis. It has d: d and n (_- 1)d_/d.
The second is the progression for d which follows from Lemma 4.6. It has d2 d.
and n2 t. Obviously

n2 [ >_ 1 d* d
d gcd(d:, d2)"

So the first half of condition (20) of Lemma 4.9 holds. From the definition of/3_, it
clearly follows that

1---(flj--1- 1) d’-I > d. d2
d do gcd(d,d2)’

which proves the second half of condition (20).
combined arithmetic progression has

From Lemma 4.9 we get that the

elements. As for the time complexity: we used Lemma 4.6 ki O(log A) times; each
takes O(1) time. So we have O(log A) time for a description and O(ki + IBI) for an
elements list. The latter bound is O(IBI) as IBI (ki), since none of the sets

R and S can be empty.
LEMMA 4.11. One can build an arithmetic progression with difference gr and

dr (13k 1). The description of the sets whose sums give the arithmeticlength 5 k
progression takes O(log2 A) time and for each set B, listing its elements takes time
proportional to its cardinality.

Proof. We prove inductively on i that we can build an arithmetic progression
with difference g and length -dk, (k, 1) in O(i log ) time. The base hypothesis
(i 1) trivially follows from Lemma 4.10. Suppose that the induction hypothesis
holds for i; then for 4- 1 we use Lemma 4.9. The first arithmetic progression is the
combined arithmetic progression formed from the first i arithmetic progressions; this
progression follows from the induction hypothesis. It has

dl -gi and nl
dik (3- 1)

The second is the progression from Lemma 4.10. It has

d2 d)+ and n2
di+: i+: 1)ki+:
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By (15) we get that di+1 d+1
k+l > Using the definition of/j for j ki, we get that

On the other hand, from (14) it follows that

dl g
(25) gad(d1, d2) g+l

From (24) and (25) it follows that

(26) n2 > 2 dl
gcd(dl, d2)"

From (16) and Lemma 4.3 (taking a d/g and b g) it follows that

On the other hand, from Lemma 4.5 it follows that

d2 d+ ,X

gcd(d,d2) g+ agg+l

If < r- 1, then gi > 1 and therefore, substituting the definition of, we get

d2 < < I-Zl(&- 1) _< nl.gcd(dl,d2) 2Cg 4cg

Otherwise, i-r- 1 and

d2 < A < II1(,, 1)
gcd(dl, d2) cg 4

Hence condition (20) holds and therefore we have

d3 gcd(dl, d2) gi+1,

and from (26) we get

n3
n2d2 lcm(d, d2) + dl

gcd(d, d2)
n2d2 dl da

gcd(dl,d2) >> n2d2
gcd(d, d2) 2 gcd(d, d2)

d+ t+ 1)ki+l \taki+l

2gi+1

proving the induction step. As for the time complexity: we used Lemma 4.10 r
O(log ,X) times; each one of them takes O(log ,X) time. So we have O(log2 ,X) time for
a description and O(r + IB{) for an elements list. Again, the latter bound is
as IBI- (r), since none of the sets R. and S can be empty.



ALGORITHM FOR DENSE SUBSET-SUM PROBLEM 1177

Completing the proof of Theorem 4.1. Applying (16) and the definition of
to the result of Lemma 4.11, we get that the arithmetic progression generated has

difference gr and length

1 1 d [II r dd(- 1)> (k- 1) > 2.
20d 2 Od

Since gld by Lemma 4.3, d < (d/g)cg, and since cg 1, we get that the
arithmetic progression has length of at least 2/g and thus at least 2g elements.

To complete the proof, we analyze the time complexity.
1. Multiplying two polynomials of degree , using FFT takes O( log ,) time (see

for example [1]).
2. Sorting {p} takes O( log ) time; choosing s and building III takes O([II)

which is O(A) time.
3. There are two loops in this step: the outer loop where i goes from 1 to r, and

the inner loop where j goes from 0 to ki. We estimate each one of these two
loops separately. We include the first iteration of the inner loop as part of
the outer loop.
(a) Outer loop: The outer loop is performed r times; each iteration takes

0(1I + g) time for checking the while condition (g for initializing a
vector of length gi and constant time for updating some ]I(x,g)l for
a single element in I). Choosing a, p takes 0(1II) time. The first
iteration of the inner loop takes 0(1I + d) time. So the total time for
the outer loop is O(r(lI + gi + d)).

(b) Inner loop: The inner loop is performed no more than r(maxi ki + 1)
O(r log ,) times; each iteration takes O(lI + 2dj/dy_l) time for checking

From (15) itthe while condition and 0(1II) time for choosing cry, pj.
follows that

So the total time is O(r log (111 + 2/111)).
From (14) it follows that

and using Lemma 4.5 we get d </. From (19) and (14) we have

r < l + g2 d < l + g: -l O -1
and of course r O(log ,). Thus the time complexity of this step is

0 (rlII -t-rgi +rd +rlogAlI -t- r logA)
0 (A + logA + AlogA + AlogA + AlogA).

Using (12), the definition of M, and (9) we get that

M #-1III > > > 2 log2/ > r.
# 2 log(e,)

Hence the time complexity of this step is O(,k log ).
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4. Building n and Sj takes O(# log # + -ir=l kilt) O(lt log2 A).
5. The description of the arithmetic progression is generated in O(log2 A).

So the overall time complexity is O(A log A / It log
2 A).

5. A detailed description of the algorithm. In this section we combine all
the theorems of previous sections, and prove a weak version of the main theorem of
this article. First we introduce the following notations:

def(27) It [lOg’5 log2 el.

(28) Ldef---SA-+-I 21.5.

THEOREM 5.1. Let A be a set of m different numbers in the interval (0, ] such
that

(29) m > 100’5 log2 ;
then we can build in 0( log + m log2 ) preprocessing time a structure which allows
us to solve the subset-sum problem for any given integer N in the interval (L, SA- L).
Solving means finding a subset B C_ A such that SB <_ N and there is no subset C c_ A
such that SB < Sc <_ N. The optimal subset B is built in O(log) time per target
number and only constant time for finding the optimal sum SB
ALGORITHM

1. The preprocessing stage consists of the following steps; the first two steps are
sufficient for computing only the sum SB.
(a) Apply the algorithm of 3 to the input set A, using td[/. Note that

condition (29) guarantees that condition (1) of Theorem 3.4 holds.
(b) Use dynamic programming modulo do to compute A* (mod do). Use this

to compute the function fgo "[0, do) --* [0, do), which is defined as

fdo(i)fmax{j 0 <_ j <_ and j E A* (mod do)}.

Note that fdo (i) is properly defined for all i since 0 E A* (mod do).
(c) In computing the set A* (mod do) keep a subset Ci c_ A \ A(0, do) for

each i A* (mod do) such that Sc i(mod do) and Sc < do (since
by construction [Cil < do).

(d) We now turn to a new problem:

From (2) and (1) we get that

m

A(0, d0)

39
> m-do > -m,

L max{Sc } > L gd0,

and

l,= <g.
do-
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(30)

(31)

By (3) of Theorem 3.4, A’ has a d 1. So we can apply again the
algorithm of a to A’ with the same t ((1) will certainly hold) and choose

AdefA
By (6), SA < 1/2A’.

(e) Using (7) we have that

IA’\ All > m’> .
So we can choose A2f(A’\ A)(u) and apply the algorithm of 4 to A
with A g. Note that from the definition of # it follows that condi-
tion (9) of Theorem 4.1 holds. Let B (0 _< < 2g) be the subset of A,
which satisfies SB So + ig,..

(f) Using (14), (12), and the definition of M we get

t e# 4t log(et)
#-1

Using the definition of # we get that

6/? log2 o.
# :2

So we can use (5) and Lemma 3.3 to build, using dynamic programming,
a sequence of sets {E gn-1}=0 C_ A such that SE i(mod gr) and SE <
t’gr.

(g) Define, for 0

_
< tgr,

(mo ) + B,+(_S(o
It is easy to verify that the indices of B’ and E’ are valid and that
SF So + ’g + i.

(h) Compute all the prefix sums of the set

A3de--fA’ \ (AI U A);

,defoi.e., , A,). By the choice of A, (30), and (7), it follows that

# SA’
SA’\AI < 2-(m do)

SA, <SA <
IA’\ AI 6.2

(since by (27) and (29), m > 9.3#). So by (4)of Theorem 3.4

SA SA’- SA SA. > 1
(m2_t)

1
3 6.2

SA
2d0"

2. Given a target number N we execute the following steps.
SB only the first step suffices.

For computing
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(a) Denote n0de--fN (mod do). Compute SB as follows:

Ss do -o + fd(n)"

It is clear by taking numbers modulo do that there is no C such that
SB < Sc <_ N. So if we can obtain SB, then it is the right solution. In
Lemma 5.2 we will prove that we can.

(b) Denote Bde-----fmin{SB, SA- SB}, 0d-----efB (mod do) and

N’fB Scs so ’gr.
do

(c) Using binary search on the set of prefix sums of A, find

def defer
nl max{i" Sa < N’} and ,2=1, -SG,I

The desired subset is

deff
? ,o(o) doC,l " doF,..

LEMMA 5.2. The algorithm above computes the correct set B.
Proof. The indices nl and n2 are valid: so < SA, and from (31) it follows that

L- gdo SA igr L 21t
> >0.N’ >

do fi.2do do do
And clearly N’ < SA/2do, therefore SA, > N’ and hence nl exists, n2 > 0 is trivial
and n2 < follows from the fact that all the elements in A3 are bounded by . The
sum of B? is"

S,? SC,,oO + o (S, +o+e’+(V’-S,))
Scs (%) + do (So + Egr + N’).

Substituting N’ yields SB? B which is SB or SA- SB; in the second case we
complement the solution (B A \ B?). D

The time complexity.
1. The preprocessing time is

(a) The algorithm of 3 takes O(m + t2) time.
(b) Solving the problem modulo do takes O(d) O(t2) time.
(c) Keeping the subsets C along the way does not cost any additional time.

(d) The second application of the algorithm of 3 is even faster than the
first one.

(e) Sorting A takes O(m log m) time and the Algorithm of 4 takes

O(g log + m log2 g)

time.
(f) This dynamic programming takes O(m -4- g2) O(m + t2) time.
(g) Building any Bi and F might take O(m) time, so we do not actually

build it; instead we keep the necessary index computations only.
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(h) Building all the G’s takes O(m) time.
Thus, the time complexity of the whole preprocessing is

O (m log2 g + t2 + g log g).

By the definition of t the complexity is

O(m log2 g + g log ).

2. The per-target number part of the algorithm takes the following:
(a) Finding the solution SB takes only constant time.
(b) Computing nl and n2 takes constant time as well.
(c) The binary search takes O(log m) time; all the other indices can be com-

puted in constant time, a characterization can be obtained in logarithmic
time, and a full element list can be written in O(]BI) O(rn) time.

6. Improvement of the algorithm. In this section we improve the algorithm
described in the previous section. We get a faster algorithm (even linear in some cases)
which works on a larger interval. The bottleneck of the time complexity is O(A log A)
where A g, so the main idea of the improvement is to take A to be less than I.
The smaller interval size could be obtained for the previous algorithm using better
estimates.

First we introduce the following choice of parameters:

(32) tde--f [ 103 ] #d=ef
m

lg2 g [15g0"5 lg2 g]’ and ndefl00SAg’5 lg2
g

m

THEOREM 6.1. Let A be a set of m different numbers in the interval (0, l] such
that

(33) m > 1000’5 log2 ;

then we can build in 0 (m + ((l/m)log g)2 + (SA/m2)g0.5 log2 t) preproccesing time

a structure which allows us to solve the subset-sum problem for any given integer N
in the interval (L, SA L). Solving means finding a subset B c_ A such that SB

_
N

and there is no subset C c_ A such that SB < Sc <_ N. An optimal subset B is built in
O(log g) time per target number and is listed in time O(IBI). For finding the optimal
sum SB only, the preprocessing time is 0 (m + ((g/m)log t)2) and only constant time
is needed per target number.

ALGORITHM
1. The preprocessing stage consists of the following steps; the first two steps are

sufficient for computing only the sum SB.
(a) Apply the algorithm of 3 to the input set A, using t as defined before.

Condition (1) of Theorem 3.4 clearly holds.
(b) Use dynamic programming modulo do to compute A* (mod do). Use this

to compute the function fdo "[0, do) - [0, do), which is defined as

fdo(i)de=fmax{j 0 <_ j <_ and j e A* (mod do)}.

Note that fdo(i) is properly defined for all since 0 E A* (mod do).
(c) In computing the set A* (mod d0) keep a subset Ci c_ A \ A(0, d0) for

each E A* (mod do) such that Sc (mod do) and Sc < gdo.
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(34)

(35)

(36)

(d) We now turn to a new problem:

A(O, do)
do

From (2) and (1) we get that

39m’ > m- do > -rn,

and

g_ <g.
do-

By (3) of Theorem 3.4, A’ has a d 1. So we can apply again the
algorithm of 3 to A’ with the same t ((1) will certainly hold) and choose

Ade=A. By (6), SA, < 1/2SA,.
(e) This step is the core of the improvement of the algorithm. Using (7) we

have that

1
IA’\ All > m’> m.

Let

)de-----f [640"5 log2 4mSA2’ ]
By the density assumption and since SA, < g.m, we have that A < .
Lemma 6.2 below enables us to choose a subset A c_ A \ A, which
contains # elements, each one of which is less than 4SA,/m and lies in a
subinterval of length A. Apply the algorithm of 4 to A. Note that from
the definition of # it follows that condition (9) of Theorem 4.1 holds.
Let B (0 < < 2g) be the subset of A which satisfies SB 80 + ig,..

(f) Using (14), (12), and the definition of M we get

4A log(et)

Using the definition of # we get that

6A log2 103SA, 103/
gr < < log2 g < log2 g < t.

# rn2 m

So we can use (5) and Lemma 3.3 to build, using dynamic programming,
a sequence of sets {E g-}=0 C_ A such that SE i (mod gr) and SE <
g’g,..

(g) Define, for 0 _< < gg,
de_..f ----i(mod 9,’) "j- Bp+(i--SE:(mod

It is easy to verify that the indices of B’ and E’ are valid and that
SF, So + ggr + i.
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(37)

(h) Compute all the prefix sums of the set

A3fA’ \ (A U A);

ttdef
i.e., , ’A,. A contains # elements, each one of which is less

than 4SA,/m so

4SA, 64SA,’5 log2 t SA,
SA <

m m 10

So by (4) of Theorem 3.4

Sa=Sa,-Si-Sa; > 1-
(mt)

1 a 10
> 2d"

2. Given a target number N we execute the following steps. or computing
S only the first step suces.
(a) Denote n0fN (mod d0). Compute S as follows:

SB do + fdo (no)"

It is clear by taking numbers modulo d0 that there is no C such that
SB < Sc N. So if we can obtain SB, then it is the right solution. In
Lemma 6.3 we will prove that we can.

(b) Denote Sfmin{Ss, SA SB}, 0fs (mod d0) and

N’B Sc()
So g’g.

do

(c) Using binary search on the set of prefix sums of A, find

def def nrt
nl m{i" Sa N’} and n2 =2, -Sa.

The desired subset is

doF2WIo (o) doG
LEMMA 6.2. There exists a subset A (A’ A) which has elements, each

one of which is less than 4SA,/m and is contained in an interval of length A where
is dCned in (35). This subset can be found in time O(m).

Proof. Denote the median of the set A’ A by H. Since

2 39 13
]A’A] m’> m= m,

at let m/4 elements of this set are larger than the median:

m
SA,A > H,

which implies that

4SA,A 4SA,
H< <.

m m
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So there are at least m/4 elements in A’\A which are smaller than 4SA,/m. Divide
the interval (0, 4S,/m] into (4SA,/mA) subintervals of length less than or equal
to A each and choose the subinterval with the largest number of elements. It contains
at least

elements. Arbitrarily enlarge the subinterval to the length/k and take only # elements
from it. A can be easily computed in linear time.

LEMMA 6.3. The algorithm above computes the correct set B.
Proof. From (2) it follows that

) m2dm do do >SA >
2 3

From (37) and the fact that SA, <_ SA/do we have

64SAt’5 log2 g

mdo

We obviously have do <_ 3SA/m2 and by (36)

103SA log2 t
dom2

It follows from these inequalities, the definition of L, and the density condition that

ggr ( 3SA 64SAg’51og2 g103SAg IL- do
so > L-1N’ >

do -o m2 m m2 lg2 /do > O.

Clearly N <_ SA/(2do) and therefore SA > N’ and hence nl exists, n2 _> 0 is trivial
and n2 < g follows from the fact that all the elements in A3 are bounded by g. So the
indices n and n2 are valid. The sum of B? is:

Scso (,o) + do (So + gr + N’)

Computing this expression yields SB? B which is SB or SA SB; in the second
case we complement the solution. D

The time complexity.
1. The preprocessing time is

(a) The algorithm of 3 takes O(m + t2) time.
(b)
(c)
(d)

(e)

Solving the problem modulo do takes O(d) O(t2) time.
Keeping the subsets C along the way does not cost any additional time.
The second application of the algorithm of 3 is even faster than the
first one.
Finding A takes O(m) time with the algorithm described in 4 takes
O(zk log/k + # log2/k) time.
Dynamic programming takes O(m + g2r) O(m + t2) time.
Building any Bi and F[ might take O(m) time, so we do not actually
build it; instead we keep the necessary index computations only.
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(h) Building all the G’s takes O(m) time.
Thus, the total complexity of the preprocessing is

O (m + t2 + A log A + # log2 A).
By the definition of t and A the complexity is

O m+ --log + log2

since the lt term is bounded by O(’ loga ), which is dominated by one
of the first two terms because of the density condition.

2. The per-target number part of the algorithm takes
(a) inding the solution S takes only constant time.

(b) Computing nl and n takes constant time well.
(c) The binary search takes O(log m) time; all the other indices can be com-

puted in constant time, a characterization can be obtained in logarithmic
time, and a full element list can be written in O(IBI) O(m) time.

Nemarks. Note that L is always smaller than Sa (L < Sa/10). This was not
true in the previous section and in the previous known results. or example, when
m o(ea/) and L e1., sa can be O(m) o(L) (i.e., when there are very few
elements close to ) and the interval (g, Sa L) in Theorem g.1 is empty.

The time complexity of our algorithm is bounded above by

O m+log
m

This expression can be O(m) when m a(ea/ e), but can also hold for sparser
instances for which Sa is relatively small:

m a((e log e)/a) and Sa O
e0. lg e

If we are only interested in the optimal sum, the time complexity is bounded by
O(m + This expression is O(m) when m. Limitations of our method. In this section we investigate the limits of our
techniques. irst we show a lower bound on the density below which the method does
not work and then we show some problems in which density does not help.

A lower bound on the density. In our algorithm we proved that for m >
c l/+e, A h a special structure. Namely, a large neighborhood of the middle sum
(Sa/2) is a collection of arithmetic progressions with the same small difference:

A* (L, Sa L) {a e (, Sa L) e A* (mod d)} where d < m.

We call A with such a structure a modulo-d-dependent set. The previous works men-
tioned before, [9], [17], and [2] proved that A h this structure. We improved these
results but we are still quite far from eiman’s conjecture that the density
suce. Here we give a counterexample which proves that with this structure we can-
not have density below 1/. We give an example in which for m > 1/, A* does not
have the structure described above.
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EXAMPLE 7.1. Let k be any even integer and let A {1,2,...,k,g}, where
1SA is the only sum which cannot be achieved as a subset- k(k +1)/2 + 2. Then

8urn.

1SA g- 1 cannot be achieved, since t itselfProof. SA 2 2, so N 5
cannot be in the subset, because g > N and all the other elements do not suffice since
their sum is l- 2 < N. On the other hand, all the other values can be achieved:
for 0 _< N < - 1, we can easily find a subset of the first k elements whose sum
is N, and using the / element we can build sets for the other sums. In this example
m- k + 1 > 11/2.

COROLLARY 7.2. In the example above, A is not modulo-d-dependent for any d
and L such that d + L < 1/2 SA.

Proof. A*5SA and this is exactly the middle value; therefore we should have
some other value ruled out from A* because 5SA-dE1 (L, SA L). But there is no
other value which cannot be achieved a contradiction.

The example above shows that for density smaller than gl/2, A* does not have the
same structure which we used in the algorithm. Thus the example above establishes
a tight bound for the density (up to a polylog factor). However, it may be the case
that for less dense instances, another, perhaps more complicated, structure exists.

Strong NP-completeness of dense problems. We solved instances of a dense
NP-complete problem, but not of a strongly NP-complete one. The following theo-
rems show that our techniques cannot be applied to obtain a pseudo-polynomial-time
for some strongly NP-complete problems. We consider the bin packing problem and
the three partition problem. Both are strongly NP-complete [14]. For each one, we
describe a pseudo-polynomial-time reduction of a general instance to a very dense
instance of the same problem; establishing that the very dense version of the corre-
sponding problem is strongly NP-complete.

As a first example we consider the bin packing problem.
DEFINITION. An instance of the bin packing problem (BPP) is a triplet (A, N, n

where A is a set of integers and n, N are integers. A solution is n disjoint sets of
integers {Bi}in_- such that A .= Bi and for all 1 <_ i <_ n, SB

_
N.

DEFINITION. An instance of the BPP is said to be very dense if IAI > 5 max A.
THEOREM 7.3. The BPP is strongly NP-complete even if restricted to very dense

instances.

Proof. Given an instance I (A, N, n of the BPP we generate a very dense
instance I (A’, N’, n’) of the BPP as follows. Let

n [N_J N’=3nN,

and

:ln--i - n--1A’ {Ha a e A} [9 {aN + "tt=n U {2aN z}=01 U {i}=
Note that if A has no repetitions, so does A. (We assume that maxA _< N, otherwise
I has no solution.) I is very dense because it has IAI + 2n- 1 elements in an interval
of length 2aN, so IA’] > max A.

We show that I is solvable if and only if I is. If {Bi}=l is a solution for I, i.e.,
SB <_ N, then

B t2 {2aN}
B+ B+ U {2nN i,i}

{2aN i, nN + i}

O,
l_<i<n,
n<i<n
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is a solution for I’.
For the other implication, assume that ln,’ is a solution for I. For 0 < i < nt"i Ji--

3nN N’
2nN i >

2 2’
nand we must have a separate bin for each element in {2nN i)i=- 1, which exhausts

all our bins. Now we argue inductively that for each i, n <_ i < nt, nN + i should be
packed together with its {2nN i} mate. The basis (k n 1) is obvious. Assume
that this holds for > k. Then for nN + k there is just one bin with enough space
left in it, which proves the induction step. So we are left with only n bins, say B
1 < < n; bin B contains the element 2nN- i. The remaining elements in B
sum up to at most nN + i. All the remaining elements have sizes which are either a
multiple of n or less than n, so the extra space modulo n left is useless for the large
elements and exactly sufficient for the small ones. Consequently,

Bi+lde----f { [] a E Bt} O < <_ n,

solves I.
COROLLARY 7.4. The problem of partitioning into n equal parts is strongly NP-

complete even if restricted to very dense instances.

Proof. The same transformation may be used since it preserves the exactness of
the packing. [:]

As a second example, we consider the 3-partition problem.
DEFINITION. An instance of the 3-partition problem (3PP) is a triplet (A, m,

where A is a set of 3m elements in the interval [1, g]. The problem is whether there
exists a partition of the set A into m triplets with the same sum.

lg.DEFINITION. A 3PP instance is called very dense if m >
THEOREM 7.5. 3PP is strongly NP-complete even if restricted to very dense

instances.

Proof. The transformation from any input instance I (A, m, t} into a very
dense one I’ (At, mt, gt) is as follows. Let

and

A’ {a +g a e A} t2 {2i- 1,2i,

I is clearly very dense.

SA +3g 4i+1}m

L1/4J

i=i

If I has a solution, so does It: partition the first part of A into triplets as A was
partitioned and add new triples of the form {2i- 1, 2i, SA/m+3g--4i+ 1}. Conversely,
assume I has a solution. Note that the sum of a triple is SA,/m SA/m + 3g and
therefore for 1 < i < [/4],

SAm + -4i+l>max 2 mt’ m

Consequently a triple with SA/m + g- 4i + 1 can contain neither an element of the
same form nor an element of the form a + (since there is not enough room left). So
we need to fill this triple up with 2i- 1 and 2i, which are exactly sufficient for this
purpose. We can read the solution for I from the remaining triples.
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8. Conclusion. We described a new algorithm for solving the subset-sum prob-
lem. It is always two orders of magnitude faster than the algorithm using dynamic
programming. It is at least one order of magnitude, and for low densities two orders of
magnitude, faster than the best algorithm using analytic number theory. In addition,
the new algorithm uses only elementary number-theoretic facts and yields elementary
proofs of theorems previously proved using analytic number theory.

The constants in the algorithm and the theorem are quite large. Moreover, we
require that there is an g0 such that g > g0. A careful proof yields much smaller con-
stants but is much more tedious. Chaimovich [6] has carefully computed the constants
in a previous, less efficient, algorithm which used analytical number-theoretic results.
He has found that the algorithm works for t0 >_ 49. Furthermore, he programmed it
and discovered that this algorithm works even when the conditions (on the density
and the interval of target numbers) are relaxed considerably. We believe that the
true conditions for our algorithm are much weaker and that large constants are not
needed.

Our results complement the results of Lagarias and Odlyzko [16] that considered
sparse subset-sum problems. For these cases they designed a polynomial-time algo-
rithm which finds the solution almost always. For dense subset-sum problems, the
dynamic programming approach yields a polynomial-time algorithm. Our substantial
speedup increases the size of the domain of solvable dense subset-sum problems con-
siderably. Thus, one should be very careful before using instances of the subset-sum
problem in cryptography (see [15]).

Other NP-complete problems should be examined. One should try to find an
efficient algorithm for the dense case or prove that the problem remains NP-complete
even when it is very dense. It is an open question whether there are strong NP-
complete problems with a polynomial-time solution for the dense case.

One possibility for exploiting our result is to develop density preserving reductions
of other NP-complete problems to the subset-sum problem. Recently Chaimovich [5]
reduced several problems to the subset-sum problem using dense reductions obtaining
improved algorithms for these problems. They include the problem of partitioning into
k equal parts (for a fixed k) and certain scheduling problems.

One may want to try to use number theory (analytic or elementary) to solve other
integer programming problems, possibly by analyzing their mathematical structure.
After all, the inputs to these problems consist of numbers.

Appendix: A short history. There were two related developments: one was
proving characterization theorems and the other was the development of algorithms.
The earliest characterization theorems of discrete optimization problems were re-
ported by Berstein and Freiman [3] and Freiman [10]. The first characterization
theorem for the subset-sum problem showing that an interval near the middle sum is
contained in A* was proved by Erdbs and Freiman [9]. It assumed very dense inputs
(m > g/3) and a very small interval. Alon and Freiman [2] improved the density
(m > t2/3+) and Lipkin [17] improved the interval size but needed higher density
(m > g4/5+). All these works used analytic number theory. An earlier version of
our work, using elementary means, yielded a characterization that matched both the
density of [2] and the interval size of [17]. Then Freiman [13] and, independently,
Sarkbzy [18] improved the density to m > t"5+. Freiman uses analytic number the-
ory. Sarkbzy’s proof does not, but it uses some algebra and is not constructive and
therefore it is not useful for algorithm design. Our current paper matches this density
using elementary means and proves it is the best possible.
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The first algorithm using a similar approach is due to Freiman [11] (see also [12]).
He used the result of [2] to obtain a linear-time (O(m)) algorithm for the simpler
problem of computing SB, the best sum, not the best set. The computation of B
requires a large interval, which the theorem in [2] did not give. So the first algorithm
for computing B used [17] and therefore needed higher density. Its time was far from
linear. It was considerably improved by an earlier version of our paper. As a result of
Freiman’s more recent characterization [13], the best algorithm for computing B using
analytical number theory [7] applies to density m >/.5+ but runs in time O(/2 log g).

The earlier version of our paper obtained similar results to the ones reported
here, except that it applied to density m > 2/3+e only. In this newer version we
improve the density to m > g.5+. The time complexity of our algorithm considerably
improves both the algorithm using dynamic programming and the best algorithm
obtained using analytic number theory.

In case we are interested in computing SB only, our algorithm has a better time
bound. In particular, like Freiman’s original algorithm, it is linear (O(m)) for densities
m > 2/3+e. Furthermore, if we solve this simpler problem for many target numbers,
the additional time per target number is constant.
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